CN100417597C - Method for preparing nano ZrO2 by drying supercritical CO2 liquid - Google Patents
Method for preparing nano ZrO2 by drying supercritical CO2 liquid Download PDFInfo
- Publication number
- CN100417597C CN100417597C CNB031467628A CN03146762A CN100417597C CN 100417597 C CN100417597 C CN 100417597C CN B031467628 A CNB031467628 A CN B031467628A CN 03146762 A CN03146762 A CN 03146762A CN 100417597 C CN100417597 C CN 100417597C
- Authority
- CN
- China
- Prior art keywords
- temperature
- powder
- separator
- ethanol
- supercritical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000001035 drying Methods 0.000 title claims abstract description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 title abstract description 31
- 239000007788 liquid Substances 0.000 title abstract 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000000843 powder Substances 0.000 claims abstract description 32
- 239000012530 fluid Substances 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 claims abstract description 7
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000499 gel Substances 0.000 claims description 16
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 239000000017 hydrogel Substances 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 230000015271 coagulation Effects 0.000 claims description 2
- 238000005345 coagulation Methods 0.000 claims description 2
- 239000003292 glue Substances 0.000 claims description 2
- 238000004064 recycling Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000032683 aging Effects 0.000 abstract 1
- 238000001816 cooling Methods 0.000 abstract 1
- 238000009413 insulation Methods 0.000 abstract 1
- 238000000967 suction filtration Methods 0.000 abstract 1
- 239000002994 raw material Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 150000003754 zirconium Chemical class 0.000 description 4
- 238000013341 scale-up Methods 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000011858 nanopowder Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical group [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000593 microemulsion method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- -1 oxygen ion Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
所属领域:Field:
一种制备纳米ZrO2的方法,具体地说涉及一种以无机锆盐为原料,通过沉淀法结合超临界CO2流体干燥制备ZrO2纳米粉体的方法。A method for preparing nanometer ZrO 2 , specifically relates to a method for preparing ZrO 2 nanometer powders by using an inorganic zirconium salt as a raw material and combining supercritical CO 2 fluid drying with a precipitation method.
背景技术: Background technique:
ZrO2具有独特的力学、电学、光学性质和优良的耐高温性能,因而引起了科学界和产业界的广泛关注。部分稳定的四方ZrO2是重要的相变韧化材料,为改善陶瓷材料的断裂韧性提供了一种非常有效的途径;完全稳定的立方ZrO2在高温下具有氧离子传导特性,可以用于制作氧敏元件和高温燃料电池的电解质;ZrO2的折射率较高,与低折射率材料结合,通过合理的膜层设计,可以制作高反射膜;此外,ZrO2表面的弱酸、弱碱性,立方萤石结构的负离子传导特性以及良好的高温及化学稳定性,使其作为催化剂和载体材料在催化领域也获得了广泛的应用。ZrO 2 has unique mechanical, electrical, optical properties and excellent high temperature resistance, which has attracted extensive attention from the scientific and industrial circles. Partially stabilized tetragonal ZrO 2 is an important phase change toughening material, which provides a very effective way to improve the fracture toughness of ceramic materials; fully stable cubic ZrO 2 has oxygen ion conductivity at high temperature and can be used to make Oxygen-sensitive components and electrolytes for high-temperature fuel cells; ZrO 2 has a high refractive index, and when combined with low-refractive index materials, a high-reflection film can be made through reasonable film layer design; in addition, the weak acid and weak alkalinity on the surface of ZrO 2 The negative ion conduction properties of the cubic fluorite structure and good high temperature and chemical stability make it widely used as a catalyst and support material in the field of catalysis.
二十世纪八十年代发展起来的纳米技术使纳米ZrO2材料在传统性能的基础上又呈现出一些新奇的特性。作为重要的结构和功能陶瓷,粉体原料微小的粒径和高的比表面积可以有效地降低烧结温度,获得具有纳米显微结构的烧结体,提高产品性能。在催化领域,纳米材料高的比表面积和丰富的表面缺陷可以显著提高其吸附能力和催化活性。因此,ZrO2纳米粉体的制备一直是近年来纳米材料研究领域的热点之一。The nanotechnology developed in the 1980s has made nano ZrO 2 materials present some novel properties on the basis of traditional properties. As an important structural and functional ceramic, the small particle size and high specific surface area of the powder raw material can effectively reduce the sintering temperature, obtain a sintered body with a nano-microstructure, and improve product performance. In the field of catalysis, the high specific surface area and abundant surface defects of nanomaterials can significantly improve their adsorption capacity and catalytic activity. Therefore, the preparation of ZrO2 nanopowders has been one of the hotspots in the field of nanomaterials research in recent years.
ZrO2超微粉体的制备通常有沉淀法,水热法,微乳液法和溶胶-凝胶法等。目前制备纳米ZrO2粉体的报道也很多,如侯书恩申请的发明专利CN 01128448.X“纳米氧化锆粉体的制备方法”通过锆盐水溶液得到氢氧化物沉淀,过滤、洗涤、脱水、干燥、煅烧,得到ZrO2粉体,其中采用共沸蒸馏法脱水,胶体溶液在蒸馏装置中干燥;万吉高等人申请的发明专利CN 01111426.6“氧化锆系列陶瓷粉末生产方法”以锆盐为原料,通过低温冷冻处理工艺,制备出无团聚超细ZrO2粉末;北京大学谢有畅等申请的发明专利CN 99100053.6“表面掺杂的弱团聚的纳米氧化锆粉末的制备方法”则以四氯化锆气相水解制备纳米氧化锆粉末。The preparation of ZrO 2 ultrafine powder usually includes precipitation method, hydrothermal method, microemulsion method and sol-gel method, etc. At present, there are many reports on the preparation of nano ZrO2 powder, such as the invention patent CN 01128448.X "Preparation method of nano zirconia powder" applied by Hou Shuen to obtain hydroxide precipitation through zirconium salt solution, filter, wash, dehydrate, dry, Calcination to obtain ZrO2 powder, wherein the azeotropic distillation method is used for dehydration, and the colloidal solution is dried in a distillation device; the invention patent CN 01111426.6 "Production method of zirconia series ceramic powder" applied by Wan Jigao et al. uses zirconium salt as raw material, through low temperature Freeze treatment process to prepare non-agglomerated ultrafine ZrO2 powder; the invention patent CN 99100053.6 "Preparation method of surface-doped weakly agglomerated nano-zirconia powder" applied by Xie Youchang of Peking University uses zirconium tetrachloride gas phase hydrolysis Preparation of nano zirconia powder.
沉淀法工艺最为简单,原料也比较低廉,易于实现工业放大;但是在沉淀物的干燥过程中有可能形成严重的团聚结构,因此必须采用特殊的干燥工艺。超临界流体干燥技术早期采用昂贵的金属醇盐作前驱原料,醇类作为干燥介质,存在原料成本高,工艺条件苛刻,工业放大困难等问题。The precipitation method has the simplest process, relatively cheap raw materials, and is easy to realize industrial scale-up; however, serious agglomeration structures may be formed during the drying process of the sediment, so a special drying process must be adopted. In the early days of supercritical fluid drying technology, expensive metal alkoxides were used as precursor raw materials, and alcohols were used as drying media. There were problems such as high raw material costs, harsh process conditions, and difficulties in industrial scale-up.
发明内容:Invention content:
本发明的目的是提供一种原料便宜、工艺简单、易于工业化放大的纳米ZrO2的生产方法。The purpose of the present invention is to provide a production method of nano- ZrO2 with cheap raw materials, simple process and easy industrial scale-up.
本发明制备纳米ZrO2的方法包括如下步骤:The present invention prepares nano ZrO The method comprises the steps:
(1)在室温搅拌条件下,将氨水加入0.15-0.3M浓度的硝酸氧锆水溶液中,调节pH值到5-10,制成水凝胶,陈化,抽滤,用无水乙醇置换凝胶中的水,得醇凝胶;(1) Under the condition of stirring at room temperature, add ammonia water to 0.15-0.3M zirconyl nitrate aqueous solution, adjust the pH value to 5-10, make a hydrogel, age, filter, and replace the coagulation with absolute ethanol The water in the glue yields an alcohol gel;
(2)将温度305-345K、压力9-35Mpa的超临界CO2流体连续通过醇凝胶,含有乙醇的CO2降压进入温度305-355K、压力6-9Mpa的分离器,乙醇析出回收,CO2循环利用,待分离器中不再有乙醇析出时,将分离器缓慢卸压,得到白色的原粉;(2) The supercritical CO2 fluid with a temperature of 305-345K and a pressure of 9-35Mpa is continuously passed through the alcohol gel, and the CO2 containing ethanol is decompressed into a separator with a temperature of 305-355K and a pressure of 6-9Mpa, and the ethanol is separated out and recovered. CO2 recycling, when ethanol is no longer precipitated in the separator, the separator is slowly depressurized to obtain white raw powder;
(3)将原粉升温至673-1073K,保温2-10小时,冷却,得到ZrO2粉体。(3) Raise the temperature of the original powder to 673-1073K, keep it warm for 2-10 hours, and cool to obtain ZrO 2 powder.
与现有技术相比本发明具有如下优点;Compared with the prior art, the present invention has the following advantages;
1、以无机锆盐为原料,降低了生产成本;1. Using inorganic zirconium salts as raw materials reduces production costs;
2、以CO2替代常用的乙醇等有机溶剂进行超临界流体干燥,操作温度显著降低,工艺简单,容易控制;2. Using CO2 instead of commonly used organic solvents such as ethanol for supercritical fluid drying, the operating temperature is significantly reduced, the process is simple, and it is easy to control;
3、易于实现工业化;3. Easy to realize industrialization;
4、本方法合成的ZrO2粉体具有粒径小、单分散性能好、比表面积高、孔体积大、热稳定性好等特点。4. The ZrO2 powder synthesized by this method has the characteristics of small particle size, good monodispersity, high specific surface area, large pore volume, good thermal stability and the like.
具体实施方式: Detailed ways:
实施例1:Example 1:
(1)在室温搅拌条件下,将氨水加入0.2M浓度的硝酸氧锆水溶液中,调节pH值到9.5,制成水凝胶,陈化4小时,抽滤,用无水乙醇置换凝胶中的水,得醇凝胶。(1) Under the condition of stirring at room temperature, add ammonia water to 0.2M concentration of zirconyl nitrate aqueous solution, adjust the pH value to 9.5, make a hydrogel, age for 4 hours, filter with suction, replace the gel with absolute ethanol of water to obtain alcohol gel.
(2)将温度325K、压力15Mpa的超临界CO2流体连续通过醇凝胶,含有乙醇的CO2降压进入温度335K、压力6Mpa的分离器,乙醇析出回收,CO2循环利用。待分离器中不再有乙醇析出时,将分离器缓慢卸压,即可得到白色的原粉。(2) The supercritical CO2 fluid with a temperature of 325K and a pressure of 15Mpa is continuously passed through the alcohol gel, and the CO2 containing ethanol is decompressed into a separator with a temperature of 335K and a pressure of 6Mpa. The ethanol is precipitated and recovered, and the CO2 is recycled. When ethanol is no longer precipitated in the separator, the pressure of the separator is slowly released to obtain white raw powder.
(3)将原粉升温至673K,保温2小时,冷却,得到ZrO2粉体。其物理性质见表1。(3) Raise the temperature of the original powder to 673K, keep it warm for 2 hours, and cool to obtain ZrO2 powder. Its physical properties are listed in Table 1.
实施例2:Example 2:
(1)在室温搅拌条件下,将氨水加入0.2M浓度的硝酸氧锆水溶液中,调节pH值到5.5,制成水凝胶,陈化4小时,抽滤,用无水乙醇置换凝胶中的水,得醇凝胶。(1) Under stirring conditions at room temperature, add ammonia water to a 0.2M zirconium oxynitrate aqueous solution, adjust the pH value to 5.5, make a hydrogel, age for 4 hours, filter with suction, and replace the gel with absolute ethanol of water to obtain alcohol gel.
(2)将温度315K、压力12Mpa的超临界CO2流体连续通过醇凝胶,含有乙醇的CO2降压进入温度325K、压力6Mpa的分离器,乙醇析出回收,CO2循环利用。待分离器中不再有乙醇析出时,将分离器缓慢卸压,即可得到白色的原粉。(2) The supercritical CO2 fluid with a temperature of 315K and a pressure of 12Mpa is continuously passed through the alcohol gel, and the CO2 containing ethanol is decompressed into a separator with a temperature of 325K and a pressure of 6Mpa. The ethanol is precipitated and recovered, and the CO2 is recycled. When ethanol is no longer precipitated in the separator, the pressure of the separator is slowly released to obtain white raw powder.
(3)将原粉升温至773K,保温4小时,冷却,得到ZrO2粉体。其物理性质见表1。(3) Raise the temperature of the original powder to 773K, keep it warm for 4 hours, and cool to obtain ZrO2 powder. Its physical properties are listed in Table 1.
实施例3:Example 3:
(1)在室温搅拌条件下,将氨水加入0.15M浓度的硝酸氧锆水溶液中,调节pH值到7.5,制成水凝胶,陈化4小时,抽滤,用无水乙醇置换凝胶中的水,得醇凝胶。(1) Under the condition of stirring at room temperature, add ammonia water to a 0.15M zirconyl nitrate aqueous solution, adjust the pH value to 7.5, make a hydrogel, age for 4 hours, filter with suction, and replace the gel with absolute ethanol of water to obtain alcohol gel.
(2)将温度335K、压力20Mpa的超临界CO2流体连续通过醇凝胶,含有乙醇的CO2降压进入温度325K、压力6Mpa的分离器,乙醇析出回收,CO2循环利用。待分离器中不再有乙醇析出时,将分离器缓慢卸压,即可得到白色的原粉。(2) The supercritical CO2 fluid with a temperature of 335K and a pressure of 20Mpa is continuously passed through the alcohol gel, and the CO2 containing ethanol is decompressed into a separator with a temperature of 325K and a pressure of 6Mpa. The ethanol is separated out and recovered, and the CO2 is recycled. When ethanol is no longer precipitated in the separator, the pressure of the separator is slowly released to obtain white raw powder.
(3)将原粉升温至873K,保温6小时,冷却,得到ZrO2粉体。其物理性质见表1。(3) Raise the temperature of the original powder to 873K, keep it warm for 6 hours, and cool to obtain ZrO2 powder. Its physical properties are listed in Table 1.
实施例4:Example 4:
(1)在室温搅拌条件下,将氨水加入0.3M浓度的硝酸氧锆水溶液中,调节pH值到8.5,制成水凝胶,陈化4小时,抽滤,用无水乙醇置换凝胶中的水,得醇凝胶。(1) Under the condition of stirring at room temperature, add ammonia water to a 0.3M zirconyl nitrate aqueous solution, adjust the pH value to 8.5, make a hydrogel, age for 4 hours, filter with suction, and replace the gel with absolute ethanol of water to obtain alcohol gel.
(2)将温度335K、压力30Mpa的超临界CO2流体连续通过醇凝胶,含有乙醇的CO2降压进入温度345K、压力6Mpa的分离器,乙醇析出回收,CO2循环利用。待分离器中不再有乙醇析出时,将分离器缓慢卸压,即可得到白色的原粉。(2) The supercritical CO2 fluid with a temperature of 335K and a pressure of 30Mpa is continuously passed through the alcohol gel, and the CO2 containing ethanol is decompressed into a separator with a temperature of 345K and a pressure of 6Mpa. The ethanol is precipitated and recovered, and the CO2 is recycled. When ethanol is no longer precipitated in the separator, the pressure of the separator is slowly released to obtain white raw powder.
(3)将原粉升温至1073K,保温5小时,冷却,得到ZrO2粉体。其物理性质见表1。(3) Raise the temperature of the original powder to 1073K, keep it warm for 5 hours, and cool to obtain ZrO 2 powder. Its physical properties are listed in Table 1.
表1ZrO2纳米粉体的物理性质Table 1 The physical properties of ZrO2 nanopowders
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB031467628A CN100417597C (en) | 2003-06-25 | 2003-06-25 | Method for preparing nano ZrO2 by drying supercritical CO2 liquid |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB031467628A CN100417597C (en) | 2003-06-25 | 2003-06-25 | Method for preparing nano ZrO2 by drying supercritical CO2 liquid |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1480403A CN1480403A (en) | 2004-03-10 |
| CN100417597C true CN100417597C (en) | 2008-09-10 |
Family
ID=34156110
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB031467628A Expired - Fee Related CN100417597C (en) | 2003-06-25 | 2003-06-25 | Method for preparing nano ZrO2 by drying supercritical CO2 liquid |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100417597C (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103214586B (en) * | 2012-01-19 | 2015-08-26 | 中国科学院化学研究所 | A kind of preparation method of redispersible nanoparticle powder body material |
| CN103771513B (en) * | 2014-01-25 | 2016-02-17 | 东莞市地大纳米材料有限公司 | A kind of high dispersion nanometer oxide zirconium raw powder's production technology |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1084303C (en) * | 1998-11-04 | 2002-05-08 | 中国科学院山西煤炭化学研究所 | Process for preparing nm-class crystal sol of zirconium oxide |
| US6387341B1 (en) * | 1997-05-15 | 2002-05-14 | Commissariat A L'energie Atomique | Method for making single or mixed metal oxides or silicon oxide |
| CN1102430C (en) * | 2000-04-28 | 2003-03-05 | 清华大学 | Preparation method of catalyst for methane reforming reaction by using carbon dioxide |
-
2003
- 2003-06-25 CN CNB031467628A patent/CN100417597C/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6387341B1 (en) * | 1997-05-15 | 2002-05-14 | Commissariat A L'energie Atomique | Method for making single or mixed metal oxides or silicon oxide |
| CN1084303C (en) * | 1998-11-04 | 2002-05-08 | 中国科学院山西煤炭化学研究所 | Process for preparing nm-class crystal sol of zirconium oxide |
| CN1102430C (en) * | 2000-04-28 | 2003-03-05 | 清华大学 | Preparation method of catalyst for methane reforming reaction by using carbon dioxide |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1480403A (en) | 2004-03-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Iida et al. | Titanium dioxide hollow microspheres with an extremely thin shell | |
| CN101962168B (en) | Method for preparing nano powder material | |
| He et al. | Controlled synthesis of Co3O4 nanoparticles through oriented aggregation | |
| CN110203969A (en) | A kind of high dispersive cubic phase nano zirconium oxide and preparation method thereof | |
| Lei et al. | Low temperature processing of dense nanocrystalline scandia-doped zirconia (ScSZ) ceramics | |
| CN1186253C (en) | Prepn of mesoporous spherical nano Sio2 particle | |
| CN102093050B (en) | Preparation method of organic network of ZrO2 nanometer powder | |
| CN102160984B (en) | Method for preparing magnetic nanometer titanium oxide composite material | |
| CN101811733A (en) | Visible light-responded basic bismuth bromide nanostructured microsphere material and preparation method thereof | |
| CN111377737B (en) | Tetragonal crystal phase nano-doped zirconia ceramic powder material and preparation method thereof | |
| CN101913649A (en) | Method for preparing ordered layered nano/mesoporous structure zirconia polycrystalline powder using surfactant as template | |
| CN101215001A (en) | A kind of preparation method of rutile type titanium dioxide microsphere | |
| Zhao et al. | Controllable Synthesis and Crystallization of Nanoporous TiO2 Deep-Submicrospheres and Nanospheres via an Organic Acid-Mediated Sol− Gel Process | |
| Yang et al. | Modified wet chemical method synthesis of nano-ZrO2 and its application in preparing membranes | |
| CN106178981A (en) | A kind of low temperature prepares the method for titanium oxide ceramics ultrafilter membrane | |
| CN106145097A (en) | Preparation method of reduced graphene oxide with controllable hydrophilicity and hydrophobicity | |
| CN103395835B (en) | Preparation method of oil soluble monoclinic crystal type nano zirconium dioxide particle | |
| CN102126752A (en) | Method for preparing tetragonal phase zirconia nanorod | |
| CN100551829C (en) | A kind of preparation method of titanium dioxide hollow microsphere | |
| CN101967057A (en) | Zirconium oxide-based solid electrolyte powder for automobile oxygen sensor and preparation method thereof | |
| CN110240195A (en) | A kind of preparation method of monoclinic zirconia nano product | |
| CN104894636A (en) | Preparation method of potassium octatitanate whisker | |
| CN100417597C (en) | Method for preparing nano ZrO2 by drying supercritical CO2 liquid | |
| CN100404425C (en) | A kind of method that prepares nanometer ceria by combustion method | |
| Zhang et al. | Facile synthesis of well-defined CeO2 hollow spheres with a tunable pore structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080910 Termination date: 20120625 |