CN100378951C - Method for manufacturing via-first dual damascene - Google Patents
Method for manufacturing via-first dual damascene Download PDFInfo
- Publication number
- CN100378951C CN100378951C CNB2005100833393A CN200510083339A CN100378951C CN 100378951 C CN100378951 C CN 100378951C CN B2005100833393 A CNB2005100833393 A CN B2005100833393A CN 200510083339 A CN200510083339 A CN 200510083339A CN 100378951 C CN100378951 C CN 100378951C
- Authority
- CN
- China
- Prior art keywords
- dielectric layer
- interlayer hole
- layer
- dual damascene
- manufacture method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种双镶嵌(dual damascene)工艺,特别是涉及一种介层洞优先(via-first)双镶嵌的制造方法,可解决蚀刻沟槽导线图案时所造成相邻两介层洞间的桥接(bridging)问题。The invention relates to a dual damascene process, in particular to a via-first dual damascene manufacturing method, which can solve the gap between two adjacent via holes caused by etching trench wire patterns. The bridging (bridging) problem.
背景技术 Background technique
铜双镶嵌(dual damascene)技术搭配低介电常数介电层已成为高集成度、高速(high-speed)逻辑集成电路芯片制造以及针对0.18微米以下的深次微米(deep sub-micro)半导体工艺最佳的金属内连线解决方案。这是由于铜具有低电阻值(比铝低30%)以及优选抗电迁移(electromigration resistance)的特性,而低介电常数材料则可帮助降低金属导线之间的RC延迟(RC delay),由此可知,铜金属双镶嵌内连线技术在集成电路工艺中显得日益重要。Copper dual damascene (dual damascene) technology with low dielectric constant dielectric layer has become a high-integration, high-speed (high-speed) logic integrated circuit chip manufacturing and for deep sub-micron (deep sub-micro) semiconductor technology below 0.18 microns The best metal interconnection solution. This is due to the low resistance value of copper (30% lower than aluminum) and the preferred anti-electromigration resistance (electromigration resistance), while the low dielectric constant material can help reduce the RC delay (RC delay) between metal wires, by It can be seen that the copper metal dual damascene interconnection technology is becoming more and more important in the integrated circuit technology.
双镶嵌的制造方法基本上有所谓的沟槽优先(trench-first)双镶嵌、介层洞优先(via-first)双镶嵌、部分介层洞(partial-via)双镶嵌,以及自行对准(self-aligned)双镶嵌等选择。其中,介层洞优先双镶嵌简单地说即是利用多道光刻及蚀刻步骤,先定义介层洞,随后再于介层洞上方定义出沟槽,构成一体的双镶嵌结构。Dual damascene manufacturing methods basically include the so-called trench-first dual damascene, via-first dual damascene, partial-via dual damascene, and self-aligned ( self-aligned) double mosaic and other options. Among them, the via-first dual damascene simply means using multiple photolithography and etching steps to first define the via hole, and then define a trench above the via hole to form an integrated dual damascene structure.
请参阅图1至图5,其绘示的是现有介层洞优先双镶嵌的制造方法的剖面示意图。如图1所示,现有方法首先提供一半导体基底100,其上具有导电结构111以及112,例如铜镶嵌导线,形成于底层或元件层101中。接着,依序在半导体基底100上沉积形成保护盖层(capping layer)115,其成分通常为氮化硅,覆盖于导电结构111以及112的暴露表面,以及一堆栈介电层120,其通常包括一第一介电层121、一第二介电层123,以及一介于第一介电层121与第二介电层123之间的蚀刻停止层122。在第一介电层121上,随后会再沉积一氮氧化硅(SiNO)停止层130。Please refer to FIG. 1 to FIG. 5 , which are schematic cross-sectional views of a conventional via-preferential dual-damascene manufacturing method. As shown in FIG. 1 , the conventional method first provides a
接着,于氮氧化硅停止层130上形成第一光致抗蚀剂层(又称为“介层洞光致抗蚀剂”)140,并于第一光致抗蚀剂层140定义出介层洞开孔141及142,其中假设介层洞开孔141为独立(isolated)介层洞图案,亦即其邻近周围并无其它介层洞图案被定义,而介层洞开孔142为密集(dense)介层洞图案。接着,进行一蚀刻工艺,以第一光致抗蚀剂层140为蚀刻屏蔽,经由第一光致抗蚀剂层140中的介层洞开孔141及142依序蚀刻氮氧化硅停止层130、堆栈介电层120,直到保护盖层115,以形成介层洞151、152a及152b。Next, a first photoresist layer (also referred to as “via hole photoresist”) 140 is formed on the silicon
如图2所示,在去除第一光致抗蚀剂层140后,随即于半导体基底100上涂布一填缝高分子层200,并填满介层洞151、152a及152b。填缝高分子层200的涂布类似一般光致抗蚀剂涂布工艺,并可加以烘烤硬化。As shown in FIG. 2 , after removing the first
如图3所示,接着进行一回蚀刻工艺,将填缝高分子层200回蚀刻至一预定深度,如此在介层洞151、152a及152b分别内形成高分子插塞201、202a及202b,并使填缝高分子层200的表面低于氮氧化硅停止层130,形成凹孔301、302a及302b。如图4所示,现有方法接着于半导体基底100上涂布第二光致抗蚀剂层400,并填满凹孔301、302a及302b。As shown in FIG. 3 , an etch-back process is then performed to etch back the gap-
如图5所示,接着进行一曝光工艺,利用一定义有沟槽导线图案的光掩模,以预定曝光光源分别于凹孔301、302a及302b的上方曝出沟槽导线图案。随后,利用显影液将所曝的光致抗蚀剂移除,以分别于凹孔301、302a及302b的上方形成沟槽导线图案411、412a及412b。As shown in FIG. 5 , an exposure process is then performed, using a photomask defining the grooved wire pattern, and using a predetermined exposure light source to expose the grooved wire pattern above the
请参阅图6,其绘示的是图5中形成在第二光致抗蚀剂层400内的沟槽图案以及形成在介电层内的介层洞上视示意图,而图5即为沿着图6中切线I-I所视的剖面。如图5及图6所示,沟槽导线图案412a的线宽L约等于其下方介层洞152a的直径尺寸,而沟槽导线图案412b的线宽L约等于其下方介层洞152b的直径尺寸。沟槽导线图案411的线宽则明显大于其下方介层洞151的直径尺寸。Please refer to FIG. 6, which depicts a top view of the trench pattern formed in the second
上述先前技艺的缺点在于当接下来以第二光致抗蚀剂层400作为蚀刻屏蔽对堆栈介电层120进行导线沟槽的蚀刻工艺时,在凹孔301、302a及302b处所暴露出来的第一介电层121也同时会被横向蚀刻,由于介层洞152a与介层洞152b彼此非常靠近,因此很可能会在后续的铜化学机械研磨之后发现介层洞152a与介层洞152b之间的桥接问题。The disadvantage of the above-mentioned prior art is that when the second
发明内容 Contents of the invention
本发明的主要目的即在提供一种改良的介层洞优先双镶嵌的制造方法,以解决上述先前技艺介层洞与介层洞间的桥接问题。The main purpose of the present invention is to provide an improved via-first dual damascene manufacturing method to solve the above-mentioned problem of bridging between vias in the prior art.
为达上述目的,本发明优选实施例提供一种介层洞优先双镶嵌的制造方法,其包括以下的步骤:To achieve the above purpose, a preferred embodiment of the present invention provides a via-preferred dual damascene manufacturing method, which includes the following steps:
提供一半导体基底,其上形成有一介电层,其中该介电层包括一介层洞开孔;providing a semiconductor substrate on which a dielectric layer is formed, wherein the dielectric layer includes a via hole;
于该介层洞开孔内填满一填缝高分子层;filling a gap-filling polymer layer in the via opening;
回蚀刻该填缝高分子层一预定深度,于该介层洞开孔内形成一高分子插塞,且该高分子插塞的暴露表面低于该介电层的一上表面,藉此形成一凹孔;Etching back the gap-filling polymer layer to a predetermined depth, forming a polymer plug in the via hole, and the exposed surface of the polymer plug is lower than an upper surface of the dielectric layer, thereby forming a concave hole;
于该介电层上形成一光致抗蚀剂层,且该光致抗蚀剂层填满该凹孔;forming a photoresist layer on the dielectric layer, and the photoresist layer fills the concave hole;
进行一光刻工艺,以于该介层洞开孔正上方的该光致抗蚀剂层中形成一沟槽导线图案,其中该沟槽导线图案具有一不与该介层洞开孔重叠的第一区段,且该第一区段的线宽固定为L,以及一线宽呈现渐缩状且与该介层洞开孔重叠的第二区段;以及performing a photolithography process to form a trench line pattern in the photoresist layer directly above the via hole, wherein the trench line pattern has a first segment, and the line width of the first segment is fixed as L, and the second segment whose line width is tapered and overlaps with the via hole; and
以该光致抗蚀剂层作为蚀刻屏蔽,经由该沟槽导线图案蚀刻该介电层。Using the photoresist layer as an etch mask, the dielectric layer is etched through the trench wire pattern.
为了进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图。然而附图仅供参考与说明用,并非用来对本发明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and accompanying drawings of the present invention. However, the drawings are for reference and illustration only, and are not intended to limit the present invention.
附图说明 Description of drawings
图1至图5是现有介层洞优先双镶嵌的制造方法的剖面示意图。1 to 5 are schematic cross-sectional views of a conventional via-preferential dual damascene manufacturing method.
图6绘示的是图5中形成在第二光致抗蚀剂层内的沟槽图案以及形成在介电层内的介层洞上视示意图。FIG. 6 is a schematic top view of the trench pattern formed in the second photoresist layer and the via hole formed in the dielectric layer in FIG. 5 .
图7至图12绘示的是本发明优选实施例的介层洞优先双镶嵌的制造方法的剖面示意图。7 to 12 are schematic cross-sectional views of a via-preferred dual damascene manufacturing method according to a preferred embodiment of the present invention.
图13绘示的是图11中形成在第二光致抗蚀剂层内的沟槽图案以及已形成在堆栈介电层内的介层洞位置上视示意图。FIG. 13 is a schematic top view of the trench pattern formed in the second photoresist layer and the location of the via hole formed in the stack dielectric layer in FIG. 11 .
图14绘示的是用来形成如图13中所示的光致抗蚀剂沟槽图案的光掩模布局示意图。FIG. 14 is a schematic diagram of a photomask layout used to form the photoresist trench pattern as shown in FIG. 13 .
图15绘示的是图12中完成化学机械研磨工艺后在堆栈介电层中所形成的双镶嵌结构的上视示意图。FIG. 15 is a schematic top view of the dual damascene structure formed in the stacked dielectric layer after the chemical mechanical polishing process in FIG. 12 is completed.
简单符号说明simple notation
100半导体基底 101底层或元件层100
111、112 导电结构 115 保护盖层111, 112
120 堆栈介电层120 stack dielectric layers
121 第一介电层 122 蚀刻停止层121 first
123 第二介电层 130 氮氧化硅停止层123 Second
140 第一光致抗蚀剂层 141、142 介层洞开孔140
151、152a/b 介层洞 200 填缝高分子层151, 152a/
201、202a/b 高分子插塞201, 202a/b polymer plug
301、302a/b 凹孔 400 第二光致抗蚀剂层301, 302a/b Recessed
411、412a/b 沟槽导线图案411, 412a/b grooved wire pattern
500 光掩模布局500 photomask layout
511 透光线条区域 512a/b 透光线条区域511 Translucent Line Area 512a/b Translucent Line Area
532a/b 不透光的修正区域 525 不透光区域532a/b
700 半导体基底 701 底层或元件层700
711、712 导电结构 715 保护盖层711, 712
720 堆栈介电层720 stack dielectric layers
721 第一介电层 722 蚀刻停止层721
723 第二介电层 730 氮氧化硅停止层723
740 第一光致抗蚀剂层 741、742 介层洞开孔740
751、752a/b 介层洞 800 填缝高分子层751, 752a/
801、802a/b 高分子插塞801, 802a/b polymer plug
901、902a/b 凹孔 911、912a/b 介层洞侧壁901, 902a/b Recessed
1000 第二光致抗蚀剂层 1011、1012a/b 沟槽导线图案1000
1200 第一区段 1300 第二区段1200 The
1401 介层洞插塞 1402a/b 介层洞插塞1401
1410 双镶嵌结构 1412a/b 双镶嵌结构1410
1600 第一区段 1700 第二区段1600 The
具体实施方式 Detailed ways
请参阅图7至图12,其绘示的是本发明优选实施例的介层洞优先双镶嵌的制造方法的剖面示意图。如图7所示,首先提供一半导体基底700,其上具有导电结构711以及712,例如铜镶嵌导线,形成于底层或元件层701中。底层或元件层701可以是低介电常数层,但不限于此。接着,依序在半导体基底700上沉积形成保护盖层(capping layer)715,其成分通常为氮化硅,覆盖于导电结构711以及712的暴露表面。Please refer to FIG. 7 to FIG. 12 , which are schematic cross-sectional views of a via-preferred dual damascene manufacturing method according to a preferred embodiment of the present invention. As shown in FIG. 7 , firstly, a
同样地,接着在保护盖层715上形成一堆栈介电层720,其通常包括一第一介电层721、一第二介电层723,以及一介于第一介电层721与第二介电层723之间的蚀刻停止层722,第一介电层721与第二介电层723的介电常数通常小于3为佳。举例来说,第一介电层721与第二介电层723可以是FLARETM、SiLKTM、亚芳香基醚类聚合物(poly(arylene ether)polymer)、parylene类化合物、聚酰亚胺(polyimide)类高分子、氟化聚酰亚胺(fluorinatedpolyimide)、HSQ、BCB、氟硅玻璃(FSG)、二氧化硅、多孔硅玻璃(nanoporoussilica)或铁氟龙等等,但不限于上述所列组成。Similarly, a stacked
在图7中,随后在第一介电层721上,会再沉积一氮氧化硅(SiNO)停止层730。接着,于氮氧化硅停止层730上形成第一光致抗蚀剂层(又称为“介层洞光致抗蚀剂”)740,并于第一光致抗蚀剂层740定义出介层洞开孔741及742,其中假设介层洞开孔741为独立(isolated)介层洞图案,亦即其邻近周围并无其它介层洞图案被定义,而介层洞开孔742为密集(dense)介层洞图案。接着,进行一蚀刻工艺,以第一光致抗蚀剂层740为蚀刻屏蔽,经由第一光致抗蚀剂层740中的介层洞开孔741及742依序蚀刻氮氧化硅停止层730、堆栈介电层720,直到保护盖层715,以形成介层洞751、752a及752b,其直径约在0.08-0.2微米之间。In FIG. 7 , a silicon oxynitride (SiNO)
如图8所示,在去除第一光致抗蚀剂层740后,随即于半导体基底700上涂布一填缝高分子层800,并填满介层洞751、752a及752b。填缝高分子层800可以是由I-line光致抗蚀剂所构成,例如含novolak树脂、聚苯乙烯类树脂(poly hydroxystyrene,PHS)、或者丙烯酸脂(acrylate)类等等i-line光致抗蚀剂成分。填缝高分子层800的涂布类似一般光致抗蚀剂涂布工艺,并可加以烘烤硬化。As shown in FIG. 8 , after removing the
如图9所示,接着进行一回蚀刻工艺,将填缝高分子层800回蚀刻至一预定深度,如此在介层洞751、752a及752b分别内形成高分子插塞801、802a及802b,并使蚀刻后的填缝高分子层800的表面低于氮氧化硅停止层730,形成凹孔901、902a及902b。凹孔901、902a及902b乃分别由暴露出的部分介层洞751、752a及752b的侧壁911、912a、912b以及相对应的高分子插塞801、802a及802b的上表面所构成。如图10所示,接着于半导体基底700上涂布第二光致抗蚀剂层(又称为“沟槽光致抗蚀剂”)1000,并填满凹孔901、902a及902b。As shown in FIG. 9, an etch-back process is then performed to etch back the gap-filling
如图11所示,接着进行一曝光工艺,利用一定义有沟槽导线图案的光掩模(如图14所示),以预定曝光光源分别于凹孔901、902a及902b的上方曝出沟槽导线图案。随后,利用显影液将所曝的光致抗蚀剂移除,以分别于凹孔901、902a及902b的上方形成沟槽导线图案1011、1012a及1012b。本发明的主要特征在于显影之后,相邻两凹孔902a及902b的部分侧壁912a及912b被第二光致抗蚀剂层1000所遮盖,为了保护相邻两凹孔902a及902b之间的第一介电层721,使其不会在后续的沟槽蚀刻中被侵蚀。As shown in FIG. 11 , an exposure process is then performed, using a photomask (as shown in FIG. 14 ) defining a trench wire pattern to expose trenches on the top of the
请同时参阅图11以及图13,其中图13绘示的是图11中形成在第二光致抗蚀剂层1000内的沟槽图案以及已形成在堆栈介电层内的介层洞位置上视示意图,而图11即为沿着图13中切线II-II所视的剖面。如图11及图13所示,沟槽导线图案1011的线宽则明显大于其下方介层洞751的直径尺寸。根据本发明的优选实施例,沟槽导线图案1012a或1012b皆又区分为不与下方的介层洞重叠的第一区段1200,其具有约略相等的线宽L,以及线宽呈现渐缩状的第二区段1300,其直接位于介层洞的正上方。Please refer to FIG. 11 and FIG. 13 at the same time, wherein FIG. 13 shows the trench pattern formed in the
请参阅图14,其绘示的是用来形成如图13中所示的光致抗蚀剂沟槽图案的光掩模布局示意图。光掩模布局500包括不透光区域525、用来在第二光致抗蚀剂层1000中曝出沟槽线条图案1011的透光线条区域511、用来在第二光致抗蚀剂层1000中曝出沟槽线条图案1012a的透光线条区域512a,以及用来在第二光致抗蚀剂层1000中曝出沟槽线条图案1012b的透光线条区域512b。透光线条区域512a的线宽等于介层洞752a的尺寸,而透光线条区域512b的线宽等于介层洞752b的尺寸。介层洞752a与介层洞752b彼此接近,构成小间距的密集介层洞图案。在介层洞752a的正上方区域,刻意以一对不透光的修正区域532a将透光线条区域512a内缩修正,而在介层洞752b的正上方区域以一对不透光的修正区域532b将透光线条区域512b内缩修正。Please refer to FIG. 14 , which is a schematic diagram of a photomask layout used to form the photoresist trench pattern as shown in FIG. 13 . The
根据本发明的优选实施例,修正区域532a以及修正区域532b的尺寸大小相等,各修正区域为矩形并以边长1以及边宽w表示,其中各修正区域的边长1需等于或大于介层洞的直径尺寸,而各修正区域的边宽w建议为5%-30%的边长1为最佳。以直径尺寸为0.2微米大小的介层洞为例,各修正区域的尺寸大小可以约为200纳米(最小边长)×10-60纳米(边宽)左右。According to a preferred embodiment of the present invention, the size of the
如图11至图13所示,利用第二光致抗蚀剂层1000作为蚀刻屏蔽,进行干蚀刻工艺,经由沟槽线条图案1011、1012a及1012b于第一介电层721中蚀刻出导线沟槽结构。接着去除剩余的光致抗蚀剂层并清除在介层洞底部的保护盖层715后,随后在导线沟槽结构以及介层洞内填满金属,然后,进行化学机械研磨工艺,即形成双镶嵌结构1410、1412a及1412b。其中双镶嵌结构1410包括介层洞插塞1401,双镶嵌结构1412a包括介层洞插塞1402a,双镶嵌结构1412b包括介层洞插塞1402b。As shown in FIGS. 11 to 13 , using the
请参阅图15,其绘示的是图12中完成化学机械研磨工艺后在堆栈介电层中所形成的双镶嵌结构1410、1412a及1412b的上视示意图。如图15所示,本发明的特征在于双镶嵌结构1412a及1412b同样可被区分为不与下方的介层洞重叠的第一区段1600,其具有约略相等的线宽L,以及线宽呈现不规则凹入状的第二区段1700,其直接位于介层洞的正上方。Please refer to FIG. 15 , which is a schematic top view of the
以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (14)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2005100833393A CN100378951C (en) | 2005-07-12 | 2005-07-12 | Method for manufacturing via-first dual damascene |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2005100833393A CN100378951C (en) | 2005-07-12 | 2005-07-12 | Method for manufacturing via-first dual damascene |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1897244A CN1897244A (en) | 2007-01-17 |
| CN100378951C true CN100378951C (en) | 2008-04-02 |
Family
ID=37609705
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2005100833393A Expired - Lifetime CN100378951C (en) | 2005-07-12 | 2005-07-12 | Method for manufacturing via-first dual damascene |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100378951C (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001298081A (en) * | 2000-04-12 | 2001-10-26 | Nec Corp | Semiconductor device and its manufacturing method |
| CN1434509A (en) * | 2002-01-22 | 2003-08-06 | 联华电子股份有限公司 | Dual damascene metal interconnection structure and manufacturing method thereof |
| US20030199169A1 (en) * | 2002-04-17 | 2003-10-23 | Samsung Electronics Co., Ltd. | Method of forming dual damascene interconnection using low-k dielectric |
| US6689695B1 (en) * | 2002-06-28 | 2004-02-10 | Taiwan Semiconductor Manufacturing Company | Multi-purpose composite mask for dual damascene patterning |
| US6780761B1 (en) * | 2003-08-15 | 2004-08-24 | United Microelectronics Corp. | Via-first dual damascene process |
-
2005
- 2005-07-12 CN CNB2005100833393A patent/CN100378951C/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001298081A (en) * | 2000-04-12 | 2001-10-26 | Nec Corp | Semiconductor device and its manufacturing method |
| CN1434509A (en) * | 2002-01-22 | 2003-08-06 | 联华电子股份有限公司 | Dual damascene metal interconnection structure and manufacturing method thereof |
| US20030199169A1 (en) * | 2002-04-17 | 2003-10-23 | Samsung Electronics Co., Ltd. | Method of forming dual damascene interconnection using low-k dielectric |
| US6689695B1 (en) * | 2002-06-28 | 2004-02-10 | Taiwan Semiconductor Manufacturing Company | Multi-purpose composite mask for dual damascene patterning |
| US6780761B1 (en) * | 2003-08-15 | 2004-08-24 | United Microelectronics Corp. | Via-first dual damascene process |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1897244A (en) | 2007-01-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9543193B2 (en) | Non-hierarchical metal layers for integrated circuits | |
| JP4105023B2 (en) | Method of forming dual damascene wiring using low dielectric constant insulating film | |
| US7749904B2 (en) | Method of forming a dual damascene structure | |
| TWI552270B (en) | Semiconductor device and method of manufacturing same | |
| CN109309042B (en) | Semiconductor device and method of forming the same | |
| US8853095B1 (en) | Hybrid hard mask for damascene and dual damascene | |
| CN1238892C (en) | Manufacturing method of dual damascene structure | |
| CN100539074C (en) | The manufacture method of dual-damascene structure | |
| US7238619B2 (en) | Method for eliminating bridging defect in via first dual damascene process | |
| CN100378951C (en) | Method for manufacturing via-first dual damascene | |
| US7112537B2 (en) | Method of fabricating interconnection structure of semiconductor device | |
| KR100590393B1 (en) | Metal wiring formation method of semiconductor device | |
| KR100470390B1 (en) | Method for minimizing space of local interconnection using damascene in fabricating SRAM device | |
| JP2010010270A (en) | Method of manufacturing semiconductor device | |
| KR100393966B1 (en) | method for forming dual damascene of semiconductor device | |
| KR20040063299A (en) | Method of forming a via contact structure using a dual damascene process | |
| KR100419752B1 (en) | Manufacturing method of semiconductor device | |
| KR100405934B1 (en) | Method for manufacturing a contact hole of semiconductor device | |
| KR100545219B1 (en) | How to form via holes and trenches for dual damascene wiring | |
| KR100356482B1 (en) | Method of forming a metal wiring in a semiconductor device | |
| TWI485772B (en) | Method of forming via hole | |
| KR100866964B1 (en) | Interconnected fine hard mask pattern formation method for semiconductor device manufacturing | |
| TW200428582A (en) | Semiconductor fabrication method | |
| TW565908B (en) | Manufacturing method of dual damanscene structure | |
| KR20050024853A (en) | Method of forming metal wiring in flash memory device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CX01 | Expiry of patent term | ||
| CX01 | Expiry of patent term |
Granted publication date: 20080402 |