[go: up one dir, main page]

CN100409580C - System and method for a feed forward amplifier employing a self-generated alignment list and an adaptive controller - Google Patents

System and method for a feed forward amplifier employing a self-generated alignment list and an adaptive controller Download PDF

Info

Publication number
CN100409580C
CN100409580C CNB2004800025215A CN200480002521A CN100409580C CN 100409580 C CN100409580 C CN 100409580C CN B2004800025215 A CNB2004800025215 A CN B2004800025215A CN 200480002521 A CN200480002521 A CN 200480002521A CN 100409580 C CN100409580 C CN 100409580C
Authority
CN
China
Prior art keywords
calibration
list
amplifier system
settings
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800025215A
Other languages
Chinese (zh)
Other versions
CN1742442A (en
Inventor
R·N·布雷思怀特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Powerwave Technologies Inc
P Wave Holdings LLC
Original Assignee
Powerwave Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powerwave Technologies Inc filed Critical Powerwave Technologies Inc
Publication of CN1742442A publication Critical patent/CN1742442A/en
Application granted granted Critical
Publication of CN100409580C publication Critical patent/CN100409580C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

A method and apparatus for fast calibration of an adaptive feed forward power amplifier is disclosed. Successful alignment settings are correlated to operating conditions that affect the gain and phase of the amplifier. These operating conditions may include input power level (228), carrier frequency (230), temperature (236), DC supply voltage, and so forth. The successful alignment settings are stored with the corresponding operating conditions in a list (224) indexed with the multidimensional attribute vector. Elements of the list are automatically generated.

Description

用于采用自生校准列表和自适应控制器的前馈放大器的系统和方法 Systems and methods for feedforward amplifiers employing self-generated calibration lists and adaptive controllers

相关申请信息Related application information

本申请要求2003年1月23日提交的序号为60/442099的临时申请的权益,将其公开内容全部通过引用结合于本文中。This application claims the benefit of Provisional Application Serial No. 60/442099, filed January 23, 2003, the disclosure of which is incorporated herein by reference in its entirety.

发明背景Background of the invention

1.发明领域1. Field of invention

本发明涉及RF功率放大器和放大方法。更具体地说,本发明涉及前馈放大器和用于控制前馈放大器的方法。The present invention relates to RF power amplifiers and amplification methods. More specifically, the present invention relates to feedforward amplifiers and methods for controlling feedforward amplifiers.

2.现有技术描述及相关背景信息2. Description of prior art and relevant background information

RF放大器是试图复制出现在输入端的RF信号并产生具有高得多的功率电平的输出信号的器件。从输入至输出的功率增加称为放大器的“增益”。当增益在输入信号的动态范围上为常数时,该放大器称为是“线性”的。放大器在输送的功率方面容量有限,因为增益和相位变化,特别是大功率下的饱和,这使所有实际放大器在输入功率电平变化时是非线性的。所产生的失真功率与输送的信号功率之比是放大器非线性度的量度。RF amplifiers are devices that attempt to replicate the RF signal present at the input and produce an output signal with a much higher power level. The increase in power from input to output is called the "gain" of the amplifier. An amplifier is said to be "linear" when the gain is constant over the dynamic range of the input signal. Amplifiers have limited capacity in terms of delivered power because of gain and phase variations, especially saturation at high power, which makes all real amplifiers non-linear as input power levels vary. The ratio of the generated distortion power to the delivered signal power is a measure of the nonlinearity of the amplifier.

在RF通信系统中,放大器的最大可允许非线性度是由政府机构、如FCC或ITU指定的。因为放大器工作于接近饱和状态时固有地呈非线性,线性度要求往往成为对额定功率输送能力的限制。一般来说,当工作于接近饱和状态时,因为放大器输送的信号功率增量从比例上小于所产生的失真功率增量,放大器的线性迅速变坏。In RF communication systems, the maximum allowable nonlinearity of amplifiers is specified by government agencies such as the FCC or ITU. Because amplifiers are inherently nonlinear when operating near saturation, the linearity requirement often becomes a limitation on the rated power delivery capability. Generally speaking, when operating near saturation, the linearity of the amplifier deteriorates rapidly because the signal power increment delivered by the amplifier is proportionally smaller than the distortion power increment produced.

传统上运用各种补偿方法来减小系统输出的失真,从而提高额定功率输送能力。优选方法是前馈补偿。在前馈RF功率放大器中,使用误差放大器来放大主放大器失真分量,该分量又与主放大器输出异相合成,以抵消主放大器失真分量。一般来说,前馈补偿提供主放大器的功率能力和误差放大器的线性。Traditionally, various compensation methods have been used to reduce the distortion of the system output, thereby increasing the rated power delivery capability. The preferred method is feedforward compensation. In a feed-forward RF power amplifier, an error amplifier is used to amplify the main amplifier distortion component, which is combined out-of-phase with the main amplifier output to cancel the main amplifier distortion component. In general, feed-forward compensation provides the power capability of the main amplifier and the linearity of the error amplifier.

放大器的前馈线性化是基于并行RF路径的增益和相位的匹配,从而消除载波(输入)信号(环路1)或者消除失真(环路2)。载波消除通常称为“环路1误差”,这是主放大器路径的失真的估算值。失真消除在环路2内进行,使用环路1误差来消除主放大器的失真。相应环路中的增益和相位的匹配称作“环路校准控制”。当环路2的校准正确时,输出上的失真被减至最小,使整个前馈系统比单独的主放大器更线性。当环路1的校准正确时,通过误差放大器(它放大环路1误差)的功率受到限制。在大多数情况下,在启用环路2的误差放大器之前,必须完成环路1校准。这确保误差放大器未被过驱动,过驱动是一种将产生不想要的失真或装置损坏的情况。Feedforward linearization of the amplifier is based on matching the gain and phase of the parallel RF paths to either cancel the carrier (input) signal (loop 1) or eliminate distortion (loop 2). Carrier cancellation is often referred to as "loop 1 error," which is an estimate of the distortion in the main amplifier path. Distortion cancellation takes place in loop 2, using the loop 1 error to remove distortion from the main amplifier. The matching of gain and phase in the respective loops is called "loop calibration control". When loop 2 is calibrated correctly, distortion on the output is minimized, making the entire feedforward system more linear than the main amplifier alone. When the calibration of loop 1 is correct, the power through the error amplifier (which amplifies the loop 1 error) is limited. In most cases, a Loop 1 calibration must be done before enabling the Loop 2 error amplifier. This ensures that the error amplifier is not being overdriven, a condition that would create unwanted distortion or damage the device.

前馈功率放大器的大多数终端用户具有限制前馈补偿的自适应部分校准环路所用的时间的技术要求。结果,当自适应控制器开始搜索最佳(或足够的)校准时具有好的初始校准是重要的。一些这类技术要求具有低至10秒的时间。Most end users of feedforward power amplifiers have a specification that limits the time it takes for the adaptive portion of the feedforward compensation to calibrate the loop. Consequently, it is important to have a good initial calibration when the adaptive controller starts searching for the best (or sufficient) calibration. Some of these techniques require times as low as 10 seconds.

此外,具有环路1的良好校准以限制进入误差放大器的功率是重要的。但是,环路1误差功率大致上为输入功率与校准质量(载波消除量)的乘积。结果,如果输入功率低,则环路1的校准质量可能是适中的。如果输入功率突然增大,则环路1误差功率将成比例地增大,有可能过驱动误差放大器。虽然环路1会响应这种增大而自动调节其校准设定,但是环路1的校准的快速变化是优选的,因为它减小了过驱动误差放大器的瞬态效应。Also, it is important to have a good calibration of loop 1 to limit the power going into the error amplifier. However, the loop 1 error power is roughly the product of the input power and the calibration quality (carrier cancellation amount). As a result, the calibration quality of loop 1 may be moderate if the input power is low. If the input power suddenly increases, the loop 1 error power will increase proportionally, potentially overdriving the error amplifier. Although loop 1 will automatically adjust its calibration settings in response to this increase, a fast change in the calibration of loop 1 is preferred because it reduces the transient effect of overdriving the error amplifier.

对于前馈线性化已有许多的先有方法,最早记载于二十世纪二十年代。在较早的方法中,校准设定是静态的,对增益和相位采用固定的设定,针对标称工作条件进行优化。后来的方法引入查找表,用于补偿温度和DC电源变化。再后来,应用了自适应方法,其中环路的失调量被在内部测量并用于后续校准调节。环路1误差功率通常用作环路1失调量的度量。为了测量环路2,通常在环路1内引入导引信号,作为“已知失真”。在环路2的输出端所检测的导引功率度量了环路2的失调量的大小。已经实现了用于测量环路2的失调量的无导引方法,它们基于失真测量。在这类系统中,第二环路收敛具有明显的与输入信号和所产生失真的相关性。There are many prior methods for feed-forward linearization, first documented in the 1920s. In earlier methods, the calibration settings were static, using fixed settings for gain and phase, optimized for nominal operating conditions. Later methods introduce look-up tables for compensating for temperature and DC power variations. Still later, an adaptive approach was applied, where the offset of the loop was measured internally and used for subsequent calibration adjustments. Loop 1 error power is often used as a measure of the amount of loop 1 offset. To measure loop 2, a pilot signal is usually introduced in loop 1 as a "known distortion". The pilot power detected at the output of loop 2 is a measure of the amount of loop 2 offset. Unpiloted methods for measuring the offset of loop 2 have been implemented, which are based on distortion measurements. In such systems, the second loop convergence has a significant dependence on the input signal and the resulting distortion.

在前馈放大器的静态和自适应形式中都已使用查找表。这些查找表通常用来补偿温度或DC电源变化。但是,即使当查找表被用于自适应前馈系统中时,这些查找表也通常是用来控制系统中并非自适应的部分,诸如前端压控衰减器和移相器(它们维持系统的整体增益或相位)。也就是说,环路自适应和查找表没有联系起来。Look-up tables have been used in both static and adaptive versions of feedforward amplifiers. These look-up tables are typically used to compensate for temperature or DC power variations. However, even when LUTs are used in adaptive feed-forward systems, these LUTs are usually used to control parts of the system that are not adaptive, such as front-end voltage-controlled attenuators and phase shifters (which maintain the overall gain or phase). That is, loop adaptation and lookup tables are not linked.

如上文指出的,查找表过去一直使用固定结构。诸如温度的输入是阵列的索引。这些索引按升序等间距地分布在一段范围上,在阵列内存储相应的校准设定。这种结构很适合存储器芯片,因为索引相当于地址,而校准设定相当于数据。但是,查找表通常基于实验数据(校准),需要大量时间来填充表的元素。此外,由元件老化引起的漂移会使任何查找表变得过时,必需重新校准。As noted above, lookup tables have historically used a fixed structure. Inputs such as temperature are indices into the array. These indices are equally spaced over a range in ascending order, and the corresponding calibration settings are stored in the array. This structure is well suited to memory chips because the index corresponds to the address and the calibration settings correspond to the data. However, lookup tables are usually based on experimental data (calibration) and require a lot of time to populate the elements of the table. In addition, drift caused by component aging can render any look-up tables obsolete, necessitating recalibration.

与查找表相关的另一个困难是,如果存在许多影响校准质量的工作条件,则需要多维阵列,而管理多维阵列可能极为困难。可以想象在等间隔的四维阵列中存在的元素数量。例如,每维10个样本产生10000个元素。Another difficulty associated with lookup tables is that if there are many operating conditions that affect the quality of the calibration, multidimensional arrays are required, which can be extremely difficult to manage. One can imagine the number of elements present in an equally spaced 4D array. For example, 10 samples per dimension yields 10000 elements.

管理多个索引维度的一种技术是假定效果是可分开的。可分开的条件允许对每个工作条件使用单独的阵列,而综合效果是这些单独调整之和。(不是不象泰勒级数展开,其中指定偏导数)。可是,这种方法只对小的(微分)校准调整有效,因为忽略了各维之间的任何互相关。最大的误差会出现在多维阵列的角上。例如,在温度、DC电源索引空间中易出问题的角是高温和低压。正是这些角位置通常被富有经验的客户测试,以便确定该放大器是否符合技术要求。One technique for managing multiple index dimensions is to assume that the effects are separable. Separable conditions allow separate arrays to be used for each operating condition, while the combined effect is the sum of these individual adjustments. (Not unlike the Taylor series expansion, where partial derivatives are specified). However, this approach is only effective for small (differential) calibration adjustments, since any cross-correlation between dimensions is ignored. The largest errors occur at the corners of multidimensional arrays. For example, the problematic corners in the temperature, DC power index space are high temperature and low voltage. It is these angular positions that are usually tested by experienced customers to determine if the amplifier is within specification.

与基于阵列的查找表相关的问题是在索引空间内抽样间隔(相邻索引之间的分隔)的选择。一般来说,增益和相位设定的敏感度在索引空间上是变化的。必须根据索引空间的最敏感区域来选择抽样密度。其余区域将被过抽样。这个过抽样的问题对多维阵列更加严重。A problem associated with array-based lookup tables is the choice of sampling interval (separation between adjacent indexes) within the index space. In general, the sensitivity of gain and phase settings varies over index space. The sampling density must be chosen according to the most sensitive area of the index space. The remaining regions will be oversampled. This oversampling problem is even more severe for multidimensional arrays.

一直试图进行查找表自校准或自生成。但是,固定阵列结构难以管理。遇到的关键问题是‘更新碎化’。考虑前面提到的四维阵列情况。当更新查找表时,10000中仅有一个元素被改变。如果退化源是全局的(例如由元件漂移造成的),则所有10000个元素都受影响。但是,改变必须随着访问每个索引而传播。存在相邻索引具有大差异的可能性,只是因为索引之一较旧。A lookup table self-calibration or self-generation has been attempted. However, fixed array structures are difficult to manage. The key problem encountered is 'update fragmentation'. Consider the 4D array case mentioned earlier. When the lookup table is updated, only one element out of 10000 is changed. If the source of degradation is global (e.g. due to element drift), then all 10000 elements are affected. However, changes must be propagated as each index is accessed. There is a possibility that adjacent indexes have large differences just because one of the indexes is older.

因此,目前存在对用于前馈放大器系统中快速环路校准控制的系统和方法的需要,该系统和方法避免了先有技术的上述局限。Accordingly, a need currently exists for a system and method for fast loop calibration control in a feedforward amplifier system that avoids the aforementioned limitations of the prior art.

发明概述Summary of the invention

在第一方面,本发明提供一种前馈放大器系统,其中包括用于接收RF输入信号的输入端和耦合到输入端的第一控制环路,所述第一控制环路包括主放大器、主放大器抽样耦合器、延迟元件以及消除组合器。前馈放大器系统还包括第二控制环路,它耦合到第一控制环路并且包括第一信号路径、包含误差放大器的第二信号路径、以及耦合第一和第二信号路径的误差耦合器。输出端耦合到误差耦合器。前馈放大器系统还包括用于控制第一和第二控制环路中至少一个的装置,它采用具有多个列表元素的校准列表,每个元素具有校准设定和表征前馈放大器系统的工作条件的参数集。In a first aspect, the present invention provides a feedforward amplifier system comprising an input for receiving an RF input signal and a first control loop coupled to the input, the first control loop comprising a main amplifier, a main amplifier Sampling couplers, delay elements, and cancellation combiners. The feedforward amplifier system also includes a second control loop coupled to the first control loop and including a first signal path, a second signal path including an error amplifier, and an error coupler coupling the first and second signal paths. The output is coupled to the error coupler. The feedforward amplifier system also includes means for controlling at least one of the first and second control loops employing a calibration list having a plurality of list elements, each element having a calibration setting and an operating condition characterizing the feedforward amplifier system parameter set.

在前馈放大器系统的一个优选实施例中,第一控制环路还包括增益调节器和相位调节器,用于控制的装置所采用的各个校准设定可包括第一控制环路增益调节器设定和第一控制环路相位调节器设定。第二控制环路还可包括增益调节器和相位调节器,用于控制的装置所采用的各个校准设定可包括第二控制环路增益调节器设定和第二控制环路相位调节器设定。表征前馈放大器系统的工作条件的参数集可包括一个或多个温度、DC电源、输入信号功率和输入信号载波频率。最好是,表征前馈放大器系统的工作条件的参数集被定义为属性向量,并且在任何两个属性向量之间定义距离。用于控制的装置获取当前属性向量并计算与列表元素的属性向量的距离,选择具有最小距离的列表元素,用作控制功能中的校准设定。用于控制的装置可不断地测量前馈放大器系统的失调量,当所测量的失调量超过预定值时,从校准列表中检索校准设定。用于控制的装置采用所选元素作为初始校准设定,并采用迭代控制算法从初始设定计算新的校准设定。用于控制的装置在完成迭代计算之后用新的校准设定更新校准列表。最接近的列表元素属性向量之间的距离可在整个校准列表中改变。In a preferred embodiment of the feedforward amplifier system, the first control loop further includes a gain adjuster and a phase adjuster, and the respective calibration settings employed by the means for controlling may include the first control loop gain adjuster setting and the first control loop phase regulator setting. The second control loop may also include a gain adjuster and a phase adjuster, and the respective calibration settings employed by the means for controlling may include a second control loop gain adjuster setting and a second control loop phase adjuster setting Certainly. The set of parameters characterizing the operating conditions of the feedforward amplifier system may include one or more of temperature, DC power supply, input signal power, and input signal carrier frequency. Preferably, the set of parameters characterizing the operating conditions of the feedforward amplifier system is defined as property vectors, and a distance is defined between any two property vectors. The means for controlling obtains the current attribute vector and calculates the distances to the attribute vectors of the list elements, selecting the list element with the smallest distance for use as a calibration setting in the control function. The means for controlling may continuously measure an offset of the feedforward amplifier system, and retrieve a calibration setting from a calibration list when the measured offset exceeds a predetermined value. The means for controlling takes the selected elements as initial calibration settings and calculates new calibration settings from the initial settings using an iterative control algorithm. The means for controlling updates the calibration list with new calibration settings after completion of the iterative calculations. The distance between the closest list element attribute vectors can vary throughout the calibration list.

按照另一方面,本发明提供一种自适应控制器,用于控制放大器系统的环路。自适应控制器包括一个或多个输入端,用于接收对应于放大器系统的当前工作条件的一个或多个属性参数。自适应控制器还包括耦合到所述一个或多个输入端的一个或多个处理器,所述一个或多个处理器具有相关的校准列表,并且用校准列表算法和控制器算法编程,从而提供环路调节设定以控制放大器系统的环路。校准列表算法产生具有控制器算法所计算的调节设定的校准列表,并且把一个或多个属性参数与各个调节设定相关联。According to another aspect, the present invention provides an adaptive controller for controlling a loop of an amplifier system. The adaptive controller includes one or more inputs for receiving one or more property parameters corresponding to current operating conditions of the amplifier system. The adaptive controller also includes one or more processors coupled to the one or more inputs, the one or more processors having associated calibration lists and programmed with the calibration list algorithm and the controller algorithm to provide Loop adjustment settings to control the loop of the amplifier system. The calibration list algorithm generates a calibration list with the adjustment settings calculated by the controller algorithm and associates one or more property parameters with each adjustment setting.

在自适应控制器的一个优选实施例中,校准列表算法从校准列表中选择校准设定,供控制器算法在启动时或者在环路变得充分失调时使用。校准列表算法最好是通过计算对应于当前工作条件的一个或多个属性参数和与列表中每个校准设定相关的属性参数之间的距离,并且选择对应于具有最小距离的属性参数的校准设定,选择校准列表调节设定,供控制器算法使用。距离计算可对不同的属性参数用不同的权重来加权。属性参数可包括温度、DC电源电压、输入信号功率和输入信号载波频率中的一个或多个。两个属性参数集“n”和“0”之间的距离dattr可以例如由加权的Linf范数距离度量或加权的L2范数距离度量来定义。自适应控制器还可包括一个或多个输入端,用于接收校准数据。用于接收校准数据的一个或多个输入端可例如包括导引信号输入端或用于环路测试数据的输入端。调节设定可包括增益调节器和相位调节器设定。In a preferred embodiment of the adaptive controller, the calibration list algorithm selects calibration settings from the calibration list for use by the controller algorithm at startup or when the loop becomes sufficiently detuned. The calibration list algorithm is preferably calculated by calculating the distance between one or more property parameters corresponding to the current operating conditions and the property parameter associated with each calibration setting in the list, and selecting the calibration corresponding to the property parameter with the smallest distance. Settings, select the calibration list to adjust the settings for use by the controller algorithm. The distance calculation may weight different attribute parameters with different weights. The attribute parameters may include one or more of temperature, DC supply voltage, input signal power, and input signal carrier frequency. The distance d attr between two sets of attribute parameters "n" and "0" may be defined eg by a weighted Linf -norm distance metric or a weighted L2 - norm distance metric. The adaptive controller may also include one or more inputs for receiving calibration data. The one or more inputs for receiving calibration data may include, for example, a pilot signal input or an input for loop test data. Adjustment settings may include gain adjuster and phase adjuster settings.

按照另一方面,本发明提供一种用于控制放大器系统的方法,所述放大器系统具有包括控制环路输入端、第一信号路径、第二信号路径以及控制环路输出端的控制环路,第一和第二信号路径中的至少一个包括放大器。所述方法包括提供校准设定列表,每个校准设定具有相关的工作条件。所述方法还包括检测放大器系统的当前工作条件。所述方法还包括把当前工作条件与校准设定列表中的那些进行比较,并且选择与列表中最相似的工作条件相关的校准设定。According to another aspect, the invention provides a method for controlling an amplifier system having a control loop comprising a control loop input, a first signal path, a second signal path and a control loop output, the first At least one of the first and second signal paths includes an amplifier. The method includes providing a list of calibration settings, each calibration setting having an associated operating condition. The method also includes sensing a current operating condition of the amplifier system. The method also includes comparing the current operating conditions to those in the list of calibration settings and selecting the calibration settings associated with the most similar operating conditions in the list.

在用于控制放大器系统的方法的一个优选实施例中,相关工作条件被配置为多维属性向量。把当前工作条件与校准设定列表中的那些进行比较可包括度量当前属性向量与列表中的每个属性向量之间的距离。选择与列表中最相似的工作条件相关联的校准设定可包括确定与当前工作条件属性向量的距离最小的属性向量。该方法还可进一步包括采用迭代环路控制器算法计算新的校准设定,其中与最相似的工作条件相关的校准设定被用作自适应环路控制器算法的初始校准设定。该方法还可进一步包括采用自适应环路控制器算法所计算的新校准设定来更新校准列表。校准列表的大小可以是动态的。而且,由属性向量距离定义的所存储调节设定的间隔最好是在整个列表中变化。例如,在列表中校准对包括该属性向量的一个或多个工作条件最敏感的区域中可设置较高密度的调节设定。In a preferred embodiment of the method for controlling an amplifier system, the relevant operating conditions are configured as multidimensional property vectors. Comparing the current operating conditions to those in the list of calibration settings may include measuring the distance between the current property vector and each property vector in the list. Selecting the calibration setting associated with the most similar operating condition in the list may include determining the attribute vector with the smallest distance from the current operating condition attribute vector. The method may further include calculating a new calibration setting using an iterative loop controller algorithm, wherein the calibration setting associated with the most similar operating conditions is used as an initial calibration setting for the adaptive loop controller algorithm. The method may further include updating the calibration list with the new calibration settings calculated by the adaptive loop controller algorithm. The size of the calibration list can be dynamic. Also, the interval of stored adjustment settings defined by attribute vector distances preferably varies throughout the list. For example, a higher density of adjustment settings may be set in areas of the list that are most sensitive to the one or more operating conditions that include the property vector.

按照另一方面,本发明提供一种维护放大器系统的控制环路的校准设定列表的方法,所述列表包括多个元素,每个元素具有校准设定和对应于放大器系统的工作条件的参数集。所述方法包括选择校准列表的一个元素并且确定具有与所选元素最相似的相应工作条件的校准列表的元素。所述方法还包括确定是否两个元素足够相似而被认为是冗余的。所述方法还包括若校准列表的两个元素是冗余的,则删除这些元素中最早的元素。According to another aspect, the present invention provides a method of maintaining a list of calibration settings for a control loop of an amplifier system, the list comprising a plurality of elements each having a calibration setting and parameters corresponding to operating conditions of the amplifier system set. The method includes selecting an element of the calibration list and determining an element of the calibration list that has a corresponding operating condition most similar to the selected element. The method also includes determining whether two elements are similar enough to be considered redundant. The method also includes deleting the oldest of two elements of the calibration list if those elements are redundant.

在维护放大器系统的控制环路的校准设定列表的方法的一个优选实施例中,选择校准列表的元素包括选择列表中先前未受到列表维护处理的最早的元素。确定校准列表中具有与所选元素最相似的相应工作条件的元素可包括确定到校准列表的各个其余元素的工作条件参数值的距离度量以及选择具有最小距离的元素。距离度量可包括对应于工作条件的参数值之间的加权差异。对应于放大器系统的工作条件的参数可包括温度、DC电源、输入信号功率和输入信号载波频率中的一个或多个。确定元素是否足够相似而被认为是冗余的可包括确定校准设定之间的距离度量并且把校准距离与冗余距离门限相比较。或者,确定元素是否足够相似而被认为是冗余的可包括将两个元素的工作条件参数之间的距离与过期距离门限相比较。该方法还可进一步包括对于校准列表中的每个元素重复所述列表维护处理。In a preferred embodiment of the method of maintaining a list of calibration settings for a control loop of an amplifier system, selecting elements of the calibration list includes selecting an oldest element of the list that has not previously been subjected to a list maintenance process. Determining the element of the calibration list having a corresponding operating condition most similar to the selected element may include determining a distance measure to the operating condition parameter value of each remaining element of the calibration list and selecting the element having the smallest distance. A distance metric may include a weighted difference between parameter values corresponding to operating conditions. Parameters corresponding to operating conditions of the amplifier system may include one or more of temperature, DC power supply, input signal power, and input signal carrier frequency. Determining whether elements are similar enough to be considered redundant may include determining a distance metric between calibration settings and comparing the calibration distance to a redundancy distance threshold. Alternatively, determining whether elements are similar enough to be considered redundant may include comparing the distance between the operating condition parameters of two elements to an outdated distance threshold. The method may further include repeating the list maintenance process for each element in the calibration list.

按照另一方面,本发明提供一种产生放大器系统的控制环路的校准设定的分级列表的方法。所述列表包括多个元素,每个元素具有校准设定和对应于放大器系统的工作条件的相应参数集,并且具有包括至少两级的分级结构。所述方法包括选择校准列表的第一级中的一个元素。所述方法还包括确定校准列表的第一级中具有与所选元素最相似的相应工作条件的元素,并且把两个元素中最早的降级到分级校准列表的更低一级。According to another aspect, the present invention provides a method of generating a hierarchical list of calibration settings for a control loop of an amplifier system. The list includes a plurality of elements, each element has a calibration setting and a corresponding set of parameters corresponding to operating conditions of the amplifier system, and has a hierarchical structure including at least two levels. The method includes selecting an element in a first level of a calibration list. The method also includes determining the element in the first level of the calibration list that has a corresponding operating condition most similar to the selected element, and demoting the earliest of the two elements to a lower level of the hierarchical calibration list.

在产生放大器系统的控制环路的校准设定的分级列表的方法的一个优选实施例中,确定校准列表中具有与所选元素最相似的相应工作条件的元素包括确定到校准列表的第一级的各个其余元素的工作条件的距离度量,并选择具有最小距离的元素。所述方法还可包括确定两个元素是否是冗余的,其中较早的元素只是在这些元素是冗余的情况下才被降级。所述方法还可包括对于分级列表的每一级重复列表处理。所述方法还可包括如果所述列表维护处理在分级结构的最低级,则删除较早的条目。被降级的元素最好是作为未被降级的冗余元素的子集列表条目来关联。被降级并具有子集列表的元素最好是与未被降级的冗余元素的子集列表合并。In a preferred embodiment of the method of generating a hierarchical list of calibration settings for a control loop of an amplifier system, determining an element in the calibration list having a corresponding operating condition most similar to the selected element includes determining to a first level of the calibration list The distance measure of the working condition of each remaining element of , and select the element with the smallest distance. The method may also include determining whether two elements are redundant, wherein earlier elements are demoted only if the elements are redundant. The method may also include repeating list processing for each level of the hierarchical list. The method may also include deleting earlier entries if the list maintenance process is at the lowest level of the hierarchy. Demoted elements are preferably associated as subset list entries of non-demoted redundant elements. Elements that are demoted and have subset lists are preferably merged with the subset lists of redundant elements that are not demoted.

按照另一方面,本发明提供一种用于控制放大器系统的方法,所述放大器系统具有控制环路,其中包括控制环路输入端、第一信号路径、第二信号路径以及控制环路输出端,所述第一和第二信号路径中的至少一个包括放大器。所述方法包括提供具有至少两级的校准设定的分级列表,每个校准设定具有相关工作条件并且最高级中的校准设定的一部分或全部具有较低级中的子集校准设定。所述方法还包括检测放大器系统的当前工作条件,并且把当前工作条件与校准设定分级列表的最高级中的那些进行比较。所述方法还包括在列表的最高级中选择与最相似的工作条件相关的校准设定。所述方法还包括把当前工作条件与所选最高级校准设定的子集中的那些相比较,并选择具有最相似工作条件的子集的校准设定。所述方法还包括选择在较高或较低级中具有与当前工作条件最相似的工作条件的校准设定。According to another aspect, the invention provides a method for controlling an amplifier system having a control loop comprising a control loop input, a first signal path, a second signal path and a control loop output , at least one of the first and second signal paths includes an amplifier. The method includes providing a hierarchical list of calibration settings having at least two levels, each calibration setting having an associated operating condition and some or all of the calibration settings in the highest level having a subset of calibration settings in the lower levels. The method also includes detecting current operating conditions of the amplifier system and comparing the current operating conditions to those in the highest level of the hierarchical list of calibration settings. The method also includes selecting, at the highest level of the list, the calibration setting associated with the most similar operating conditions. The method also includes comparing the current operating conditions to those of the selected subset of the highest-level calibration settings, and selecting the calibration settings of the subset with the most similar operating conditions. The method also includes selecting a calibration setting having an operating condition most similar to the current operating condition in a higher or lower level.

在一个优选实施例中,所述用于控制放大器系统的方法包括对分级列表的每一级重复处理,直到下一个较低子集为空的。最高级最好是具有比较低级更粗的校准设定间隔。例如,任何两个校准设定可具有某个校准距离,最高级具有比较低级更大的设定之间的校准距离。校准距离可包括相邻设定之间的加权差异。例如,调节设定可包括增益调节和相位调节设定,并且加权可包括校准敏感性。In a preferred embodiment, the method for controlling an amplifier system comprises repeating the process for each level of the hierarchical list until the next lower subset is empty. The highest level preferably has a coarser calibration set interval than the lower levels. For example, any two calibration settings may have a certain calibration distance, with the highest level having a larger calibration distance between settings than the lower level. Calibration distances may include weighted differences between adjacent settings. For example, adjustment settings may include gain adjustment and phase adjustment settings, and weighting may include calibration sensitivity.

本发明的其它特征和优点在以下详细描述中陈述。Other features and advantages of the invention are set forth in the following detailed description.

附图简介Brief introduction to the drawings

图1是按照本发明的前馈功率放大器的方框示意图。Fig. 1 is a block schematic diagram of a feedforward power amplifier according to the present invention.

图2是按照本发明的前馈放大器系统的控制系统的方框示意图。Fig. 2 is a block schematic diagram of the control system of the feedforward amplifier system according to the present invention.

图3是按照本发明的处理控制算法的流程图,说明校准列表的修剪以删除过期元素。Figure 3 is a flow diagram of a processing control algorithm according to the present invention illustrating the pruning of the calibration list to remove outdated elements.

图4是按照本发明的处理控制算法的流程图,说明校准列表的第二种修剪以删除过期元素。Figure 4 is a flow diagram of a processing control algorithm according to the present invention illustrating a second pruning of the calibration list to remove outdated elements.

图5是按照本发明的处理控制算法的流程图,说明包括校准列表处理与自适应控制器处理之间的交互的环路校准控制处理。5 is a flow diagram of a process control algorithm in accordance with the present invention illustrating loop calibration control processing including the interaction between calibration list processing and adaptive controller processing.

图6是按照本发明的处理控制算法的流程图,说明分级校准列表结构的生成。Figure 6 is a flow chart of a process control algorithm in accordance with the present invention illustrating the generation of a hierarchical calibration list structure.

图7是在将一个条目降级之前、分级校准列表结构的示意说明。Fig. 7 is a schematic illustration of a hierarchical alignment list structure prior to demoting an entry.

图8是在将一个条目降级之后、分级校准列表结构的示意说明。Figure 8 is a schematic illustration of the hierarchical calibration list structure after demoting an entry.

详细描述A detailed description

图1和图2表示按照本发明的优选实施例的前馈补偿功率放大器(PA)系统的框图。图1说明基本的前馈放大器,图2说明控制系统。1 and 2 show block diagrams of a feedforward compensated power amplifier (PA) system according to a preferred embodiment of the present invention. Figure 1 illustrates the basic feed-forward amplifier, and Figure 2 illustrates the control system.

如图1所示,前馈放大器具有采用两个控制环路的传统体系结构。环路1包含信号输入端103、抽样耦合器106、增益调节器108、相位调节器109、导引信号输入耦合器112、主放大器115、主抽样耦合器118、输入测试耦合器130、延迟器133、消除组合器136和环路1测试耦合器139。环路2包含主抽样耦合器118、主路径延迟器121、误差耦合器124、载波消除组合器136、环路2增益调节器141、环路2相位调节器142、误差放大器145、环路2测试耦合器148和输出端127。如图2所示,控制系统可包括以下详述的实现自适应控制器和校准列表算法的处理器202。校准列表存储在适当的存储器224中,并且按以下详述的方式来组织和存取。或者,可为自适应控制器和校准列表功能提供分开的处理器。数模转换器204、206、208、210把环路1和环路2数字增益调节和相位调节控制信号转换为模拟信号α1、φ1、α2、φ2,它们被提供给增益和相位调节器108、109、141和142(图1中所示)。处理器还从输入测试耦合器130经由功率检测器214和A/D转换器212接收对应于所检测输入功率的输入测试数据,以及从环路1测试耦合器139经由功率检测器218和A/D转换器216接收环路1测试数据。(可选的)导引信号发生器220产生导引信号,该信号提供给导引信号输入耦合器112(图1中所示)。导引信号接收器222检测来自环路2测试耦合器148(图1中所示)的任何未消除的导引信号,并将所检测的导引信号以数字形式提供给处理器202。处理器还接收对应于放大器系统的当前工作条件的输入。例如,可提供用于温度、DC电源和输入RF信号载波频率的输入226、228、230,它们被模数转换器236、238、240转换为数字形式。可提供其它工作条件输入234并通过A/D转换器242转换成数字形式。As shown in Figure 1, feed-forward amplifiers have a traditional architecture with two control loops. Loop 1 includes signal input 103, sampling coupler 106, gain adjuster 108, phase adjuster 109, pilot signal input coupler 112, main amplifier 115, main sampling coupler 118, input test coupler 130, delay 133 . Eliminate combiner 136 and loop 1 test coupler 139 . Loop 2 includes main sampling coupler 118, main path delay 121, error coupler 124, carrier cancellation combiner 136, loop 2 gain adjuster 141, loop 2 phase adjuster 142, error amplifier 145, loop 2 Test coupler 148 and output 127 . As shown in FIG. 2, the control system may include a processor 202 implementing the adaptive controller and calibration list algorithm detailed below. Calibration lists are stored in appropriate memory 224 and are organized and accessed as detailed below. Alternatively, separate processors may be provided for the adaptive controller and calibration list functions. Digital-to-analog converters 204, 206, 208, 210 convert the loop 1 and loop 2 digital gain adjustment and phase adjustment control signals into analog signals α 1 , φ 1 , α 2 , φ 2 , which are provided to gain and phase Regulators 108, 109, 141 and 142 (shown in Figure 1). The processor also receives input test data corresponding to the detected input power from input test coupler 130 via power detector 214 and A/D converter 212, and from loop 1 test coupler 139 via power detector 218 and A/D converter 218. D-converter 216 receives loop 1 test data. The (optional) pilot signal generator 220 generates a pilot signal, which is provided to the pilot signal input coupler 112 (shown in FIG. 1 ). Pilot signal receiver 222 detects any uncancelled pilot signal from loop 2 test coupler 148 (shown in FIG. 1 ) and provides the detected pilot signal to processor 202 in digital form. The processor also receives input corresponding to current operating conditions of the amplifier system. For example, inputs 226 , 228 , 230 may be provided for temperature, DC power, and the carrier frequency of the incoming RF signal, which are converted to digital form by analog-to-digital converters 236 , 238 , 240 . Other operating condition inputs 234 may be provided and converted to digital form by A/D converter 242 .

首先描述前馈放大器系统的一般工作原理。自适应前馈放大器控制系统通过记忆和再用成功的校准设定来提供快速收敛属性。该系统能够学习诸如温度、DC电源、输入功率电平和载波频率的工作条件对最佳校准设定所具有的影响。结果,自适应前馈放大器控制系统可以比单独起作用的自适应控制器更快地响应这些工作条件的变化。The general operating principle of the feed-forward amplifier system is first described. An adaptive feedforward amplifier control system provides fast convergence properties by memorizing and reusing successful calibration settings. The system is able to learn the effect that operating conditions such as temperature, DC power supply, input power level and carrier frequency have on the optimal calibration settings. As a result, an adaptive feedforward amplifier control system can respond to changes in these operating conditions more quickly than an adaptive controller acting alone.

更具体地说,处理器的自适应控制器功能要测量前馈环路的失调量并且调节校准量。控制器以迭代方式调节校准量,搜索最小校准误差。在搜索未完成的短暂时段中,环路失调使前馈功率放大器的性能退化,并提供过多的瞬时能量,使系统的线性退化。为了使瞬时恶化减至最小,良好的初始校准是所希望的。此外,良好的初始校准会减小由发散的自适应控制器造成不稳定的可能性。More specifically, the processor's adaptive controller function measures the offset of the feed-forward loop and adjusts the calibration. The controller iteratively adjusts the calibration volume, searching for the minimum calibration error. During the brief period when the search is not completed, the loop misalignment degrades the performance of the feed-forward power amplifier and provides too much instantaneous energy, degrading the linearity of the system. A good initial calibration is desirable in order to minimize transient degradation. Also, a good initial calibration reduces the chance of instability caused by a diverging adaptive controller.

为了获得良好的初始校准,前馈功率放大器控制系统处理器202维护先前成功的校准设定的列表224。在请求使用自适应控制器之前,处理器202在校准列表中搜索在相似工作条件下使用的过去的校准设定。工作条件被表示为多维属性向量。以下定义的属性‘距离’通过比较当前属性与存储值来计算。在一些情况下,来自列表的初始校准将提供足够的消除,从而避免自适应控制器的使用。In order to obtain a good initial calibration, the feedforward power amplifier control system processor 202 maintains a list 224 of previous successful calibration settings. Before requesting use of the adaptive controller, processor 202 searches the calibration list for past calibration settings used under similar operating conditions. Operating conditions are represented as multidimensional attribute vectors. The attribute 'distance' defined below is calculated by comparing the current attribute with the stored value. In some cases, an initial calibration from the list will provide enough cancellation to avoid the use of an adaptive controller.

属性距离还用来预测前馈功率放大器系统的状态变化。当检测到当前属性向量的突然变化时,前馈功率放大器系统调节其任务安排。(注意,术语‘current’用在整篇文档中以描述‘当前时间’,不应当解释为‘电子流’)。维护任务被退出以利于环路校准,环路1校准接收最高优先级。The property distance is also used to predict the state change of the feed-forward power amplifier system. The feed-forward power amplifier system adjusts its tasking when a sudden change in the current property vector is detected. (Note that the term 'current' is used throughout the document to describe the 'current time' and should not be interpreted as 'current'). Maintenance tasks are exited in favor of loop calibration, with loop 1 calibration receiving the highest priority.

环路1校准涉及由α1和φ1所表示的增益调节器108和移相器109的调节设定的控制,增益调节器108可以是压变衰减器(VVA)或受控增益器件,它们用于使图1内‘环路1测试ε(t)’处检测的功率最小。环路1的自适应控制功能可采用传统技术,或者可采用2003年12月11日提交的U.S.专利申请No.10/733087的方法,将其公开通过引用全部结合于本文中。对于环路2,校准控制可使在‘环路2测试,z(t)’检测的互调(IMD)痕迹减至最小。可选地,在主放大器115之前注入导引单音112当作已知失真,使环路2校准控制更容易。例如,在授予Gentzler等人的U.S.专利No.5796304中公开了把导引单音用于前馈功率放大器(PA)的环路控制的用法,将此专利的公开通过引用结合于本文中。这个环路2自适应控制功能可采用传统技术,或者,也可采用2003年12月11日提交的U.S.专利申请No.10/733498的方法,将此专利申请的公开通过引用全部结合于本文中。在此文档中,增益调节器和移相器值被称为‘校准设定’。增益调节器和移相器设定与其最佳值的偏移被称为‘失调量’。当与最佳设定的偏移小时,环路被称为‘校准’。Loop 1 calibration involves control of the adjustment settings of gain adjuster 108 and phase shifter 109 represented by α 1 and φ 1 , gain adjuster 108 may be a voltage variable attenuator (VVA) or a controlled gain device, which Used to minimize the power detected at 'loop 1 test ε(t)' in Figure 1. The adaptive control function of loop 1 may use conventional techniques, or may use the methods of US Patent Application No. 10/733087, filed December 11, 2003, the disclosure of which is incorporated herein by reference in its entirety. For loop 2, the calibration control minimizes the intermodulation (IMD) traces detected at 'loop 2 test, z(t)'. Optionally, a pilot tone 112 is injected before the main amplifier 115 as a known distortion, making loop 2 calibration control easier. For example, the use of a pilot tone for loop control of a feed-forward power amplifier (PA) is disclosed in US Patent No. 5,796,304 to Gentzler et al., the disclosure of which is incorporated herein by reference. This loop 2 adaptive control function may use conventional techniques or, alternatively, the method of US Patent Application No. 10/733498, filed December 11, 2003, the disclosure of which is incorporated herein by reference in its entirety . In this document, the gain adjuster and phaser values are referred to as 'calibration settings'. The offset of gain adjuster and phaser settings from their optimum values is called 'offset'. When the deviation from the optimal setting is small, the loop is said to be 'calibrated'.

有许多影响最佳校准设定的工作条件。这些包括环境条件、应用特定的条件和系统特定的条件。例如,温度、输入功率电平x(t)、载波频率以及DC电源电压对大多数应用来说是相关工作条件,这些被作为输入226、214、230和228提供,如图2所示。时间也可被视为影响校准的参数,因为元件会老化。环路1校准设定还可影响最佳环路2校准设定。在前馈功率放大器系统内这些参数都可测量,并且可被处理器202监测。在本发明的控制系统中,相关可测量参数用于构成属性向量。当环路校准时的属性向量和相关设定被存储在存储器224中的校准列表中。属性向量与校准设定的相关通过校准列表来实现。所公开的系统把校准列表处理与自适应控制器处理结合起来以允许快速环路校准。There are many operating conditions that affect the optimum calibration settings. These include environmental conditions, application-specific conditions, and system-specific conditions. For example, temperature, input power level x(t), carrier frequency, and DC supply voltage are relevant operating conditions for most applications, and these are provided as inputs 226, 214, 230, and 228, as shown in FIG. Time can also be considered as a parameter affecting calibration, as components age. The loop 1 calibration settings can also affect the optimal loop 2 calibration settings. These parameters are measurable and can be monitored by processor 202 in a feedforward power amplifier system. In the control system of the present invention, the relevant measurable parameters are used to form property vectors. The property vectors and associated settings when the loop is calibrated are stored in a calibration list in memory 224 . The correlation of attribute vectors with calibration settings is achieved through calibration lists. The disclosed system combines calibration list processing with adaptive controller processing to allow fast loop calibration.

下面,参照图1-8描述本发明的一个详细实施例。Next, a detailed embodiment of the present invention will be described with reference to FIGS. 1-8.

首先,描述表示属性向量和校准设定并将其存储在校准列表内的方式的优选实施例。还描述用于度量属性向量的相似性的距离度量。还讨论了用于修剪校准列表的过程以允许维护可管理数量的列表条目,同时保持属性空间的覆盖。接着,描述校准列表和自适应控制器用于调节环路设定的用法。还描述校准列表内的元素的自生成。然后结合图6-8描述基于分级列表结构的备选校准列表结构。First, a preferred embodiment of the manner in which attribute vectors and calibration settings are represented and stored in a calibration list is described. A distance metric for measuring the similarity of attribute vectors is also described. A procedure for pruning the calibration list is also discussed to allow maintaining a manageable number of list entries while maintaining coverage of the attribute space. Next, the use of the calibration list and the adaptive controller to adjust the loop settings is described. Self-generation of elements within the calibration list is also described. Alternative calibration list structures based on hierarchical list structures are then described in conjunction with FIGS. 6-8.

如上所述,采用属性参数集或属性向量以允许前馈功率放大器系统从过去的动作中学习。通过把属性向量与过去的校准设定相关,环路收敛变得更快和更健壮。对于给定的应用,影响前馈功率放大器系统校准的属性参数在定义属性向量时确定。温度、平均输入功率以及中心频率通常对于蜂窝应用是重要的参数,因为它们都是时变的且影响增益。诸如调制格式和载波数量之类的参数也影响增益;但是,如果这些参数不随时间变化,它们作为属性向量的一部分提供很小的值,可以从属性向量中排除。As mentioned above, attribute parameter sets or attribute vectors are employed to allow the feed-forward power amplifier system to learn from past actions. By relating the attribute vectors to past calibration settings, loop convergence becomes faster and more robust. For a given application, the property parameters that affect the calibration of the feedforward power amplifier system are determined when defining the property vector. Temperature, average input power, and center frequency are often important parameters for cellular applications because they are time-varying and affect gain. Parameters such as modulation format and number of carriers also affect gain; however, if these parameters do not vary with time, they provide small values as part of the property vector and can be excluded from the property vector.

为了确定两个属性向量的相似性,采用距离度量。各参数之间的差异(平方差或绝对差)根据其对于前馈功率放大器系统增益的敏感度来加权。也就是说,对前馈功率放大器系统增益具有较大影响的参数被更多地加权。这些敏感度可利用零件规格或对于特定实现和应用要求的实验来估计。To determine the similarity of two attribute vectors, a distance metric is employed. The differences (squared or absolute) between the parameters are weighted according to their sensitivity to the gain of the feed-forward power amplifier system. That is, parameters that have a greater influence on the gain of the feed-forward power amplifier system are weighted more. These sensitivities can be estimated using part specifications or experimentation with specific implementation and application requirements.

具体来说,让关于校准列表元素‘n’的属性向量定义为Specifically, let the attribute vector with respect to calibration list element 'n' be defined as

(式1)    p(n)=[p0(n)…pm(n)](Formula 1) p(n)=[p 0 (n)...p m (n)]

其中pk是属性参数‘k’(例如温度)的值。为了便于距离度量在处理器202上实现,可使用加权后的Linf范数:也就是说,由dattr(n,0)来表示的元素‘n’与‘0’之间的距离被定义为:where p k is the value of an attribute parameter 'k' (eg temperature). In order to facilitate the implementation of the distance metric on the processor 202, a weighted Linf norm can be used: that is, the distance between an element 'n' and '0' denoted by d attr (n, 0) is defined for:

(式2)    dattr(n,0)=maxk{wk·|pk(n)-pk(0)|}(Formula 2) d attr (n, 0)=max k {w k ·|p k (n)-p k (0)|}

其中wk是参数‘k’的权重。也可采用备选的距离度量,例如L2范数。由dattr(n,0)来表示的元素‘n’与‘0’之间的距离的加权后L2范数度量被定义为:where w k is the weight of parameter 'k'. Alternative distance metrics, such as the L2 norm, may also be employed. The weighted L2- norm measure of the distance between element 'n' and '0' denoted by d attr (n,0) is defined as:

(式3) d attr ( n , 0 ) = [ Σ k { w k · | p k ( n ) - p k ( 0 ) | 2 } ] 0.5 (Formula 3) d attr ( no , 0 ) = [ Σ k { w k · | p k ( no ) - p k ( 0 ) | 2 } ] 0.5

度量校准设定的相似性也是有价值的。可再次使用Linf范数:It is also valuable to measure the similarity of the calibration settings. The L inf norm can be used again:

(式4)    dalign(n,0)=maxk{sk·|Δk(n,0)}(Formula 4) d align (n, 0) = max k {s kk (n, 0)}

其中Δ0(n,0)=VVA(n)-VVA(0),Δ1(n,0)=PHS(n)-PHS(0),其中VVA(n)是第n个增益校准设定,PHS(n)是第n个相位校准设定,sk是相应的敏感度。敏感度项可经过选择,使得距离dalign对应于当[VVA(0),PHS(0)]是最佳校准时的消除残差。也可再次采用例如L2范数的备选距离度量。dalign的L2范数度量为:where Δ 0 (n, 0) = VVA(n)-VVA(0), Δ 1 (n, 0) = PHS(n)-PHS(0), where VVA(n) is the nth gain calibration setting , PHS(n) is the nth phase alignment setting, and sk is the corresponding sensitivity. The sensitivity term can be chosen such that the distance dalign corresponds to the cancellation residual when [VVA(0), PHS(0)] is the best alignment. Alternative distance measures such as the L2 norm can also be employed again. The L2 norm measure of d align is:

(式5) d align ( n , 0 ) = [ Σ k { s k · | Δ k ( n , 0 ) | 2 } ] 0.5 (Formula 5) d align ( no , 0 ) = [ Σ k { the s k · | Δ k ( no , 0 ) | 2 } ] 0.5

校准列表结构可以是动态性的。列表条目和条目数量都可动态改变。更具体地说,与属性向量一起,处理器202跟踪过去成功的校准设定。在实现自适应控制器功能之前,处理器202测试当前校准设定的残差。如果就消除质量而言它是充分的,则不需要任何行动。如果它不是充分的,则检索具有与当前工作条件最接近的属性向量的列出元素的校准设定。然后测试新设定的残差。如果消除仍然不充分,则自适应控制器产生新的校准设定。在给定的环路已收敛之后,借助于自适应控制器,把新校准设定添加到校准列表中。The calibration list structure can be dynamic. Both list entries and number of entries can be changed dynamically. More specifically, along with the attribute vectors, the processor 202 keeps track of past successful calibration settings. Before implementing the adaptive controller function, the processor 202 tests the residual of the current calibration settings. If it is sufficient in terms of mass removal, no action is required. If it is not sufficient, the calibration set of the listed elements with the attribute vector closest to the current operating condition is retrieved. The newly set residuals are then tested. If the cancellation is still insufficient, the adaptive controller generates new calibration settings. After a given loop has converged, by means of the adaptive controller, new calibration settings are added to the calibration list.

限制校准列表内的元素数量以限制处理器计算时间,这是重要的。最简单的方法是对元素数量设置上限,并且如果接收了新的校准设定,就覆盖最早的元素。一种备选方法是使用修剪。当处理器202未忙于处理优先级命令时,可执行修剪。当较早的元素的校准设定与其相邻者几乎完全一致时,修剪通过删除较早的元素来消除冗余(也就是说,元素‘k’的相邻者具有最低的dattr(n,k),并且如果dalign(n,k)小,则视为冗余)。结果,表示属性空间的一个区域所需的元素数量与校准设定中的变化成比例。这种基于列表的方法产生属性校准映射的最简洁表示。It is important to limit the number of elements in the calibration list to limit processor computation time. The easiest way is to put an upper limit on the number of elements, and if a new calibration setting is received, the oldest elements are overwritten. An alternative is to use pruning. Pruning may be performed when processor 202 is not busy processing priority commands. Pruning removes redundancy by removing earlier elements when their calibration settings are nearly identical to their neighbors (that is, the neighbors of element 'k' have the lowest d attr (n, k), and if d align (n, k) is small, it is considered redundant). As a result, the number of elements required to represent a region of the attribute space is proportional to the variation in the calibration setting. This list-based approach yields the most compact representation of attribute calibration maps.

仅作为示例,图3中表示了校准列表修剪过程流的一种实现。如图所示,当处理器202未被较高优先级的任务占用时,过程流从302开始。过程流进入304以从校准列表中选择最早的元素。接着,处理利用如上文定义的属性向量距离度量dattr确定距列表的其余元素最接近的元素,具体方式是,首先在306计算到列表的其余元素的距离,然后在308选择具有最小距离的元素。接着,在310,处理流计算如上文定义的校准距离dalign以选择最接近的元素。如果校准设定相同或足够接近,则在312删除较早的元素。足够接近取决于消除容限以及消除对相应校准设定(增益调节器或移相器)的敏感度。例如,可采用最小距离dredundant,并且如果dalign小于或等于dredundant,则删除较早的元素,而如果dalign大于dredundant,则保留两个元素。在314,过程流检查整个列表是否已被检查,如果没有,则重复一直到其余元素就增益调节器和移相器容限而言分开足够远(或者直到达到列表尺寸的下限)。By way of example only, one implementation of the calibration list pruning process flow is represented in FIG. 3 . As shown, process flow begins at 302 when the processor 202 is not occupied by higher priority tasks. Process flow proceeds to 304 to select the earliest element from the calibration list. Next, processing utilizes the attribute vector distance metric d attr as defined above to determine the closest element to the remaining elements of the list by first computing the distances to the remaining elements of the list at 306 and then selecting the element with the smallest distance at 308 . Next, at 310, the process flow calculates the alignment distance dalign as defined above to select the closest element. If the calibration settings are the same or close enough, then at 312 the earlier elements are deleted. Getting close enough depends on the cancellation tolerance and the sensitivity of the cancellation to the corresponding calibration setting (gain adjuster or phase shifter). For example, a minimum distance d redundant may be taken, and if d align is less than or equal to d redundant , the earlier element is deleted, while if d align is greater than d redundant , both elements are kept. At 314, the process flow checks to see if the entire list has been checked, and if not, repeats until the remaining elements are far enough apart in terms of gainer and phaser tolerances (or until the lower limit of the list size is reached).

第二修剪过程示于图4中。这可用来从校准列表中删除过期元素。例如,元件老化会改变最佳校准设定与给定属性向量之间的关系。小的元素间属性距离潜在地标识了过期元素。例如,如果元素具有不正确的校准设定,则残差将会太大,使得必需使用自适应控制器功能。自适应控制器会找到新的校准设定。结果,两个不同的校准将对某个给定的属性向量(或两个非常相似的向量)列出。删除较早的元素解决了任何冲突以及保持列表为当前的。The second pruning process is shown in Figure 4. This can be used to remove outdated elements from the calibration list. For example, component aging can change the relationship between optimal calibration settings and a given property vector. Small inter-element attribute distances potentially identify stale elements. For example, if the elements have incorrect calibration settings, the residual error will be too large, necessitating the use of the adaptive controller function. The adaptive controller will find the new calibration settings. As a result, two different calibrations will be listed for a given attribute vector (or two very similar vectors). Removing the earlier elements resolves any conflicts and keeps the list current.

参照图4所示的用于这个第二修剪的特定过程流,当处理器未执行较高优先级的任务(包括第一修剪处理)时,第二修剪处理在402开始。在404,过程流选择校准列表中最早的元素,它尚未被针对第二修剪处理。在406,对于此最早的元素计算到列表中其余元素中每一个的距离dattr。接着在408,处理确定具有到最早的元素的最小距离dattr的元素。如果这个最小距离小于或等于预定距离doutdated,则在410,处理从校准列表中删除两个元素中较早的一个。但是,如果最小距离大于doutdated,则这两个元素被认为足够不同,并且两者都保留在校准列表中。在412,过程流检查是否还有元素要检查,如果是,则过程流返回到404以检查列表中下一个最早的元素。当所有元素都被检查后,第二修剪过程在414退出。Referring to the particular process flow shown in FIG. 4 for this second pruning process, the second pruning process begins at 402 when the processor is not executing higher priority tasks (including the first pruning process). At 404, the process flow selects the earliest element in the calibration list that has not been processed for the second pruning. At 406, the distance d attr to each of the remaining elements in the list is calculated for this earliest element. Next at 408, processing determines the element having the smallest distance d attr to the earliest element. If this minimum distance is less than or equal to the predetermined distance doutdated , then at 410, processing deletes the earlier of the two elements from the calibration list. However, if the minimum distance is greater than d outdated , the two elements are considered sufficiently different and both remain in the calibration list. At 412, process flow checks to see if there are more elements to check, and if so, process flow returns to 404 to check the next oldest element in the list. The second pruning process exits at 414 when all elements have been checked.

在校准列表为空的情况下,可保持各环路的缺省校准设定。而且,可分开地保持工厂缺省校准设定,使得它不会被修剪。In case the calibration list is empty, the default calibration settings for each loop can be kept. Also, the factory default calibration setting can be kept separately so that it is not clipped.

接着,参照图5,描述环路校准控制处理。每个校准环路控制过程(即环路1控制和环路2控制)具有类似的结构,它在图5中描述。前馈功率放大器系统最好是为各个环路(以上关于图1所述的环路1和环路2)维护分开的校准列表。Next, referring to FIG. 5 , loop calibration control processing will be described. Each calibration loop control process (ie, loop 1 control and loop 2 control) has a similar structure, which is depicted in FIG. 5 . The feedforward power amplifier system preferably maintains separate calibration lists for each loop (loop 1 and loop 2 described above with respect to Figure 1).

如图5中一般表示的,环路校准算法使用两个并行过程500和501以及控制这两个过程之间相互作用的过程流。501处指明的第一过程产生新的校准设定,以供初始用于自适应环路控制器处理500中。这个过程501在启动时使用,并且此后连续运行,以允许当失调量变得太大时用于控制器处理。更具体地说,第一过程流501连续监测当前工作条件参数以获得当前属性向量,如504所示。例如,处理器可确定当前温度、DC功率、载波频率以及输入功率,以确定当前工作条件的当前属性向量。然后,在506,过程流检查校准列表,寻找与当前向量的属性距离最小的列表元素。然后在510检索这个列表元素校准设定(环路1或环路2校准设定)。这个检索的校准设定是否用于更新自适应控制器处理500的校准可由失调量测量处理514和所检索元素中的变化来控制。在启动时,只要所测量的失调量太大,则检索校准列表设定并用于在512更新该校准。然后发起自适应控制器处理500,并且自适应控制器则在516为环路1或环路2利用迭代控制器算法计算校准校正值,如前面所述。As generally represented in Figure 5, the loop calibration algorithm uses two parallel processes 500 and 501 and a process flow that controls the interaction between the two processes. The first process indicated at 501 generates new calibration settings for initial use in adaptive loop controller process 500 . This process 501 is used at startup and runs continuously thereafter to allow for controller processing when the amount of offset becomes too large. More specifically, the first process flow 501 continuously monitors the current working condition parameters to obtain the current attribute vector, as shown in 504 . For example, a processor may determine current temperature, DC power, carrier frequency, and input power to determine a current property vector for current operating conditions. Then, at 506, the process flow examines the calibration list for the list element with the smallest distance from the attribute of the current vector. This list element calibration setting (loop 1 or loop 2 calibration setting) is then retrieved at 510 . Whether this retrieved calibration setting is used to update the calibration of the adaptive controller process 500 can be controlled by the offset measurement process 514 and the changes in the retrieved elements. At startup, whenever the measured offset is too large, the calibration list settings are retrieved and used to update the calibration at 512 . The adaptive controller process 500 is then initiated, and the adaptive controller then calculates calibration correction values for either loop 1 or loop 2 at 516 using an iterative controller algorithm, as previously described.

例如,这个过程流可由状态标志来控制。如果在510检索的元素改变,则状态标志被清零以表明系统‘未迭代’。过程流还在514连续测量失调量。如果失调量太大,则检查状态标志。如果标志被清零,则表明属性向量的重大改变,并利用从校准列表中检索的新设定来更新校准。在检索新设定之后,状态标志被置位以开始迭代自适应控制器过程。如果标志已被置位,则请求自适应控制器过程500,该过程在516依据差异调整来计算环路失调量。在518更新校准,重复迭代过程,直至环路被校准。如果在完成自适应控制器处理之后所测量的失调量小,则在520把校准设定和当前属性向量存储在校准列表中。然后完成环路校准例程。在这时,可校准不同的环路或者可如上所述地修剪各种校准列表。在系统关闭时或者在超时之后,在522可选择会话的最佳校准设定,这可被存储和用于发起快速启动。For example, this process flow can be controlled by status flags. If the element retrieved at 510 changes, the status flag is cleared to indicate that the system is 'not iterating'. The process flow also continuously measures 514 the amount of offset. If the amount of offset is too large, check the status flags. If the flag is cleared, a significant change in the property vector is indicated and the calibration is updated with the new settings retrieved from the calibration list. After retrieving the new settings, the status flag is set to start the iterative adaptive controller process. If the flag has been set, then the adaptive controller process 500 is requested, which calculates the loop offset at 516 from the difference adjustment. The calibration is updated at 518 and the iterative process is repeated until the loop is calibrated. If the measured misalignment is small after the adaptive controller process is complete, then at 520 the calibration settings and current property vector are stored in a calibration list. Then complete the loop calibration routine. At this point, different loops can be calibrated or the various calibration lists can be pruned as described above. On system shutdown or after a timeout, the best calibration settings for the session can be selected at 522, which can be stored and used to initiate a fast boot.

参照图6-8,利用元素的分级结构来说明校准列表处理的附加可选特征。在上述方法中,当选择列表中的元素数量时存在折衷。允许大量元素的好处是属性空间的密集覆盖。但是,少量元素的好处是需要较少时间来确定与当前向量的属性距离最小的元素。利用分级校准列表结构允许密集覆盖和快速搜索。Referring to Figures 6-8, an additional optional feature of calibration list processing is illustrated using a hierarchy of elements. In the above methods, there is a tradeoff when choosing the number of elements in the list. The benefit of allowing a large number of elements is dense coverage of the attribute space. However, the benefit of a small number of elements is that it takes less time to determine the element with the smallest distance from the attributes of the current vector. Utilizing a hierarchical calibration list structure allows for dense coverage and fast searching.

修剪的使用可用来产生分级校准列表,如图6-8所示。在前面所述的冗余修剪过程中,当确定两个元素“相似”时,较早的元素变成冗余的并被删除,仅有另一元素幸存。在列表管理的分级方法中,冗余元素未被删除;而是将其“降级”到在幸存元素以下的低级子集。低级子集的创建是递归的,这允许定义所需数量的等级。(在大多数情况下,零或一个子集等级就足够了)。The use of pruning can be used to generate a hierarchical calibration list, as shown in Figures 6-8. In the aforementioned redundancy pruning process, when two elements are determined to be "similar", the earlier element becomes redundant and is removed, leaving only the other element surviving. In the hierarchical approach to list management, redundant elements are not removed; rather, they are "demoted" to a lower-level subset below the surviving elements. The creation of low-level subsets is recursive, which allows defining as many levels as desired. (Zero or one subset rank is sufficient in most cases).

用来产生分级校准列表的基本修剪过程流示于图6中。在602,修剪在处理器未被较高优先级任务占用时开始。在604,识别冗余的条目对。这个过程604可按照结合图3所描述的同样距离计算(在304、306、308和310)。在606,把较早的条目标记为冗余条目,另一个则被保持为其在分级列表结构中的当前等级。在608,修剪过程流检查列表是否处于最低等级。如果是,则在610删除冗余条目。如果列表不在最低等级,则在612使冗余条目降级到下一个较低等级。它在较低等级中的位置被标记为较高等级中的幸存条目的子列表条目。接着,在614修剪过程流进入下一个较低等级,并且处理602在该等级对当前条目子列表开始。The basic pruning process flow used to generate the hierarchical calibration list is shown in FIG. 6 . At 602, pruning begins when the processor is not occupied by higher priority tasks. At 604, redundant pairs of entries are identified. This process 604 may follow the same distance calculations (at 304, 306, 308, and 310) described in connection with FIG. 3 . At 606, the earlier entry is marked as redundant and the other is maintained at its current level in the hierarchical list structure. At 608, the pruning process flow checks whether the list is at the lowest level. If yes, then at 610 redundant entries are deleted. If the list is not at the lowest level, then at 612 the redundant entry is demoted to the next lower level. Its position in the lower rank is marked as a sublist entry of the surviving entry in the higher rank. Next, the pruning process flow goes to the next lower level at 614 and processing 602 begins at that level for the current entry sublist.

冗余元素可具有子集。这种类型的分级结构示于图7和图8中。在冗余元素710被降级之前,其较低等级子集列表714与幸存元素的子集列表712合并(在同一等级)。冗余元素710然后被降级到较级等级704。从眼前的观点看,合并处于同一等级的子集使子集变得太大;但是,当发起修剪过程时,子集太小会返回到所需值。Redundant elements can have subsets. This type of hierarchy is shown in FIGS. 7 and 8 . Before a redundant element 710 is demoted, its lower level subset list 714 is merged (at the same level) with the surviving element's subset list 712 . Redundant elements 710 are then demoted to a lower level 704 . From the immediate point of view, merging subsets at the same level makes the subset too large; however, when the pruning process is initiated, the subset is too small to return to the desired value.

在分级列表中,最高等级702最好是具有最粗略的抽样(门限dalign的最大值)。越低的等级具有越精细的分辨率(越小的dalign)。通过调整各等级的门限dalign,有可能调整在给定等级的给定校准列表中的条目数量。通过增大dalign,列表中的条目数量减少。希望在分级结构的各种等级上的所有列表具有几乎相等的条目数量。In the hierarchical list, the highest rank 702 preferably has the coarsest sampling (maximum value of the threshold dalign ). Lower levels have finer resolution (smaller d align ). By adjusting the threshold dalign for each class, it is possible to adjust the number of entries in a given alignment list for a given class. By increasing d align , the number of entries in the list decreases. It is desirable that all lists at various levels of the hierarchy have approximately equal numbers of entries.

用于分级列表的环路校准过程流一般可按照如上所述的图5的过程流501。但是,在506对具有最小属性距离的元素的搜索被限制到一个集合;这个集合称为‘有效的’。当搜索506开始时,最高等级集合是有效的。对最接近当前属性向量的校准设定的搜索首先查找最高等级列表中的最接近条目,然后搜索该条目的子集列表。一旦识别出最高等级内具有最小属性距离的元素,则检索其校准(如以上结合图5所述)。但是,不是如上所述请求自适应控制器,元素的下一个较低等级子集变成有效的。然后搜索下一个较低等级子集以查找具有最小属性距离的元素,并检索新的校准设定。过程递归地重复,直到下一个较低级子集为空的。在这时,请求自适应控制器并且自适应控制器使用所检索的校准设定。这个过程递归地重复,直到达到最低等级。如果任一中间设定提供足够的校准质量,则过程在请求自适应控制器之前中止。注意,子集搜索应当包括父条目(或者如果最高级以下有两个或两个以上等级,则应当包括多个父条目),因为它可能是最佳匹配。The loop calibration process flow for the hierarchical list may generally follow process flow 501 of FIG. 5 as described above. However, the search at 506 for elements with the minimum attribute distance is restricted to one set; this set is called 'valid'. When the search 506 begins, the highest level set is available. A search for the calibration set closest to the current attribute vector first finds the closest entry in the top-ranked list, and then searches the list of subsets of that entry. Once the element within the highest rank with the smallest attribute distance is identified, its calibration is retrieved (as described above in connection with Figure 5). However, instead of requesting an adaptive controller as described above, the next lower-level subset of elements becomes available. The next lower-level subset is then searched for elements with the smallest attribute distance, and a new calibration set is retrieved. The process repeats recursively until the next lower subset is empty. At this point, the adaptive controller is requested and uses the retrieved calibration settings. This process is repeated recursively until the lowest level is reached. If any intermediate setting provides sufficient calibration quality, the process aborts before requesting the adaptive controller. Note that the subset search should include the parent entry (or multiple parents if there are two or more levels below the highest level), since it is likely to be the best match.

搜索时间的复杂度与每个列表的条目数量(N)和分级结构中的等级数量(L)之积成比例。相反,穷举搜索与N的L次方成比例,这通常都明显高得多。(这假定各列表具有N个条目。注意,等级L具有的子集列表是等级L-1的N倍,这意味着,等级L总共具有N的L次方个条目)。The complexity of the search time is proportional to the product of the number of entries per list (N) and the number of levels in the hierarchy (L). In contrast, exhaustive search scales with N to the L power, which is usually significantly higher. (This assumes that each list has N entries. Note that level L has N times as many subset lists as level L-1, which means that level L has N^L entries in total).

注意,作为结合图4所述的第二修剪过程的一部分删除的元素是过期的,因此不应当保存在较低等级的集合中。Note that elements removed as part of the second pruning process described in connection with Figure 4 are out of date and therefore should not be kept in lower level collections.

综上所述,所公开的系统把多维校准列表处理与自适应控制器处理相结合,以校准前馈放大器系统的控制环路。这两个过程以新颖的方式相结合以改善系统的动态响应。所公开的方法中使用的多维校准列表具有与基于阵列的查找表不同的结构,从而避免查找表的上述问题。不是利用阵列结构来存储元素,而是把元素集中起来作为集合。各元素具有以下:(a)与影响放大器的工作条件对应的一组参数或属性;以及(b)在那些工作条件下查找的最佳校准设定。形成一种度量,它定义两个元素之间的‘距离’,这是基于元素属性之间的差异。如果前馈系统检测到给定环路中的失调,则测量与当前工作条件相关联的属性。接着,识别校准列表中与当前属性的距离最小的元素,并从存储器中检索其对应的校准设定。如果新的校准设定是不适当的,则自适应控制器被激活以进一步改善环路校准。一旦认为校准足够接近最佳值,则校准设定与当前属性一起被组合以形成集合内的新元素。因此,校准列表是自生的。In summary, the disclosed system combines multidimensional calibration list processing with adaptive controller processing to calibrate the control loop of a feedforward amplifier system. These two processes are combined in a novel way to improve the dynamic response of the system. The multi-dimensional calibration list used in the disclosed method has a different structure than array-based look-up tables, thereby avoiding the above-mentioned problems of look-up tables. Instead of using the array structure to store elements, the elements are gathered together as a set. Each element has the following: (a) a set of parameters or attributes corresponding to the operating conditions affecting the amplifier; and (b) an optimal calibration setting to find under those operating conditions. Forms a metric that defines the 'distance' between two elements, based on the difference between the element's attributes. If a feed-forward system detects a misalignment in a given loop, a property associated with the current operating condition is measured. Next, the element in the calibration list with the smallest distance to the current attribute is identified and its corresponding calibration setting is retrieved from memory. If the new calibration settings are not appropriate, an adaptive controller is activated to further improve the loop calibration. Once the calibration is deemed to be close enough to the optimal value, the calibration settings are combined with the current attributes to form a new element within the set. Therefore, the calibration list is self-generated.

为了限制搜索最小距离元素的计算复杂度,需要限制元素集合的大小。为了识别冗余元素,以属性距离和校准分隔来度量元素的相似度(在空闲时间期间执行)。如果集合大小超过预置数量,则删除相似元素对中最早的元素。通过限制列表大小,确定与当前属性的距离最小的元素的时间是可控的。如果为了更大的覆盖范围而需要附加元素,则有可能形成列表等级的分级结构。不是删除最早的相似元素,而是将其‘降级’到幸存元素以下的较低等级子集。如果降级的元素包含其自己的较低等级子集,则将它们与幸存元素的子集合并。较低级子集的创建是递归的,这允许定义所需数量的等级。(在大多数情况下,零或一个子集等级就足够了)。In order to limit the computational complexity of searching for minimum distance elements, the size of the element set needs to be limited. To identify redundant elements, the similarity of elements is measured in terms of attribute distance and calibration separation (performed during idle time). If the collection size exceeds a preset number, the earliest element in a pair of similar elements is deleted. By limiting the list size, the time to determine the element with the smallest distance to the current attribute is manageable. If additional elements are required for greater coverage, it is possible to form a list-level hierarchy. Instead of removing the earliest similar elements, they are 'relegated' to a lower-ranked subset below the surviving elements. If the downgraded element contains its own lower-ranked subsets, they are merged with the surviving element's subset. The creation of lower-level subsets is recursive, which allows defining as many levels as desired. (Zero or one subset rank is sufficient in most cases).

分级结构允许对最小距离元素的搜索是计算上效率高的,因为每个有效集合的大小有限。最初,最高等级的集合是有效的。如果最高等级的集合中具有最小距离的元素未产生足够的校准,则其子集(如果有)变成有效的。针对校准质量来测试来自较低等级子集的最小距离匹配。递归地搜索子集,直到校准质量是足够的或者下一个较低级子集是空的。对于后一情况,自适应控制器将被激活以改善校准。The hierarchical structure allows the search for minimum distance elements to be computationally efficient because each effective set has a finite size. Initially, the highest-ranked set is valid. If the element with the smallest distance in the highest-ranked set does not yield enough calibrations, then its subset (if any) becomes valid. The minimum distance matches from the lower rank subsets are tested for calibration quality. The subsets are searched recursively until the calibration quality is sufficient or the next lower subset is empty. For the latter case, an adaptive controller will be activated to improve calibration.

自适应前馈控制器与所公开的校准列表的组合工作使所公开的放大器系统能够从其经验中学习,并改善其在存在动态条件时的性能,所述动态条件包括诸如变化的输入功率电平、变化(或跳变)的载波频率、变化的温度或DC电源或者元件老化。系统可容许任何数量的属性(多维索引空间)而不会明显增加复杂度。分级集合管理允许存储任意大数量的元素,而不会明显增加在查找具有最小属性距离的元素时的最差情况延迟。The combined operation of the adaptive feed-forward controller and the disclosed calibration list enables the disclosed amplifier system to learn from its experience and improve its performance in the presence of dynamic conditions, including, for example, varying input power levels. Level, changing (or jumping) carrier frequency, changing temperature or DC power or component aging. The system can accommodate any number of attributes (multidimensional index spaces) without significantly increasing complexity. Hierarchical collection management allows storing arbitrarily large numbers of elements without significantly increasing worst-case latency in finding the element with the smallest attribute distance.

用于第一环路(载波消除)的调节的方法的另一优点在于,当输入功率突然增加时出现的通过误差放大器的瞬态功率被减至最小,从而降低了损坏的可能性。这对使用小误差放大器的放大器设计而言特别重要。对于在无导引实现中第二环路的调节,当假检测不可能时,这种方法提供稳定的缺省值。这对一些放大器设计而言又是一个优点。Another advantage of the method of regulation for the first loop (carrier cancellation) is that the transient power through the error amplifier that occurs when the input power suddenly increases is minimized, thereby reducing the possibility of damage. This is especially important for amplifier designs that use a small error amplifier. For tuning of the second loop in unguided implementations, this approach provides a stable default value when false detections are not possible. This is another advantage for some amplifier designs.

所公开的校准列表的附加好处在于,属性空间可以被不均匀地抽样。一般来说,增益和相位设定的敏感度在属性空间上是变化的。所公开的系统当然故意地在具有较高敏感度的区域产生较高的元素密度。An added benefit of the disclosed calibration list is that the attribute space can be non-uniformly sampled. In general, the sensitivity of gain and phase settings varies in the attribute space. The disclosed system of course intentionally produces higher elemental densities in regions of higher sensitivity.

本发明提供的校准列表对于动态波形是有用的。例如,前馈功率放大器系统的一种应用是用于跳频信标。在这种应用中,各载波的校准设定可被存储以允许快速跳频(相对于典型PA设定时间)。The calibration list provided by the present invention is useful for dynamic waveforms. For example, one application of a feedforward power amplifier system is for frequency hopping beacons. In such applications, calibration settings for each carrier can be stored to allow fast frequency hopping (relative to typical PA setup times).

考虑到上述内容,可以理解,本发明提供多个有利的特征。校准列表与自适应控制器处理的结合使用在前馈功率放大器系统内提供了环路的快速校准。校准列表的自生性允许系统从过去的经验中学习,减少自适应控制器所需的搜索时间。减小了瞬态能量浪涌,并且自适应控制器当得到增益和相位设定的好的初始估算值时变得更加健壮。校准列表的分级结构允许对最小距离元素的搜索是计算效率高的,同时提供属性空间的宽的覆盖范围。In view of the foregoing, it will be appreciated that the present invention provides a number of advantageous features. The use of the calibration list in conjunction with adaptive controller processing provides fast calibration of the loop within a feed-forward power amplifier system. The autogenous nature of the calibration list allows the system to learn from past experience, reducing the search time required for an adaptive controller. Transient energy surges are reduced, and the adaptive controller becomes more robust when good initial estimates of gain and phase settings are obtained. The hierarchical structure of the calibration list allows the search for minimum distance elements to be computationally efficient while providing broad coverage of the attribute space.

本发明已结合目前优选的实施例作了描述,但是,本领域的技术人员应当理解,可进行各种各样的修改,太多而无法一一描述,同时仍在本发明的范围内。因此,以上详细描述应当视为仅仅是说明性的,而不是限定性的。The present invention has been described in connection with presently preferred embodiments, however, those skilled in the art will appreciate that various modifications, too numerous to describe, may be made while remaining within the scope of the invention. Accordingly, the foregoing detailed description should be regarded as illustrative only, and not restrictive.

Claims (50)

1. 一种前馈放大器系统,包括:1. A feed-forward amplifier system comprising: 用于接收RF输入信号的输入端;an input terminal for receiving an RF input signal; 第一控制环路,耦合到所述输入端并且包括主放大器、主放大器抽样耦合器、延迟元件以及消除组合器;a first control loop coupled to the input and comprising a main amplifier, a main amplifier sampling coupler, a delay element, and an elimination combiner; 第二控制环路,耦合到所述第一控制环路并且包括第一信号路径、包含误差放大器的第二信号路径、以及耦合所述第一和第二信号路径的误差耦合器;a second control loop coupled to the first control loop and comprising a first signal path, a second signal path including an error amplifier, and an error coupler coupling the first and second signal paths; 耦合到所述误差耦合器的输出端;以及coupled to the output of the error coupler; and 用于控制所述第一和第二控制环路中至少一个的装置,它采用具有多个列表元素的校准列表,每个元素具有校准设定和表征所述前馈放大器系统的工作条件的参数集。means for controlling at least one of said first and second control loops employing a calibration list having a plurality of list elements, each element having a calibration setting and a parameter characterizing an operating condition of said feedforward amplifier system set. 2. 如权利要求1所述的前馈放大器系统,其特征在于,所述第一控制环路还包括增益调节器和相位调节器,以及各个所述校准设定包括第一控制环路增益调节器设定和第一控制环路环路相位调节器设定。2. The feedforward amplifier system of claim 1 , wherein the first control loop further comprises a gain adjuster and a phase adjuster, and each of the calibration settings comprises a first control loop gain adjustment regulator setting and the first control loop loop phase regulator setting. 3. 如权利要求1所述的前馈放大器系统,其特征在于,所述第二控制环路还包括增益调节器和相位调节器,以及每个所述校准设定包括第二控制环路增益调节器设定和第二控制环路相位调节器设定。3. The feedforward amplifier system of claim 1 , wherein the second control loop further comprises a gain adjuster and a phase adjuster, and each of the calibration settings comprises a second control loop gain regulator setting and second control loop phase regulator setting. 4. 如权利要求1所述的前馈放大器系统,其特征在于,表征前馈放大器系统的工作条件的所述参数集包括一个或多个温度、DC电源、输入信号功率和输入信号载波频率。4. The feedforward amplifier system of claim 1 , wherein the set of parameters characterizing the operating conditions of the feedforward amplifier system includes one or more of temperature, DC power supply, input signal power, and input signal carrier frequency. 5. 如权利要求4所述的前馈放大器系统,其特征在于,表征前馈放大器系统的工作条件的所述参数集被定义为属性向量,并且在任何两个属性向量之间定义距离。5. The feedforward amplifier system of claim 4, wherein the set of parameters characterizing the operating conditions of the feedforward amplifier system is defined as a property vector, and a distance is defined between any two property vectors. 6. 如权利要求5所述的前馈放大器系统,其特征在于,所述用于控制的装置获取当前属性向量并计算到列表元素的属性向量的距离,选择具有最小距离的列表元素,用作控制功能中的校准设定。6. feed-forward amplifier system as claimed in claim 5, is characterized in that, described means for controlling obtains current attribute vector and calculates the distance to the attribute vector of list element, selects the list element with minimum distance, is used as Calibration settings in the control function. 7. 如权利要求6所述的前馈放大器系统,其特征在于,所述用于控制的装置不断地测量前馈放大器系统的未校准,当所述测量的未校准超过预定值时,从所述校准列表中检索校准设定。7. A feedforward amplifier system as claimed in claim 6, wherein said means for controlling continuously measures the miscalibration of the feedforward amplifier system, when said measured miscalibration exceeds a predetermined value, from said Retrieve the calibration settings from the calibration list described above. 8. 如权利要求7所述的前馈放大器系统,其特征在于,所述用于控制的装置采用所选元素作为初始校准设定,并采用迭代控制算法从初始设定计算新的校准设定。8. The feed-forward amplifier system of claim 7, wherein the means for controlling employs the selected elements as initial calibration settings and calculates new calibration settings from the initial settings using an iterative control algorithm . 9. 如权利要求8所述的前馈放大器系统,其特征在于,所述用于控制的装置在完成所述迭代计算之后用新的校准设定更新所述校准列表。9. The feedforward amplifier system of claim 8, wherein said means for controlling updates said calibration list with new calibration settings after completion of said iterative calculation. 10. 如权利要求5所述的前馈放大器系统,其特征在于,最接近的列表元素属性向量之间的距离在整个列表中是变化的。10. The feed-forward amplifier system of claim 5, wherein the distance between the closest list element attribute vectors varies throughout the list. 11. 一种用于控制放大器系统的环路的自适应控制器,包括:11. An adaptive controller for controlling a loop of an amplifier system, comprising: 一个或多个输入端,用于接收对应于放大器系统的当前工作条件的一个或多个属性参数;以及one or more inputs for receiving one or more property parameters corresponding to current operating conditions of the amplifier system; and 一个或多个处理器,耦合到所述一个或多个输入端,并且具有相关的校准列表,并且用校准列表算法和控制器算法编程,从而提供环路调节设定以控制放大器系统的环路,其中所述校准列表算法产生具有所述控制器算法所计算的调节设定的所述列表,并且把一个或多个属性参数与各个调节设定相关联。one or more processors coupled to the one or more inputs and having associated calibration lists and programmed with the calibration list algorithm and the controller algorithm to provide loop tuning settings to control the loop of the amplifier system , wherein the calibration list algorithm generates the list with the adjustment settings calculated by the controller algorithm and associates one or more property parameters with each adjustment setting. 12. 如权利要求11所述的用于控制放大器系统的环路的自适应控制器,其特征在于,所述校准列表算法从所述校准列表中选择校准设定,供所述控制器算法在启动时或者在环路变得充分失调时使用。12. The adaptive controller for controlling a loop of an amplifier system as recited in claim 11 , wherein said calibration list algorithm selects calibration settings from said calibration list for said controller algorithm to Used at startup or when the loop becomes sufficiently detuned. 13. 如权利要求12所述的用于控制放大器系统的环路的自适应控制器,其特征在于,所述校准列表算法通过计算对应于当前工作条件的一个或多个属性参数和与列表中每个校准设定相关的属性参数之间的距离,并且选择对应于具有最小距离的属性参数的校准设定,选择校准列表调节设定,供所述控制器算法使用。13. The adaptive controller for controlling a loop of an amplifier system as recited in claim 12, wherein said calibration list algorithm calculates the sum of one or more property parameters corresponding to current operating conditions and the Each calibration sets the distance between associated property parameters, and selecting the calibration set corresponding to the property parameter with the smallest distance selects the calibration list adjustment set for use by the controller algorithm. 14. 如权利要求12所述的用于控制放大器系统的环路的自适应控制器,其特征在于,距离计算对不同的属性参数用不同的权重来加权。14. The adaptive controller for controlling a loop of an amplifier system as claimed in claim 12, wherein the distance calculation weights different property parameters with different weights. 15. 如权利要求11所述的用于控制放大器系统的环路的自适应控制器,其特征在于,所述属性参数包括温度、DC电源电压、输入信号功率和输入信号载波频率其中的一项或多项。15. The adaptive controller for controlling a loop of an amplifier system as claimed in claim 11 , wherein said property parameter comprises one of temperature, DC supply voltage, input signal power and input signal carrier frequency or more. 16. 如权利要求14所述的用于控制放大器系统的环路的自适应控制器,其特征在于,两个属性参数集“n”和“0”之间的距离dattr由加权的Linf范数距离度量或加权的L2范数距离度量来定义。16. An adaptive controller for controlling a loop of an amplifier system as claimed in claim 14, characterized in that the distance d attr between two attribute parameter sets "n" and "0" is given by the weighted L inf Norm distance metric or weighted L2 - norm distance metric to define. 17. 如权利要求11所述的用于控制放大器系统的环路的自适应控制器,其特征在于,还包括用于接收校准数据的一个或多个输入端。17. The adaptive controller for controlling a loop of an amplifier system as recited in claim 11 , further comprising one or more inputs for receiving calibration data. 18. 如权利要求17所述的用于控制放大器系统的环路的自适应控制器,其特征在于,所述用于接收校准数据的一个或多个输入端包括导引信号输入端。18. The adaptive controller for controlling a loop of an amplifier system according to claim 17, wherein said one or more inputs for receiving calibration data comprises a pilot signal input. 19. 如权利要求17所述的用于控制放大器系统的环路的自适应控制器,其特征在于,所述用于接收校准数据的一个或多个输入端包括用于环路测试数据的输入端。19. The adaptive controller for controlling a loop of an amplifier system according to claim 17, wherein said one or more inputs for receiving calibration data includes an input for loop test data end. 20. 如权利要求11所述的用于控制放大器系统的环路的自适应控制器,其特征在于,所述调节设定包括增益调节器和相位调节器设定。20. The adaptive controller for controlling a loop of an amplifier system as recited in claim 11 , wherein said adjustment settings include gain adjuster and phase adjuster settings. 21. 一种用于控制放大器系统的方法,所述放大器系统具有包括控制环路输入端、第一信号路径、第二信号路径以及控制环路输出端的控制环路,所述第一和第二信号路径中的至少一个包括放大器,所述方法包括:21. A method for controlling an amplifier system having a control loop comprising a control loop input, a first signal path, a second signal path and a control loop output, the first and second At least one of the signal paths includes an amplifier, the method includes: 提供校准设定列表,每个校准设定具有相关的工作条件;Provides a list of calibration settings, each with associated operating conditions; 检测放大器系统的当前工作条件;Current operating conditions of the sense amplifier system; 把当前工作条件与校准设定列表中的那些进行比较;以及compare current operating conditions to those in the calibration set list; and 选择与列表中最相似的工作条件相关的校准设定。Select the calibration setup that correlates to the most similar operating condition from the list. 22. 如权利要求21所述的用于控制放大器系统的方法,其特征在于,相关工作条件被配置为多维属性向量。22. The method for controlling an amplifier system according to claim 21, wherein the relevant operating conditions are configured as a multi-dimensional property vector. 23. 如权利要求22所述的用于控制放大器系统的方法,其特征在于,所述比较包括度量当前属性向量与列表中的每个属性向量之间的距离。23. A method for controlling an amplifier system as claimed in claim 22, wherein said comparing comprises measuring the distance between the current attribute vector and each attribute vector in the list. 24. 如权利要求23所述的用于控制放大器系统的方法,其特征在于,所述选择包括确定与当前工作条件属性向量的距离最小的属性向量。24. A method for controlling an amplifier system as claimed in claim 23, wherein said selecting comprises determining the property vector having the smallest distance from the current operating condition property vector. 25. 如权利要求21所述的用于控制放大器系统的方法,其特征在于,还包括采用迭代环路控制器算法计算新的校准设定,其中与最相似的工作条件相关的校准设定被用作自适应环路控制器算法的初始校准设定。25. The method for controlling an amplifier system of claim 21 , further comprising calculating a new calibration setting using an iterative loop controller algorithm, wherein the calibration setting associated with the most similar operating condition is Used as an initial calibration setting for the adaptive loop controller algorithm. 26. 如权利要求25所述的用于控制放大器系统的方法,其特征在于,还包括采用自适应环路控制器算法所计算的新校准设定来更新校准列表。26. The method for controlling an amplifier system of claim 25, further comprising updating the calibration list with new calibration settings calculated by the adaptive loop controller algorithm. 27. 如权利要求21所述的用于控制放大器系统的方法,其特征在于,校准列表的大小是动态的。27. The method for controlling an amplifier system of claim 21 , wherein the size of the calibration list is dynamic. 28. 如权利要求23所述的用于控制放大器系统的方法,其特征在于,由属性向量距离定义的所存储调节设定的间隔在整个列表中是变化的。28. A method for controlling an amplifier system as claimed in claim 23, wherein the intervals of the stored adjustment settings defined by the property vector distances vary throughout the list. 29. 如权利要求28所述的用于控制放大器系统的方法,其特征在于,在列表中校准对包括属性向量的一个或多个工作条件最敏感的区域中设置较高密度的调节设定。29. A method for controlling an amplifier system as claimed in claim 28, characterized by setting a higher density of adjustment settings in the region of the list where calibration is most sensitive to one or more operating conditions comprising property vectors. 30. 一种维护放大器系统的控制环路的校准设定列表的方法,所述列表包括多个元素,每个元素具有校准设定和对应于放大器系统的工作条件的参数集,所述方法包括:30. A method of maintaining a list of calibration settings for a control loop of an amplifier system, said list comprising a plurality of elements each having a calibration setting and a set of parameters corresponding to operating conditions of the amplifier system, said method comprising : 选择校准列表的元素;select elements of the calibration list; 确定具有与所选元素最相似的相应工作条件的校准列表的元素;Identify elements of the calibration list that have corresponding operating conditions most similar to those of the selected element; 确定是否两个元素足够相似而被认为是冗余的;以及determine whether two elements are similar enough to be considered redundant; and 如果校准列表的两个元素是冗余的,则删除这两个元素中最早的元素。If two elements of the calibration list are redundant, the oldest of the two elements is deleted. 31. 如权利要求30所述的维护放大器系统的控制环路的校准设定列表的方法,其特征在于,所述选择校准列表的元素的步骤包括选择列表中先前未受到列表维护处理的最早的元素。31. The method of maintaining a list of calibration settings for a control loop of an amplifier system as recited in claim 30, wherein said step of selecting elements of the calibration list includes selecting the oldest element in the list that has not previously been subjected to list maintenance processing. element. 32. 如权利要求30所述的维护放大器系统的控制环路的校准设定列表的方法,其特征在于,所述确定校准列表中具有与所选元素最相似的相应工作条件的元素的步骤包括确定到校准列表的每个其余元素的工作条件参数值的距离度量以及选择具有最小距离的元素。32. The method of maintaining a list of calibration settings for a control loop of an amplifier system as recited in claim 30, wherein said step of determining an element in the calibration list having a corresponding operating condition most similar to the selected element comprises A distance measure is determined to the operating condition parameter value for each remaining element of the calibration list and the element with the smallest distance is selected. 33. 如权利要求32所述的维护放大器系统的控制环路的校准设定列表的方法,其特征在于,所述距离度量包括对应于工作条件的参数值之间的加权差异。33. The method of maintaining a list of calibration settings for a control loop of an amplifier system as recited in claim 32, wherein said distance metric comprises a weighted difference between parameter values corresponding to operating conditions. 34. 如权利要求33所述的维护放大器系统的控制环路的校准设定列表的方法,其特征在于,对应于放大器系统的工作条件的所述参数包括温度、DC电源、输入信号功率和输入信号载波频率其中的一项或多项。34. The method of maintaining a list of calibration settings for a control loop of an amplifier system as recited in claim 33, wherein said parameters corresponding to operating conditions of the amplifier system include temperature, DC power, input signal power, and input One or more of the signal carrier frequencies. 35. 如权利要求30所述的维护放大器系统的控制环路的校准设定列表的方法,其特征在于,所述确定元素是否足够相似而被认为是冗余的步骤包括确定校准设定之间的距离度量并且把校准距离与冗余距离门限相比较。35. The method of maintaining a list of calibration settings for a control loop of an amplifier system as recited in claim 30, wherein said step of determining whether elements are similar enough to be considered redundant comprises determining and compares the calibration distance to the redundancy distance threshold. 36. 如权利要求32所述的维护放大器系统的控制环路的校准设定列表的方法,其特征在于,所述确定元素是否足够相似而被认为是冗余的步骤包括把两个元素的工作条件参数之间的距离与过期距离门限相比较。36. The method of maintaining a list of calibration settings for a control loop of an amplifier system as recited in claim 32, wherein said step of determining whether elements are similar enough to be considered redundant comprises combining the work of two elements The distance between conditional parameters is compared with the expired distance threshold. 37. 如权利要求30所述的维护放大器系统的控制环路的校准设定列表的方法,其特征在于,还包括对于校准列表中的每个元素重复所述列表维护处理。37. The method of maintaining a list of calibration settings for a control loop of an amplifier system as recited in claim 30, further comprising repeating said list maintenance process for each element in the calibration list. 38. 一种产生放大器系统的控制环路的校准设定的分级列表的方法,所述列表包括多个元素,每个元素具有校准设定和对应于放大器系统的工作条件的相应参数集,所述列表具有包括至少两级的分级结构,所述方法包括:38. A method of generating a hierarchical list of calibration settings for a control loop of an amplifier system, said list comprising a plurality of elements, each element having a calibration setting and a corresponding set of parameters corresponding to operating conditions of the amplifier system, wherein Said list has a hierarchical structure comprising at least two levels, said method comprising: 选择校准列表的第一级中的元素;Select an element in the first level of the calibration list; 确定校准列表的第一级中具有与所选元素最相似的相应工作条件的元素;以及identifying elements in the first level of the calibration list that have corresponding operating conditions most similar to the selected element; and 把两个元素中最早的元素降级到分级校准列表的较低级。Demotes the earliest of the two elements to the lower level of the hierarchical calibration list. 39. 如权利要求38所述的产生放大器系统的控制环路的校准设定的分级列表的方法,其特征在于,所述确定校准列表中具有与所选元素最相似的相应工作条件的元素的步骤包括确定到校准列表的第一级的各个其余元素的工作条件的距离度量,并选择具有最小距离的元素。39. The method of generating a hierarchical list of calibration settings for a control loop of an amplifier system as recited in claim 38, wherein said determining the element in the calibration list having a corresponding operating condition most similar to the selected element The steps include determining a distance measure to the operating condition of each remaining element of the first level of the calibration list, and selecting the element with the smallest distance. 40. 如权利要求38所述的产生放大器系统的控制环路的校准设定的分级列表的方法,其特征在于,还包括确定两个元素是否是冗余的,其中所述较早的元素只是在这些元素是冗余的情况下才被降级。40. The method of generating a hierarchical list of calibration settings for a control loop of an amplifier system as recited in claim 38, further comprising determining whether two elements are redundant, wherein said earlier element is only These elements are only demoted if they are redundant. 41. 如权利要求38所述的产生放大器系统的控制环路的校准设定的分级列表的方法,其特征在于,还包括对于分级列表的每一级重复所述列表处理。41. The method of generating a hierarchical list of calibration settings for a control loop of an amplifier system as recited in claim 38, further comprising repeating said listing process for each level of the hierarchical list. 42. 如权利要求41所述的产生放大器系统的控制环路的校准设定的分级列表的方法,其特征在于,如果列表维护处理在分级结构的最低级,则删除所述较早的条目。42. The method of generating a hierarchical list of calibration settings for a control loop of an amplifier system as claimed in claim 41 , wherein if the list maintenance process is at the lowest level of the hierarchy, said earlier entry is deleted. 43. 如权利要求38所述的产生放大器系统的控制环路的校准设定的分级列表的方法,其特征在于,所述被降级的元素作为未被降级的冗余元素的子集列表条目来关联。43. The method of generating a hierarchical list of calibration settings for a control loop of an amplifier system as recited in claim 38, wherein said degraded elements are included as subset list entries of non-degraded redundant elements associated. 44. 如权利要求43所述的产生放大器系统的控制环路的校准设定的分级列表的方法,其特征在于,被降级并具有子集列表的元素与未被降级的冗余元素的子集列表合并。44. The method of generating a hierarchical list of calibration settings for a control loop of an amplifier system as claimed in claim 43, wherein the elements that are degraded and have a subset list are a subset of the redundant elements that are not degraded List merged. 45. 一种用于控制放大器系统的方法,所述放大器系统具有包括控制环路输入端、第一信号路径、第二信号路径以及控制环路输出端的控制环路,所述第一和第二信号路径中的至少一个包括放大器,所述方法包括:45. A method for controlling an amplifier system having a control loop comprising a control loop input, a first signal path, a second signal path and a control loop output, the first and second At least one of the signal paths includes an amplifier, the method includes: 提供具有至少两级的校准设定的分级列表,每个校准设定具有相关工作条件并且最高级中的校准设定的一部分或全部具有较低级中的子集校准设定;providing a hierarchical list of calibration settings having at least two levels, each calibration setting having an associated operating condition and some or all of the calibration settings in the highest level having a subset of calibration settings in the lower levels; 检测放大器系统的当前工作条件;Current operating conditions of the sense amplifier system; 把当前工作条件与校准设定的分级列表的最高级中的那些进行比较;Comparing the current operating conditions with those at the top of the hierarchical list of calibration settings; 在列表的最高级中选择与最相似的工作条件相关的校准设定;Select the calibration setting associated with the most similar operating conditions at the highest level of the list; 比较当前工作条件与所选最高级校准设定的子集中的那些工作条件;Comparing current operating conditions to those operating conditions in a subset of the selected top-level calibration set; 选择具有最相似工作条件的子集的校准设定;以及selecting a calibration set that has a subset of the most similar operating conditions; and 选择在较高或较低级中具有与当前工作条件最相似的工作条件的校准设定。Select the calibration setting that has the operating conditions most similar to the current operating conditions at a higher or lower level. 46. 如权利要求45所述的用于控制放大器系统的方法,其特征在于,还包括对分级列表的每一级重复处理,直到下一个较低级子集为空的。46. The method for controlling an amplifier system of claim 45, further comprising repeating the process for each level of the hierarchical list until the next lower level subset is empty. 47. 如权利要求45所述的用于控制放大器系统的方法,其特征在于,最高级具有比较低级更粗略的校准设定间隔。47. A method for controlling an amplifier system as claimed in claim 45, wherein the highest level has a coarser calibration set interval than the lower level. 48. 如权利要求47所述的用于控制放大器系统的方法,其特征在于,任何两个校准设定具有校准距离,以及最高级具有比所述较低级更大的设定之间的校准距离。48. A method for controlling an amplifier system as claimed in claim 47, wherein any two calibration settings have a calibration distance and the highest level has a greater calibration distance between the settings than said lower level distance. 49. 如权利要求47所述的用于控制放大器系统的方法,其特征在于,所述校准距离是相邻设定之间的加权差异。49. The method for controlling an amplifier system of claim 47, wherein the calibration distance is a weighted difference between adjacent settings. 50. 如权利要求49所述的用于控制放大器系统的方法,其特征在于,调节设定是增益调节和相位调节设定,并且加权是校准敏感度。50. A method for controlling an amplifier system as claimed in claim 49, wherein the adjustment settings are gain adjustment and phase adjustment settings and the weighting is calibration sensitivity.
CNB2004800025215A 2003-01-23 2004-01-22 System and method for a feed forward amplifier employing a self-generated alignment list and an adaptive controller Expired - Fee Related CN100409580C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US44209903P 2003-01-23 2003-01-23
US60/442,099 2003-01-23
US10/761,788 2004-01-21

Publications (2)

Publication Number Publication Date
CN1742442A CN1742442A (en) 2006-03-01
CN100409580C true CN100409580C (en) 2008-08-06

Family

ID=36094032

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800025215A Expired - Fee Related CN100409580C (en) 2003-01-23 2004-01-22 System and method for a feed forward amplifier employing a self-generated alignment list and an adaptive controller

Country Status (1)

Country Link
CN (1) CN100409580C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102567692B (en) * 2010-12-28 2016-07-06 上海贝尔股份有限公司 The parameter set inputting high-speed chip is carried out equipment and the method for self-adaptative adjustment
US9634877B2 (en) * 2015-07-01 2017-04-25 Sunrise Micro Devices, Inc. Trim for dual-port frequency modulation
CN111769806B (en) * 2020-06-05 2023-08-18 佛山市联动科技股份有限公司 Power stabilizing method of power amplifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644268A (en) * 1995-01-06 1997-07-01 Spectrian, Inc. Feed forward RF amplifier for combined signal and error amplification
CN1195226A (en) * 1996-12-13 1998-10-07 美国电报电话公司 Feed forward amplifier system and method
US6504428B2 (en) * 2000-05-19 2003-01-07 Spectrian Corporation High linearity multicarrier RF amplifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644268A (en) * 1995-01-06 1997-07-01 Spectrian, Inc. Feed forward RF amplifier for combined signal and error amplification
CN1195226A (en) * 1996-12-13 1998-10-07 美国电报电话公司 Feed forward amplifier system and method
US6504428B2 (en) * 2000-05-19 2003-01-07 Spectrian Corporation High linearity multicarrier RF amplifier

Also Published As

Publication number Publication date
CN1742442A (en) 2006-03-01

Similar Documents

Publication Publication Date Title
US7289773B2 (en) Digital transmitter system employing self-generating predistortion parameter lists and adaptive controller
EP2202879B1 (en) A predistortion apparatus and predistortion method
US7577211B2 (en) Digital predistortion system and method for linearizing an RF power amplifier with nonlinear gain characteristics and memory effects
US7126418B2 (en) Delay mismatched feed forward amplifier system using penalties and floors for control
KR101239139B1 (en) Method and apparatus for modifying interactions between an electrical generator and a nonlinear load
US7639015B2 (en) Methods and systems for stabilizing an amplifier
KR100855198B1 (en) Feed forward amplifier system employing self-generating alignment lists and adaptive controller
EP1193865B1 (en) Distortion compensation apparatus and distortion compensation method
CA2293241C (en) Adaptive biasing in a power amplifier
EP1777813B1 (en) Adaptive gain and/or phase adjustment control method
US7590190B2 (en) System and method for forward path gain control in a digital predistortion linearized transmitter
CN100409580C (en) System and method for a feed forward amplifier employing a self-generated alignment list and an adaptive controller
US7075366B2 (en) Methods and systems for stabilizing an amplifier
CN116318449A (en) Temperature calibration method and device
JP4237637B2 (en) Control of radio frequency output power
KR20070031452A (en) Digital transmitter system and adaptive controller using self-generated predistortion parameter lists
JP5086075B2 (en) Method and system for stabilizing an amplifier
KR100803648B1 (en) System and method for control of loop alignment in adaptive feed forward amplifiers
EP1573907B1 (en) Delay mismatched feed forward amplifier system using penalties and floors for control
CN117829068A (en) Circuit, method and computer program product with conductance compensation
CN1998134A (en) System and method for control of loop alignment in adaptive feed forward amplifiers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: POWERWAVE TECHNOLOGIES INC.

Free format text: FORMER OWNER: P-WAVE HOLDING LLC

Effective date: 20150506

Owner name: P-WAVE HOLDING LLC

Free format text: FORMER OWNER: POWERWAVE TCH INC.

Effective date: 20150506

Owner name: INTEL CORP .

Free format text: FORMER OWNER: POWERWAVE TECHNOLOGIES INC.

Effective date: 20150506

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150506

Address after: California, USA

Patentee after: INTEL Corp.

Address before: Luxemburg Luxemburg

Patentee before: POWERWAVE TECHNOLOGIES, Inc.

Effective date of registration: 20150506

Address after: Luxemburg Luxemburg

Patentee after: POWERWAVE TECHNOLOGIES, Inc.

Address before: California, USA

Patentee before: P-wave holding LLC

Effective date of registration: 20150506

Address after: California, USA

Patentee after: P-wave holding LLC

Address before: California

Patentee before: POWERWAVE TECHNOLOGIES, Inc.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080806

CF01 Termination of patent right due to non-payment of annual fee