CN100410098C - Electric vehicle and its control method - Google Patents
Electric vehicle and its control method Download PDFInfo
- Publication number
- CN100410098C CN100410098C CNB2004100904638A CN200410090463A CN100410098C CN 100410098 C CN100410098 C CN 100410098C CN B2004100904638 A CNB2004100904638 A CN B2004100904638A CN 200410090463 A CN200410090463 A CN 200410090463A CN 100410098 C CN100410098 C CN 100410098C
- Authority
- CN
- China
- Prior art keywords
- torque
- vehicle speed
- braking force
- output
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本发明涉及电动汽车及其控制方法。本发明的目的在于使与车速和制动器操作相对应的蠕变转矩发挥作用并且确保平滑的制动。在判定为加速器接通且制动器接通、判定为正在行驶并且不是坡路时(S120~S142),设定以车速V越大则变得越小的倾向设定的车速对应转矩Tv(S110),同时设定以制动转矩Td越大而变得越小的倾向设定的制动力对应转矩Tb(S150),将所设定的车速对应转矩Tv和制动力对应转矩Tb之中较小的一方设定为蠕变转矩Tc(S160)。
The invention relates to an electric vehicle and a control method thereof. An object of the present invention is to make creep torque corresponding to vehicle speed and brake operation act and ensure smooth braking. When it is determined that the accelerator is on and the brakes are on, and it is determined that the road is running and the road is not on a slope (S120-S142), the vehicle speed-corresponding torque Tv is set in a tendency to become smaller as the vehicle speed V increases (S110 ), at the same time set the braking force corresponding torque Tb (S150) that is set with the tendency that the braking torque Td becomes smaller as the braking torque becomes larger (S150), and the set vehicle speed corresponding torque Tv and braking force corresponding torque Tb The smaller one is set as the creep torque Tc (S160).
Description
技术领域 technical field
本发明涉及电动汽车及其控制方法。The invention relates to an electric vehicle and a control method thereof.
背景技术 Background technique
以往,作为这种电动汽车,提出了一种将与制动器操作量成反比例的转矩作为蠕变转矩由电动机输出的类型、及将与车速成反比例的转矩作为蠕变转矩由电动机输出的类型(例如,参照特开2001-103618号公报和特开2001-218303号公报)。在这些电动汽车中,若在变速位置(换档位置)在行驶范围内没有踩下油门踏板(加速踏板)时踩下了制动踏板,则将与驾驶员的制动器操作量成反比例的转矩作为蠕变转矩而从向车轴输出动力的电动机输出,或将与车速成反比例的转矩作为蠕变转矩而从向车轴输出动力的电动机输出。Conventionally, as such an electric vehicle, a type in which a torque inversely proportional to a brake operation amount is output from a motor as a creep torque, and a type in which a torque inversely proportional to a vehicle speed is output from a motor as a creep torque has been proposed. type (for example, refer to JP-A-2001-103618 and JP-A-2001-218303). In these electric vehicles, if the brake pedal is depressed without depressing the accelerator pedal (accelerator pedal) when the shift position (shift position) is within the travel range, the torque that is inversely proportional to the driver's brake operation amount will be An electric motor that outputs power to an axle is output as a creep torque, or a torque inversely proportional to a vehicle speed is output as a creep torque from an electric motor that outputs power to an axle.
发明内容 Contents of the invention
在上述电动汽车中,将与制动器操作量成反比例的转矩作为蠕变转矩的控制和将与车速成反比例的转矩作为蠕变转矩的控制,是分别地进行的,所以在将与制动器操作量成反比例的转矩作为蠕变转矩的控制中,不能输出基于车速的蠕变转矩,相反在将与车速成反比例的转矩作为蠕变转矩的控制中,不能输出基于制动器操作量的蠕变转矩。虽然也考虑了同时进行这两种控制,但由于制动器操作量和车速在制动中变化,输出的蠕变转矩也变化,所以会发生阻碍平滑的制动的情况。In the above-mentioned electric vehicle, the control of the torque inversely proportional to the brake operation amount as the creep torque and the control of the torque inversely proportional to the vehicle speed as the creep torque are performed separately. In the control where the torque inversely proportional to the brake operation amount is used as the creep torque, the creep torque based on the vehicle speed cannot be output. The creep torque of the manipulated volume. Simultaneous execution of these two kinds of control is considered, but since the brake operation amount and the vehicle speed change during braking, the output creep torque also changes, and smooth braking may be hindered.
本发明的电动汽车以及控制方法,其目的之一在于使与车速和制动器操作相对应的蠕变转矩发挥作用。另外,本发明的电动汽车及其控制方法的另一目的在于确保平滑的制动。One of the objects of the electric vehicle and the control method of the present invention is to make a creep torque corresponding to the vehicle speed and brake operation act. In addition, another object of the electric vehicle and its control method of the present invention is to ensure smooth braking.
本发明的电动汽车及其控制方法,为了达到上述目的的至少一部分,而采取以下方案。The electric vehicle and its control method according to the present invention adopt the following measures in order to achieve at least part of the above objects.
本发明的电动汽车,是具备可向车轴输出动力的电动机的电动汽车,其特征在于,具备:检测车速的车速检测装置;根据该检测出的车速设定车速对应转矩的车速对应转矩设定装置;检测基于驾驶员对制动器的操作而产生的制动器制动力的制动器制动力检测装置;根据该检测出的制动器制动力设定制动力对应转矩的制动力对应转矩设定装置;根据上述所设定的车速对应转矩和上述所设定的制动力对应转矩,设定应从上述电动机输出的蠕变转矩的蠕变转矩设定装置;以及以在规定的条件成立时向车轴输出上述所设定的蠕变转矩的方式控制上述电动机的电动机控制装置。The electric vehicle of the present invention is an electric vehicle provided with an electric motor capable of outputting power to an axle, and is characterized in that it includes: a vehicle speed detecting device for detecting a vehicle speed; a vehicle speed corresponding torque setting device for setting a vehicle speed corresponding torque based on the detected vehicle speed; a braking force detection device for detecting the brake braking force generated based on the driver's operation on the brake; a braking force corresponding torque setting device for setting the braking force corresponding torque according to the detected brake braking force; according to a creep torque setting device for setting the creep torque to be output from the electric motor according to the above-set vehicle speed-corresponding torque and the above-set braking force-corresponding torque; and a motor control device for controlling the electric motor so that the axle shaft outputs the set creep torque.
在本发明的电动汽车中,根据基于车速而来的车速对应转矩和基于制动器制动力而来的制动力对应转矩,来设定应该从能够向车轴输出动力的电动机输出的蠕变转矩,在规定的条件成立时,以向车轴输出所设定的蠕变转矩的方式控制电动机。因此,能够使与车速和制动器制动力相对应的蠕变转矩发挥作用。In the electric vehicle of the present invention, the creep torque to be output from the electric motor capable of outputting power to the axle is set based on the vehicle speed corresponding torque based on the vehicle speed and the braking force corresponding torque based on the brake braking force , when a predetermined condition is satisfied, the motor is controlled so as to output the set creep torque to the axle. Therefore, creep torque corresponding to the vehicle speed and the braking force of the brake can be exerted.
在这样的本发明的电动汽车中,还可以设为,上述蠕变转矩设定装置,是将上述所设定的车速对应转矩和上述所设定的制动力对应转矩之中较小一方的转矩作为上述蠕变转矩来设定的装置。这样一来,能够按照车速、或制动力中的任何一个来使蠕变转矩发生变动,同时能够抑制产生过大的蠕变转矩作用。其结果是,能够确保平滑的制动。In such an electric vehicle according to the present invention, the creep torque setting device may set the smaller of the above-mentioned set vehicle speed-corresponding torque and the above-mentioned set braking force-corresponding torque One torque is set as the above-mentioned creep torque. In this way, the creep torque can be varied according to either the vehicle speed or the braking force, and at the same time, the occurrence of an excessive creep torque action can be suppressed. As a result, smooth braking can be ensured.
另外,在本发明的电动汽车中,还可以设为,上述蠕变转矩设定装置,是以将上述所设定的制动力对应转矩作为限制转矩而对上述所设定的车速对应转矩进行了限制之后的转矩为上述蠕变转矩来设定的装置。这样一来,就能够用制动力对应转矩来限制基于车速而来的车速对应转矩,从而设定蠕变转矩。其结果是,即使在车速对应转矩变得过大时,也会因为被制动力对应转矩所限制而能够抑制过大的蠕变转矩作用,其结果是,能够确保平滑的制动。In addition, in the electric vehicle of the present invention, it is also possible that the creep torque setting device responds to the set vehicle speed by using the set braking force corresponding torque as a limiting torque. The torque after the torque is limited is set as the above-mentioned creep torque. In this way, it is possible to set the creep torque by limiting the vehicle speed-corresponding torque based on the vehicle speed with the braking force-corresponding torque. As a result, even when the vehicle speed-corresponding torque becomes too large, it is restricted by the braking force-corresponding torque, thereby suppressing the excessive creep torque from acting, and as a result, smooth braking can be ensured.
在本发明的电动汽车中,还可以设为,上述车速对应转矩设定装置,是以上述所检测出的车速越大则变得越小的倾向来设定上述车速对应转矩的装置;上述制动力对应转矩设定装置,是以上述所检测出的制动力越大则变得越小的倾向来设定上述制动力对应转矩的装置。In the electric vehicle of the present invention, the vehicle speed-corresponding torque setting device may be configured to set the vehicle speed-corresponding torque with a tendency that the detected vehicle speed becomes smaller as the vehicle speed increases; The braking force corresponding torque setting device is a device for setting the braking force corresponding torque in a tendency that the detected braking force becomes smaller as it increases.
在本发明的电动汽车,还可以设为,具备内燃机、以及可利用来自该内燃机的动力的一部分来发出可供给给上述电动机的电力的发电装置。在这种情况下,还可以设为,上述发电装置,是与上述内燃机的输出轴和上述驱动轴相连接,且可随着电动和动力的输入输出而将来自该内燃机的动力的至少一部分输出给该驱动轴的装置。进而在这种情况下,还可以设为,上述发电装置,是具备三轴式动力输入输出装置和发电机的装置,该三轴式动力输入输出装置,是与上述内燃机的输出轴、上述驱动轴和第三轴这三根轴相连接,且根据相对于该三根轴之中的任意的二根轴输入输出的动力而对剩余的轴进行动力的输入输出的三轴式动力输入输出装置,该发电机是相对于上述第三轴进行动力的输入输出的发电机;并且还可以设为,上述发电装置,是具有安装在上述内燃机的输出轴上的第1转子和安装在上述驱动轴上的第2转子,通过随着该第2转子相对于该第1转子的相对旋转而由该第1转子和该第2转子的电磁作用所产生的电力的输入输出,将来自该内燃机的动力的至少一部分输出给该驱动轴的成对转子发电机。The electric vehicle according to the present invention may also include an internal combustion engine and a power generator capable of generating electric power that can be supplied to the electric motor by using a part of the power from the internal combustion engine. In this case, the above-mentioned power generating device may be connected to the output shaft of the above-mentioned internal combustion engine and the above-mentioned drive shaft, and at least part of the power from the internal combustion engine may be output along with the input and output of electric power and power. device for the drive shaft. Furthermore, in this case, the above-mentioned power generating device may also be configured as a device having a three-shaft power input and output device and a generator, and the three-shaft power input and output device is connected to the output shaft of the above-mentioned internal combustion engine, the above-mentioned drive A three-axis power input and output device that connects the three shafts, the three shafts and the third shaft, and performs power input and output to the remaining shafts according to the power input and output to any two shafts of the three shafts. The generator is a generator that performs power input and output with respect to the third shaft; and the generator may also be configured to include a first rotor mounted on the output shaft of the internal combustion engine and a first rotor mounted on the drive shaft. The second rotor transfers at least part of the power from the internal combustion engine through the input and output of electric power generated by the electromagnetic action between the first rotor and the second rotor as the second rotor rotates relative to the first rotor. A portion of the output goes to the twin rotor generators of the drive shaft.
本发明的电动汽车的控制方法,是具备可向车轴输出动力的电动机的电动汽车的控制方法,其包括以下步骤:(a)检测车速;(b)根据该检测出的车速设定车速对应转矩;(c)检测基于驾驶员对制动器的操作而产生的制动器制动力;(d)根据该检测出的制动器制动力设定制动力对应转矩;(e)将上述所设定的车速对应转矩和上述所设定的制动力对应转矩之中较小一方的转矩,作为应从上述电动机输出的蠕变转矩来设定;(f)以在规定的条件下向车轴输出上述所设定的蠕变转矩的方式控制上述电动机。The control method of the electric vehicle of the present invention is a control method of the electric vehicle equipped with an electric motor capable of outputting power to the axle, which includes the following steps: (a) detecting the vehicle speed; (b) setting the corresponding speed of the vehicle according to the detected vehicle speed; (c) detect the brake braking force generated based on the driver’s operation on the brake; (d) set the braking force corresponding torque according to the detected brake braking force; (e) correspond the above set vehicle speed to The smaller one of the torque and the torque corresponding to the braking force set above is set as the creep torque to be output from the above-mentioned motor; (f) to output the above-mentioned torque to the axle under specified conditions The above motor is controlled by means of the set creep torque.
根据本发明的电动汽车的控制方法,把基于车速而来的车速对应转矩和基于制动器制动力而来的制动力对应转矩之中的较小一方的转矩,设定为应当从能够向车轴输出动力的电动机输出的蠕变转矩,在规定的条件下,以向车轴输出所设定的蠕变转矩的方式,对电动机进行控制,因此,车速或制动器制动力中的任何一个都能够影响蠕变转矩的变化,同时能够抑制过大的蠕变转矩作用,其结果是能够确保平滑的制动。According to the control method of the electric vehicle of the present invention, the torque corresponding to the vehicle speed based on the vehicle speed and the torque corresponding to the braking force based on the braking force of the brake are set so that the torque should be changed from the The creep torque output by the motor that outputs power to the axle controls the motor in such a way that it outputs the set creep torque to the axle under specified conditions. Therefore, either the vehicle speed or the braking force of the brake The variation of the creep torque can be influenced, and at the same time, the action of excessive creep torque can be suppressed, as a result, smooth braking can be ensured.
在这样的本发明的电动汽车控制方法中,还可以设为,上述步骤(b),是以上述所检测出的车速越大则变得越小的倾向来设定上述车速对应转矩的步骤;上述步骤(d),是以上述所检测出的制动力越大则变得越小的倾向来设定上述制动力对应转矩的步骤。In such an electric vehicle control method of the present invention, the step (b) may be a step of setting the vehicle speed-corresponding torque with a tendency that the detected vehicle speed becomes smaller as the vehicle speed increases. The above-mentioned step (d) is a step of setting the above-mentioned braking force-corresponding torque with a tendency that the detected braking force becomes smaller as it is larger.
附图说明 Description of drawings
图1是表示本发明一个实施例的电动汽车20的简要构成的构成图。FIG. 1 is a configuration diagram showing a schematic configuration of an
图2是表示由电子控制单元40执行的蠕变转矩设定程序的一例的流程图。FIG. 2 is a flowchart showing an example of a creep torque setting program executed by the
图3是表示车速对应转矩设定图表的一例的说明图。3 is an explanatory diagram showing an example of a vehicle speed versus torque setting map.
图4是表示制动力对应转矩设定图表的一例的说明图。FIG. 4 is an explanatory diagram showing an example of a braking force versus torque setting map.
图5是表示制动时的制动转矩Td、车速V、车速对应转矩Tv、制动力对应转矩Tb、蠕变转矩Tc的随时间变化的一例的说明图。5 is an explanatory diagram showing an example of temporal changes of braking torque Td, vehicle speed V, vehicle speed-corresponding torque Tv, braking force-corresponding torque Tb, and creep torque Tc during braking.
图6是表示变形例的电动汽车120的概略构成的构成图。FIG. 6 is a configuration diagram showing a schematic configuration of an
图7是表示变形例的电动汽车220的概略构成的构成图。FIG. 7 is a configuration diagram showing a schematic configuration of an
图8是表示变形例的电动汽车320的概略构成的构成图。FIG. 8 is a configuration diagram showing a schematic configuration of an
具体实施方式 Detailed ways
下面,对本发明的具体的实施方式利用实施例进行说明。图1是表示本发明的一个实施例的电动汽车20的概略构成的构成图。实施例的电动汽车20,如图所示,具备向经由差动器24而与驱动轮22a、22b相连接的驱动轴26输出动力的行驶用的电机30、经由转换器34而向电机30提供电力的蓄电池36、和控制车辆整体的电子控制单元40。Next, specific embodiments of the present invention will be described using examples. FIG. 1 is a configuration diagram showing a schematic configuration of an
例如,电机30作为众所周知的PM型同步发电电动机而构成,由来自转换器34的三相交流电来驱动。转换器34也是作为具有6个开关元件的众所周知的转换回路而构成的,由PWM控制将来自蓄电池36的直流电作为模拟的三相交流电供给给电机30。For example, the
电子控制单元40,作为以CPU42为中心的微处理器而构成,除CPU42以外,还具备存储处理程序的ROM44、暂时存储数据的RAM46和图未示的输入输出端口。来自检测电机30的转子的旋转位置的旋转位置检测传感器32的检测信号、来自安装在转换器34的各相上的图未示的电流传感器的相电流、来自检测变速杆51的操作位置的变速位置传感器52的变速位置SP、来自检测加速踏板(油门踏板)53的踩下量的加速踏板位置传感器54的加速器开度Acc、来自检测制动踏板55的踩下量的制动踏板位置传感器56的制动踏板位置BP、来自车速传感器58的车速V等,通过输入端口而被输入电子控制单元40中。从电子控制单元40中,经由输出端口输出向转换器34发出的开关控制信号等。The
这样构成的实施例的电动汽车20,通过以如下方式、即从电机30中输出根据在驾驶员踩下加速踏板53时由加速踏板位置传感器54检测到的加速器开度Acc、和由车速传感器58检测到的车速V所设定的要求转矩T*的方式,来驱动控制电机30而进行行使,并通过以如下方式、即从电机30中输出根据在驾驶员踩下制动踏板55时由制动踏板位置传感器56检测到的制动踏板位置BP、和由车速传感器58检测到的车速V所被设定的制动转矩Td的方式,驱动控制电机30而进行制动。The
下面,对这种实施例的电动汽车20的动作、特别是在制动时的蠕变转矩的设定之际的动作进行说明。图2是表示由电子控制单元40执行的蠕变转矩设定程序的一例的流程图。该程序每隔规定时间(例如每8msec)重复执行一次。Next, the operation of the
当蠕变转矩设定程序开始执行时,电子控制单元40的CPU42,首先执行将来自加速踏板位置传感器54的加速器开度Acc、来自制动踏板位置传感器56的制动踏板位置BP、来自车速传感器58的车速V、制动转矩Td等在蠕变转矩的设定时所必需的数据输入的处理(步骤S100)。在此,制动转矩Td,在实施例中输入的是通过驱动控制电机30的图未示的驱动控制程序、根据加速器开度Acc、制动踏板位置BP、车速V而设定的值。制动转矩Td的设定,例如是通过以下所述、即将加速器开度Acc、制动踏板位置BP、车速V、和制动转矩Td的关系预先设为图表而预先存储在ROM44中、当加速器开度Acc、制动踏板位置BP及车速V被给出时就从图表中导出对应的制动转矩Td而进行的。When the creep torque setting program starts to execute, the
当这样输入了数据后,根据所输入的车速V来设定车速对应转矩Tv(步骤S110)。在此,车速对应转矩Tv,在实施例中,如图3所示,是通过如下所述、即将以车速越大而车速对应转矩越小的倾向设定的车速对应转矩设定图表预先存储在ROM44中、当给出车速V时就从图表中导出对应的车速对应转矩Tv而设定的。When the data is input in this way, the vehicle speed corresponding torque Tv is set based on the input vehicle speed V (step S110). Here, the vehicle speed-corresponding torque Tv is, in the embodiment, as shown in FIG. 3 , a vehicle-speed-corresponding torque setting table that is set in such a manner that the vehicle speed-corresponding torque becomes smaller as the vehicle speed increases. It is stored in the
接着,根据读入的加速器开度Acc判定加速器是否关闭(断开)(步骤S120),同时根据制动踏板位置BP判定制动器是否打开(接通)(步骤S130),进而根据车速V判定是否正在行驶(步骤S140),在判定为加速器打开(接通)、或判定为制动器关闭(断开)时,仍旧利用当前所设定的蠕变转矩Tc,在判定为没有行驶时,将蠕变转矩Tc设定为0值(步骤170)。Next, determine whether the accelerator is closed (disconnected) according to the read-in accelerator opening Acc (step S120), and simultaneously determine whether the brake is opened (connected) according to the brake pedal position BP (step S130), and then determine whether it is Traveling (step S140), when it is determined that the accelerator is open (connected) or the brake is closed (disconnected), the currently set creep torque Tc is still used, and when it is determined that there is no travel, the creep The torque Tc is set to zero value (step 170).
另一方面,在判定为加速器打开且同时判定为制动器打开,进而判定为正在行驶时,判定是否在坡路上行驶(步骤S142)。坡路行驶的判定,可利用检测路面坡度的路面坡度传感器来进行,或利用由车速V计算出的车辆加速度和由电机30输出的转矩来计算由于路面坡度而变化的车辆的平衡转矩,然后再根据该平衡转矩的大小来进行判断。在判定为正在坡路上行驶时,执行图未示的坡路用蠕变转矩设定处理(步骤S144)。关于该在坡路上的蠕变转矩的设定,由于不是本发明的核心,所以关于该处理的详细说明省略。On the other hand, when it is determined that the accelerator is on and the brakes are on, and that the vehicle is traveling, it is determined whether or not the vehicle is traveling on a slope (step S142 ). The determination of driving on a slope can be carried out by using a road gradient sensor that detects the gradient of the road, or by using the vehicle acceleration calculated from the vehicle speed V and the torque output by the
在判定为没有在坡路上行驶时,根据所输入的制动转矩Td设定制动力对应转矩Tb(步骤S150),比较所设定的车速对应转矩Tv和制动力对应转矩Tb,将较小的一方、即以制动力对应转矩Tb为限制转矩来限制车速对应转矩Tv而作为蠕变转矩Tc设定(步骤S160)。在此,制动力对应转矩Tb,在实施例中,如图4所示,是通过如下方式、即将以制动转矩Td越大则制动力对应转矩越小的倾向设定的制动力对应转矩设定图表预先存储在ROM44内、当给出制动转矩Td时就从图表中导出对应的制动力对应转矩Tb的方式设定的。When it is determined that the vehicle is not traveling on a slope, the braking force corresponding torque Tb is set according to the input braking torque Td (step S150), and the set vehicle speed corresponding torque Tv is compared with the braking force corresponding torque Tb, The smaller one, that is, the braking force corresponding torque Tb is used as the limiting torque, and the vehicle speed corresponding torque Tv is limited to set as the creep torque Tc (step S160). Here, the braking force-corresponding torque Tb is a braking force set in such a manner that the larger the braking torque Td is, the smaller the braking force-corresponding torque is, as shown in FIG. 4 in the embodiment. The corresponding torque setting table is stored in the
当这样设定了蠕变转矩Tc后,以使蠕变转矩Tc平滑地变化的方式实施平滑化处理等缓慢变化处理(步骤S180),然后结束蠕变转矩设定处理。这样实施了缓慢变化处理的蠕变转矩,由驱动控制电机30的图未示的驱动控制程序读入,被用于应从电机30输出的转矩的计算。After the creep torque Tc is set in this way, a gradual change process such as smoothing process is performed so that the creep torque Tc changes smoothly (step S180 ), and then the creep torque setting process ends. The creep torque subjected to the gradual change process in this way is read by a drive control program (not shown) that drives and controls the
图5是表示制动时的制动转矩Td、车速V、车速对应转矩Tv、制动力对应转矩Tb、蠕变转矩Tc的时间上的变化的一例的说明图。当在时间T1驾驶员踩下制动踏板55时,根据制动踏板位置BP和此时的车速V计算出制动转矩Td,并由电机30输出,所以车辆减速。车速对应转矩Tv随着车速V的减小而增加,制动力对应转矩Tb,如果考虑制动转矩Td恒定的时候,则如图所示,保持一个定值。对于蠕变转矩Tc,在车速对应转矩Tv比制动力对应转矩Tb小的时间T2以前,就直接将车速对应转矩Tv设定为蠕变转矩Tc,在时间T2以后由于制动力对应转矩Tb一方变得比车速对应转矩Tv小,所以就直接将制动力对应转矩Tb设定为蠕变转矩Tc。即所设定的蠕变转矩Tc,在时间T2以前平滑地增大,在时间T2以后保持其值。其结果,能够确保平滑的制动。5 is an explanatory diagram showing an example of temporal changes in braking torque Td, vehicle speed V, vehicle speed-corresponding torque Tv, braking force-corresponding torque Tb, and creep torque Tc during braking. When the driver depresses the
根据以上所说明的实施例的电动汽车20,对以车速V越大则越小的倾向设定的车速对应转矩Tv、和以制动转矩Td越大则越小的倾斜设定的制动力对应转矩Tb进行比较,将较小的一方设定为蠕变转矩Tc,据此,能够使与车速V和制动转矩Td相对应的蠕变转矩Tc起作用。According to the
实施例的电动汽车20,虽然是作为借助直接向驱动轴26输出动力的电机30的唯一的动力来行驶的汽车而构成的,且其中该驱动轴26经由差动齿轮24而与驱动轮22a、22b相连接;但只要是具备可向驱动轮22a、22b输出动力的电机则任何的构造都是可以的。例如,也可以是如图6所示的电动汽车120的那样,具备发动机122、与发动机122的曲轴和连结在驱动轮22a、22b上的驱动轴26相连接的行星齿轮机构124、与行星齿轮机构124相连接的可发电的电机126、随着与蓄电池36的电力的交换而与驱动轴26进行动力的输入输出的电机130的汽车,还可以如图7所示的电动汽车220的那样,具备发动机222、成对转子电机226和随着与蓄电池36的电力的交换而与驱动轴26进行动力的输入输出的电机230的汽车,其中所说的成对转子电机226,是借助通过在该发动机222的曲轴上安装的内转子226a以及在被连结在驱动轮22a、22b上的驱动轴26上安装的外转子226b的相对旋转而产生的电磁作用而驱动的成对转子电机。另外,还可以如图8所示的电动汽车320的那样,具备随着与蓄电池36的电力的交换而向经由变速器332而连结在驱动轮22a、22b上的驱动轴26输出动力的电机330、经由离合器而与该电机330的旋转轴相连接的发动机322的汽车。此外,就本质而言,电机30,因为只要是能够向驱动轮22a、22b输出动力的原动机即可,所以,即使电机以外的原动机也不会有影响。Although the
以上,对于本发明的具体的实施方式利用实施例进行了说明,但本发明并不受这样的实施例任何限定,显然在不脱离本发明的主旨的范围内,可以以各种形态来实施。As mentioned above, although the concrete embodiment of this invention was demonstrated using an Example, this invention is not limited to such an Example at all, It is obvious that it can implement in various forms in the range which does not deviate from the summary of this invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2004100904638A CN100410098C (en) | 2004-11-18 | 2004-11-18 | Electric vehicle and its control method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2004100904638A CN100410098C (en) | 2004-11-18 | 2004-11-18 | Electric vehicle and its control method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1778596A CN1778596A (en) | 2006-05-31 |
| CN100410098C true CN100410098C (en) | 2008-08-13 |
Family
ID=36769100
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2004100904638A Expired - Fee Related CN100410098C (en) | 2004-11-18 | 2004-11-18 | Electric vehicle and its control method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100410098C (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102320253B (en) * | 2011-08-26 | 2012-12-19 | 安徽巨一自动化装备有限公司 | Control method of electric vehicle power system with multigear speed-changing box |
| CN102303523B (en) * | 2011-08-26 | 2012-12-19 | 安徽巨一自动化装备有限公司 | Control method for electric vehicle power system |
| CN102303524B (en) * | 2011-08-26 | 2012-12-19 | 安徽巨一自动化装备有限公司 | Control method for electric vehicle power system with clutch device |
| US9308831B2 (en) * | 2012-04-27 | 2016-04-12 | GM Global Technology Operations LLC | System and method for controlling vehicle creep torque |
| CN107539300B (en) * | 2017-08-30 | 2019-11-12 | 北京新能源汽车股份有限公司 | Braking method and device for remotely driving electric automobile, controller and electric automobile |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5789877A (en) * | 1995-05-19 | 1998-08-04 | Toyota Jidosha Kabushiki Kaisha | Power transmitting apparatus and method of controlling the same |
| JPH118912A (en) * | 1997-06-16 | 1999-01-12 | Mitsubishi Motors Corp | Electric vehicle motor torque control device |
| JP2000127805A (en) * | 1998-10-27 | 2000-05-09 | Toyota Motor Corp | Vehicle braking device and vehicle traveling control device |
| JP2001103618A (en) * | 1999-09-28 | 2001-04-13 | Fuji Heavy Ind Ltd | Electric vehicle control device |
| JP2002142310A (en) * | 2000-11-06 | 2002-05-17 | Mitsubishi Motors Corp | Vehicle motor torque control device |
| US20040143384A1 (en) * | 2001-06-28 | 2004-07-22 | Friedrich Graf | Method for controlling a drive train on a motor vehicle |
-
2004
- 2004-11-18 CN CNB2004100904638A patent/CN100410098C/en not_active Expired - Fee Related
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5789877A (en) * | 1995-05-19 | 1998-08-04 | Toyota Jidosha Kabushiki Kaisha | Power transmitting apparatus and method of controlling the same |
| JPH118912A (en) * | 1997-06-16 | 1999-01-12 | Mitsubishi Motors Corp | Electric vehicle motor torque control device |
| JP2000127805A (en) * | 1998-10-27 | 2000-05-09 | Toyota Motor Corp | Vehicle braking device and vehicle traveling control device |
| JP2001103618A (en) * | 1999-09-28 | 2001-04-13 | Fuji Heavy Ind Ltd | Electric vehicle control device |
| JP2002142310A (en) * | 2000-11-06 | 2002-05-17 | Mitsubishi Motors Corp | Vehicle motor torque control device |
| US20040143384A1 (en) * | 2001-06-28 | 2004-07-22 | Friedrich Graf | Method for controlling a drive train on a motor vehicle |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1778596A (en) | 2006-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7347803B2 (en) | Drive apparatus for hybrid vehicle and control method and control device thereof | |
| JP4066974B2 (en) | Power output device and automobile equipped with the same | |
| KR101558812B1 (en) | Motor torque control method in coasting state of hybrid electric vehicle | |
| JP3612938B2 (en) | Automatic stop / start device for internal combustion engine for vehicle | |
| JP4935268B2 (en) | Vehicle control device | |
| CN105579313B (en) | Controls for hybrid vehicles | |
| EP1860012A2 (en) | Engine Start Control | |
| JP4265564B2 (en) | Vehicle and control method thereof | |
| JP2008167540A (en) | Vehicle control device, control method, program for realizing the method, and recording medium recording the program | |
| JP3790964B2 (en) | Series hybrid vehicle that can be operated without battery | |
| CN103097220B (en) | Speed change control device, hybrid electric vehicle and speed change control method | |
| CN103502070A (en) | Control device | |
| JP2005240735A (en) | Vehicle drive control device and vehicle drive control method | |
| JP3685146B2 (en) | Control device for hybrid vehicle | |
| JP3931852B2 (en) | Electric vehicle and control method thereof | |
| US20120065822A1 (en) | Speed control method and speed control device for automatic transmission | |
| JP4259216B2 (en) | Automobile and control method thereof | |
| CN112368172B (en) | Control device | |
| CN100410098C (en) | Electric vehicle and its control method | |
| JP2012091573A (en) | Device and method for controlling torque | |
| JP3925713B2 (en) | Control device for hybrid vehicle | |
| JP2006050811A (en) | Electric car | |
| JP2009011057A (en) | Vehicle control device | |
| JP2006042528A (en) | Automobile and control method thereof | |
| JP3807024B2 (en) | Control device for compound drive system for vehicle |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080813 Termination date: 20151118 |
|
| EXPY | Termination of patent right or utility model |