[go: up one dir, main page]

CN100378951C - Method for manufacturing via-first dual damascene - Google Patents

Method for manufacturing via-first dual damascene Download PDF

Info

Publication number
CN100378951C
CN100378951C CNB2005100833393A CN200510083339A CN100378951C CN 100378951 C CN100378951 C CN 100378951C CN B2005100833393 A CNB2005100833393 A CN B2005100833393A CN 200510083339 A CN200510083339 A CN 200510083339A CN 100378951 C CN100378951 C CN 100378951C
Authority
CN
China
Prior art keywords
dielectric layer
interlayer hole
layer
dual damascene
manufacture method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2005100833393A
Other languages
Chinese (zh)
Other versions
CN1897244A (en
Inventor
周文湛
马宏
张光晔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to CNB2005100833393A priority Critical patent/CN100378951C/en
Publication of CN1897244A publication Critical patent/CN1897244A/en
Application granted granted Critical
Publication of CN100378951C publication Critical patent/CN100378951C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A method for manufacturing via-first dual damascene comprises providing a semiconductor substrate having a dielectric layer formed thereon, including via openings; filling a gap-filling polymer layer in the via hole; back-etching the gap-filling polymer layer to a predetermined depth to form a polymer plug in the via hole, wherein the exposed surface of the polymer plug is lower than the upper surface of the dielectric layer, thereby forming a concave hole; forming a photoresist layer on the dielectric layer, wherein the recess hole is filled with the photoresist layer; performing a photolithography process to form a trench conductive line pattern in the photoresist layer directly above the via opening, wherein the trench conductive line pattern has a first section not overlapping with the via opening, the first section has a fixed line width, and a second section with a gradually reduced line width overlapping with the via opening; the dielectric layer is etched through the trench conductive line pattern using the photoresist layer as an etching mask.

Description

介层洞优先双镶嵌的制造方法 Via Priority Dual Damascene Fabrication Method

技术领域 technical field

本发明涉及一种双镶嵌(dual damascene)工艺,特别是涉及一种介层洞优先(via-first)双镶嵌的制造方法,可解决蚀刻沟槽导线图案时所造成相邻两介层洞间的桥接(bridging)问题。The invention relates to a dual damascene process, in particular to a via-first dual damascene manufacturing method, which can solve the gap between two adjacent via holes caused by etching trench wire patterns. The bridging (bridging) problem.

背景技术 Background technique

铜双镶嵌(dual damascene)技术搭配低介电常数介电层已成为高集成度、高速(high-speed)逻辑集成电路芯片制造以及针对0.18微米以下的深次微米(deep sub-micro)半导体工艺最佳的金属内连线解决方案。这是由于铜具有低电阻值(比铝低30%)以及优选抗电迁移(electromigration resistance)的特性,而低介电常数材料则可帮助降低金属导线之间的RC延迟(RC delay),由此可知,铜金属双镶嵌内连线技术在集成电路工艺中显得日益重要。Copper dual damascene (dual damascene) technology with low dielectric constant dielectric layer has become a high-integration, high-speed (high-speed) logic integrated circuit chip manufacturing and for deep sub-micron (deep sub-micro) semiconductor technology below 0.18 microns The best metal interconnection solution. This is due to the low resistance value of copper (30% lower than aluminum) and the preferred anti-electromigration resistance (electromigration resistance), while the low dielectric constant material can help reduce the RC delay (RC delay) between metal wires, by It can be seen that the copper metal dual damascene interconnection technology is becoming more and more important in the integrated circuit technology.

双镶嵌的制造方法基本上有所谓的沟槽优先(trench-first)双镶嵌、介层洞优先(via-first)双镶嵌、部分介层洞(partial-via)双镶嵌,以及自行对准(self-aligned)双镶嵌等选择。其中,介层洞优先双镶嵌简单地说即是利用多道光刻及蚀刻步骤,先定义介层洞,随后再于介层洞上方定义出沟槽,构成一体的双镶嵌结构。Dual damascene manufacturing methods basically include the so-called trench-first dual damascene, via-first dual damascene, partial-via dual damascene, and self-aligned ( self-aligned) double mosaic and other options. Among them, the via-first dual damascene simply means using multiple photolithography and etching steps to first define the via hole, and then define a trench above the via hole to form an integrated dual damascene structure.

请参阅图1至图5,其绘示的是现有介层洞优先双镶嵌的制造方法的剖面示意图。如图1所示,现有方法首先提供一半导体基底100,其上具有导电结构111以及112,例如铜镶嵌导线,形成于底层或元件层101中。接着,依序在半导体基底100上沉积形成保护盖层(capping layer)115,其成分通常为氮化硅,覆盖于导电结构111以及112的暴露表面,以及一堆栈介电层120,其通常包括一第一介电层121、一第二介电层123,以及一介于第一介电层121与第二介电层123之间的蚀刻停止层122。在第一介电层121上,随后会再沉积一氮氧化硅(SiNO)停止层130。Please refer to FIG. 1 to FIG. 5 , which are schematic cross-sectional views of a conventional via-preferential dual-damascene manufacturing method. As shown in FIG. 1 , the conventional method first provides a semiconductor substrate 100 on which conductive structures 111 and 112 , such as copper damascene wires, are formed in the bottom layer or device layer 101 . Next, a protective capping layer 115 is sequentially deposited on the semiconductor substrate 100, and its composition is usually silicon nitride, covering the exposed surfaces of the conductive structures 111 and 112, and a stacked dielectric layer 120, which usually includes A first dielectric layer 121 , a second dielectric layer 123 , and an etch stop layer 122 between the first dielectric layer 121 and the second dielectric layer 123 . On the first dielectric layer 121, a silicon oxynitride (SiNO) stop layer 130 is then deposited.

接着,于氮氧化硅停止层130上形成第一光致抗蚀剂层(又称为“介层洞光致抗蚀剂”)140,并于第一光致抗蚀剂层140定义出介层洞开孔141及142,其中假设介层洞开孔141为独立(isolated)介层洞图案,亦即其邻近周围并无其它介层洞图案被定义,而介层洞开孔142为密集(dense)介层洞图案。接着,进行一蚀刻工艺,以第一光致抗蚀剂层140为蚀刻屏蔽,经由第一光致抗蚀剂层140中的介层洞开孔141及142依序蚀刻氮氧化硅停止层130、堆栈介电层120,直到保护盖层115,以形成介层洞151、152a及152b。Next, a first photoresist layer (also referred to as “via hole photoresist”) 140 is formed on the silicon oxynitride stop layer 130, and a via is defined in the first photoresist layer 140. The via holes 141 and 142, wherein it is assumed that the via hole 141 is an isolated via pattern, that is, there are no other via hole patterns defined around it, and the via hole 142 is a dense pattern. Via pattern. Next, perform an etching process, use the first photoresist layer 140 as an etching mask, and sequentially etch the silicon oxynitride stop layer 130, The dielectric layer 120 is stacked until the protective cap layer 115 to form via holes 151 , 152 a and 152 b.

如图2所示,在去除第一光致抗蚀剂层140后,随即于半导体基底100上涂布一填缝高分子层200,并填满介层洞151、152a及152b。填缝高分子层200的涂布类似一般光致抗蚀剂涂布工艺,并可加以烘烤硬化。As shown in FIG. 2 , after removing the first photoresist layer 140 , a gap-filling polymer layer 200 is coated on the semiconductor substrate 100 to fill the via holes 151 , 152 a and 152 b. The coating of the gap-filling polymer layer 200 is similar to the general photoresist coating process, and can be baked and hardened.

如图3所示,接着进行一回蚀刻工艺,将填缝高分子层200回蚀刻至一预定深度,如此在介层洞151、152a及152b分别内形成高分子插塞201、202a及202b,并使填缝高分子层200的表面低于氮氧化硅停止层130,形成凹孔301、302a及302b。如图4所示,现有方法接着于半导体基底100上涂布第二光致抗蚀剂层400,并填满凹孔301、302a及302b。As shown in FIG. 3 , an etch-back process is then performed to etch back the gap-filling polymer layer 200 to a predetermined depth, so that polymer plugs 201, 202a and 202b are formed in the via holes 151, 152a and 152b respectively, And the surface of the gap-filling polymer layer 200 is lower than the silicon oxynitride stop layer 130 to form concave holes 301 , 302 a and 302 b. As shown in FIG. 4 , the conventional method then coats a second photoresist layer 400 on the semiconductor substrate 100 and fills the cavities 301 , 302 a and 302 b.

如图5所示,接着进行一曝光工艺,利用一定义有沟槽导线图案的光掩模,以预定曝光光源分别于凹孔301、302a及302b的上方曝出沟槽导线图案。随后,利用显影液将所曝的光致抗蚀剂移除,以分别于凹孔301、302a及302b的上方形成沟槽导线图案411、412a及412b。As shown in FIG. 5 , an exposure process is then performed, using a photomask defining the grooved wire pattern, and using a predetermined exposure light source to expose the grooved wire pattern above the concave holes 301 , 302 a and 302 b respectively. Subsequently, the exposed photoresist is removed by using a developing solution, so as to form trench wire patterns 411 , 412 a and 412 b above the concave holes 301 , 302 a and 302 b respectively.

请参阅图6,其绘示的是图5中形成在第二光致抗蚀剂层400内的沟槽图案以及形成在介电层内的介层洞上视示意图,而图5即为沿着图6中切线I-I所视的剖面。如图5及图6所示,沟槽导线图案412a的线宽L约等于其下方介层洞152a的直径尺寸,而沟槽导线图案412b的线宽L约等于其下方介层洞152b的直径尺寸。沟槽导线图案411的线宽则明显大于其下方介层洞151的直径尺寸。Please refer to FIG. 6, which depicts a top view of the trench pattern formed in the second photoresist layer 400 and the via hole formed in the dielectric layer in FIG. 5, and FIG. Follow the section seen by the tangent line I-I in Fig. 6. As shown in FIG. 5 and FIG. 6, the line width L of the trench wire pattern 412a is approximately equal to the diameter of the via hole 152a below it, and the line width L of the trench wire pattern 412b is approximately equal to the diameter of the via hole 152b below it. size. The line width of the trench wire pattern 411 is obviously larger than the diameter of the via hole 151 below it.

上述先前技艺的缺点在于当接下来以第二光致抗蚀剂层400作为蚀刻屏蔽对堆栈介电层120进行导线沟槽的蚀刻工艺时,在凹孔301、302a及302b处所暴露出来的第一介电层121也同时会被横向蚀刻,由于介层洞152a与介层洞152b彼此非常靠近,因此很可能会在后续的铜化学机械研磨之后发现介层洞152a与介层洞152b之间的桥接问题。The disadvantage of the above-mentioned prior art is that when the second photoresist layer 400 is used as an etching mask to perform the etching process of the wiring trench on the stacked dielectric layer 120, the first exposed holes 301, 302a and 302b will be exposed. A dielectric layer 121 will also be etched laterally at the same time. Since the via hole 152a and the via hole 152b are very close to each other, it is likely to be found between the via hole 152a and the via hole 152b after the subsequent copper chemical mechanical polishing. bridging problem.

发明内容 Contents of the invention

本发明的主要目的即在提供一种改良的介层洞优先双镶嵌的制造方法,以解决上述先前技艺介层洞与介层洞间的桥接问题。The main purpose of the present invention is to provide an improved via-first dual damascene manufacturing method to solve the above-mentioned problem of bridging between vias in the prior art.

为达上述目的,本发明优选实施例提供一种介层洞优先双镶嵌的制造方法,其包括以下的步骤:To achieve the above purpose, a preferred embodiment of the present invention provides a via-preferred dual damascene manufacturing method, which includes the following steps:

提供一半导体基底,其上形成有一介电层,其中该介电层包括一介层洞开孔;providing a semiconductor substrate on which a dielectric layer is formed, wherein the dielectric layer includes a via hole;

于该介层洞开孔内填满一填缝高分子层;filling a gap-filling polymer layer in the via opening;

回蚀刻该填缝高分子层一预定深度,于该介层洞开孔内形成一高分子插塞,且该高分子插塞的暴露表面低于该介电层的一上表面,藉此形成一凹孔;Etching back the gap-filling polymer layer to a predetermined depth, forming a polymer plug in the via hole, and the exposed surface of the polymer plug is lower than an upper surface of the dielectric layer, thereby forming a concave hole;

于该介电层上形成一光致抗蚀剂层,且该光致抗蚀剂层填满该凹孔;forming a photoresist layer on the dielectric layer, and the photoresist layer fills the concave hole;

进行一光刻工艺,以于该介层洞开孔正上方的该光致抗蚀剂层中形成一沟槽导线图案,其中该沟槽导线图案具有一不与该介层洞开孔重叠的第一区段,且该第一区段的线宽固定为L,以及一线宽呈现渐缩状且与该介层洞开孔重叠的第二区段;以及performing a photolithography process to form a trench line pattern in the photoresist layer directly above the via hole, wherein the trench line pattern has a first segment, and the line width of the first segment is fixed as L, and the second segment whose line width is tapered and overlaps with the via hole; and

以该光致抗蚀剂层作为蚀刻屏蔽,经由该沟槽导线图案蚀刻该介电层。Using the photoresist layer as an etch mask, the dielectric layer is etched through the trench wire pattern.

为了进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图。然而附图仅供参考与说明用,并非用来对本发明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and accompanying drawings of the present invention. However, the drawings are for reference and illustration only, and are not intended to limit the present invention.

附图说明 Description of drawings

图1至图5是现有介层洞优先双镶嵌的制造方法的剖面示意图。1 to 5 are schematic cross-sectional views of a conventional via-preferential dual damascene manufacturing method.

图6绘示的是图5中形成在第二光致抗蚀剂层内的沟槽图案以及形成在介电层内的介层洞上视示意图。FIG. 6 is a schematic top view of the trench pattern formed in the second photoresist layer and the via hole formed in the dielectric layer in FIG. 5 .

图7至图12绘示的是本发明优选实施例的介层洞优先双镶嵌的制造方法的剖面示意图。7 to 12 are schematic cross-sectional views of a via-preferred dual damascene manufacturing method according to a preferred embodiment of the present invention.

图13绘示的是图11中形成在第二光致抗蚀剂层内的沟槽图案以及已形成在堆栈介电层内的介层洞位置上视示意图。FIG. 13 is a schematic top view of the trench pattern formed in the second photoresist layer and the location of the via hole formed in the stack dielectric layer in FIG. 11 .

图14绘示的是用来形成如图13中所示的光致抗蚀剂沟槽图案的光掩模布局示意图。FIG. 14 is a schematic diagram of a photomask layout used to form the photoresist trench pattern as shown in FIG. 13 .

图15绘示的是图12中完成化学机械研磨工艺后在堆栈介电层中所形成的双镶嵌结构的上视示意图。FIG. 15 is a schematic top view of the dual damascene structure formed in the stacked dielectric layer after the chemical mechanical polishing process in FIG. 12 is completed.

简单符号说明simple notation

100半导体基底        101底层或元件层100 Semiconductor substrate 101 Bottom layer or element layer

111、112  导电结构                  115         保护盖层111, 112 Conductive structure 115 Protective cover

120    堆栈介电层120 stack dielectric layers

121    第一介电层                   122         蚀刻停止层121 first dielectric layer 122 etch stop layer

123    第二介电层                   130         氮氧化硅停止层123 Second dielectric layer 130 Silicon oxynitride stop layer

140    第一光致抗蚀剂层             141、142    介层洞开孔140 First photoresist layer 141, 142 Via opening

151、152a/b  介层洞                 200         填缝高分子层151, 152a/b Interlayer hole 200 Filling polymer layer

201、202a/b  高分子插塞201, 202a/b polymer plug

301、302a/b  凹孔                   400         第二光致抗蚀剂层301, 302a/b Recessed hole 400 Second photoresist layer

411、412a/b  沟槽导线图案411, 412a/b grooved wire pattern

500     光掩模布局500 photomask layout

511     透光线条区域                512a/b       透光线条区域511 Translucent Line Area 512a/b Translucent Line Area

532a/b  不透光的修正区域            525          不透光区域532a/b Opaque correction area 525 Opaque area

700     半导体基底                  701          底层或元件层700 Semiconductor substrate 701 Bottom layer or component layer

711、712  导电结构                  715          保护盖层711, 712 Conductive structure 715 Protective cover

720     堆栈介电层720 stack dielectric layers

721     第一介电层                  722          蚀刻停止层721 First Dielectric Layer 722 Etch Stop Layer

723     第二介电层                  730          氮氧化硅停止层723 Second Dielectric Layer 730 Silicon Oxynitride Stop Layer

740     第一光致抗蚀剂层            741、742     介层洞开孔740 First photoresist layer 741, 742 Via opening

751、752a/b  介层洞                 800          填缝高分子层751, 752a/b Interfacial hole 800 Filling polymer layer

801、802a/b  高分子插塞801, 802a/b polymer plug

901、902a/b  凹孔                   911、912a/b  介层洞侧壁901, 902a/b Recessed hole 911, 912a/b Via sidewall

1000    第二光致抗蚀剂层            1011、1012a/b  沟槽导线图案1000 second photoresist layer 1011, 1012a/b trench wire pattern

1200    第一区段                    1300         第二区段1200 The first section 1300 The second section

1401    介层洞插塞                  1402a/b      介层洞插塞1401 Via Plug 1402a/b Via Plug

1410    双镶嵌结构                  1412a/b      双镶嵌结构1410 dual damascene structure 1412a/b dual damascene structure

1600    第一区段                    1700         第二区段1600 The first section 1700 The second section

具体实施方式 Detailed ways

请参阅图7至图12,其绘示的是本发明优选实施例的介层洞优先双镶嵌的制造方法的剖面示意图。如图7所示,首先提供一半导体基底700,其上具有导电结构711以及712,例如铜镶嵌导线,形成于底层或元件层701中。底层或元件层701可以是低介电常数层,但不限于此。接着,依序在半导体基底700上沉积形成保护盖层(capping layer)715,其成分通常为氮化硅,覆盖于导电结构711以及712的暴露表面。Please refer to FIG. 7 to FIG. 12 , which are schematic cross-sectional views of a via-preferred dual damascene manufacturing method according to a preferred embodiment of the present invention. As shown in FIG. 7 , firstly, a semiconductor substrate 700 is provided, on which conductive structures 711 and 712 , such as copper damascene wires, are formed in the bottom layer or device layer 701 . The bottom layer or component layer 701 may be a low dielectric constant layer, but is not limited thereto. Next, a protective capping layer 715 is sequentially deposited on the semiconductor substrate 700 , and its composition is usually silicon nitride, covering the exposed surfaces of the conductive structures 711 and 712 .

同样地,接着在保护盖层715上形成一堆栈介电层720,其通常包括一第一介电层721、一第二介电层723,以及一介于第一介电层721与第二介电层723之间的蚀刻停止层722,第一介电层721与第二介电层723的介电常数通常小于3为佳。举例来说,第一介电层721与第二介电层723可以是FLARETM、SiLKTM、亚芳香基醚类聚合物(poly(arylene ether)polymer)、parylene类化合物、聚酰亚胺(polyimide)类高分子、氟化聚酰亚胺(fluorinatedpolyimide)、HSQ、BCB、氟硅玻璃(FSG)、二氧化硅、多孔硅玻璃(nanoporoussilica)或铁氟龙等等,但不限于上述所列组成。Similarly, a stacked dielectric layer 720 is then formed on the protection cap layer 715, which generally includes a first dielectric layer 721, a second dielectric layer 723, and a layer between the first dielectric layer 721 and the second dielectric layer. The dielectric constants of the etch stop layer 722 between the dielectric layers 723 , the first dielectric layer 721 and the second dielectric layer 723 are generally less than 3, preferably. For example, the first dielectric layer 721 and the second dielectric layer 723 may be FLARE TM , SiLK TM , poly(arylene ether) polymers, parylene compounds, polyimide ( polyimide) polymers, fluorinated polyimide, HSQ, BCB, fluorosilicate glass (FSG), silicon dioxide, porous silica glass (nanoporoussilica) or Teflon, etc., but not limited to the above listed composition.

在图7中,随后在第一介电层721上,会再沉积一氮氧化硅(SiNO)停止层730。接着,于氮氧化硅停止层730上形成第一光致抗蚀剂层(又称为“介层洞光致抗蚀剂”)740,并于第一光致抗蚀剂层740定义出介层洞开孔741及742,其中假设介层洞开孔741为独立(isolated)介层洞图案,亦即其邻近周围并无其它介层洞图案被定义,而介层洞开孔742为密集(dense)介层洞图案。接着,进行一蚀刻工艺,以第一光致抗蚀剂层740为蚀刻屏蔽,经由第一光致抗蚀剂层740中的介层洞开孔741及742依序蚀刻氮氧化硅停止层730、堆栈介电层720,直到保护盖层715,以形成介层洞751、752a及752b,其直径约在0.08-0.2微米之间。In FIG. 7 , a silicon oxynitride (SiNO) stop layer 730 is then deposited on the first dielectric layer 721 . Next, a first photoresist layer (also referred to as “via hole photoresist”) 740 is formed on the silicon oxynitride stop layer 730, and a via is defined in the first photoresist layer 740. The via openings 741 and 742, where it is assumed that the via hole 741 is an isolated via pattern, that is, there are no other via hole patterns defined around it, and the via hole 742 is a dense pattern. Via pattern. Next, an etching process is performed, using the first photoresist layer 740 as an etching mask, and sequentially etching the silicon oxynitride stop layer 730, The dielectric layer 720 is stacked until the protective cap layer 715 to form via holes 751, 752a and 752b with a diameter of approximately 0.08-0.2 microns.

如图8所示,在去除第一光致抗蚀剂层740后,随即于半导体基底700上涂布一填缝高分子层800,并填满介层洞751、752a及752b。填缝高分子层800可以是由I-line光致抗蚀剂所构成,例如含novolak树脂、聚苯乙烯类树脂(poly hydroxystyrene,PHS)、或者丙烯酸脂(acrylate)类等等i-line光致抗蚀剂成分。填缝高分子层800的涂布类似一般光致抗蚀剂涂布工艺,并可加以烘烤硬化。As shown in FIG. 8 , after removing the first photoresist layer 740 , a gap-filling polymer layer 800 is coated on the semiconductor substrate 700 to fill the via holes 751 , 752 a and 752 b. The gap-filling polymer layer 800 can be made of I-line photoresist, such as containing novolak resin, polystyrene resin (poly hydroxystyrene, PHS), or acrylate (acrylate) etc. i-line photoresist Resist ingredients. The coating of the gap-filling polymer layer 800 is similar to the general photoresist coating process, and can be baked and hardened.

如图9所示,接着进行一回蚀刻工艺,将填缝高分子层800回蚀刻至一预定深度,如此在介层洞751、752a及752b分别内形成高分子插塞801、802a及802b,并使蚀刻后的填缝高分子层800的表面低于氮氧化硅停止层730,形成凹孔901、902a及902b。凹孔901、902a及902b乃分别由暴露出的部分介层洞751、752a及752b的侧壁911、912a、912b以及相对应的高分子插塞801、802a及802b的上表面所构成。如图10所示,接着于半导体基底700上涂布第二光致抗蚀剂层(又称为“沟槽光致抗蚀剂”)1000,并填满凹孔901、902a及902b。As shown in FIG. 9, an etch-back process is then performed to etch back the gap-filling polymer layer 800 to a predetermined depth, so that polymer plugs 801, 802a and 802b are formed in the via holes 751, 752a and 752b respectively, And the surface of the etched gap-filling polymer layer 800 is lower than the silicon oxynitride stop layer 730 to form concave holes 901 , 902 a and 902 b. The recesses 901, 902a and 902b are respectively formed by the exposed sidewalls 911, 912a and 912b of the via holes 751, 752a and 752b and the corresponding upper surfaces of the polymer plugs 801, 802a and 802b. As shown in FIG. 10 , a second photoresist layer (also referred to as “trench photoresist”) 1000 is then coated on the semiconductor substrate 700 to fill the concave holes 901 , 902 a and 902 b.

如图11所示,接着进行一曝光工艺,利用一定义有沟槽导线图案的光掩模(如图14所示),以预定曝光光源分别于凹孔901、902a及902b的上方曝出沟槽导线图案。随后,利用显影液将所曝的光致抗蚀剂移除,以分别于凹孔901、902a及902b的上方形成沟槽导线图案1011、1012a及1012b。本发明的主要特征在于显影之后,相邻两凹孔902a及902b的部分侧壁912a及912b被第二光致抗蚀剂层1000所遮盖,为了保护相邻两凹孔902a及902b之间的第一介电层721,使其不会在后续的沟槽蚀刻中被侵蚀。As shown in FIG. 11 , an exposure process is then performed, using a photomask (as shown in FIG. 14 ) defining a trench wire pattern to expose trenches on the top of the concave holes 901, 902a and 902b respectively with a predetermined exposure light source. Slotted wire pattern. Subsequently, the exposed photoresist is removed by using a developing solution, so as to form trench wire patterns 1011 , 1012a and 1012b above the concave holes 901 , 902a and 902b respectively. The main feature of the present invention is that after development, part of the sidewalls 912a and 912b of the two adjacent concave holes 902a and 902b are covered by the second photoresist layer 1000, in order to protect the space between the adjacent two concave holes 902a and 902b. The first dielectric layer 721 prevents it from being corroded in subsequent trench etching.

请同时参阅图11以及图13,其中图13绘示的是图11中形成在第二光致抗蚀剂层1000内的沟槽图案以及已形成在堆栈介电层内的介层洞位置上视示意图,而图11即为沿着图13中切线II-II所视的剖面。如图11及图13所示,沟槽导线图案1011的线宽则明显大于其下方介层洞751的直径尺寸。根据本发明的优选实施例,沟槽导线图案1012a或1012b皆又区分为不与下方的介层洞重叠的第一区段1200,其具有约略相等的线宽L,以及线宽呈现渐缩状的第二区段1300,其直接位于介层洞的正上方。Please refer to FIG. 11 and FIG. 13 at the same time, wherein FIG. 13 shows the trench pattern formed in the second photoresist layer 1000 in FIG. 11 and the position of the via holes formed in the stack dielectric layer. As a schematic diagram, FIG. 11 is a cross-section viewed along the tangent line II-II in FIG. 13 . As shown in FIG. 11 and FIG. 13 , the line width of the trench wire pattern 1011 is obviously larger than the diameter of the via hole 751 below it. According to a preferred embodiment of the present invention, the trench wire pattern 1012a or 1012b is further divided into a first segment 1200 that does not overlap with the underlying via hole, which has approximately the same line width L, and the line width is tapered. The second section 1300 of , which is directly above the via hole.

请参阅图14,其绘示的是用来形成如图13中所示的光致抗蚀剂沟槽图案的光掩模布局示意图。光掩模布局500包括不透光区域525、用来在第二光致抗蚀剂层1000中曝出沟槽线条图案1011的透光线条区域511、用来在第二光致抗蚀剂层1000中曝出沟槽线条图案1012a的透光线条区域512a,以及用来在第二光致抗蚀剂层1000中曝出沟槽线条图案1012b的透光线条区域512b。透光线条区域512a的线宽等于介层洞752a的尺寸,而透光线条区域512b的线宽等于介层洞752b的尺寸。介层洞752a与介层洞752b彼此接近,构成小间距的密集介层洞图案。在介层洞752a的正上方区域,刻意以一对不透光的修正区域532a将透光线条区域512a内缩修正,而在介层洞752b的正上方区域以一对不透光的修正区域532b将透光线条区域512b内缩修正。Please refer to FIG. 14 , which is a schematic diagram of a photomask layout used to form the photoresist trench pattern as shown in FIG. 13 . The photomask layout 500 includes an opaque region 525, a light-transmitting line region 511 for exposing the trench line pattern 1011 in the second photoresist layer 1000, and a light-transmitting line region 511 for exposing the trench line pattern 1011 in the second photoresist layer 1000. In the second photoresist layer 1000 , the light-transmitting line region 512 a for exposing the groove-line pattern 1012 a and the light-transmitting line region 512 b for exposing the groove-line pattern 1012 b in the second photoresist layer 1000 . The line width of the light-transmitting line region 512a is equal to the size of the via hole 752a, and the line width of the light-transmitting line region 512b is equal to the size of the via hole 752b. The via holes 752a and the via holes 752b are close to each other, forming a dense via hole pattern with a small pitch. In the region directly above the via hole 752a, a pair of opaque correction regions 532a are deliberately used to retract the light-transmitting line region 512a, and a pair of opaque correction regions are used in the region directly above the via hole 752b. 532b corrects the shrinkage of the light-transmitting line region 512b.

根据本发明的优选实施例,修正区域532a以及修正区域532b的尺寸大小相等,各修正区域为矩形并以边长1以及边宽w表示,其中各修正区域的边长1需等于或大于介层洞的直径尺寸,而各修正区域的边宽w建议为5%-30%的边长1为最佳。以直径尺寸为0.2微米大小的介层洞为例,各修正区域的尺寸大小可以约为200纳米(最小边长)×10-60纳米(边宽)左右。According to a preferred embodiment of the present invention, the size of the correction region 532a and the correction region 532b are equal, each correction region is a rectangle and represented by a side length 1 and a side width w, wherein the side length 1 of each correction region must be equal to or greater than the via The diameter size of the hole, and the side width w of each correction area is recommended to be 5%-30% of the side length 1 is the best. Taking a via hole with a diameter of 0.2 μm as an example, the size of each modified region may be about 200 nm (minimum side length)×10 −60 nm (side width).

如图11至图13所示,利用第二光致抗蚀剂层1000作为蚀刻屏蔽,进行干蚀刻工艺,经由沟槽线条图案1011、1012a及1012b于第一介电层721中蚀刻出导线沟槽结构。接着去除剩余的光致抗蚀剂层并清除在介层洞底部的保护盖层715后,随后在导线沟槽结构以及介层洞内填满金属,然后,进行化学机械研磨工艺,即形成双镶嵌结构1410、1412a及1412b。其中双镶嵌结构1410包括介层洞插塞1401,双镶嵌结构1412a包括介层洞插塞1402a,双镶嵌结构1412b包括介层洞插塞1402b。As shown in FIGS. 11 to 13 , using the second photoresist layer 1000 as an etching mask, a dry etching process is performed to etch a conductive trench in the first dielectric layer 721 through the trench line patterns 1011, 1012a and 1012b. Groove structure. Then remove the remaining photoresist layer and remove the protective cover layer 715 at the bottom of the via hole, then fill the wire trench structure and the via hole with metal, and then perform a chemical mechanical polishing process to form a double layer. The damascene structures 1410, 1412a and 1412b. The dual damascene structure 1410 includes a via plug 1401 , the dual damascene structure 1412 a includes a via plug 1402 a , and the dual damascene structure 1412 b includes a via plug 1402 b.

请参阅图15,其绘示的是图12中完成化学机械研磨工艺后在堆栈介电层中所形成的双镶嵌结构1410、1412a及1412b的上视示意图。如图15所示,本发明的特征在于双镶嵌结构1412a及1412b同样可被区分为不与下方的介层洞重叠的第一区段1600,其具有约略相等的线宽L,以及线宽呈现不规则凹入状的第二区段1700,其直接位于介层洞的正上方。Please refer to FIG. 15 , which is a schematic top view of the dual damascene structures 1410 , 1412 a and 1412 b formed in the stacked dielectric layers after the chemical mechanical polishing process in FIG. 12 . As shown in FIG. 15, the present invention is characterized in that the dual damascene structures 1412a and 1412b can also be divided into a first segment 1600 that does not overlap with the underlying via hole, which has approximately equal line width L, and the line width exhibits The irregularly concave second section 1700 is directly above the via hole.

以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.

Claims (14)

1. the manufacture method of the preferential dual damascene of interlayer hole comprises:
The semiconductor substrate is provided, is formed with a dielectric layer on it, wherein this dielectric layer comprises an interlayer hole perforate;
In this interlayer hole perforate, fill up a joint filling macromolecule layer;
This joint filling macromolecule layer one desired depth of etch-back forms a macromolecule plug in this interlayer hole perforate, and the exposed surface of this macromolecule plug is lower than a upper surface of this dielectric layer, forms a shrinkage pool by this;
On this dielectric layer, form a photoresist layer, and this photoresist layer fills up this shrinkage pool;
Carry out a photoetching process, to form a groove wire pattern in this photoresist layer directly over this interlayer hole perforate, wherein this groove wire pattern has first not overlapping with this an interlayer hole perforate section, and the live width of this first section is fixed as L, and a live width presents gradually-reducing shape and second section overlapping with this interlayer hole perforate; And
With this photoresist layer as etch shield, via this this dielectric layer of groove wire pattern etching.
2. the manufacture method of the preferential dual damascene of interlayer hole as claimed in claim 1, wherein this dielectric layer comprises lower floor's dielectric layer, the etching stopping layer of a upper strata dielectric layer and between this lower floor's dielectric layer and this upper strata dielectric layer.
3. the manufacture method of the preferential dual damascene of interlayer hole as claimed in claim 1, wherein this joint filling macromolecule layer comprises the I-line photoresist.
4. the manufacture method of the preferential dual damascene of interlayer hole as claimed in claim 1 wherein ought be with this photoresist layer as etch shield, and during via this this dielectric layer of groove wire pattern etching, a sidewall sections of this shrinkage pool is covered in by this photoresist layer.
5. the manufacture method of the preferential dual damascene of interlayer hole as claimed in claim 2, wherein this lower floor's dielectric layer and upper strata dielectric layer have one less than 3 dielectric constant.
6. the manufacture method of the preferential dual damascene of interlayer hole as claimed in claim 1 wherein is formed with a cap rock in addition on this dielectric layer.
7. the manufacture method of the preferential dual damascene of interlayer hole as claimed in claim 6, wherein this cap rock comprises silicon oxynitride.
8. the manufacture method of the preferential dual damascene of interlayer hole comprises:
The semiconductor substrate is provided, is formed with a dielectric layer on it, wherein this dielectric layer comprises one first interlayer hole perforate and the one second interlayer hole opening near each other with this first interlayer hole perforate;
In first and second this interlayer hole perforate, fill up a joint filling macromolecule layer;
This joint filling macromolecule layer one desired depth of etch-back, respectively at forming one first macromolecule plug in this first interlayer hole perforate, in this second interlayer hole perforate, form one second macromolecule plug, and the exposed surface of this first and second macromolecule plug is lower than a upper surface of this dielectric layer, forms one first shrinkage pool and one second shrinkage pool by this;
On this dielectric layer, form a photoresist layer, and this photoresist layer fills up this first shrinkage pool and this second shrinkage pool;
Carry out a photoetching process, to form one first groove wire pattern in this photoresist layer directly over this first interlayer hole perforate, and formation one second groove wire pattern in this photoresist layer directly over this second interlayer hole perforate, wherein this first groove wire pattern has first not overlapping with this first an interlayer hole perforate section, and the live width of this first section is fixed as L, and a live width presents gradually-reducing shape and second section overlapping with this first interlayer hole perforate; And
With this photoresist layer as etch shield, via this first and second this dielectric layer of groove wire pattern etching.
9. the manufacture method of the preferential dual damascene of interlayer hole as claimed in claim 8, wherein this dielectric layer comprises lower floor's dielectric layer, the etching stopping layer of a upper strata dielectric layer and between this lower floor's dielectric layer and this upper strata dielectric layer.
10. the manufacture method of the preferential dual damascene of interlayer hole as claimed in claim 9, wherein this lower floor's dielectric layer and upper strata dielectric layer have one less than 3 dielectric constant.
11. the manufacture method of the preferential dual damascene of interlayer hole as claimed in claim 8 wherein also is formed with a cap rock on this dielectric layer.
12. the manufacture method of the preferential dual damascene of interlayer hole as claimed in claim 11, wherein this cap rock comprises silicon oxynitride.
13. the manufacture method of the preferential dual damascene of interlayer hole as claimed in claim 8, wherein this joint filling macromolecule layer comprises the I-line photoresist.
14. the manufacture method of the preferential dual damascene of interlayer hole as claimed in claim 8, wherein this live width L equals the diameter of this first interlayer hole opening.
CNB2005100833393A 2005-07-12 2005-07-12 Method for manufacturing via-first dual damascene Expired - Lifetime CN100378951C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100833393A CN100378951C (en) 2005-07-12 2005-07-12 Method for manufacturing via-first dual damascene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100833393A CN100378951C (en) 2005-07-12 2005-07-12 Method for manufacturing via-first dual damascene

Publications (2)

Publication Number Publication Date
CN1897244A CN1897244A (en) 2007-01-17
CN100378951C true CN100378951C (en) 2008-04-02

Family

ID=37609705

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100833393A Expired - Lifetime CN100378951C (en) 2005-07-12 2005-07-12 Method for manufacturing via-first dual damascene

Country Status (1)

Country Link
CN (1) CN100378951C (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298081A (en) * 2000-04-12 2001-10-26 Nec Corp Semiconductor device and its manufacturing method
CN1434509A (en) * 2002-01-22 2003-08-06 联华电子股份有限公司 Dual damascene metal interconnection structure and manufacturing method thereof
US20030199169A1 (en) * 2002-04-17 2003-10-23 Samsung Electronics Co., Ltd. Method of forming dual damascene interconnection using low-k dielectric
US6689695B1 (en) * 2002-06-28 2004-02-10 Taiwan Semiconductor Manufacturing Company Multi-purpose composite mask for dual damascene patterning
US6780761B1 (en) * 2003-08-15 2004-08-24 United Microelectronics Corp. Via-first dual damascene process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298081A (en) * 2000-04-12 2001-10-26 Nec Corp Semiconductor device and its manufacturing method
CN1434509A (en) * 2002-01-22 2003-08-06 联华电子股份有限公司 Dual damascene metal interconnection structure and manufacturing method thereof
US20030199169A1 (en) * 2002-04-17 2003-10-23 Samsung Electronics Co., Ltd. Method of forming dual damascene interconnection using low-k dielectric
US6689695B1 (en) * 2002-06-28 2004-02-10 Taiwan Semiconductor Manufacturing Company Multi-purpose composite mask for dual damascene patterning
US6780761B1 (en) * 2003-08-15 2004-08-24 United Microelectronics Corp. Via-first dual damascene process

Also Published As

Publication number Publication date
CN1897244A (en) 2007-01-17

Similar Documents

Publication Publication Date Title
US9543193B2 (en) Non-hierarchical metal layers for integrated circuits
JP4105023B2 (en) Method of forming dual damascene wiring using low dielectric constant insulating film
US7749904B2 (en) Method of forming a dual damascene structure
TWI552270B (en) Semiconductor device and method of manufacturing same
CN109309042B (en) Semiconductor device and method of forming the same
US8853095B1 (en) Hybrid hard mask for damascene and dual damascene
CN1238892C (en) Manufacturing method of dual damascene structure
CN100539074C (en) The manufacture method of dual-damascene structure
US7238619B2 (en) Method for eliminating bridging defect in via first dual damascene process
CN100378951C (en) Method for manufacturing via-first dual damascene
US7112537B2 (en) Method of fabricating interconnection structure of semiconductor device
KR100590393B1 (en) Metal wiring formation method of semiconductor device
KR100470390B1 (en) Method for minimizing space of local interconnection using damascene in fabricating SRAM device
JP2010010270A (en) Method of manufacturing semiconductor device
KR100393966B1 (en) method for forming dual damascene of semiconductor device
KR20040063299A (en) Method of forming a via contact structure using a dual damascene process
KR100419752B1 (en) Manufacturing method of semiconductor device
KR100405934B1 (en) Method for manufacturing a contact hole of semiconductor device
KR100545219B1 (en) How to form via holes and trenches for dual damascene wiring
KR100356482B1 (en) Method of forming a metal wiring in a semiconductor device
TWI485772B (en) Method of forming via hole
KR100866964B1 (en) Interconnected fine hard mask pattern formation method for semiconductor device manufacturing
TW200428582A (en) Semiconductor fabrication method
TW565908B (en) Manufacturing method of dual damanscene structure
KR20050024853A (en) Method of forming metal wiring in flash memory device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20080402