[go: up one dir, main page]

CN100414592C - Driving and data voltage signal adjusting method for active matrix type liquid crystal display - Google Patents

Driving and data voltage signal adjusting method for active matrix type liquid crystal display Download PDF

Info

Publication number
CN100414592C
CN100414592C CNB031212816A CN03121281A CN100414592C CN 100414592 C CN100414592 C CN 100414592C CN B031212816 A CNB031212816 A CN B031212816A CN 03121281 A CN03121281 A CN 03121281A CN 100414592 C CN100414592 C CN 100414592C
Authority
CN
China
Prior art keywords
voltage signal
vasy
liquid crystal
crystal display
pixel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB031212816A
Other languages
Chinese (zh)
Other versions
CN1534581A (en
Inventor
陈伯纶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUO Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Priority to CNB031212816A priority Critical patent/CN100414592C/en
Publication of CN1534581A publication Critical patent/CN1534581A/en
Application granted granted Critical
Publication of CN100414592C publication Critical patent/CN100414592C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

A driving and data voltage signal adjusting method for an active matrix liquid crystal display. The liquid crystal display is provided with a pixel unit array, and each pixel unit comprises a pixel electrode, a corresponding common electrode and a liquid crystal layer positioned between the two electrodes. The method comprises the following steps. First, a data voltage signal is applied to the pixel electrode. The data voltage signal is an AC voltage signal V of a specific gray level (nth level). The first compensation voltage signal V' is applied to the pixel electrode while the alternating voltage signal is applied to compensate the potential shift of the data voltage signal due to the parasitic capacitance and the coupling capacitance of the pixel unit. And, a second compensation voltage signal vasy is applied to the pixel electrode while the ac voltage signal is applied to compensate for a potential shift due to asymmetry of the pixel electrode with the common electrode material or geometry.

Description

有源矩阵式液晶显示器的驱动及数据电压信号调整方法 Driving and data voltage signal adjustment method of active matrix liquid crystal display

技术领域 technical field

本发明涉及一种液晶显示器的驱动方法,特别是一种有源矩阵式液晶显示器的驱动及数据电压信号调整方法。The invention relates to a driving method of a liquid crystal display, in particular to a driving method of an active matrix liquid crystal display and a data voltage signal adjustment method.

背景技术 Background technique

随着薄膜电晶体制作技术的快速进步,液晶显示器由于具备了轻薄、省电、无幅射线等优点,而大量的应用于个人数字助理器(PDA)、笔记型电脑、数字相机、摄录像机、移动电话等各式电子产品中。再加上业界积极的投入研发以及采用大型化的生产设备,使液晶显示器的品质不断提升,且价格持续下降,更使得液晶显示器的应用领域迅速扩大。With the rapid progress of thin film transistor manufacturing technology, liquid crystal displays are widely used in personal digital assistants (PDAs), notebook computers, digital cameras, camcorders, Various electronic products such as mobile phones. Coupled with the industry's active investment in research and development and the adoption of large-scale production equipment, the quality of liquid crystal displays has been continuously improved, and the price has continued to decline, which has also rapidly expanded the application fields of liquid crystal displays.

请参照图1,此图显示了液晶显示器中单位像素的电路结构。此单位像素是藉由一薄膜电晶体10作为开关使用。其中,薄膜电晶体10的栅极连接于扫描线,源极则连接于数据线,至于其漏极则分别连接于辅助电容Cst与像素电极。当扫描信号将薄膜电晶体10导通时,源极的数据信号可经由漏极端传送至像素电极,并施加于液晶层12而产生所需的影像。Please refer to Figure 1, which shows the circuit structure of a unit pixel in a liquid crystal display. The unit pixel uses a thin film transistor 10 as a switch. Wherein, the gate of the thin film transistor 10 is connected to the scan line, the source is connected to the data line, and the drain is respectively connected to the storage capacitor Cst and the pixel electrode. When the scanning signal turns on the thin film transistor 10 , the data signal of the source can be transmitted to the pixel electrode through the drain terminal, and applied to the liquid crystal layer 12 to generate a desired image.

一般来说,由于所制作的液晶材料或是液晶显示器的相关制程中,往往会在液晶层或配向层表面,留有诸如离子电荷的杂质。因此,当液晶层两侧的直流电压施加一段时间后,液晶层中的离子电荷会受到高低电位的吸引,分别累积于液晶层两侧的配向层表面。一旦施加于液晶层两侧的直流电压移除后,累积于配向层表面的离子电荷仍会持续在液晶层中产生残留的内部直流电压,而造成严重的影像残留(image sticking)问题。In general, impurities such as ionic charges are often left on the surface of the liquid crystal layer or alignment layer due to the liquid crystal material produced or the related manufacturing process of the liquid crystal display. Therefore, when the DC voltage on both sides of the liquid crystal layer is applied for a period of time, the ionic charges in the liquid crystal layer will be attracted by high and low potentials, and accumulate on the surface of the alignment layer on both sides of the liquid crystal layer respectively. Once the DC voltage applied to both sides of the liquid crystal layer is removed, the ionic charges accumulated on the surface of the alignment layer will continue to generate a residual internal DC voltage in the liquid crystal layer, causing serious image sticking problems.

为了解决上述以直流电压驱动液晶显示器所造成的影像残留问题,目前的液晶显示器是利用交流电压来进行驱动。但值得注意的是,受制于单位像素中的寄生电容(parasitic capacitance)与耦合电容(coupling capacitance)影响,在利用交流电压来驱动液晶显示器时,仍会在液晶层的两端产生直流电压。请参照图2,此图显示了单位像素中薄膜电晶体10各个电极所受的电压信号波形。其中,当栅极端所受的扫描信号Vg为高电位信号Vgh时,可导通该薄膜电晶体10,反之当扫描信号Vg为低电位信号Vg1时,则会关闭该薄膜电晶体10。由于使用了交流电压来进行驱动,因此随着扫描信号Vg开关薄膜电晶体10的动作,由源极端写入的数据信号会呈现极性反转的现象。In order to solve the image sticking problem caused by driving the liquid crystal display with a DC voltage, the current liquid crystal display is driven with an AC voltage. However, it is worth noting that due to the influence of parasitic capacitance and coupling capacitance in the unit pixel, when an AC voltage is used to drive the liquid crystal display, a DC voltage will still be generated at both ends of the liquid crystal layer. Please refer to FIG. 2 , which shows the voltage signal waveforms received by each electrode of the thin film transistor 10 in a unit pixel. Wherein, when the scanning signal Vg received by the gate terminal is a high potential signal Vgh, the thin film transistor 10 can be turned on; otherwise, when the scanning signal Vg is a low potential signal Vg1, the thin film transistor 10 can be turned off. Since the AC voltage is used for driving, the data signal written from the source terminal will show a phenomenon of polarity inversion as the scan signal Vg switches the thin film transistor 10 .

然而,要特别指出的是,由于受到栅极与漏极间的寄生电容Cgd、辅助电容Cst、以及液晶层电容Clc的影响,传送至漏极端的数据信号Vdata会产生大小为ΔV(Cgd,Cst,Clc)的电位偏移。如图2中所示,不管源极端写入的数据信号Vs极性为何,在漏极端所传送的数据信号Vdata其电位皆会下降ΔV’并对此单位像素产生直流电压施加的效果。特别是对于不同灰阶大小的数据信号而言,其电位偏移ΔV大小亦不相同,而造成导入的直流电压大小不同。However, it should be pointed out that due to the influence of the parasitic capacitance Cgd between the gate and the drain, the auxiliary capacitance Cst, and the liquid crystal layer capacitance Clc, the data signal Vdata transmitted to the drain terminal will have a magnitude of ΔV(Cgd, Cst , Clc) potential shift. As shown in FIG. 2 , no matter what the polarity of the data signal Vs written at the source terminal is, the potential of the data signal Vdata transmitted at the drain terminal will drop by ΔV' and produce the effect of applying a DC voltage to the unit pixel. Especially for data signals with different gray scales, the magnitudes of the potential shifts ΔV are also different, resulting in different magnitudes of the imported DC voltages.

请参照图3,此图显示不同灰阶的交流电压信号所产生电位偏移的情形。其中是以具有256个灰阶的数据信号为例,分别显示第0个、第63个、第127个、第191个与第255个灰阶的信号波形。Please refer to FIG. 3 , which shows potential shifts generated by AC voltage signals with different gray scales. Taking a data signal with 256 gray levels as an example, signal waveforms of the 0th, 63rd, 127th, 191st and 255th gray levels are respectively displayed.

由图中可明显看出,受到上述电位偏移ΔV的影响,除了第127灰阶外,其它灰阶的数据信号皆呈现正、反两侧波形不对称的情况,而在液晶层内造成直流偏压的效果。为了解决此项问题,在目前的显示器驱动设计中,是在传送数据新号Vdata时,加上伽玛补正(Gamma correction)电路,用以调整产生各灰阶的额外补偿电压信号,以便对输入的交流数据信号进行电位调整。It can be clearly seen from the figure that due to the influence of the above-mentioned potential shift ΔV, except for the 127th gray scale, the data signals of other gray scales all present asymmetrical waveforms on both sides of the positive and negative sides, resulting in a DC voltage in the liquid crystal layer. bias effect. In order to solve this problem, in the current display driver design, a gamma correction (Gamma correction) circuit is added when transmitting the new data number Vdata to adjust the extra compensation voltage signal for each gray scale, so as to input The AC data signal for potential adjustment.

如图3所示,相较于原来的电压位准Vcdc(即位于液晶层另一侧,与上述像素电极相对的共用电极其信号位准),所提供的数据信号Vdata=Vcdc±V(0)+V’(0),其中V(0)为第0阶的数据信号,而V’(0)则为第0阶的补偿电压信号。如此一来,可藉由伽玛补正电压V’(0)调整共用电极(commonelectrode)的位准,使第0阶的直流位准变成Vcdc+V’(0),而有效的避免残留直流电压的影响。此外,如同上述,由于每一个不同的灰阶,会产生不同大小的电位偏移ΔV,因此所使用的伽玛补正电压信号V’(0)、V’(63)、V’(191)、V’(255)亦不相同。且,例如第127阶的数据信号,由于并未产生电位偏移,不需要额外的伽玛补正项。As shown in FIG. 3, compared with the original voltage level Vcdc (that is, the signal level of the common electrode located on the other side of the liquid crystal layer and opposite to the above-mentioned pixel electrode), the provided data signal Vdata=Vcdc±V( 0)+V'(0), wherein V(0) is the data signal of the 0th order, and V'(0) is the compensation voltage signal of the 0th order. In this way, the level of the common electrode (common electrode) can be adjusted by the gamma correction voltage V'(0), so that the DC level of the 0th stage becomes Vcdc+V'(0), effectively avoiding the residual DC voltage Impact. In addition, as mentioned above, since each different gray scale will produce a different magnitude of potential shift ΔV, the used gamma correction voltage signals V'(0), V'(63), V'(191), V'(255) is also different. Moreover, for example, the data signal of the 127th level does not require an additional gamma correction term because there is no potential shift.

然而,值得注意的是,为了提升显示器的显像效能,目前面板的设计中,位于液晶层两侧的电极或配向层,往往采用不同的材料或制作成不同的几何形状。典型的结构,例如反射式液晶显示器(RLCD;Reflective Liquid CrystalDisplay)、多区域垂直排列型液晶显示器(MVA;Multi-Domain VerticalAlignment)、突起-狭缝型液晶显示器(Protrusion-slit type)、或是混合配向型液晶显示器(hybrid-aligned nematic,HAN)等...其相对两侧电极-配向层材料往往不同,并且两侧电极的几何形状亦不对称,因此其两侧材料对于液晶内含的离子电材的捕捉率(trapping ratio)并不相同,进而导致上述的“直流残留”与“影像残留”更加恶化。因此如何有效的解决上述问题,已成为当前液晶显示器制程中极为重要的课题了。However, it is worth noting that in order to improve the imaging performance of the display, in the current panel design, the electrodes or alignment layers located on both sides of the liquid crystal layer are often made of different materials or made into different geometric shapes. Typical structures, such as reflective liquid crystal display (RLCD; Reflective Liquid Crystal Display), multi-area vertical alignment liquid crystal display (MVA; Multi-Domain Vertical Alignment), protrusion-slit type liquid crystal display (Protrusion-slit type), or hybrid Alignment liquid crystal display (hybrid-aligned nematic, HAN), etc.. The materials of the electrode-alignment layer on the opposite sides are often different, and the geometric shapes of the electrodes on both sides are also asymmetrical, so the materials on both sides of the liquid crystal contain ions The trapping ratios of the electric materials are not the same, which makes the above-mentioned "DC sticking" and "image sticking" worse. Therefore, how to effectively solve the above problems has become an extremely important subject in the current liquid crystal display manufacturing process.

发明内容 Contents of the invention

本发明所要解决的技术问题是,针对现有技术的上述不足,而提供一种可以补偿数据电压信号由于像素单元寄生电容与耦合电容所产生的电位偏移和可以补偿由于像素电极与共用电极其材料或几何形状不对称所产生的电位偏移的有源矩阵式液晶显示器的驱动及数据电压信号调整方法。The technical problem to be solved by the present invention is to provide a method that can compensate the potential shift of the data voltage signal due to the parasitic capacitance and coupling capacitance of the pixel unit and can compensate for the difference between the pixel electrode and the common electrode in view of the above-mentioned deficiencies in the prior art. The driving and data voltage signal adjustment method of the active matrix liquid crystal display with the potential shift generated by the asymmetrical material or geometric shape.

本发明所提供的有源矩阵式液晶显示器的驱动及数据电压信号调整方法是由如下技术方案来实现的。The driving and data voltage signal adjustment method of the active matrix liquid crystal display provided by the present invention is realized by the following technical solutions.

一种有源矩阵式液晶显示器的驱动方法,其中该液晶显示器具有像素单元阵列,且每一个该像素单元包括了一像素电极、对应于该像素电极的共用电极、以及位于该像素电极与该共用电极间的液晶层,其特征是包含下列步骤:A driving method for an active matrix liquid crystal display, wherein the liquid crystal display has an array of pixel units, and each of the pixel units includes a pixel electrode, a common electrode corresponding to the pixel electrode, and a common electrode located between the pixel electrode and the common electrode. The liquid crystal layer between the electrodes is characterized in that it comprises the following steps:

对该像素电极施加一数据电压信号,其中该数据电压信号为一特定灰阶的交流电压信号V(n):Applying a data voltage signal to the pixel electrode, wherein the data voltage signal is an AC voltage signal V(n) of a specific gray scale:

在施加该交流电压信号的同时,对该像素电极施加第一补偿电压信号V’(n),其中该第一补偿电压信号V’(n)是随着该特定灰阶交流电压信号而变化,用以补偿该数据电压信号由于该像素单元寄生电容与耦合电容所产生的电位偏移;且While applying the AC voltage signal, apply a first compensation voltage signal V'(n) to the pixel electrode, wherein the first compensation voltage signal V'(n) varies with the specific grayscale AC voltage signal, used to compensate the potential shift of the data voltage signal due to the parasitic capacitance and coupling capacitance of the pixel unit; and

在施加该交流电压信号的同时,对该像素电极施加第二补偿电压信号Vasy(n),其中该第二补偿电压信号Vasy(n)是随着该特定灰阶交流电压信号而变化,用以补偿由于该像素电极与该共用电极其材料或几何形状不对称所产生的电位偏移。While applying the AC voltage signal, apply a second compensation voltage signal Vasy(n) to the pixel electrode, wherein the second compensation voltage signal Vasy(n) varies with the specific grayscale AC voltage signal for Compensating the potential offset generated by the material or geometry asymmetry between the pixel electrode and the common electrode.

除上述必要技术特征外,在具体实施过程中,还可补充如下技术内容:In addition to the above-mentioned necessary technical features, the following technical content may also be added during the specific implementation process:

上述第一补偿电压信号V’(n)具有n+1个,并且可根据不同灰阶大小而区分为V’(0)、V’(1)、V’(2)...V’(n),其中当上述V’(0)为最高电压灰阶时,并满足500mV>V’(0)>V’(1)>...>V’((n-1)/2)=0>V’(n-1)>V’(n)>-500mV。There are n+1 first compensation voltage signals V'(n), which can be divided into V'(0), V'(1), V'(2)...V'( n), wherein when the above-mentioned V'(0) is the highest voltage gray scale, and satisfy 500mV>V'(0)>V'(1)>...>V'((n-1)/2)= 0>V'(n-1)>V'(n)>-500mV.

上述第二补偿电压信号具有n+1个,并且可根据不同灰阶大小而区分为Vasy(0)、Vasy(1)、Va sy(2)...Vasy(n)。There are n+1 second compensation voltage signals, and they can be classified into Vasy(0), Vasy(1), Vasy(2)...Vasy(n) according to different gray scales.

上述第二补偿电压信号满足500mV>Va sy(0)>Va sy(1)>...>Va sy(n-1)>Vasy(n)>0。The above-mentioned second compensation voltage signal satisfies 500mV>Va sy(0)>Va sy(1)>...>Va sy(n-1)>Vasy(n)>0.

上述第二补偿电压信号满足-500mV<Vasy(0)<Vasy(1)<...<Vasy(n-1)<Vasy(n)<0。The above-mentioned second compensation voltage signal satisfies -500mV<Vasy(0)<Vasy(1)<...<Vasy(n-1)<Vasy(n)<0.

本发明还提供一种有源矩阵式液晶显示器的数据电压信号调整方法,用以防止该液晶显示器发生影像残留,其中该液晶显示器具有像素单元阵列,且每一个该像素单元包括了一像素电极、对应于该像素电极的共用电极、以及位于该像素电极与该共用电极间的液晶层,其特征是包含下列步骤:The present invention also provides a method for adjusting data voltage signals of an active matrix liquid crystal display to prevent image sticking in the liquid crystal display, wherein the liquid crystal display has an array of pixel units, and each pixel unit includes a pixel electrode, The common electrode corresponding to the pixel electrode and the liquid crystal layer between the pixel electrode and the common electrode are characterized by comprising the following steps:

对该像素电极施加一具有特定灰阶的交流数据电压信号V(n);及applying an AC data voltage signal V(n) with a specific gray scale to the pixel electrode; and

将该交流数据电压信号V(n)加上一补偿电压信号Vasy(n),其中该补偿电压信号Vasy(n)对应于该特定灰阶,用以补偿由于该像素电极与该共用电极其材料或几何形状不对称所产生的电位偏移。Adding a compensation voltage signal Vasy(n) to the AC data voltage signal V(n), wherein the compensation voltage signal Vasy(n) corresponds to the specific gray scale, and is used to compensate for the difference between the pixel electrode and the common electrode. Potential shift due to material or geometric asymmetry.

本发明所提供的有源矩阵式液晶显示器的数据电压信号调整方法,除上述必要技术特征外,在具体实施过程中,还可补充如下技术内容:The data voltage signal adjustment method of the active matrix liquid crystal display provided by the present invention, in addition to the above-mentioned necessary technical features, in the specific implementation process, the following technical content can also be supplemented:

更包括下述步骤:It further includes the following steps:

将该交流数据电压信号加上利用伽玛补正电路调整产生的各灰阶额外补偿电压信号V’(n),其中该伽玛补正电压信号V’(n)对应于该特定灰阶,用以补偿该数据电压信号由于该像素单元寄生电容与耦合电容所产生的电位偏移。Adding the AC data voltage signal to the additional compensation voltage signal V'(n) for each gray scale adjusted by the gamma correction circuit, wherein the gamma correction voltage signal V'(n) corresponds to the specific gray scale for The potential offset of the data voltage signal due to the parasitic capacitance and the coupling capacitance of the pixel unit is compensated.

上述伽玛补正电压信号V’(n)具有n+1个,并可根据不同灰阶大小而区分为V’(0)、V’(1)、V’(2)...V’(n),且当上述V’(0)为最高电压灰阶而V’(n)为最低电压灰阶时,满足500mV>V’(0)>V’(1)>...>V’((n-1)/2)=0>V’(n-1)>V’(n)>-500mV。There are n+1 gamma correction voltage signals V'(n), which can be divided into V'(0), V'(1), V'(2)...V'( n), and when the above-mentioned V'(0) is the highest voltage gray scale and V'(n) is the lowest voltage gray scale, 500mV>V'(0)>V'(1)>...>V' ((n-1)/2)=0>V'(n-1)>V'(n)>-500mV.

上述补偿电压信号具有n+1个,并可根据不同灰阶大小而区分为Vasy(0)、Vasy(1)、Vasy(2)...Vasy(n),且满足500mV>Vasy(0)>Vasy(1)>...>Vasy(n-1)>Vasy(n)>0。There are n+1 compensation voltage signals above, which can be divided into Vasy(0), Vasy(1), Vasy(2)...Vasy(n) according to different gray scales, and satisfy 500mV>Vasy(0) >Vasy(1)>...>Vasy(n-1)>Vasy(n)>0.

上述补偿电压信号具有n+1个,并可根据不同灰阶大小而区分为Va sy(0)、Vasy(1)、Vasy(2)...Vasy(n),且满足-500mV<Va sy(0)<Vasy(1)<...<Vasy(n-1)<Vasy(n)<0。There are n+1 compensation voltage signals above, which can be divided into Vasy(0), Vasy(1), Vasy(2)...Vasy(n) according to different gray scales, and satisfy -500mV<Vasy (0)<Vasy(1)<...<Vasy(n-1)<Vasy(n)<0.

本发明揭露了一种有源矩阵式液晶显示器的驱动方法。其中,液晶显示器具有像素单元阵列,且每一个像素单元包括一像素电极、对应的共用电极、以及位于两个电极间的液晶层。所述方法至少包含下列步骤。首先,对像素电极施加一数据电压信号。此数据电压信号是一特定灰阶(第n阶)的交流电压信号V(n)。在施加交流电压信号的同时,对像素电极施加第一补偿电压信号V’(n)。其中,第一补偿电压信号V’(n)是随着特定灰阶交流电压信号而变化,用以补偿数据电压信号由于像素单元寄生电容与耦合电容所产生的电位偏移。并且,在施加交流电压信号的同时,对像素电极施加第二补偿电压信号Vasy(n)。第二补偿电压信号Vasy(n)是随着特定灰阶交流电压信号而变化,用以补偿由于像素电极与共用电极其材料或几何形状不对称所产生的电位偏移。The invention discloses a driving method of an active matrix liquid crystal display. Wherein, the liquid crystal display has an array of pixel units, and each pixel unit includes a pixel electrode, a corresponding common electrode, and a liquid crystal layer between the two electrodes. The method at least includes the following steps. Firstly, a data voltage signal is applied to the pixel electrode. The data voltage signal is an AC voltage signal V(n) of a specific gray scale (nth level). While applying the AC voltage signal, the first compensation voltage signal V'(n) is applied to the pixel electrode. Wherein, the first compensation voltage signal V'(n) varies with the specific grayscale AC voltage signal, and is used to compensate the potential shift of the data voltage signal due to the parasitic capacitance and the coupling capacitance of the pixel unit. Furthermore, while applying the AC voltage signal, the second compensation voltage signal Vasy(n) is applied to the pixel electrode. The second compensation voltage signal Vasy(n) varies with the specific grayscale AC voltage signal, and is used for compensating the potential shift caused by the asymmetry of material or geometric shape between the pixel electrode and the common electrode.

上述数据电压信号V(n)可根据不同灰阶大小而区分为V(0)、V(1)、V(2)...V(n)共n+1个灰阶大小。至于第一补偿电压信号V’(n)亦具有n+1个,根据不同灰阶大小而区分为V’(0)、V’(1)、V’(2)...V’(n)。当第0阶为最高电压灰阶,而第n阶为最低电压灰阶时,满足V’(0)>V’(1)>...>V’((n-1)/2)=0>V’(n-1)>V’(n),并且V’(0)<500mV而V’(n)>-500mV。The data voltage signal V(n) can be divided into n+1 gray scales V(0), V(1), V(2)...V(n) according to different gray scales. As for the first compensation voltage signal V'(n), there are also n+1 signals, which are divided into V'(0), V'(1), V'(2)...V'(n ). When the 0th level is the highest voltage grayscale and the nth level is the lowest voltage grayscale, V'(0)>V'(1)>...>V'((n-1)/2)= 0>V'(n-1)>V'(n), and V'(0)<500mV and V'(n)>-500mV.

上述第二补偿电压信号亦具有n+1个,并可根据不同灰阶大小而区分为Vasy(0)、Vasy(1)、Vasy(2)...Vasy(n)。其中当Vasy(0)>Vasy(1)>...>Vasy(n-1)>Vasy(n)>0。时,则Vasy(0)<500mV。There are also n+1 second compensation voltage signals, which can be classified into Vasy(0), Vasy(1), Vasy(2)...Vasy(n) according to different gray scales. Wherein Vasy(0)>Vasy(1)>...>Vasy(n-1)>Vasy(n)>0. , then Vasy(0)<500mV.

反之,当Vasy(0)<Vasy(1)<...<Vasy(n-1)<Vasy(n)<0时,则Vasy(0)>-500mV。On the contrary, when Vasy(0)<Vasy(1)<...<Vasy(n-1)<Vasy(n)<0, then Vasy(0)>-500mV.

本发明的优点在于:The advantages of the present invention are:

本发明所提供的有源矩阵式液晶显示器的驱动方法,由于考虑了液晶层两侧电极(即像素电极与共用电极)其结构或材质不对称的情形,并以第二补偿电压信号Vasy来降低残留直流电压的影响,因此可以运用于反射式液晶显示器(RLCD;Reflective Liquid Crystal Display)、多区域垂直排列型液晶显示器(MVA;Multi-Domain Vertical Alignment)、突起-狭缝型液晶显示器(Protrusion-slit type)、或是混合配向型液晶显示器(hybrid-alignednematic,HAN)等...其相对两侧电极-配向层材料或几何形状不对称的液晶显示器,以有效解决由于界面电荷累积所导致的残留直流电压问题。The driving method of the active-matrix liquid crystal display provided by the present invention considers the asymmetry of the structure or material of the electrodes on both sides of the liquid crystal layer (that is, the pixel electrode and the common electrode), and uses the second compensation voltage signal Vasy to reduce the Therefore, it can be applied to reflective liquid crystal display (RLCD; Reflective Liquid Crystal Display), multi-area vertical alignment liquid crystal display (MVA; Multi-Domain Vertical Alignment), protrusion-slit liquid crystal display (Protrusion- slit type), or hybrid-alignednematic (HAN), etc....the opposite sides of the electrode-alignment layer material or a liquid crystal display with asymmetric geometry to effectively solve the problem caused by the accumulation of interface charges Residual DC voltage problem.

藉由以下实施例的详细描述并结合附图,将可轻易的了解上述内容及此项发明的诸多优点。Through the detailed description of the following embodiments combined with the accompanying drawings, the above contents and many advantages of the present invention can be easily understood.

附图说明Description of drawings

图1显示了液晶显示器中单位像素的电路结构。Figure 1 shows the circuit structure of a unit pixel in a liquid crystal display.

图2显示了单位像素中薄膜电晶体各个电极所受的电压信号波形。Figure 2 shows the voltage signal waveforms received by each electrode of the thin film transistor in a unit pixel.

图3显示了传统液晶显示器不同灰阶的交流电压信号所产生电位偏移的情形。FIG. 3 shows the situation of potential shifts generated by AC voltage signals of different gray scales in a traditional liquid crystal display.

图4显示了本发明中液晶显示器不同灰阶的交流电压信号所产生电位偏移的情形。FIG. 4 shows the situation of the potential shift generated by the AC voltage signals of different gray scales of the liquid crystal display in the present invention.

图5显示本发明中对液晶层施加一小时直流偏压后,量测残留直流电压的情形。及FIG. 5 shows the situation of measuring the residual DC voltage after applying a DC bias voltage to the liquid crystal layer for one hour in the present invention. and

图6显示本发明中以正、负直流电压,施加于两侧具有不同电极材料的液晶层时,所量测残留直流电压的情形。FIG. 6 shows the measured residual DC voltage when positive and negative DC voltages are applied to the liquid crystal layer with different electrode materials on both sides in the present invention.

具体实施方式 Detailed ways

本发明提供了一种有源矩阵式液晶显示器的驱动方法,其中液晶显示器具有像素单元阵列,且每一个像素单元包括了一像素电极、对应于像素电极的共用电极以及位于像素电极与共用电极间的液晶层。根据本发明的方法,在对像素电极施加一数据电压信号时,首先提供一特定灰阶的交流电压信号V(n)。以256个灰阶的交流电压信号为例,其中各灰阶的电压信号,如图4中显示的V(0)、V(53)、V(127)、V(191)与V(255),是呈现一梯形递减的趋势。亦即,此处的第0阶为最高电压灰阶,而第255阶为最低电压灰阶。The invention provides a driving method of an active matrix liquid crystal display, wherein the liquid crystal display has an array of pixel units, and each pixel unit includes a pixel electrode, a common electrode corresponding to the pixel electrode, and an electrode located between the pixel electrode and the common electrode. the liquid crystal layer. According to the method of the present invention, when applying a data voltage signal to the pixel electrode, first provide an AC voltage signal V(n) of a specific gray scale. Taking the AC voltage signal of 256 gray levels as an example, the voltage signals of each gray level are V(0), V(53), V(127), V(191) and V(255) shown in Figure 4 , showing a trapezoidal decreasing trend. That is, the 0th level here is the highest voltage gray level, and the 255th level is the lowest voltage gray level.

要特别指出的是,由于在液晶层的两侧,分别为像素电极(pixelelectrode)与共用电极(common electrode),并且在共用电极上的共用信号(common signal)具有大小为Vcdc的直流电位,因此像素电极上的基本位准亦设定为Vcdc,如图4中所示。It should be particularly pointed out that since the two sides of the liquid crystal layer are the pixel electrode (pixel electrode) and the common electrode (common electrode), and the common signal (common signal) on the common electrode has a DC potential of Vcdc, so The base level on the pixel electrode is also set to Vcdc, as shown in FIG. 4 .

在施加数据电压Vdata于单位像素的像素电极上时,即为提供大小为Vcdc±V(n)的电压信号,以便产生第n个灰阶的图像效果。然而,如同前述,由于在像素单元中薄膜电晶体其栅极会与漏极产生寄生电容Cgd,并且此寄生电容Cgd会与辅助电容Cst与液晶层电容Clc产生耦合,而导致额外的直流电压导入,因此在施加上述灰阶电压信号的同时,对像素电极施加第一补偿电压信号V’(n)。其中,由于各个灰阶的交流电压信号所需的第一补偿电压信号亦不相同,因此第一补偿电压信号V’(n)会随着不同灰阶而改变,以便补正像素单元寄生电容与耦合电容所产生的电位偏移。When the data voltage Vdata is applied to the pixel electrode of the unit pixel, a voltage signal with a magnitude of Vcdc±V(n) is provided to generate an image effect of the nth gray scale. However, as mentioned above, in the pixel unit, the parasitic capacitance Cgd will be generated between the gate and the drain of the thin film transistor, and this parasitic capacitance Cgd will be coupled with the auxiliary capacitance Cst and the liquid crystal layer capacitance Clc, resulting in the introduction of additional DC voltage , therefore, the first compensation voltage signal V′(n) is applied to the pixel electrode at the same time as the gray scale voltage signal is applied. Wherein, since the first compensation voltage signal required by the AC voltage signal of each gray scale is also different, the first compensation voltage signal V'(n) will change with different gray scales, so as to correct the parasitic capacitance and coupling of the pixel unit. The potential shift produced by the capacitor.

参照图4所示,由于最高电压灰阶的第0阶交流电压信号所产生的电位偏移最为严重,因此其所需的第一补偿电压信号V’(0)亦最大。并且,由于导入的直流电压是叠加于位准Vcdc上,而会拉高基本的电压位准,因此此处的V’(0)是负值,以便将像素电极的数据信号位准向下调整V’(0)。同理,对第63阶的交流电压信号而言,其基本位准亦偏高,因此所需的第一补偿电压信号V’(63)亦为负值,以便将基本位准调低。至于,对第191阶与第255阶的交流电压信号而言,由于所导入的直流电压灰使其基本位准降低,因此所施加的第一补偿电压信号V’(191)与V’(255)皆为正值,以便将此二个灰阶的基本位准向上调正。Referring to FIG. 4 , since the potential shift generated by the 0th-level AC voltage signal of the highest voltage gray scale is the most serious, the required first compensation voltage signal V'(0) is also the largest. Moreover, since the imported DC voltage is superimposed on the level Vcdc, the basic voltage level will be pulled up, so V'(0) here is a negative value, so as to adjust the data signal level of the pixel electrode downward V'(0). Similarly, for the 63rd order AC voltage signal, its basic level is also high, so the required first compensation voltage signal V'(63) is also negative, so as to lower the basic level. As for the 191st-order and 255th-order AC voltage signals, since the introduced DC voltage gray reduces the basic level, the applied first compensation voltage signal V'(191) and V'(255 ) are all positive values, so that the basic levels of the two gray scales can be adjusted upward.

换言之,当上述灰阶电压信号具有n+1个,且分别表示成V(0)、V(1)、V(2)...v(n)时,第一补偿电压信号亦具有n+1个,并可根据不同灰阶而区分为V’(0)、V’(1)、V’(2)...V’(n)。更者,当V(0)为最高的灰阶电压信号,而V(n)代表最小的灰阶电压信号时,第一补偿电压信号会满足V’(0)>V’(1)>...>V’((n-1)/2)=0>V’(n-1)>V’(n)。以256个灰阶的电压信号为例,参照图4,其中V’(0)>V’(63)>V’(127)=0>V’(191)>V’(255)。In other words, when the above-mentioned gray scale voltage signals have n+1 numbers and are expressed as V(0), V(1), V(2)...v(n), the first compensation voltage signal also has n+1 1, and can be divided into V'(0), V'(1), V'(2)...V'(n) according to different gray scales. Moreover, when V(0) is the highest gray-scale voltage signal and V(n) represents the smallest gray-scale voltage signal, the first compensation voltage signal will satisfy V'(0)>V'(1)>. ..>V'((n-1)/2)=0>V'(n-1)>V'(n). Taking the voltage signal of 256 gray levels as an example, refer to FIG. 4 , where V'(0)>V'(63)>V'(127)=0>V'(191)>V'(255).

除了针对像素单元其寄生电容与耦合电容所导入的直流电压进行补偿外,由于位于液晶层两侧的像素电极与共用电极,亦会由于形状的不对称或是使用材料的异同,而对液晶层中的离子电荷产生不同的捕获率,并造成直流电压的导入,因此在施加灰阶电压信号的同时,对像素电极施加第二补偿电压信号Vasy(n)。其中,第二补偿电压信号Vasy(n)亦会随着各个灰阶电压信号而变化,用以补偿上述由于电极材料或电极几何形状不对称所产生的电位偏移。In addition to compensating for the DC voltage introduced by the parasitic capacitance and coupling capacitance of the pixel unit, the pixel electrode and the common electrode located on both sides of the liquid crystal layer will also affect the liquid crystal layer due to the asymmetry of the shape or the similarity and difference of the materials used. The ionic charges in the ions generate different capture rates and lead to the introduction of DC voltage. Therefore, while applying the grayscale voltage signal, a second compensation voltage signal Vasy(n) is applied to the pixel electrode. Wherein, the second compensation voltage signal Vasy(n) also varies with each gray scale voltage signal to compensate for the above-mentioned potential shift caused by the asymmetry of the electrode material or electrode geometry.

在较佳实施例中,当灰阶电压信号具有n+1个,且分别表示成V(0)、V(1)、V(2)...V(n)时,第二补偿电压信号亦具有n+1个,并可根据不同灰阶而区分为Vasy(0)、Vasy(1)、Vasy(2)...Vasy(n)。In a preferred embodiment, when there are n+1 gray scale voltage signals, and they are expressed as V(0), V(1), V(2)...V(n), the second compensation voltage signal There are also n+1 ones, which can be classified into Vasy(0), Vasy(1), Vasy(2)...Vasy(n) according to different gray scales.

当V(0)为最高的灰阶电压信号,而V(n)代表最小的灰阶电压信号时,第二补偿电压信号会满足Vasy(0)>Vasy(1)>...>Vasy((n-1)/2)>...>Vasy(n-1)>Vasy(n)。以256个灰阶的电压信号为例,参照图4,其中Vasy(0)>Vasy(63)>Vasy(127)>Vasy(191)>Vasy(255)>0。When V(0) is the highest gray-scale voltage signal, and V(n) represents the smallest gray-scale voltage signal, the second compensation voltage signal will satisfy Vasy(0)>Vasy(1)>...>Vasy( (n-1)/2)>...>Vasy(n-1)>Vasy(n). Taking the voltage signal of 256 gray scales as an example, referring to FIG. 4 , Vasy(0)>Vasy(63)>Vasy(127)>Vasy(191)>Vasy(255)>0.

要特别说明的,在上述实施例中,所施加的第二补偿电压信号Vasy(n)皆大于0,以便在直流电压位准偏低的情形下,对其进行偏移调整。然而,对于直流电压位准普遍偏高的情形,则亦可使施加的第二补偿电压信号Vasy(n)皆小于0。此时,当V(0)为最高的灰阶电压信号,而V(n)代表最小的灰阶电压信号时,第二补偿电压信号可满足Vasy(0)<Vasy(1)<...<Vasy((n-1)/2)<...<Vasy(n-1)<Vasy(n)<0。以256个灰阶的电压信号为例,其中Vasy(0)<Vasy(61)<Vasy(127)<Vasy(191)<Vasy(255)<0。It should be noted that, in the above-mentioned embodiment, the applied second compensation voltage signals Vasy(n) are all greater than 0, so as to perform offset adjustment when the DC voltage level is low. However, for the situation that the DC voltage level is generally high, the applied second compensation voltage signals Vasy(n) can also be all smaller than 0. At this time, when V(0) is the highest gray-scale voltage signal and V(n) represents the smallest gray-scale voltage signal, the second compensation voltage signal can satisfy Vasy(0)<Vasy(1)<... <Vasy((n-1)/2)<...<Vasy(n-1)<Vasy(n)<0. Taking the voltage signal of 256 gray scales as an example, Vasy(0)<Vasy(61)<Vasy(127)<Vasy(191)<Vasy(255)<0.

本发明并提供决定上述第二补偿电压信号Vasy(n)大小的方法。请参照图5,首先可针对液晶层进行残留直流偏压的量测。量测的方式,是先对液晶层施加大小为5伏特的直流电压约60分钟,然后在移除直流电压1秒钟后,开始量测液晶层所受的残留直流偏压。请参照图6,当液晶层两侧的电极材料不同,分别为氧化铟锡(ITO)与铝材料(Al)时,若施加+5伏特直流电源时(即氧化铟锡为正极而铝材料为负极),则在直流电压施加60分钟后,会产生的3.5伏特左右较高的残留直流偏压(两组测试数据分别为图中线条a与b)。反之,当施加-5伏特直流电源时(即氧化铟锡为负极而铝材料为正极),则会产生的1.5伏特左右较低的残留直流偏压(两组测试数据分别为图中线条c与d)。The invention also provides a method for determining the magnitude of the second compensation voltage signal Vasy(n). Please refer to FIG. 5 , firstly, the residual DC bias voltage can be measured for the liquid crystal layer. The method of measurement is to first apply a DC voltage of 5 volts to the liquid crystal layer for about 60 minutes, and then measure the residual DC bias voltage on the liquid crystal layer after removing the DC voltage for 1 second. Please refer to Figure 6. When the electrode materials on both sides of the liquid crystal layer are different, namely indium tin oxide (ITO) and aluminum material (Al), if a +5 volt DC power supply is applied (i.e., ITO is the positive electrode and the aluminum material is Negative electrode), then after the DC voltage is applied for 60 minutes, a high residual DC bias voltage of about 3.5 volts will be generated (the two sets of test data are lines a and b in the figure). Conversely, when a -5 volt DC power supply is applied (that is, indium tin oxide is the negative electrode and the aluminum material is the positive electrode), a low residual DC bias voltage of about 1.5 volts will be generated (the two sets of test data are lines c and d).

值得注意的是,在量测残留直流偏压时,随着时间的增加,在大约27分钟时,施加+5伏特与施加-5伏特分别造成的残留直流电压,会有大约3.0伏特的差值。藉由此差值,可以较准确的估计出第二补偿电压Vasy(n)的大小。It is worth noting that when measuring the residual DC bias voltage, as time increases, there will be a difference of about 3.0 volts in the residual DC voltage caused by applying +5 volts and applying -5 volts respectively at about 27 minutes . With this difference, the magnitude of the second compensation voltage Vasy(n) can be estimated more accurately.

以典型的常白模式(normally white mode)为例,其馈通电压(Feed throughVoltage)在较高电压的灰阶第0阶(黑色)与灰阶第255阶(白色)间的差值大约的为0.5-1.0伏特,因此可取此电压值的一半,约0.25-0.50伏特,作为相对两侧电极材料或几何形状不对称的液晶显示器其灰阶第0阶与第255阶画面分别所受直流偏压的绝对值。由此,可以得到:Taking the typical normally white mode as an example, the difference between the Feed through Voltage (Feed through Voltage) between the 0th gray scale (black) and the 255th gray scale (white) of the higher voltage is about It is 0.5-1.0 volts, so it can take half of this voltage value, about 0.25-0.50 volts, as the DC bias of the 0th and 255th grayscale screens of the liquid crystal display with asymmetrical electrode materials or geometric shapes on both sides. absolute value of pressure. From this, you can get:

(3V/5V)*0.25V-0.5V=150mV-300mV(3V/5V)*0.25V-0.5V=150mV-300mV

其中,3V是上述测试中,施加+5V与-5V情形下,残留直流偏压的最大差值;至于5V则是在1小时持续施加的直流电压。如此,对于典型妁薄膜电晶体液晶显示器而言,其第0阶与第255阶图像的残留电压差值即大约为150mV-300mV。Among them, 3V is the maximum difference between the residual DC bias voltage when +5V and -5V are applied in the above test; as for 5V, it is the DC voltage continuously applied for 1 hour. Thus, for a typical thin film transistor liquid crystal display, the residual voltage difference between the 0th-order image and the 255th-order image is about 150mV-300mV.

然而,若考虑直流偏压的情形持续时间为10小时,像素电极与共用电极两侧结构更加不对称(即同时考虑材料的不同、几何形状的差异),则残留的直流偏压应该会更大。因此,可以取残留直流偏压的极限值高至500mV。亦即,在考虑第二补偿电压信号时,取Vasy<500mV。However, if the duration of the DC bias voltage is considered to be 10 hours, and the structure on both sides of the pixel electrode and the common electrode is more asymmetric (that is, considering the difference in materials and geometric shapes), the residual DC bias voltage should be larger . Therefore, the limit value of the residual DC bias voltage can be taken as high as 500mV. That is, when considering the second compensation voltage signal, Vasy<500mV.

在较佳实施例中,当第一补偿电压信号满足V’(0)>V’(62)>V’(127)=0>V’(191)>V’(255)时,可使V’(0)<500mV且使V’(255)>-500mV。并且,当第二补偿电压信号满足Vasy(0)>Vasy(63)>Vasy(127)>Vasy(191)>Vay(255)>0时,取Vasy(0)<500mV。反之,当第二补偿电压信号满足Vasy(0)<Vasy(63)<Vasy(127)<Vasy(191)<Vasy(255)<0时,则取Vasy(0)>-500mV。In a preferred embodiment, when the first compensation voltage signal satisfies V'(0)>V'(62)>V'(127)=0>V'(191)>V'(255), V '(0)<500mV such that V'(255)>-500mV. In addition, when the second compensation voltage signal satisfies Vasy(0)>Vasy(63)>Vasy(127)>Vasy(191)>Vay(255)>0, Vasy(0)<500mV. On the contrary, when the second compensation voltage signal satisfies Vasy(0)<Vasy(63)<Vasy(127)<Vasy(191)<Vasy(255)<0, then Vasy(0)>-500mV.

本发明虽以较佳实施例阐明如上,然其并非用以限定本发明精神与发明实体,仅止于上述实施例。对熟悉此项技术者,当可轻易了解并利用其它元件或方式来产生相同的功效。因此,在不脱离本发明的精神与范围内所作的修改,均应包含在所述的权利要求范围内。Although the present invention has been described above with preferred embodiments, it is not intended to limit the spirit and entity of the present invention, and is only limited to the above embodiments. Those skilled in the art can easily understand and use other elements or methods to produce the same effect. Therefore, modifications made without departing from the spirit and scope of the present invention should be included in the scope of the described claims.

Claims (9)

1. 一种有源矩阵式液晶显示器的驱动方法,其中该液晶显示器具有像素单元阵列,且每一个该像素单元包括了一像素电极、对应于该像素电极的共用电极以及位于该像素电极与该共用电极间的液晶层,其特征是包含下列步骤:1. A driving method for an active-matrix liquid crystal display, wherein the liquid crystal display has an array of pixel units, and each of the pixel units includes a pixel electrode, a common electrode corresponding to the pixel electrode, and an electrode located between the pixel electrode and the pixel electrode. The liquid crystal layer between the common electrodes is characterized in that it comprises the following steps: 对该像素电极施加一数据电压信号,其中该数据电压信号为一特定灰阶的交流电压信号V(n):Applying a data voltage signal to the pixel electrode, wherein the data voltage signal is an AC voltage signal V(n) of a specific gray scale: 在施加该交流电压信号的同时,对该像素电极施加第一补偿电压信号V’(n),其中该第一补偿电压信号V’(n)是随着该特定灰阶交流电压信号而变化,用以补偿该数据电压信号由于该像素单元寄生电容与耦合电容所产生的电位偏移;且While applying the AC voltage signal, apply a first compensation voltage signal V'(n) to the pixel electrode, wherein the first compensation voltage signal V'(n) varies with the specific grayscale AC voltage signal, used to compensate the potential shift of the data voltage signal due to the parasitic capacitance and coupling capacitance of the pixel unit; and 在施加该交流电压信号的同时,对该像素电极施加第二补偿电压信号Vasy(n),其中该第二补偿电压信号Vasy(n)是随着该特定灰阶交流电压信号而变化,用以补偿由于该像素电极与该共用电极其材料或几何形状不对称所产生的电位偏移,且上述第二补偿电压信号具有n+1个,并可根据不同灰阶大小而区分为Vasy(0)、Vasy(1)、Vasy(2)...Vasy(n)。While applying the AC voltage signal, apply a second compensation voltage signal Vasy(n) to the pixel electrode, wherein the second compensation voltage signal Vasy(n) varies with the specific grayscale AC voltage signal for Compensate the potential offset caused by the material or geometrical asymmetry between the pixel electrode and the common electrode, and the above-mentioned second compensation voltage signal has n+1, and can be divided into Vasy (0 ), Vasy(1), Vasy(2)...Vasy(n). 2. 根据权利要求1所述的有源矩阵式液晶显示器的驱动方法,其特征是:上述第一补偿电压信号V’(n)具有n+1个,并且可根据不同灰阶大小而区分为V’(0)、V’(1)、V’(2)...V’(n),其中当上述V’(0)为最高电压灰阶时,并满足500mV>V’(0)>V’(1)>...>V’((n-1)/2)=0>V’(n-1)>V’(n)>-500mV。2. the driving method of active matrix type liquid crystal display according to claim 1, it is characterized in that: above-mentioned first compensation voltage signal V ' (n) has n+1, and can be distinguished into according to different gray-scale sizes V'(0), V'(1), V'(2)...V'(n), when the above V'(0) is the highest voltage gray scale, and satisfy 500mV>V'(0) >V'(1)>...>V'((n-1)/2)=0>V'(n-1)>V'(n)>-500mV. 3. 根据权利要求2所述的有源矩阵式液晶显示器的驱动方法,其特征是:上述第二补偿电压信号满足500mV>Vasy(0)>Vasy(1)>...>Vasy(n-1)>Vasy(n)>0。3. The driving method of an active-matrix liquid crystal display according to claim 2, wherein the above-mentioned second compensation voltage signal satisfies 500mV>Vasy(0)>Vasy(1)>...>Vasy(n- 1)>Vasy(n)>0. 4. 根据权利要求2所述的有源矩阵式液晶显示器的驱动方法,其特征是:上述第二补偿电压信号满足-500mV<Vasy(0)<Vasy(1)<...<Vasy(n-1)<Vasy(n)<0。4. The driving method of an active-matrix liquid crystal display according to claim 2, wherein the above-mentioned second compensation voltage signal satisfies -500mV<Vasy(0)<Vasy(1)<...<Vasy(n -1)<Vasy(n)<0. 5. 一种有源矩阵式液晶显示器的数据电压信号调整方法,用以防止该液晶显示器发生影像残留,其中该液晶显示器具有像素单元阵列,且每一个该像素单元包括了一像素电极、对应于该像素电极的共用电极以及位于该像素电极与该共用电极间的液晶层,其特征是包含下列步骤:5. A data voltage signal adjustment method for an active matrix liquid crystal display, used to prevent image retention from occurring in the liquid crystal display, wherein the liquid crystal display has an array of pixel units, and each of the pixel units includes a pixel electrode corresponding to The common electrode of the pixel electrode and the liquid crystal layer between the pixel electrode and the common electrode are characterized by comprising the following steps: 对该像素电极施加一具有特定灰阶的交流数据电压信号V(n);及applying an AC data voltage signal V(n) with a specific gray scale to the pixel electrode; and 将该交流数据电压信号V(n)加上一补偿电压信号Vasy(n),其中该补偿电压信号Vasy(n)对应于该特定灰阶,用以补偿由于该像素电极与该共用电极其材料或几何形状不对称所产生的电位偏移,且上述补偿电压信号具有n+1个,并且可根据不同灰阶大小而区分为Vasy(0)、Vasy(1)、Vasy(2)...Vasy(n)。Adding a compensation voltage signal Vasy(n) to the AC data voltage signal V(n), wherein the compensation voltage signal Vasy(n) corresponds to the specific gray scale, and is used to compensate for the difference between the pixel electrode and the common electrode. Potential offset caused by material or geometric asymmetry, and the above-mentioned compensation voltage signal has n+1, and can be divided into Vasy(0), Vasy(1), Vasy(2).. .Vasy(n). 6. 根据权利要求5所述的有源矩阵式液晶显示器的数据电压信号调整方法,其特征是:更包括下述步骤:6. the data voltage signal adjustment method of active matrix liquid crystal display according to claim 5, it is characterized in that: further comprise the following steps: 将该交流数据电压信号加上利用伽玛补正电路调整产生的各灰阶额外补偿电压信号V’(n),其中该伽玛补正电压信号V’(n)对应于该特定灰阶,用以补偿该数据电压信号由于该像素单元寄生电容与耦合电容所产生的电位偏移。Adding the AC data voltage signal to the additional compensation voltage signal V'(n) for each gray scale adjusted by the gamma correction circuit, wherein the gamma correction voltage signal V'(n) corresponds to the specific gray scale for The potential offset of the data voltage signal due to the parasitic capacitance and the coupling capacitance of the pixel unit is compensated. 7. 根据权利要求5所述的有源矩阵式液晶显示器的数据电压信号调整方法,其特征是:上述伽玛补正电压信号V’(n)具有n+1个,并可根据不同灰阶大小而区分为V’(0)、V’(1)、V’(2)...V’(n),且当上述V’(0)为最高电压灰阶而V’(n)为最低电压灰阶时,满足500mV>V’(0)>V’(1)>...>V’((n-1)/2)=0>V’(n-1)>V’(n)>-500mV。7. The data voltage signal adjustment method of an active-matrix liquid crystal display according to claim 5, characterized in that: the above-mentioned gamma correction voltage signal V'(n) has n+1, and can be adjusted according to the size of different gray scales And it is divided into V'(0), V'(1), V'(2)...V'(n), and when the above V'(0) is the highest voltage gray level and V'(n) is the lowest In voltage gray scale, 500mV>V'(0)>V'(1)>...>V'((n-1)/2)=0>V'(n-1)>V'(n )>-500mV. 8. 根据权利要求5所述的有源矩阵式液晶显示器的数据电压信号调整方法,其特征是:上述补偿电压信号满足500mV>Vasy(0)>Vasy(1)>...>Vasy(n-1)>Vasy(n)>0。8. The data voltage signal adjustment method of an active-matrix liquid crystal display according to claim 5, wherein said compensation voltage signal satisfies 500mV>Vasy(0)>Vasy(1)>...>Vasy(n -1)>Vasy(n)>0. 9. 根据权利要求5所述的有源矩阵式液晶显示器的数据电压信号调整方法,其特征是:上述补偿电压信号满足-500mV<Vasy(0)<Vasy(1)<...<Vasy(n-1)<Vasy(n)<0。9. The data voltage signal adjustment method of an active-matrix liquid crystal display according to claim 5, wherein said compensation voltage signal satisfies -500mV<Vasy(0)<Vasy(1)<...<Vasy( n-1)<Vasy(n)<0.
CNB031212816A 2003-04-01 2003-04-01 Driving and data voltage signal adjusting method for active matrix type liquid crystal display Expired - Lifetime CN100414592C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB031212816A CN100414592C (en) 2003-04-01 2003-04-01 Driving and data voltage signal adjusting method for active matrix type liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB031212816A CN100414592C (en) 2003-04-01 2003-04-01 Driving and data voltage signal adjusting method for active matrix type liquid crystal display

Publications (2)

Publication Number Publication Date
CN1534581A CN1534581A (en) 2004-10-06
CN100414592C true CN100414592C (en) 2008-08-27

Family

ID=34285645

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031212816A Expired - Lifetime CN100414592C (en) 2003-04-01 2003-04-01 Driving and data voltage signal adjusting method for active matrix type liquid crystal display

Country Status (1)

Country Link
CN (1) CN100414592C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191923B (en) * 2006-12-01 2011-03-30 奇美电子股份有限公司 Liquid crystal display system capable of improving display quality and related driving method
CN101312020B (en) * 2007-05-25 2012-05-23 奇美电子股份有限公司 Liquid crystal display and its driving method
CN102270418A (en) * 2011-08-18 2011-12-07 南京中电熊猫液晶显示科技有限公司 Black and white contrast feed-through voltage delta Vp measurement circuit for liquid crystal display and method for balancing liquid crystal voltage by applying circuit
CN102426827A (en) * 2011-12-14 2012-04-25 南京中电熊猫液晶显示科技有限公司 Data output method of time sequence controller
US20150042636A1 (en) * 2012-01-31 2015-02-12 Sharp Kabushiki Kaisha Liquid crystal display device and liquid crystal display device driving method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123577A (en) * 1993-04-05 1996-05-29 西尔拉斯逻辑公司 System for compensating crosstalk in LCDS
CN1157450A (en) * 1995-03-06 1997-08-20 汤姆森多媒体公司 Liquid crystal display driver with threshold voltage drift compensation
US5905484A (en) * 1995-09-25 1999-05-18 U.S. Philips Corporation Liquid crystal display device with control circuit
CN1334555A (en) * 2000-07-24 2002-02-06 夏普株式会社 Liquid crystal display drive circuit, liquid crystal display and electronic device thereof
JP2002341313A (en) * 2001-05-11 2002-11-27 Mitsubishi Electric Corp Liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123577A (en) * 1993-04-05 1996-05-29 西尔拉斯逻辑公司 System for compensating crosstalk in LCDS
CN1157450A (en) * 1995-03-06 1997-08-20 汤姆森多媒体公司 Liquid crystal display driver with threshold voltage drift compensation
US5905484A (en) * 1995-09-25 1999-05-18 U.S. Philips Corporation Liquid crystal display device with control circuit
CN1334555A (en) * 2000-07-24 2002-02-06 夏普株式会社 Liquid crystal display drive circuit, liquid crystal display and electronic device thereof
JP2002341313A (en) * 2001-05-11 2002-11-27 Mitsubishi Electric Corp Liquid crystal display

Also Published As

Publication number Publication date
CN1534581A (en) 2004-10-06

Similar Documents

Publication Publication Date Title
US9697784B2 (en) Liquid crystal device, method of driving liquid crystal device, and electronic apparatus
US8456400B2 (en) Liquid crystal device and electronic apparatus
US8106869B2 (en) Liquid crystal display with coupling line for adjusting common voltage and driving method thereof
CN102169264B (en) liquid crystal display panel capable of compensating feed-through voltage
CN100549774C (en) The driving method of driving circuit, liquid-crystal apparatus, electronic equipment and liquid-crystal apparatus
US7834837B2 (en) Active matrix liquid crystal display and driving method thereof
US8896583B2 (en) Common electrode driving method, common electrode driving circuit and liquid crystal display
US20120249492A1 (en) Liquid crystal display
WO1996000408A1 (en) Active matrix type liquid crystal display device and its driving method
CN101000414A (en) Liquid crystal display
TWI399735B (en) Lcd with common voltage driving circuits and method thereof
CN1766978A (en) Liquid crystal indicator and revise the method for its picture signal
CN107591143A (en) Common electric voltage compensating unit, compensation method, drive circuit and display panel
US20030071773A1 (en) Display driving apparatus and driving control method
CN111816137A (en) Liquid crystal display device and driving method thereof
CN1804707A (en) Liquid crystal display device and method of driving the same
US8217873B2 (en) Liquid crystal display device for improving color washout effect
US20070164947A1 (en) Method for Improving Display Uniformity
CN100414592C (en) Driving and data voltage signal adjusting method for active matrix type liquid crystal display
US20080252804A1 (en) Liquid crystal display device
US7123225B2 (en) Method of driving active matrix liquid crystal display for restraining image sticking
US7990354B2 (en) Liquid crystal display having gradation voltage adjusting circuit and driving method thereof
US7804471B2 (en) Liquid crystal display and driving method and driving circuit thereof
CN102568419A (en) Driver circuit
US7554515B2 (en) Method of driving liquid crystal display

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20080827