CN100415345C - Preparation method of composite acid gas absorbent - Google Patents
Preparation method of composite acid gas absorbent Download PDFInfo
- Publication number
- CN100415345C CN100415345C CNB2005100409955A CN200510040995A CN100415345C CN 100415345 C CN100415345 C CN 100415345C CN B2005100409955 A CNB2005100409955 A CN B2005100409955A CN 200510040995 A CN200510040995 A CN 200510040995A CN 100415345 C CN100415345 C CN 100415345C
- Authority
- CN
- China
- Prior art keywords
- preparation
- composite
- room temperature
- muffle furnace
- cool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 26
- 230000002745 absorbent Effects 0.000 title claims abstract description 24
- 239000002250 absorbent Substances 0.000 title claims abstract description 24
- 239000002253 acid Substances 0.000 title claims abstract description 17
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000007789 gas Substances 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 20
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 9
- 239000003054 catalyst Substances 0.000 claims abstract description 9
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000002994 raw material Substances 0.000 claims abstract description 8
- 239000007791 liquid phase Substances 0.000 claims abstract description 7
- 239000000741 silica gel Substances 0.000 claims abstract description 7
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 239000001257 hydrogen Substances 0.000 claims abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 6
- 239000008367 deionised water Substances 0.000 claims abstract description 5
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims abstract description 5
- 239000012071 phase Substances 0.000 claims abstract description 5
- 239000006200 vaporizer Substances 0.000 claims abstract description 5
- 238000001354 calcination Methods 0.000 claims abstract description 4
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims abstract description 4
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000006555 catalytic reaction Methods 0.000 claims abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 3
- 238000009834 vaporization Methods 0.000 claims abstract description 3
- 230000008016 vaporization Effects 0.000 claims abstract description 3
- 238000007036 catalytic synthesis reaction Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 7
- 230000003197 catalytic effect Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- -1 amine salt Chemical class 0.000 description 3
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- PVXVWWANJIWJOO-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-yl)-N-ethylpropan-2-amine Chemical compound CCNC(C)CC1=CC=C2OCOC2=C1 PVXVWWANJIWJOO-UHFFFAOYSA-N 0.000 description 1
- AZWLGPJBVAQRHW-UHFFFAOYSA-N 4-aminobutane-1,3-diol Chemical compound NCC(O)CCO AZWLGPJBVAQRHW-UHFFFAOYSA-N 0.000 description 1
- QMMZSJPSPRTHGB-UHFFFAOYSA-N MDEA Natural products CC(C)CCCCC=CCC=CC(O)=O QMMZSJPSPRTHGB-UHFFFAOYSA-N 0.000 description 1
- 229910018590 Ni(NO3)2-6H2O Inorganic materials 0.000 description 1
- 229910003322 NiCu Inorganic materials 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明公开一种复合型酸性气体吸收剂的制备方法。它包括以下步骤:将多孔硅胶粉碎分筛,取10~50目颗粒,干燥后在马弗炉中煅烧,取出冷却至室温;煅烧后的多孔硅胶浸渍在硝酸镍、硝酸铜、二次去离子水的溶液中和磷钨酸、二次去离子水的溶液中,浸渍后静置干燥,在马弗炉缓慢升温锻烧后逐渐冷却至室温;将耐温惰性材料升温到指标温度恒温,用氮气置换系统中的空气后,向物料汽化器加入氢气和原料乙醇胺,汽化后与气相物流进行催化反应合成产物,该产物经冷凝器冷凝为液相物料,收集后将氢气与产物分离,液相物料为复合型吸收剂。本发明具有良好的催化性能、制备催化剂的原料丰富、价格低廉、制备方法简单、合成工艺容易实现和产品成本较低的优点。
The invention discloses a preparation method of a composite acid gas absorbent. It includes the following steps: crush and sieve porous silica gel, take 10-50 mesh particles, dry and calcinate in a muffle furnace, take it out and cool to room temperature; impregnate the calcined porous silica gel in nickel nitrate, copper nitrate, secondary deionized The solution of water and the solution of phosphotungstic acid and secondary deionized water are soaked and left to dry, and then gradually cooled to room temperature after slowly heating up in the muffle furnace for calcination; heating the temperature-resistant inert material to the index temperature and constant temperature, using After replacing the air in the system with nitrogen, add hydrogen and raw material ethanolamine to the material vaporizer, and after vaporization, carry out a catalytic reaction with the gas phase stream to synthesize the product. The product is condensed into a liquid phase material by the condenser. It is a composite absorbent. The invention has the advantages of good catalytic performance, abundant raw materials for preparing the catalyst, low price, simple preparation method, easy synthesis process and low product cost.
Description
一、技术领域 1. Technical field
本发明属于催化合成和分离领域,特别是一种复合型酸性气体吸收剂的制备方法。The invention belongs to the field of catalytic synthesis and separation, in particular to a preparation method of a composite acid gas absorbent.
二、背景技术 2. Background technology
复合型酸性气体吸收剂兼容了单一溶液的优良性能,在分离过程中可提供更高的传质推动力、更高的吸收容量、更高的吸收速率和再生速率。目前作为吸收酸性气体各种复合溶液在工业上已得到了广泛应用(Chemical Engineering Science,2001,56:6217-6224)。专利US 4,397,660,DE3,411,532等提出的均为复合溶剂。US4,892,674提出在醇胺溶剂中添加位阻胺盐或位阻氨基酸形成复合溶剂;US4,895,670提出在空间位阻胺和位阻氨基酸形成的复合溶剂。CN1356157A提出一种混合溶剂由MDEA(N-甲基二乙醇胺)和一种空间位阻胺组成。CN1354036A提出一种复合胺溶剂由MEA(一乙醇胺)和一种活性胺组成。这些复合溶液的形成过程均为物理混合过程,即将两种或三种溶剂按一定的比例(配方)混合形成混合溶液,而复合溶液中的一种或两种溶剂市场通常不易购买,合成成本高。Composite acid gas absorbent is compatible with the excellent performance of a single solution, and can provide higher mass transfer driving force, higher absorption capacity, higher absorption rate and regeneration rate in the separation process. At present, various composite solutions for absorbing acid gases have been widely used in industry (Chemical Engineering Science, 2001, 56: 6217-6224). Patents such as US 4,397,660 and DE3,411,532 all propose composite solvents. US4,892,674 proposes adding a hindered amine salt or a hindered amino acid to form a composite solvent in an alcohol amine solvent; US4,895,670 proposes a composite solvent formed by a sterically hindered amine and a hindered amino acid. CN1356157A proposes a mixed solvent consisting of MDEA (N-methyldiethanolamine) and a sterically hindered amine. CN1354036A proposes a complex amine solvent consisting of MEA (monoethanolamine) and an active amine. The formation process of these composite solutions is a physical mixing process, that is, two or three solvents are mixed in a certain ratio (formulation) to form a mixed solution, and one or two solvents in the composite solution are usually not easy to purchase in the market, and the synthesis cost is high. .
三、发明内容 3. Contents of the invention
本发明的目的在于提供一种通过化学合成制备复合型酸性气体吸收剂的方法。The object of the present invention is to provide a method for preparing composite acid gas absorbent through chemical synthesis.
实现本发明目的的技术方案为:一种复合型酸性气体吸收剂的制备方法,其特征在于包括以下步骤:The technical solution for realizing the object of the present invention is: a preparation method of a composite acid gas absorbent, which is characterized in that it comprises the following steps:
1.1催化剂制备:首先将多孔硅胶粉碎分筛,取10~50目颗粒,干燥后在400~700℃的马弗炉中锻烧4~6h,取出冷却至室温;锻烧后的多孔硅胶浸渍在硝酸镍、硝酸铜、二次去离子水的溶液中,静置后干燥,在马弗炉缓慢升温锻烧后逐渐降温冷却至室温;然后再浸渍在磷钨酸、二次去离子水的溶液中,静置后干燥,在马弗炉缓慢升温锻烧后自然降温速率冷却至室温;最后放入催化合成反应器,在150~250℃下的H2流中还原;制备得到的催化剂中,Ni、Cu和磷钨酸的质量百分比为25~65∶5~25∶0.1~1.0;1.1 Catalyst preparation: First, crush and sieve the porous silica gel, take 10-50 mesh particles, dry and calcinate in a muffle furnace at 400-700°C for 4-6 hours, take it out and cool to room temperature; impregnate the calcined porous silica gel in In the solution of nickel nitrate, copper nitrate, and secondary deionized water, let it stand and dry, then gradually cool down to room temperature after slowly heating up in the muffle furnace for calcination; then dip in the solution of phosphotungstic acid and secondary deionized water After standing still, dry, and then cool to room temperature at a natural cooling rate after slowly heating up in a muffle furnace; finally put it into a catalytic synthesis reactor, and reduce it in a H2 flow at 150-250°C; in the prepared catalyst, The mass percentage of Ni, Cu and phosphotungstic acid is 25~65:5~25:0.1~1.0;
1.2吸收剂合成:将耐温惰性材料放入物料汽化器后升温到指标温度恒温,用氮气完全置换系统中的空气后,向物料汽化器加入氢气和原料乙醇胺,汽化后与气相物流进入催化合成反应器中,进行催化反应合成产物,该产物经冷凝器冷凝为液相物料,收集后将氢气与产物分离,氢气回收,液相物料为复合型吸收剂;物料汽化器加入的H2与原料乙醇胺摩尔比为0.1~1.8,气相混和物的总流量10~30L/h。1.2 Absorbent synthesis: Put the heat-resistant inert material into the material evaporator and heat it up to the target temperature. After completely replacing the air in the system with nitrogen, add hydrogen and raw material ethanolamine to the material evaporator, and enter the catalytic synthesis reactor with the gas phase stream after vaporization In, the catalytic reaction is carried out to synthesize the product, the product is condensed into a liquid phase material by the condenser, and the hydrogen gas is separated from the product after collection, and the hydrogen gas is recovered, and the liquid phase material is a composite absorbent; the molar ratio of the H2 added by the material vaporizer to the raw material ethanolamine 0.1~1.8, the total flow rate of the gas phase mixture is 10~30L/h.
本发明复合型酸性气体吸收剂的制备方法,静置20~50h后干燥,在马弗炉缓慢升温至500~600℃锻烧4~6h后,以0.5~2℃/min的降温速率冷却至200℃,在200℃维持2h,再以0.5~1℃/min冷却至室温。The preparation method of the composite acid gas absorbent of the present invention is to dry after standing still for 20-50 hours, to slowly heat up to 500-600°C in a muffle furnace for calcination for 4-6 hours, and then to cool at a cooling rate of 0.5-2°C/min to 200°C, maintain at 200°C for 2 hours, then cool to room temperature at 0.5-1°C/min.
本发明复合型酸性气体吸收剂的制备方法,催化合成反应器的反应温度为150~320℃,压力为0.4~0.8MPa。In the preparation method of the composite acid gas absorbent of the present invention, the reaction temperature of the catalytic synthesis reactor is 150-320° C., and the pressure is 0.4-0.8 MPa.
与现有技术相比,本发明的显著优点为:本发明提出的一种气相催化合成的催化剂NiCu/SiO2+微量磷钨酸,不仅具有良好的催化性能,而且制备催化剂的原料丰富,价格低廉,制备方法简单,合成工艺容易实现,产品成本较低;制备的产品复合型酸性气体吸收剂可直接作为酸性气体吸收剂,也可以作为其它吸收剂的添加剂;可以应用于气液直接接触的反应器,如填料塔和板式塔等,也可以应用于膜吸收工艺(即膜接触器)中。Compared with the prior art, the remarkable advantages of the present invention are: a catalyst NiCu/SiO 2 + trace amount of phosphotungstic acid proposed by the present invention not only has good catalytic performance, but also has abundant raw materials for preparing the catalyst, and the price is low. It is cheap, the preparation method is simple, the synthesis process is easy to realize, and the product cost is low; the prepared product composite acid gas absorbent can be directly used as an acid gas absorbent, and can also be used as an additive for other absorbents; it can be applied to gas-liquid direct contact Reactors, such as packed towers and plate towers, can also be used in membrane absorption processes (ie, membrane contactors).
四、附图说明 4. Description of drawings
图1是本发明复合型酸性气体吸收剂的制备方法的催化剂制备流程图。Fig. 1 is a catalyst preparation flow chart of the preparation method of the composite acid gas absorbent of the present invention.
图2是本发明复合型酸性气体吸收剂的制备方法的工艺合成流程图。Fig. 2 is a process synthesis flow chart of the preparation method of the composite acid gas absorbent of the present invention.
五、具体实施方式 5. Specific implementation
下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
结合图1、图2,本发明本发明复合型酸性气体吸收剂的制备方法包括以下步骤:In conjunction with Fig. 1 and Fig. 2, the preparation method of the composite acid gas absorbent of the present invention comprises the following steps:
(1)首先将多孔硅胶粉碎,分筛,取10~50目颗粒,最好是20~30目颗粒,在120℃温度下干燥3h,在马弗炉中650℃的温度下煅烧4h,取出,在干燥器中冷却至室温。(1) First, crush the porous silica gel, sieve, take 10-50 mesh particles, preferably 20-30 mesh particles, dry at 120°C for 3 hours, calcinate at 650°C in a muffle furnace for 4 hours, take out , cooled to room temperature in a desiccator.
(2)取硝酸镍(Ni(NO3)2·6H2O)446g和硝酸铜(Cu(NO3)2·3H2O)112g溶于水,将(1)中成品200g浸渍于所配制的溶液中,充分混合后静置24h。然后置于60~70℃水浴中,搅拌下蒸发干燥,直至水分完全蒸发,在120℃下干燥4h,在马弗炉缓慢升温至500℃,并锻烧4h。以2℃/min的降温速率冷却至200℃,在200℃维持2h,再以1℃/min冷却至室温。(2) Dissolve 446g of nickel nitrate (Ni(NO 3 ) 2 6H 2 O) and 112g of copper nitrate (Cu(NO 3 ) 2 3H 2 O) in water, and immerse 200g of the finished product in (1) in the prepared solution, mix well and let stand for 24h. Then place it in a water bath at 60-70°C, evaporate and dry under stirring until the water is completely evaporated, dry at 120°C for 4 hours, slowly raise the temperature to 500°C in a muffle furnace, and calcinate for 4 hours. Cool to 200°C at a cooling rate of 2°C/min, maintain at 200°C for 2 hours, and then cool to room temperature at 1°C/min.
(3)取磷钨酸(2H3PO4 24WO348H2O)2.5g溶于水,将(2)中的成品浸渍于所配制的溶液中,静置20h。然后置于60~70℃水浴中,搅拌下蒸发干燥,直至水分完全蒸发,在120℃下干燥4h,在马弗炉缓慢升温至500℃,并锻烧4h。以自然降温速率冷却至室温,制备的催化剂质量比为:Ni 30%,Cu 10%,磷钨酸0.5%。(3) Dissolve 2.5g of phosphotungstic acid (2H 3 PO 4 24WO 3 48H 2 O) in water, immerse the finished product in (2) in the prepared solution, and let it stand for 20 hours. Then place it in a water bath at 60-70°C, evaporate and dry under stirring until the water is completely evaporated, dry at 120°C for 4 hours, slowly raise the temperature to 500°C in a muffle furnace, and calcinate for 4 hours. Cool to room temperature at a natural cooling rate, and the mass ratio of the prepared catalyst is: Ni 30%, Cu 10%, phosphotungstic acid 0.5%.
(4)取(3)成品装入催化合成反应器,在200℃下,15L/h H2流中还原1~2h。(4) Take the finished product of (3) and put it into a catalytic synthesis reactor, and reduce it in 15L/h H 2 flow for 1-2 hours at 200°C.
(5)将耐温惰性材料,如石英沙放入物料汽化器后升温到指标温度恒温,该指标温度为200~300℃,用N2气置换合成系统中的空气约3~5min。向物料汽化器通入氢气和原料乙醇胺(MEA),H2与乙醇胺的摩尔比在0.55,流量20L/h,催化合成反应器反应温度为200℃,压力为0.5MPa,产物物流经空冷器冷凝为液相物料,收集后将氢气与产物分离,氢气回收,液相物料为复合型吸收剂,合成获得的复合型吸收剂成分为:哌嗪(C4H8(NH)2)、一乙醇胺(NH2C2H4OH)、β-羟乙基乙醇胺(NH2C2H4NHC2H4OH)。(5) Put the heat-resistant inert material, such as quartz sand, into the material vaporizer and heat up to the target temperature. The target temperature is 200-300°C. Replace the air in the synthesis system with N2 gas for about 3-5 minutes. Feed hydrogen and raw material ethanolamine (MEA) to the material vaporizer, the molar ratio of H and ethanolamine is 0.55, the flow rate is 20L/h, the reaction temperature of the catalytic synthesis reactor is 200 ℃, and the pressure is 0.5MPa, and the product stream is condensed into Liquid phase material, after collection, hydrogen is separated from the product, and hydrogen is recovered. The liquid phase material is a composite absorbent. The composite absorbent obtained by synthesis is: piperazine (C 4 H 8 (NH) 2 ), monoethanolamine ( NH 2 C 2 H 4 OH), β-hydroxyethylethanolamine (NH 2 C 2 H 4 NHC 2 H 4 OH).
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2005100409955A CN100415345C (en) | 2005-07-12 | 2005-07-12 | Preparation method of composite acid gas absorbent |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2005100409955A CN100415345C (en) | 2005-07-12 | 2005-07-12 | Preparation method of composite acid gas absorbent |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1895739A CN1895739A (en) | 2007-01-17 |
| CN100415345C true CN100415345C (en) | 2008-09-03 |
Family
ID=37608470
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2005100409955A Expired - Fee Related CN100415345C (en) | 2005-07-12 | 2005-07-12 | Preparation method of composite acid gas absorbent |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100415345C (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102895985B (en) * | 2012-10-10 | 2015-04-01 | 南京信息工程大学 | Catalyst for synthesizing acidic gas absorbent and preparation method for catalyst |
| CN102895978B (en) * | 2012-10-19 | 2014-11-12 | 南京信息工程大学 | Catalyst used for synthetizing polyamino compound and preparation method for catalyst and application of catalyst |
| CN109852974B (en) * | 2019-04-08 | 2020-11-03 | 上海金兆节能科技有限公司 | Antirust cleaning agent composition and preparation method thereof |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN85103855A (en) * | 1985-05-08 | 1986-11-05 | 南京化学工业公司研究院 | Composite Catalytic Potassium Carbonate Removal of Carbon Dioxide Solution |
| CN1034198A (en) * | 1987-11-06 | 1989-07-26 | 日本触媒化学工业株式会社 | Acid gas absorbent composition |
| US4892674A (en) * | 1987-10-13 | 1990-01-09 | Exxon Research And Engineering Company | Addition of severely-hindered amine salts and/or aminoacids to non-hindered amine solutions for the absorption of H2 S |
| US4895670A (en) * | 1987-10-13 | 1990-01-23 | Exxon Research And Engineering Company | Addition of severely-hindered aminoacids to severely-hindered amines for the absorption of H2 S |
| CN1056259A (en) * | 1990-04-28 | 1991-11-20 | 南京化学工业公司研究院 | The method of purification of acidic gas |
| CN1349427A (en) * | 1999-05-03 | 2002-05-15 | 联合碳化物化学和塑料技术公司 | Absorbent compositions for the removal of acid gases from the gas streams |
| CN1356158A (en) * | 2001-09-26 | 2002-07-03 | 南化集团研究院 | Physical process for removing sulfur and carbon by solvent |
-
2005
- 2005-07-12 CN CNB2005100409955A patent/CN100415345C/en not_active Expired - Fee Related
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN85103855A (en) * | 1985-05-08 | 1986-11-05 | 南京化学工业公司研究院 | Composite Catalytic Potassium Carbonate Removal of Carbon Dioxide Solution |
| US4892674A (en) * | 1987-10-13 | 1990-01-09 | Exxon Research And Engineering Company | Addition of severely-hindered amine salts and/or aminoacids to non-hindered amine solutions for the absorption of H2 S |
| US4895670A (en) * | 1987-10-13 | 1990-01-23 | Exxon Research And Engineering Company | Addition of severely-hindered aminoacids to severely-hindered amines for the absorption of H2 S |
| CN1034198A (en) * | 1987-11-06 | 1989-07-26 | 日本触媒化学工业株式会社 | Acid gas absorbent composition |
| CN1056259A (en) * | 1990-04-28 | 1991-11-20 | 南京化学工业公司研究院 | The method of purification of acidic gas |
| CN1349427A (en) * | 1999-05-03 | 2002-05-15 | 联合碳化物化学和塑料技术公司 | Absorbent compositions for the removal of acid gases from the gas streams |
| CN1356158A (en) * | 2001-09-26 | 2002-07-03 | 南化集团研究院 | Physical process for removing sulfur and carbon by solvent |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1895739A (en) | 2007-01-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103288657B (en) | Modified alcohol amine and preparation method thereof | |
| CN114408860B (en) | Efficient and energy-saving ammonia cracking hydrogen production method | |
| CN106881132A (en) | A kind of catalyst for synthesizing ammonia | |
| CN103230774B (en) | Preparation method of copper-containing mesoporous adsorbent, prepared adsorbent and application thereof | |
| CN110540210B (en) | Low-energy-consumption large-pore-volume silica gel and production method thereof | |
| JP2009106812A (en) | Carbon dioxide absorbent, carbon dioxide separator, reformer, and method for producing the carbon dioxide absorbent | |
| CN103611538A (en) | Multifunctional catalyst for methane steam reforming hydrogen production and preparation method thereof | |
| CN111547740B (en) | A kind of synthetic ammonia separation process | |
| CN100567244C (en) | A New Process for Producing Sodium Formate Using Carbon Monoxide in the Raw Gas of Synthetic Ammonia | |
| CN100415345C (en) | Preparation method of composite acid gas absorbent | |
| CN112473678B (en) | Catalyst for steam mixed reforming of methane by wet coke quenching and preparation method thereof | |
| WO2010130214A1 (en) | Method for two-stage production of dimethyl ether | |
| CN106492810B (en) | Zinc modification copper-based catalysts and preparation method for dimethyl ether-steam reforming hydrogen manufacturing | |
| CN110496594B (en) | Preparation method of carbon monoxide adsorbent with high separation coefficient and adsorbent | |
| CN118788359A (en) | A low-temperature natural gas steam reforming hydrogen production catalyst and its preparation method and application | |
| CN117186962A (en) | A method for biogas self-oxygenation catalytic desulfurization and co-production of methane and carbon dioxide into finished gas | |
| CN103113397A (en) | Preparation method of amino borane | |
| CN102895985B (en) | Catalyst for synthesizing acidic gas absorbent and preparation method for catalyst | |
| CN102059117B (en) | Two types of catalysts for synthesizing methyl chlorosilane and preparation method thereof | |
| CN101254453A (en) | Preparation method of high-temperature adsorbent for simultaneously removing part of gas in flue gas | |
| CN105367383A (en) | Methyl-alcohol production technology | |
| CN107161957A (en) | Method for preparing liquid sulfur dioxide by using acid-making tail gas | |
| CN109603904B (en) | Preparation and application of high-efficiency adipic acid flue gas purification catalyst | |
| CN107335322A (en) | One kind is from containing SO2Recovering liquid SO in flue gas2Technique | |
| CN116196936B (en) | A spherical micro-mesoporous composite catalyst for hydrogen production from methanol steam reforming and its preparation method and application |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080903 Termination date: 20110712 |