CN100428621C - A brushless DC motor frequency conversion control device - Google Patents
A brushless DC motor frequency conversion control device Download PDFInfo
- Publication number
- CN100428621C CN100428621C CNB2006100008545A CN200610000854A CN100428621C CN 100428621 C CN100428621 C CN 100428621C CN B2006100008545 A CNB2006100008545 A CN B2006100008545A CN 200610000854 A CN200610000854 A CN 200610000854A CN 100428621 C CN100428621 C CN 100428621C
- Authority
- CN
- China
- Prior art keywords
- motor
- output
- current
- brushless
- bus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明公开一种无刷直流电动机的变频控制装置,包括:串联在直流母线上的检测电阻;智能变频模块;控制单元,用于接收所述检测电阻输出的母线电流检测信号,根据该母线电流检测信号以及所述智能变频模块中大功率电子开关器件的开关逻辑状态,计算获得无刷直流电动机的三相输入电流,根据该无刷直流电动机的三相输入电流计算获得其转子位置,并根据该转子位置以及期望的电动机转速产生控制智能变频模块的大功率电子开关器件的开关信号并输出;所述控制单元包括电流检测分析单元、计算控制单元。该控制方法可以使电动机获得更为良好的调速性能。
The invention discloses a frequency conversion control device for a brushless DC motor, comprising: a detection resistor connected in series on a DC bus; an intelligent frequency conversion module; and a control unit for receiving a bus current detection signal output by the detection resistor, and according to the bus current The detection signal and the switching logic state of the high-power electronic switching device in the intelligent frequency conversion module are calculated to obtain the three-phase input current of the brushless DC motor, and the rotor position is obtained according to the calculation of the three-phase input current of the brushless DC motor, and according to The rotor position and the expected motor speed generate and output switching signals for controlling the high-power electronic switching devices of the intelligent frequency conversion module; the control unit includes a current detection and analysis unit and a calculation control unit. This control method can make the motor obtain better speed regulation performance.
Description
技术领域 technical field
本发明涉及变频技术领域,具体地说涉及无刷直流直流电动机变频控制装置。The invention relates to the technical field of frequency conversion, in particular to a frequency conversion control device for a brushless DC motor.
背景技术 Background technique
世界上大约5成的电力消耗都用于电动机的驱动,因此提高电动机驱动效率成为节约能源的重要方法,对于构建节约型社会具有重要意义。About 50% of the world's electricity consumption is used for driving electric motors. Therefore, improving the efficiency of electric motor driving has become an important method of saving energy and is of great significance for building an energy-saving society.
在电动机驱动技术中,普通的鼠笼式交流电动机由于结构简单,获得了广泛的应用。但是这种电动机的控制性能差,难以获得所需的转速和力矩。例如,采用普通的鼠笼式交流电驱动的空调和电冰箱的压缩机,由于无法控制电动机转速、力矩,因此压缩机工作时的制冷能力相同,无法按照需要调节压缩机制冷。因此,此种压缩机采用电动机间隔工作的方法以获得合适的控制温度。电动机反复停止、启动,造成耗电大,温度不恒定等问题,效果很不理想。In the motor drive technology, the common squirrel-cage AC motor has been widely used due to its simple structure. However, the control performance of this motor is poor, and it is difficult to obtain the required speed and torque. For example, the compressors of air conditioners and refrigerators driven by ordinary squirrel-cage alternating current cannot control the speed and torque of the motor, so the cooling capacity of the compressors is the same when they are working, and the cooling of the compressors cannot be adjusted according to the needs. Therefore, this kind of compressor adopts the method of motor interval work to obtain a suitable control temperature. The motor stops and starts repeatedly, causing problems such as large power consumption and unstable temperature, and the effect is not ideal.
由于存在上述问题,针对鼠笼式电动机的变频调速技术获得很大的发展。该种技术根据普通的鼠笼式交流电动机的特点,采用改变驱动电流频率同时维持V/F恒定的方法,实现转速控制。但是,由于鼠笼式交流电动机的电枢电流和励磁电流是耦合的,还是无法做到精确控制。目前用于鼠笼式电动机变频调速的变频调速技术中,矢量控制方法最为成熟。该方法运用现代控制理论,通过矢量转换,将交流电机中耦合的电枢电流和励磁电流解开,实现对电动机的转速控制。但是,该种控制方式仍然无法使交流电动机达到直流电动机的调速性能,对电动机转矩更无法进行精确控制。此外,这种控制方法还有调速范围窄等缺陷。而且,目前采用此种技术的变频空调无法实现真正的无级变速,而只能实现变级调速。要改变上述缺陷,只有不再使用在控制性能上有根本缺陷的交流电动机,改为使用控制特性良好的直流电动机。Due to the above problems, the frequency conversion speed regulation technology for squirrel cage motors has been greatly developed. According to the characteristics of ordinary squirrel-cage AC motors, this technology adopts the method of changing the driving current frequency while maintaining a constant V/F to achieve speed control. However, because the armature current and the excitation current of the squirrel-cage AC motor are coupled, it is still impossible to achieve precise control. The vector control method is the most mature in the frequency conversion speed regulation technology used for frequency conversion speed regulation of squirrel cage motors at present. This method uses modern control theory to decouple the coupled armature current and excitation current in the AC motor through vector conversion to realize the speed control of the motor. However, this control method still cannot make the AC motor achieve the speed regulation performance of the DC motor, let alone accurately control the motor torque. In addition, this control method also has defects such as a narrow speed range. Moreover, the frequency conversion air conditioner using this technology cannot realize real stepless speed change at present, but can only realize variable speed regulation. To change the above-mentioned defects, only the AC motor with fundamental defects in control performance is no longer used, and the DC motor with good control characteristics is used instead.
相对于交流电动机,直流电动机的电枢电流和励磁电流可以相互独立控制,易于获得良好的调速性能以及力矩控制特性。Compared with AC motors, the armature current and excitation current of DC motors can be controlled independently of each other, and it is easy to obtain good speed regulation performance and torque control characteristics.
由于上述原因,目前空调、冰箱等领域,使用直流变频技术逐渐开始普及。在日本,到2003年,95%以上的日本家庭都使用变频空调,其中95%以上的都是直流变频空调。在欧洲,从1998年开始引入变频空调,直流变频占据了相当大的比重。随着近几年来欧洲有关空调节能标准的不断提高,2004年,欧洲变频空调市场占有率达到50%以上,其中90%是直流变频空调。目前中国变频空调市场已全面进入变频空调换代时代,直流变频迅速成为当前中国消费者选择空调的首要因素,市场销量呈现倍数增长。Due to the above reasons, the use of DC frequency conversion technology has gradually become popular in the fields of air conditioners and refrigerators. In Japan, by 2003, more than 95% of Japanese households used inverter air conditioners, and more than 95% of them were DC inverter air conditioners. In Europe, inverter air conditioners have been introduced since 1998, and DC inverters account for a considerable proportion. With the continuous improvement of European energy-saving standards for air conditioners in recent years, in 2004, the market share of inverter air conditioners in Europe reached more than 50%, of which 90% were DC inverter air conditioners. At present, China's inverter air conditioner market has fully entered the era of inverter air conditioner replacement. DC frequency conversion has quickly become the primary factor for Chinese consumers to choose air conditioners, and the market sales have shown multiple growth.
直流电动机分为有刷直流电动机和无刷直流电动机。有刷直流电动机由于电刷易受磨损,存在维护困难,无故障时间短等问题。因此,无刷直流电机得到了广泛的应用。DC motors are divided into brushed DC motors and brushless DC motors. Brushed DC motors have problems such as difficult maintenance and short trouble-free time because the brushes are susceptible to wear. Therefore, brushless DC motors have been widely used.
无刷直流电动机采用永磁转子,没有三相交流异步电机中存在的转子电流消耗,具有更高的能量转换效率,并具有旋转平稳、噪声低及电机尺寸小等显著特点,是目前节能效果最好的电动机。The brushless DC motor adopts the permanent magnet rotor, which has no rotor current consumption in the three-phase AC asynchronous motor, has higher energy conversion efficiency, and has the remarkable characteristics of stable rotation, low noise and small size of the motor. It is currently the most energy-saving effect. good motor.
与有刷直流电动机不同,无刷直流电动机没有电刷,它是依靠检测转子位置信息来选择正确的换向顺序,使电动机的定子始终驱动转子旋转。Unlike brushed DC motors, brushless DC motors have no brushes, and rely on detecting rotor position information to select the correct commutation sequence so that the stator of the motor always drives the rotor to rotate.
一般情况下,采用在电动机上安装霍尔元件等传感器实现对转子位置的检测,但是,对于压缩机这类密封的无刷直流电动机,位置传感器难以安装。在这种情况下,无刷直流电动机的无传感器控制被广泛采用。In general, sensors such as Hall elements are installed on the motor to detect the rotor position. However, for sealed brushless DC motors such as compressors, it is difficult to install position sensors. In this case, sensorless control of brushless DC motors is widely used.
目前使用的无传感器直流变频调速技术中,采用过零检测法判断转子的位置。此种方法通过检测不导通相反电势的过零点信息及换向逻辑来选择最佳的换流顺序。由于过零检测法只能检测一些特定的点,而且随着电动机转速在大范围内变化,反电势的变频率也会变化,检测电路中的滤波器件会带来一定的相移,影响检测过零点的准确性;同时功率器件上续流二极管的反向电流作用,在大电流情况下也会对过零点的检测带来一定的影响;更重要的是,这种检测方式需要被检测相不导通,因此只能用于120度变频模式,而无法用于180度正弦波变频模式。由于压缩机的力矩特性是按照正弦变化的,按照正弦特性对其进行加力才能够使所加的力完全用来驱动压缩机,实现能量转换的最佳效率。要实现这一要求,必须使用180度正弦波变频模式。所以,上述采用过零检测判断转子的位置的方法由于只能用于120度变频模式,而使其应用范围受到很大的阻碍。In the currently used sensorless DC frequency conversion speed regulation technology, the zero-crossing detection method is used to judge the position of the rotor. This method selects the best commutation sequence by detecting the zero-crossing information of the non-conducting opposite potential and the commutation logic. Since the zero-crossing detection method can only detect some specific points, and as the motor speed changes in a wide range, the variable frequency of the back EMF will also change, and the filter device in the detection circuit will bring a certain phase shift, which will affect the detection process. The accuracy of the zero point; at the same time, the reverse current effect of the freewheeling diode on the power device will also have a certain impact on the detection of the zero point in the case of high current; more importantly, this detection method needs to be detected. conduction, so it can only be used in 120-degree frequency conversion mode, but not in 180-degree sine wave frequency conversion mode. Since the torque characteristic of the compressor changes sinusoidally, applying force to it according to the sinusoidal characteristic can make the added force fully used to drive the compressor, achieving the best efficiency of energy conversion. To achieve this requirement, 180-degree sine wave frequency conversion mode must be used. Therefore, the above-mentioned method of judging the position of the rotor by using zero-crossing detection can only be used in the 120-degree frequency conversion mode, and its application range is greatly hindered.
发明内容 Contents of the invention
针对上述缺陷,本发明解决的技术问题在于,提供一种无刷直流电动机变频控制装置,这种装置对转子位置的检测不需要电动机具有不导通相,从而可以满足无刷直流电动机180度正弦波变频的需要。In view of the above-mentioned defects, the technical problem to be solved by the present invention is to provide a brushless DC motor frequency conversion control device, which does not require the motor to have a non-conducting phase for the detection of the rotor position, so that it can meet the 180-degree sinusoidal phase of the brushless DC motor. Wave frequency conversion needs.
本发明提供的无刷直流电动机的变频控制装置,包括:The frequency conversion control device of the brushless DC motor provided by the present invention includes:
检测电阻,该电阻串联在直流母线上,用于获得母线电流检测信号并输出;A detection resistor, which is connected in series with the DC bus, is used to obtain and output the bus current detection signal;
智能变频模块,该智能变频模块包括由大功率电子开关器件组成的逆变器,所述大功率电子开关器件的开关控制极接收开关信号的控制,并在所述开关信号的控制下,改变开关逻辑状态,将直流母线电压逆变为三相驱动电流驱动无刷直流电动机旋转;An intelligent frequency conversion module, the intelligent frequency conversion module includes an inverter composed of high-power electronic switching devices, the switching control pole of the high-power electronic switching device receives the control of the switching signal, and under the control of the switching signal, changes the switch Logical state, inverting the DC bus voltage into a three-phase drive current to drive the brushless DC motor to rotate;
控制单元,用于接收所述检测电阻输出的母线电流检测信号,根据该母线电流检测信号以及所述智能变频模块中大功率电子开关器件的开关逻辑状态,计算获得无刷直流电动机的三相输入电流,根据该无刷直流电动机的三相输入电流计算获得其转子位置,并根据该转子位置以及期望的电动机转速产生控制智能变频模块的大功率电子开关器件的开关信号并输出;The control unit is configured to receive the bus current detection signal output by the detection resistor, and calculate and obtain the three-phase input of the brushless DC motor according to the bus current detection signal and the switching logic state of the high-power electronic switching device in the intelligent frequency conversion module Current, calculate the rotor position according to the three-phase input current of the brushless DC motor, and generate and output the switching signal for controlling the high-power electronic switching device of the intelligent frequency conversion module according to the rotor position and the expected motor speed;
所述控制单元包括:The control unit includes:
电流检测分析单元,用于接收所述检测电阻输出的母线电流检测信号,根据该母线电流检测信号以及所述智能变频模块中大功率电子开关器件的开关逻辑状态,计算获得无刷直流电动机的三相输入电流并输出;The current detection and analysis unit is used to receive the bus current detection signal output by the detection resistor, and calculate and obtain the three-phase current of the brushless DC motor according to the bus current detection signal and the switching logic state of the high-power electronic switching device in the intelligent frequency conversion module. Phase input current and output;
计算控制单元,用于接收所述电流检测分析单元输出的无刷直流电动机的三相输入电流,以及对无刷直流电动机的期望转速,根据所述电流值以及无刷直流电动机的参数计算电动机转子的位置,并结合所述期望转速,产生控制智能变频模块的大功率电子开关器件的开关信号并输出。The calculation control unit is used to receive the three-phase input current of the brushless DC motor output by the current detection and analysis unit, and the expected speed of the brushless DC motor, and calculate the motor rotor according to the current value and the parameters of the brushless DC motor Combined with the desired rotational speed, a switching signal for controlling the high-power electronic switching device of the intelligent frequency conversion module is generated and output.
优选地,所述检测电阻输出的母线电流检测信号为该电阻两端的电压降,根据该电压降以及检测电阻的阻值计算获得母线电流。Preferably, the bus current detection signal output by the detection resistor is a voltage drop across the resistor, and the bus current is obtained through calculation based on the voltage drop and the resistance value of the detection resistor.
优选地,所述检测电阻获得的母线电流检测信号提供给所述智能变频模块,用于实现过电流保护。Preferably, the bus current detection signal obtained by the detection resistor is provided to the intelligent frequency conversion module for realizing overcurrent protection.
优选地,所述智能变频模块的逆变器包括六个大功率电子开关器件,分别为UP、UN、VP、VN、WP、WN;其中UP、VP、WP的阳极连接所述直流母线的正极,阴极分别连接无刷直流电动机电源线U、V、W;UN)、VN、WN的阴极连接直流母线的负极,阳极分别连接无刷直流电动机电源线U、V、W。Preferably, the inverter of the intelligent frequency conversion module includes six high-power electronic switching devices, namely UP, UN, VP, VN, WP, and WN; wherein the anodes of UP, VP, and WP are connected to the positive pole of the DC bus , the cathodes are respectively connected to the brushless DC motor power lines U, V, W; the cathodes of UN), VN, WN are connected to the negative pole of the DC bus, and the anodes are respectively connected to the brushless DC motor power lines U, V, W.
优选地,所述大功率电子开关器件的阳极与阴极之间反向并联二极管。Preferably, a diode is connected in reverse parallel between the anode and the cathode of the high-power electronic switching device.
优选地,所述电流检测分析单元接收的所述母线电流检测信号为所述检测电阻两端的电压降,根据该电压降以及检测电阻的阻值,计算出母线电流;根据母线电流以及检测出该母线电流时逆变器各个桥的开关逻辑状态,计算获得直流电动机的三相输入电流。Preferably, the bus current detection signal received by the current detection and analysis unit is the voltage drop across the detection resistor, and the bus current is calculated according to the voltage drop and the resistance value of the detection resistor; according to the bus current and the detected When the bus current is the switching logic state of each bridge of the inverter, the three-phase input current of the DC motor is calculated.
优选地,所述计算控制单元包括:Preferably, the calculation control unit includes:
3/2转换模块,用于接收所述无刷直流电动机三相输入电流Iu、Iv、Iw,以及转子角度θ,根据上述数值,通过三相到两相的变换,实现将u、v、w三相坐标系下的电流转化为γ、δ两相静止坐标系的电流值Iγ、Iδ,并输出;The 3/2 conversion module is used to receive the three-phase input current Iu, Iv, Iw of the brushless DC motor, and the rotor angle θ. The current in the three-phase coordinate system is transformed into the current values I γ and I δ in the two-phase stationary coordinate system of γ and δ , and output;
速度位置计算模块,用于从角度误差计算模块获得转子的角度误差值Δθ,并根据该角度误差值Δθ计算出转子角度θ以及转子反馈角速度ω并输出;The speed position calculation module is used to obtain the angle error value Δθ of the rotor from the angle error calculation module, and calculate and output the rotor angle θ and the rotor feedback angular velocity ω according to the angle error value Δθ;
角度误差计算模块,用于接收无传感器速度误差计算模块输出的磁通量误差Δλ、和所述3/2转换模块输出的γ、δ坐标系电流Iγ、Iδ和所述速度位置计算模块输出的转子反馈角速度ω,计算获得角度误差值Δθ;The angle error calculation module is used to receive the magnetic flux error Δλ output by the sensorless speed error calculation module, and the γ, δ coordinate system current I γ and I δ output by the 3/2 conversion module and the output of the speed position calculation module Rotor feedback angular velocity ω, calculate and obtain angle error value Δθ;
无传感器速度误差计算模块,接收电流计算模块输出的d、q坐标系电压Vd、Vq,以及所述3/2转换模块输出的γ、δ坐标系的电流Iγ、Iδ和所述速度位置计算模块输出的转子反馈角速度ω,经计算获得磁通量误差Δλ输出;The sensorless speed error calculation module receives the d and q coordinate system voltages Vd and Vq output by the current calculation module, and the current I γ and I δ of the γ and δ coordinate systems output by the 3/2 conversion module and the speed position The rotor feedback angular velocity ω output by the calculation module is calculated to obtain the magnetic flux error Δλ output;
速度控制模块,用于接收所述速度位置计算模块输出的反馈角速度ω,以及对电动机的期望转速计算角速度ω*,经计算获得计算力矩T*输出;The speed control module is used to receive the feedback angular velocity ω output by the speed and position calculation module, and calculate the angular velocity ω * for the expected rotational speed of the motor, and obtain the calculated torque T * output through calculation;
力矩限制模块,用于接收所述速度控制模块输出的计算力矩T*,以及所述速度位置计算模块输出的反馈角速度ω,经计算获得d、q坐标系电流Id、Iq输出;The torque limiting module is used to receive the calculated torque T * output by the speed control module, and the feedback angular velocity ω output by the speed position calculation module, and obtain the current Id and Iq output in the d and q coordinate system through calculation;
电流计算模块,用于接收所述力矩限制模块输出的d、q坐标系电流Id、Iq,以及所述3/2转换模块输出的γ,δ坐标系电流Iγ、Iδ,和所述速度位置计算模块输出的转子反馈角速度ω,输出d,q坐标系电压Vd、Vq;The current calculation module is used to receive the d, q coordinate system current Id and Iq output by the torque limiting module, and the γ, δ coordinate system current I γ and I δ output by the 3/2 conversion module, and the speed The rotor feedback angular velocity ω output by the position calculation module outputs d, q coordinate system voltages Vd, Vq;
2/3转换模块,用于接收所述电流计算模块输出的d、q坐标系电压,以及所述速度位置计算模块输出的转子角度θ,产生在u、v、w三相坐标系下的开关控制信号,该开关控制信号就是所述控制智能变频模块的大功率电子开关器件的开关信号。The 2/3 conversion module is used to receive the d, q coordinate system voltage output by the current calculation module, and the rotor angle θ output by the speed position calculation module, and generate a switch in the u, v, w three-phase coordinate system A control signal, the switch control signal is the switch signal for controlling the high-power electronic switch device of the intelligent frequency conversion module.
优选地,所述大功率电子开关器件为绝缘栅双极晶体管IGBT。Preferably, the high-power electronic switching device is an insulated gate bipolar transistor (IGBT).
本发明提供的直流电动机变频控制装置,利用直流电动机的电感特性,使用一个检测电阻检测直流侧母线电压,根据该电压以及同一时刻智能变频单元中逆变器的各个桥的开关状态,计算无刷直流电动机的三相输入电流。根据该三相电流,可以通过计算获得直流电动机的转子位置,根据该转子位置使智能变频模块的逆变器的开关逻辑状态在适当的时候变化,改变逆变器各桥的开关状态,获得合适的旋转磁场,驱动直流电动机的旋转。The DC motor frequency conversion control device provided by the present invention utilizes the inductance characteristics of the DC motor, uses a detection resistor to detect the DC side bus voltage, and calculates the brushless The three-phase input current of the DC motor. According to the three-phase current, the rotor position of the DC motor can be obtained by calculation. According to the rotor position, the switching logic state of the inverter of the intelligent frequency conversion module can be changed at an appropriate time, and the switching state of each bridge of the inverter can be changed to obtain a suitable The rotating magnetic field drives the rotation of the DC motor.
与现有技术相比,本发明提供的控制方法不需要检测不导通相以获得转子位置信息。因此,采用该控制方法可以实现180度变频模式,该变频装置能够使电动机获得更为良好的调速性能以及力矩控制特性。Compared with the prior art, the control method provided by the present invention does not need to detect the non-conducting phase to obtain rotor position information. Therefore, the 180-degree frequency conversion mode can be realized by adopting the control method, and the frequency conversion device can enable the motor to obtain better speed regulation performance and torque control characteristics.
附图说明 Description of drawings
图1是本发明第一实施例的电路原理图;Fig. 1 is the schematic circuit diagram of the first embodiment of the present invention;
图2是本发明第一实施例的电流检测的时序原理图;FIG. 2 is a timing schematic diagram of current detection in the first embodiment of the present invention;
图3是本发明第一实施例计算控制单元22的组成框图。FIG. 3 is a block diagram of the
具体实施方式Detailed ways
请参看图1,为本发明第一实施例的电路原理图。Please refer to FIG. 1 , which is a schematic circuit diagram of the first embodiment of the present invention.
该电路包括智能变频单元(IPM)1;控制单元2;无刷直流电动机3;检测电阻4。The circuit includes an intelligent frequency conversion unit (IPM) 1; a
所述智能变频模块1主要包括六个大功率电子开关器件组成的逆变器,所述六个大功率电子开关器件包括UP、UN、VP、VN、WP、WN。其中,UP、VP、WP一组的阳极连接直流母线的正极,阴极连接无刷直流电动机三相电源输入线U、V、W;UN、VN、WN一组阴极连接直流母线的负极,阳极分别连接电动机电源线U、V、W。上述大功率电子开关器件的阳极和阴极之间分别反向并联有二极管,二极管的作用在于为反向电流提供旁路,避免所述大功率电子开关器件被击穿。所述大功率电子开关器件的控制极接收开关信号,控制所述开关信号的电平高、低可以改变所述大功率电子开关器件的开关状态。该智能变频模块1的作用在于将直流母线电流转化为驱动电流,提供给直流电动机。该智能变频模块1还包括电流保护子单元11,用于根据电流检测的结果,实现过电流保护。所述的直流母线的电压可以通过对交流电整流获得。所述的大功率电子器件可以是绝缘栅双极晶体管IGBT。The intelligent
控制直流电动机的关键在于,必须适时的进行驱动电流的换向,使电动机在每一时刻都获得合适的驱动电流,实现正常旋转。该合适的驱动电流通过在控制极加高、低电平的控制信号,对所述大功率电子开关器件的开关状态进行控制获得。The key to controlling a DC motor is that the commutation of the driving current must be performed in a timely manner, so that the motor can obtain an appropriate driving current at every moment and realize normal rotation. The appropriate driving current is obtained by controlling the switching state of the high-power electronic switching device by adding high and low level control signals to the control pole.
在电动机旋转过程中,需要对上述各组大功率电子器件的开关状态进行有规律的切换,每一时刻个大功率电子开关器件的状态被称为一个开关逻辑状态。对无刷直流电动机的控制实际上就是获得一系列适时切换的开关逻辑状态。During the rotation of the motor, the switching states of the above-mentioned groups of high-power electronic devices need to be switched regularly, and the state of each high-power electronic switching device at each moment is called a switching logic state. The control of the brushless DC motor is actually to obtain a series of switching logic states that are switched in time.
所述控制单元2的作用在于控制智能变频模块中的大功率电子开关器件的开关状态。其中包括电流检测分析单元21,以及计算控制单元22。该控制单元2输出开关信号至所述的智能变频模块1,用于控制智能变频模块1中大功率电子器件的开关状态。The function of the
其中,所述电流检测分析单元21的功能在于接收所述检测电阻4输出的检测信号,并根据该检测信号计算该直流无刷电动机U、V、W三相的输入电流Iu、Iv、Iw并输出。使用检测信号计算三相输入电流的原理和方法见后叙。Wherein, the function of the current
所述计算控制单元22接收所述电流检测分析单元21输出的三相输入电流Iu、Iv、Iw计算值,以及计算角速度ω*。其中,计算角速度ω*是对直流电动机转速的期望值。根据所述三相输入电流计算值以及电动机的参数等数据计算电动机转子的位置,并结合计算角速度ω*产生开关信号,输出到所述智能变频模块1。The calculation and
所述检测电阻4串联在直流母线中,用于检测母线电流情况,并将检测信号传送给所述电流保护子单元11,以及控制单元2中的电流检测分析单元21。所述检测信号是检测电阻两端的电压降,根据该电压降以及检测电阻4的阻值就可获得直流母线的电流。该检测电阻4可以集成在所述智能变频模块1中。The detection resistor 4 is connected in series in the DC bus to detect the current of the bus and transmit the detection signal to the current protection sub-unit 11 and the current detection and
实现对直流无刷电动机控制的关键在于,获得直流无刷电动机的转子位置信息,并根据该转子位置信息进行换向控制。本实施例中获得所述转子位置信息包括下列步骤:The key to realizing the control of the DC brushless motor is to obtain the rotor position information of the DC brushless motor, and perform commutation control according to the rotor position information. Obtaining the rotor position information in this embodiment includes the following steps:
步骤1、根据所述检测电阻4输出的检测信息获得直流母线电流Idc。
如图1所示,所述检测电阻4串联于直流母线中,通过该检测电阻4的电流为直流母线电流Idc。该母线电流Idc通过所述检测电阻4产生电压降Udc,所述检测信息就是指该电压降Udc。As shown in FIG. 1 , the detection resistor 4 is connected in series in the DC bus, and the current passing through the detection resistor 4 is the DC bus current Idc. The bus current Idc passes through the detection resistor 4 to generate a voltage drop Udc, and the detection information refers to the voltage drop Udc.
所述电流检测分析单元21接收所述检测信息即检测电阻4两端的电压降Udc后,将该电压Udc数字化,并根据检测电阻4的阻值计算获得直流母线电流Idc。The current detection and
步骤2、根据所述直流母线电流Idc计算获得直流无刷电动机的三相输入电流Iu、Iv、Iw。
请参看图2。图2表示本发明电流检测的时序原理。Please refer to Figure 2. Fig. 2 shows the timing principle of current detection in the present invention.
图2中,上部为与U、V、W三相相关的大功率电子开关器件的开关状态,中部为直流母线电流值(Idc),下部为直流无刷电动机的三相输入电流Iu、Iv、Iw。In Fig. 2, the upper part is the switching status of the high-power electronic switching devices related to the three phases U, V and W, the middle part is the DC bus current value (Idc), and the lower part is the three-phase input current Iu, Iv, Iw.
由于在该发明方案里脉冲宽度调制PWM的载波频率很高(8K Hz),而且负载直流无刷电动机呈电感特性,逆变器交流侧的电流波形大体上为正弦波,并且在一个载波周期内几乎不产生变化。Idc的波形是交流侧的电流通过所述的智能变频模块1的大功率电子开关器件组成的逆变器切换而来的,逆变器各个大功率电子开关器件的开关状态形成的各个开关逻辑状态中,可以根据基本的电路分次访法求出无刷指控流电动机各个相的输入电流。以图2中时刻①、②为例,说明计算方法。Since the carrier frequency of pulse width modulation PWM is very high (8K Hz) in this invention scheme, and the load DC brushless motor has inductive characteristics, the current waveform on the AC side of the inverter is generally a sine wave, and within one carrier period Little change occurs. The waveform of Idc is obtained by switching the current on the AC side through the inverter composed of the high-power electronic switching devices of the intelligent
①的区间(UP,VP,WN:导通),因此:□Idc①=-Iw① interval (UP, VP, WN: conduction), so: □Idc①=-Iw
②的区间(UP,VN,WN:导通),因此:□Idc②=Iu② interval (UP, VN, WN: conduction), so: □Idc②=Iu
由于电动机为电感特性,因此电流不能突变,区间①与区间②的时间间隔很短,可以视为同一时间的电流值。由于Iu、Iv、Iw的矢量和为零,即:Iu+Iv+Iw=0Since the motor is inductive, the current cannot change suddenly. The time interval between
因此Iu,Iv,Iw,根据下面的关系可以简单地求出:Therefore, Iu, Iv, and Iw can be simply calculated according to the following relationship:
Iu=Idc②,Iv=Idc①-Idc②,Iw=-Idc①Iu=Idc②, Iv=Idc①-Idc②, Iw=-Idc①
应当强调,上述区间1与区间2的电流值为同一时间的电流值的假定,是本发明中使用一个检测电阻即可计算获得无刷直流电动机的三相输入电流值的关键,这个假定会造成一定的误差,但是在大多数情况下能够达到控制要求。上述假定适用于所有相邻的开关逻辑状态。It should be emphasized that the above-mentioned assumption that the current values of
根据上述获得的无刷直流电动机的三相输入电流,就可以获得该电动机的转子位置信息,其原理是利用如下公式:According to the three-phase input current of the brushless DC motor obtained above, the rotor position information of the motor can be obtained. The principle is to use the following formula:
ω=-KpΔθ-KIΔθdt θ=∫ωdtω=-K p Δθ-K I Δθdt θ=∫ωdt
上述公式中,θ为转子角度,即为转子位置信息。上述公式中各个符号的含义以及应用,在以下步骤3中具体说明。In the above formula, θ is the rotor angle, that is, the rotor position information. The meaning and application of each symbol in the above formula will be explained in detail in
步骤3、根据所述直流无刷电动机的三相输入电流Iu、Iv、Iw,并结合电动机的参数以及大功率电子开关器件的开关路逻辑状态输出控制信号,控制所述大功率电子开关器件的开关状态。这一过程是在图1中的计算控制单元22中完成的。
请参看图3,该图示出所述计算控制单元22的组成框图。Please refer to FIG. 3 , which shows a block diagram of the
图3示出,所述计算控制单元22接收所述通过检测计算获得的三相输入电流Iu、Iv、Iw,输出控制所述智能控制模块的大功率电子开关器件的开关信号Vup、Vvp、Vwp、Vun、Vvn、Vwn。Figure 3 shows that the calculation and
所述计算控制单元22根据对无刷直流电动机的电流检测情况,以实时反馈的形式向智能变频模块提供开关信号Vup、Vvp、Vwp、Vun、Vvn、Vwn,该开关信号Vup、Vvp、Vwp、Vun、Vvn、Vwn根据电动机转子的位置变化,改变电动机定子各相的通电情况以及电流流向,为转子提供一个始终驱动其向规定方向运动的磁场,使电动机不断旋转。The calculation and
如图3所示,该计算控制单元22包括3/2转换模块221、速度控制模块222、力矩限制模块223、电流计算模块224、2/3转换单元225、无传感器速度误差计算模块226、角度误差计算模块227、速度位置计算模块228。As shown in Figure 3, the
该计算控制单元22利用所述三相输入电流Iu、Iv、Iw,经过三次坐标变换实现所述控制。The
所述三次坐标变换包括三相坐标系(u、v、w)转换为两相静止坐标系(γ、δ)、从两相静止坐标系(γ、δ)转化为两相旋转坐标系(d、q)、从两相旋转坐标系(d、q)转化为三相坐标系(u、v、w),经过上述坐标变换后,产生在三相坐标系(u、v、w)下的开关控制信号Vup、Vvp、Vwp、Vun、Vvn、Vwn,提供给所述智能变频单元1。The three-time coordinate transformation includes converting a three-phase coordinate system (u, v, w) into a two-phase stationary coordinate system (γ, δ), and converting from a two-phase stationary coordinate system (γ, δ) into a two-phase rotating coordinate system (d , q), from the two-phase rotating coordinate system (d, q) to the three-phase coordinate system (u, v, w), after the above-mentioned coordinate transformation, it is generated in the three-phase coordinate system (u, v, w) Switch control signals Vup, Vvp, Vwp, Vun, Vvn, Vwn are provided to the intelligent
所述3/2转换模块221用于接收所述无刷直流电动机三相输入电流Iu、Iv、Iw,以及转子角度θ,根据上述数值,通过三相到两相的变换,实现将三相坐标系(u、v、w)下的电流转化为两相静止坐标系(γ、δ)的电流值Iγ、Iδ,并输出。所述转子角度θ在启动时具有一定值,使3/2转换模块221可以进行坐标转换计算。电动机开始旋转后,该值根据直流无刷电动机的旋转情况计算获得,具体是从所述速度位置计算模块228获得,其计算方法见后叙对速度位置计算模块228的说明。The 3/2 conversion module 221 is used to receive the three-phase input current Iu, Iv, Iw of the brushless DC motor, and the rotor angle θ. The current in the system (u, v, w) is transformed into the current values I γ and I δ of the two-phase stationary coordinate system ( γ , δ) and output. The rotor angle θ has a certain value at startup, so that the 3/2 conversion module 221 can perform coordinate conversion calculation. After the motor starts to rotate, the value is calculated according to the rotation of the brushless DC motor, specifically from the speed and position calculation module 228. For the calculation method, see the description of the speed and position calculation module 228 later.
所述速度位置计算模块228从所述角度误差计算模块227获得转子的角度误差值Δθ,并根据该角度误差值Δθ计算出转子角度θ以及转子反馈角速度ω。其计算公式如下:The speed position calculation module 228 obtains the rotor angle error value Δθ from the angle error calculation module 227 , and calculates the rotor angle θ and the rotor feedback angular velocity ω according to the angle error value Δθ. Its calculation formula is as follows:
ω=-KpΔθ-KIΔθdt θ=∫ωdtω=-K p Δθ-K I Δθdt θ=∫ωdt
该公式中:Kp、KI为常数。In the formula: K p and K I are constants.
上述计算获得的转子角度θ,即获得了转子位置信息,就可以决定何时进行所述智能变频模模块1中的逆变器的换向,从而获得合适的旋转磁场,使电动机转子以稳定的转速旋转。The rotor angle θ obtained by the above calculation, that is, the rotor position information, can decide when to commutate the inverter in the intelligent
所述角度误差计算模块227接收所述无传感器速度误差计算模块226输出的磁通量误差Δλ、和所述3/2转换模块输出的(γ、δ)坐标系的电流Iγ、Iδ和所述速度位置计算模块228输出的转子反馈角速度ω,输出量为角度误差值Δθ。该角度误差值Δθ在电动机启动时设定为零。电动机启动后则按检测值计算获得,计算公式如下:The angle error calculation module 227 receives the magnetic flux error Δλ output by the sensorless speed error calculation module 226, and the current I γ and I δ of the (γ, δ) coordinate system output by the 3/2 conversion module and the The rotor feedback angular velocity ω output by the speed position calculation module 228 is the angular error value Δθ. This angular error value Δθ is set to zero when the motor is started. After the motor starts, it is calculated according to the detected value, and the calculation formula is as follows:
该公式中各个符号的含义:φm:转子磁束;iγ:γ轴电流;Lq:Q轴电感;Ld:D轴电感;p:微分算子;α:常数。The meaning of each symbol in this formula: φ m : rotor magnetic flux; i γ : γ-axis current; L q : Q-axis inductance; L d : D-axis inductance; p: differential operator; α: constant.
所述无传感器速度误差计算模块(ACFO Observer)226,接收所述电流计算模块224输出的(d、q)坐标系电压Vd、Vq,以及3/2转换模块221输出的(γ、δ)坐标系的电流Iγ、Iδ和速度位置计算模块228输出的转子反馈角速度ω,经计算获得磁通量误差Δλ输出。The sensorless speed error calculation module (ACFO Observer) 226 receives the (d, q) coordinate system voltages Vd, Vq output by the current calculation module 224, and the (γ, δ) coordinates output by the 3/2 conversion module 221 The current I γ and I δ of the system and the rotor feedback angular velocity ω output by the speed and position calculation module 228 are calculated to obtain the output of the magnetic flux error Δλ.
所述速度控制模块222,接收所述速度位置计算模块228输出的反馈角速度ω,以及输入的计算角速度ω*,经计算获得计算力矩T*输出。所述计算角速度是希望电动机旋转的转速,该转速根据需要向该计算控制单元22提供,在具体应用中,可以有其它单元根据需要向所述计算控制单元22提供该计算角速度ω*,也可以人为设定。该计算角速度ω*是电动机的期望旋转速度。The speed control module 222 receives the feedback angular velocity ω output by the speed position calculation module 228 and the input calculated angular velocity ω * , and obtains the calculated torque T * output through calculation. The calculated angular velocity is the rotational speed at which the motor is expected to rotate, and the rotational speed is provided to the
所述力矩限制模块223,接收所述速度控制模块222输出的计算力矩T*,以及所述速度位置计算模块228输出的反馈角速度ω,经计算获得(d、q)坐标系电流Id、Iq输出。The torque limiting module 223 receives the calculated torque T * output by the speed control module 222 and the feedback angular velocity ω output by the speed position calculation module 228, and obtains (d, q) coordinate system current Id, Iq output through calculation .
所述电流计算模块224,接收所述力矩限制模块223输出的(d、q)坐标系电流Id、Iq,以及所述3/2转换模块221输出的(γ,δ)坐标系电流Iγ、Iδ,和所述速度位置计算模块228输出的转子反馈角速度ω,输出量为(d,q)坐标系电压(Vd、Vq)。The current calculation module 224 receives the (d, q) coordinate system current Id, Iq output by the torque limiting module 223, and the (γ, δ) coordinate system current I γ , I δ , and the rotor feedback angular velocity ω output by the velocity position calculation module 228 , the output quantities are (d, q) coordinate system voltages (Vd, Vq).
所述2/3转换模块225,接收所述电流计算模块224输出的(d,q)坐标系电压,以及所述速度位置计算模块228输出的转子角度θ,产生在三相坐标系(u、v、w)下的开关控制信号Vup、Vvp、Vwp、Vun、Vvn、Vwn。上述开关控制信号加于所述智能变频模块1中的大功率电子器件的开关控制端子,控制大功率电子器件的通断。所述大功率电子器件的开关状态的变化形成逆变器的开关逻辑状态的迁移。母线电流通过上述逆变器加到所述直流电动机三相电源线上,在定子上产生适合于电动机转速的旋转磁场,驱动转子旋转。The 2/3 conversion module 225 receives the (d, q) coordinate system voltage output by the current calculation module 224, and the rotor angle θ output by the speed position calculation module 228, which is generated in the three-phase coordinate system (u, q v, w) switch control signals Vup, Vvp, Vwp, Vun, Vvn, Vwn. The above-mentioned switch control signal is applied to the switch control terminal of the high-power electronic device in the intelligent
上述计算控制单元22的各个模块,形成一个闭环反馈。根据所接收的直流电动机三相输入电流Iu、Iv、Iw的计算值,并结合对直流电动机期望获得的转速即计算角速度ω*,经过计算获得对智能变频单元1逆变器的大功率电子开关器件的开关信号Vup、Vvp、Vwp、Vun、Vvn、Vwn,最终控制电动机获得所需转速。上述各个模块涉及的计算公式,在现有公知技术下均可获得。Each module of the above
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2006100008545A CN100428621C (en) | 2006-01-13 | 2006-01-13 | A brushless DC motor frequency conversion control device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2006100008545A CN100428621C (en) | 2006-01-13 | 2006-01-13 | A brushless DC motor frequency conversion control device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101001069A CN101001069A (en) | 2007-07-18 |
| CN100428621C true CN100428621C (en) | 2008-10-22 |
Family
ID=38692914
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2006100008545A Expired - Fee Related CN100428621C (en) | 2006-01-13 | 2006-01-13 | A brushless DC motor frequency conversion control device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100428621C (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4301341B2 (en) * | 2007-11-16 | 2009-07-22 | ダイキン工業株式会社 | Motor current calculation device and air conditioner |
| JP4412392B2 (en) * | 2007-11-16 | 2010-02-10 | ダイキン工業株式会社 | Motor current detector and air conditioner |
| CN101917157B (en) * | 2010-07-29 | 2012-05-23 | 东元总合科技(杭州)有限公司 | Method for reconstructing phase current of electromotor |
| CN102142802B (en) * | 2011-03-22 | 2013-03-20 | 北京航天控制仪器研究所 | Servo driving system of linear direct-current brushless motor |
| FR3025890B1 (en) * | 2014-09-17 | 2018-02-16 | Valeo Equipements Electriques Moteur | METHOD AND DEVICE FOR DIAGNOSING STATIC CURRENT SENSOR FAULTS OF A DRIVING SYSTEM OF A SYNCHRONOUS MOTOR VEHICLE ROTARY ELECTRIC MACHINE |
| CN104393801B (en) * | 2014-11-24 | 2017-07-14 | 苏州科爱佳自动化科技有限公司 | A kind of brshless DC motor arrangements for speed regulation and speed regulating method |
| CN108134551A (en) * | 2017-12-21 | 2018-06-08 | 青岛海信日立空调系统有限公司 | A kind of fan drive circuit, air conditioner indoor unit and air-conditioning |
| CN113422557B (en) * | 2021-06-29 | 2023-09-29 | 四川航天烽火伺服控制技术有限公司 | Motor control circuit and electric steering engine system |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000227074A (en) * | 1999-02-04 | 2000-08-15 | Matsushita Electric Ind Co Ltd | Compressor drive control method and device |
| US20020037163A1 (en) * | 2000-09-26 | 2002-03-28 | Clark Bret S. | BLDC motor noise reduction using constant bus current control communication |
| CN1492574A (en) * | 2002-10-01 | 2004-04-28 | ���µ�����ҵ��ʽ���� | Motor driver and its drive control system |
-
2006
- 2006-01-13 CN CNB2006100008545A patent/CN100428621C/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000227074A (en) * | 1999-02-04 | 2000-08-15 | Matsushita Electric Ind Co Ltd | Compressor drive control method and device |
| US20020037163A1 (en) * | 2000-09-26 | 2002-03-28 | Clark Bret S. | BLDC motor noise reduction using constant bus current control communication |
| CN1492574A (en) * | 2002-10-01 | 2004-04-28 | ���µ�����ҵ��ʽ���� | Motor driver and its drive control system |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101001069A (en) | 2007-07-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100428621C (en) | A brushless DC motor frequency conversion control device | |
| JP4429338B2 (en) | Motor control device, current detection unit | |
| CN101242154B (en) | An embedded permanent magnet brushless DC motor control system without position sensor | |
| CN102780433B (en) | Instantaneous torque control method of brushless direct-current motor based on direct-current control | |
| CN101252336B (en) | Permanent magnetism synchronous electric machine - compressor system high speed operation control method | |
| JP2009055748A (en) | Current detector unit and motor control device | |
| CN104038138B (en) | Controller for motor, heat pump and air conditioner | |
| CN106452225B (en) | Brushless DC motor without position sensor commutation phase System with Real-Time and method | |
| CN102710188B (en) | Direct torque control method and device of brushless continuous current dynamo | |
| CN102480259B (en) | Motor control device, air-conditioner | |
| CN101272114B (en) | Frequency conversion control device of DC motor | |
| KR20040024447A (en) | Air conditioner | |
| CN107681939B (en) | Motor control system and variable frequency air conditioner | |
| CN206004563U (en) | A kind of brushless DC motor without position sensor commutation phase System with Real-Time | |
| CN103095193B (en) | A kind of drive system being applied to brshless DC motor | |
| CN114567213A (en) | Four-switch buck-boost motor PAM modulation method based on fuel cell and control method | |
| CN101865124B (en) | Control method capable of improving COP value of direct current variable-frequency compressor | |
| CN116131689B (en) | Torque Distribution Control Method for Electrically Excited Doubly Salient Motor Based on H-Bridge Converter | |
| CN114362610B (en) | A commutation control method for high-speed brushless DC motor | |
| CN110649844A (en) | Brushless direct current motor vector control system and method based on alpha beta current controller | |
| JPH11136994A (en) | Three-phase induction motor drive | |
| CN115800829A (en) | Feedback boost inverter for inhibiting torque ripple of brushless direct current motor and control method | |
| CN203086395U (en) | Drive system applied to brushless direct current motor | |
| CN210640824U (en) | Two-phase DC offset vernier motor controller | |
| CN107155393B (en) | Power conversion device, control method thereof, and electric power steering control device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081022 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |