CN100447575C - Method for identifying abnormal conditions in power transformers - Google Patents
Method for identifying abnormal conditions in power transformers Download PDFInfo
- Publication number
- CN100447575C CN100447575C CNB031092098A CN03109209A CN100447575C CN 100447575 C CN100447575 C CN 100447575C CN B031092098 A CNB031092098 A CN B031092098A CN 03109209 A CN03109209 A CN 03109209A CN 100447575 C CN100447575 C CN 100447575C
- Authority
- CN
- China
- Prior art keywords
- dielectric loss
- dielectric
- zone
- abnormal conditions
- theoretical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 230000002159 abnormal effect Effects 0.000 title claims description 48
- 238000009413 insulation Methods 0.000 claims abstract description 58
- 239000000463 material Substances 0.000 claims abstract description 8
- 230000004044 response Effects 0.000 claims description 49
- 238000012360 testing method Methods 0.000 claims description 23
- 238000005259 measurement Methods 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 230000005284 excitation Effects 0.000 claims 2
- 238000013316 zoning Methods 0.000 claims 2
- 239000003792 electrolyte Substances 0.000 claims 1
- 239000001913 cellulose Substances 0.000 description 8
- 229920002678 cellulose Polymers 0.000 description 8
- 238000002405 diagnostic procedure Methods 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- 230000005856 abnormality Effects 0.000 description 6
- 238000007689 inspection Methods 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 239000002480 mineral oil Substances 0.000 description 5
- 235000010446 mineral oil Nutrition 0.000 description 5
- 239000000123 paper Substances 0.000 description 5
- 238000011109 contamination Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001566 impedance spectroscopy Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009421 internal insulation Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
用于在电源变压器绝缘系统中识别一种异常情况的优选方法,包括:在绝缘系统的区域内测量电介质损耗;基于材料特性、几何形状,和区域的温度计算区域的理论电介质损耗;和产生测量和计算电介质损耗之间的百分数差值的图形表示。所述优选方法还包括比较图形表示的形状与其它的一个或多个公知具有特定类型异常情况的绝缘区域内的测量和理论电介质损耗之间的百分数差值的一个或多个图形表示的形状。
A preferred method for identifying an anomaly in a power transformer insulation system includes: measuring dielectric loss in a region of the insulation system; calculating a theoretical dielectric loss for the region based on material properties, geometry, and temperature of the region; and generating the measured Graphical representation of the percent difference between and calculated dielectric loss. The preferred method further includes comparing the shape of the graphical representation to one or more other one or more percentage differences between measured and theoretical dielectric losses within the insulation region known to have a particular type of anomaly.
Description
本发明在35U.S.C§119(e)下要求2002年4月3日提出的美国临时专利申请No.60/369,671的优先权,该美国临时专利申请的全文引用在此作为参照。This application claims priority under 35 U.S.C §119(e) to U.S. Provisional Patent Application No. 60/369,671, filed April 3, 2002, which is incorporated herein by reference in its entirety.
发明领域field of invention
本发明涉及电源变压器,更具体地说,涉及用于在电源变压器中识别异常情况的方法。The present invention relates to power transformers, and more particularly to methods for identifying abnormal conditions in power transformers.
发明背景Background of the invention
电源变压器典型地包括位于各种导电通路之间或周围的绝缘材料。绝缘材料通常由纸或纤维素材料制成。矿物油通常也用作电源变压器中的绝缘体。Power transformers typically include insulating material between or around the various conductive paths. Insulation is usually made of paper or cellulose material. Mineral oil is also commonly used as an insulator in power transformers.
电源变压器绝缘材料中的缺陷或其他异常情况能够降低电源变压器的性能,并且在极端情形下,可能导致危险事故。例如,潮湿和污染能够降低油、纸和纤维素绝缘体的绝缘性能。如果绝缘体暴露于比额定电压高的电压下,绝缘体的性能也降低。此外,诸如破损、空隙和其他裂缝之类的缺陷以及过度潮湿和碳迹能够降低纸和纤维素绝缘材料的性能。油的绝缘性能会由于老化、过热或化学污染降低。Defects or other abnormalities in the insulation material of power transformers can degrade the performance of power transformers and, in extreme cases, can lead to dangerous accidents. For example, moisture and contamination can degrade the insulating performance of oil, paper and cellulose insulation. The performance of an insulator is also degraded if it is exposed to a voltage higher than its rated voltage. In addition, defects such as breaks, voids and other cracks, as well as excessive moisture and carbon stains can degrade the performance of paper and cellulose insulation. The insulating properties of oil can be reduced due to aging, overheating or chemical contamination.
因为绝缘材料对于电源变压器的整体性能的重要性,所以经常对电源变压器的绝缘材料进行诊断检查。例如,在电源变压器投入使用之前通常要估算新的或新近重新整修的电源变压器中的绝缘材料的有效性。而且,经常周期性地检查本领域中电源变压器的绝缘材料以便确保绝缘材料以令人满意的方式工作。Because of the importance of insulation materials to the overall performance of power transformers, diagnostic inspections of power transformer insulation are often performed. For example, the effectiveness of insulation in new or recently refurbished power transformers is often assessed before the power transformer is put into service. Also, the insulation of power transformers in the art is often periodically inspected in order to ensure that the insulation is functioning in a satisfactory manner.
大多数通常使用的用于电源变压器绝缘材料的诊断检查适用于在绝缘材料系统中识别异常情况例如缺陷的出现。例如,美国国家标准化组织确定的所谓“功率因数测试”(下面有详细描述)通常用来诊断检查(功率因数测试实质上与所谓的“tan-δ”测试相同)。尽管诸如功率因素测试之类的诊断测试能够指示异常情况的出现,但是这种检查常常不能指示出现异常情况的类型。Most commonly used diagnostic checks for power transformer insulation are suitable for identifying abnormalities such as the occurrence of defects in the insulation system. For example, the so-called "power factor test" defined by the American National Organization for Standardization (described in detail below) is often used for diagnostic checks (the power factor test is essentially the same as the so-called "tan-delta" test). Although diagnostic tests such as power factor tests can indicate the presence of an abnormal condition, such examinations often fail to indicate the type of abnormal condition that has occurred.
识别异常情况的具体类型经常需要排泄和至少部分地拆卸电源变压器。例如,电源变压器磁芯接地电路中的过度电阻有时会被误诊为电源变压器纤维素绝缘材料中的过度潮湿。换句话说,当前使用的诊断测试能够识别这些类型的异常情况的出现,但是常常不能区分这些异常情况。因此,电源变压器有时会基于电源变压器的绝缘材料中存在过度潮湿的错误信息而遭受费时和昂贵的烘干过程。Identifying specific types of abnormal conditions often requires draining and at least partial disassembly of the power transformer. For example, excessive resistance in the power transformer core ground circuit is sometimes misdiagnosed as excessive moisture in the power transformer cellulose insulation. In other words, currently used diagnostic tests are able to recognize the presence of these types of abnormalities, but often cannot differentiate them. As a result, power transformers are sometimes subject to time-consuming and expensive drying processes based on false information that there is excessive moisture in the insulation of the power transformer.
因此,需要一种能够在电源变压器绝缘系统中识别异常情况的出现以及识别异常情况类型的诊断方法。Therefore, there is a need for a diagnostic method capable of identifying the occurrence of an abnormal condition in a power transformer insulation system as well as identifying the type of abnormal condition.
发明概要Summary of the invention
用于在电源变压器绝缘系统中识别一种异常情况的优选方法包括:在绝缘系统的区域内测量电介质损耗;基于材料特性、几何形状,和区域的温度计算区域的理论电介质损耗;和产生测量和计算电介质损耗之间的百分比差值的图形表示。所述优选方法还包括比较图形表示的形状与其他的一个或多个公知具有特定类型异常情况的绝缘区域内的测量和理论电介质损耗之间的百分数差值的一个或多个图形表示的形状。A preferred method for identifying an anomaly in a power transformer insulation system includes: measuring dielectric loss in a region of the insulation system; calculating the theoretical dielectric loss of the region based on material properties, geometry, and temperature of the region; and generating the measured and Graphical representation of the percent difference between calculated dielectric losses. The preferred method further includes comparing the shape of the graphical representation to one or more other one or more percentage differences between measured and theoretical dielectric losses within the insulation region known to have a particular type of anomaly.
一种优选方法,包括:在电源变压器的绝缘区域内测量电介质频率响应;计算区域的理论电介质频率响应;和产生区域的电介质频率响应签名。所述优选方法还包括比较电介质频率响应签名与其他公知具有特定类型异常情况的绝缘区域的电介质频率响应签名。A preferred method includes: measuring a dielectric frequency response in an insulating region of a power transformer; calculating a theoretical dielectric frequency response for the region; and generating a dielectric frequency response signature for the region. The preferred method further includes comparing the dielectric frequency response signature to dielectric frequency response signatures of other insulating regions known to have a particular type of anomaly.
一种优选方法,用于分类电源变压器绝缘区域内的异常情况的类型,包括:利用交流电压激励绝缘区域隔离的导线;在预定范围内改变多个离散频率之间的交流电压的频率;和在离散频率的每一个处测量绝缘区域内的电介质损耗。A preferred method for classifying a type of abnormal condition within an insulating region of a power transformer comprising: energizing conductors isolated from the insulating region with an alternating voltage; varying the frequency of the alternating voltage between a plurality of discrete frequencies within a predetermined range; and The dielectric loss in the insulating region is measured at each of the discrete frequencies.
所述优选方法还包括在离散频率的每一个处计算用于绝缘区域的理论电介质损耗;在离散频率的每一个处计算测量电介质损耗和理论电介质损耗之间的百分比差值;和在离散频率的每一个处产生测量电介质损耗和计算电介质损耗之间的百分比差值的实质曲线表示。所述优选方法还包括比较实质曲线表示的形状与用于公知具有特定形状异常情况的绝缘区域的测量电介质损耗和计算电介质损耗之间的百分比差值的一个或多个预定曲线表示的形状。The preferred method further comprises calculating a theoretical dielectric loss for the insulating region at each of the discrete frequencies; calculating a percentage difference between the measured dielectric loss and the theoretical dielectric loss at each of the discrete frequencies; and A substantial graphical representation of the percent difference between the measured dielectric loss and the calculated dielectric loss is produced at each. The preferred method further includes comparing the substantially curvilinear shape to one or more predetermined curvilinear shapes of the percentage difference between measured and calculated dielectric losses for insulating regions known to have particular shape anomalies.
另一种优选方法,包括:响应于在频率预定范围内改变的交流电压,在电源变压器绝缘系统的区域内测量电介质损耗;基于材料特性、几何形状,和绝缘区域的温度计算区域的理论电介质损耗;和产生测量和计算电介质损耗之间的百分比的表示。所述优选方法还包括确定该表示的形状是否与另外的预先识别的具有特定类型异常情况的绝缘区域内的测量和计算电介质损耗之间的百分比差值的表示实质上不同。Another preferred method comprising: measuring dielectric loss in the region of the power transformer insulation system in response to an alternating voltage varying within a predetermined range of frequencies; calculating a theoretical dielectric loss for the region based on material properties, geometry, and temperature of the insulating region ; and yields a representation of the percentage between the measured and calculated dielectric loss. The preferred method further includes determining whether the shape of the representation is substantially different from the representation of the percentage difference between the measured and calculated dielectric loss in another pre-identified insulating region having a particular type of anomaly.
另一种优选方法,用于在电源变压器绝缘系统内识别一种异常情况,包括:在绝缘系统的区域内测量电介质损耗;计算区域的理论电介质损耗;当通过比较区域内的测量电介质损耗与区域的理论电介质损耗具有异常情况时识别区域。所述优选方法还包括产生测量和计算电介质损耗之间的百分比差值的图形表示;和比较所述图形表示的形状与公知具有特定类型异常情况的一个或多个其它绝缘区域内的测量和理论电介质损耗之间的百分比差值的一个或多个图形表示的形状。Another preferred method for identifying an anomaly within a power transformer insulation system comprises: measuring dielectric loss in a region of the insulation system; calculating a theoretical dielectric loss for the region; Theoretical dielectric loss has anomalies when identifying regions. The preferred method further includes generating a graphical representation of the percentage difference between measured and calculated dielectric loss; and comparing the shape of the graphical representation to measurements and theory in one or more other insulating regions known to have a particular type of anomaly The shape of one or more graphical representations of the percentage difference between dielectric losses.
另一种优选方法,包括:在电源变压器内测量绝缘区域的电介质频率响应;计算区域的理论电介质频率响应;和当通过比较测量电介质响应和理论电解质响应具有异常情况时识别区域。所述优选方法还包括产生用于区域的电介质频率响应签名;和比较电介质频率响应签名与公知具有特定类型异常情况的绝缘系统其它区域的电介质频率响应签名。Another preferred method comprises: measuring a dielectric frequency response of an insulating region within a power transformer; calculating a theoretical dielectric frequency response of the region; and identifying a region when there is an anomaly by comparing the measured dielectric response to the theoretical dielectric response. The preferred method further includes generating a dielectric frequency response signature for the zone; and comparing the dielectric frequency response signature to dielectric frequency response signatures of other zones of the insulation system known to have a particular type of anomaly.
附图说明 Description of drawings
参照附图将更好地理解上述概要以及下面的优选实施例详细描述。为了说明本发明,附图中示出了目前最优选的实施例。然而,本发明不限于附图中公开的具体手段。在附图中:The foregoing Summary, as well as the following Detailed Description of the Preferred Embodiments, will be better understood with reference to the accompanying drawings. For the purpose of illustrating the invention, the drawings show a presently preferred embodiment. However, the invention is not limited to the specific instrumentalities disclosed in the drawings. In the attached picture:
图1是用于在电源变压器绝缘系统中识别一种异常情况的优选方法的流程图;Figure 1 is a flowchart of a preferred method for identifying an abnormal condition in a power transformer insulation system;
图2是能够结合图1中所示方法的电源变压器的示意图;Figure 2 is a schematic diagram of a power transformer capable of incorporating the method shown in Figure 1;
图3是图2所示电源变压器绝缘系统的简化图示;Figure 3 is a simplified illustration of the insulation system of the power transformer shown in Figure 2;
图4描述了用于来自电源变压器的绝缘区域的一系列电介质频率响应签名,其中电介质频率响应签名与变压器磁芯接地电路中电阻的不同值相对应;Figure 4 depicts a series of dielectric frequency response signatures for an isolated region from a power transformer, where the dielectric frequency response signatures correspond to different values of resistance in the transformer core ground circuit;
图5描述了影响绝缘区域的异常情况的校正之前和之后用于绝缘区域的电介质频率响应签名;Figure 5 depicts the dielectric frequency response signature for the insulating region before and after correction for anomalous conditions affecting the insulating region;
图6描述了来自具有比正常高的磁芯接地电阻的第一变压器的绝缘区域的第一电介质频率响应签名,和来自具有正常磁芯接地电阻的第二变压器的绝缘区域的第二电介质频率响应签名;Figure 6 depicts the first dielectric frequency response signature from an isolated region of a first transformer with a higher than normal core-to-ground resistance, and the second dielectric frequency response from an isolated region of a second transformer with a normal core-to-ground resistance sign;
图7描述了用于具有比正常级别高的湿度的绝缘区域的电介质频率响应签名;和Figure 7 depicts a dielectric frequency response signature for an insulating area with higher than normal levels of humidity; and
图8描述了展示化学污染的绝缘区域的电介质频率响应签名。Figure 8 depicts the dielectric frequency response signature of an insulating region exhibiting chemical contamination.
优选实施例的描述Description of the preferred embodiment
在图1中部分地描述了用于在电源变压器绝缘系统中识别异常情况例如缺陷的优选方法10。方法10将和图2中描述的常规电源变压器50一起描述。涉及电源变压器50的具体细节仅作为示范的目的示出,方法10实际上可以用于任何类型的电源变压器。A
电源变压器50包括具有芯柱52a的磁芯52(磁芯52包括其他芯柱,图1中没有示出)。变压器50还包括环绕芯柱52a的低压线圈56,和环绕低压线圈56的高压线圈54。磁芯52、高压线圈54和低压线圈56容纳在外壳60内。应注意到图1中概略地描述了变压器50。变压器50的各个元件在图1中没有示出,并且为了清楚,图1中放大地示出了一些元件之间的空间。The power transformer 50 includes a
磁芯52和高、低压线圈54、56封装在密封外壳60内。高压线圈54通过安装在外壳60上的高压套管62电力地连接到交流电源(未示出)。每个高压套管62都包括穿过外壳60的能够传导电流的导线。每个高压套管62还包括能够充分地隔离外壳60和导线并且密封外壳60和导线之间的缝隙的瓷环。The
低压线圈56通过安装在外壳60上的低压套管64电力地连接到负载(未示出)。每个低压套管64都包括穿过外壳60的能够传导电流的导线。每个低压套管64还包括能够充分地隔离外壳60和导线并且密封外壳60和导线之间的缝隙的瓷环。The
外壳60是用于变压器50的普通接地连接。磁芯52在单一位置处连接到外壳60。更具体地说,磁芯52通过接触外壳60外表面的电缆82连接到外壳60。电缆82通过连接于外壳60外表面上的磁芯接地套管83伸出外壳80。磁芯接地套管83包括能够充分地隔离外壳60和电缆82并且密封外壳60和电缆82之间的缝隙的磁环。或者,电缆82可以直接固定在外壳60的内表面上。
高压线圈54通过来自交流电源的交流电压激励。交流电压在磁芯52内产生磁通。磁通与高压线圈54的匝数成比例。磁通切割穿过低压线圈56,并且在低压线圈56内产生与低压线圈56的匝数成比例的电压。The
变压器50包括绝缘材料,以便相互电力地隔离变压器50内部的各个金属元件。例如,变压器50包括位于高、低压线圈54、56之间的势垒74a和垫片72a。势垒74a和垫片72a由诸如纤维素压板或纸之类的固体绝缘材料形成,用来隔离高压线圈54和低压线圈56。The transformer 50 includes insulating material to electrically isolate the various metallic elements inside the transformer 50 from each other. For example, the transformer 50 includes a
变压器50还包括位于低压线圈56和磁芯芯柱52a之间的势垒74b和垫片72b。势垒74b和垫片72b用来隔离低压线圈56和磁芯52。变压器50还包括垫片72c,用来隔离磁芯52和外壳60。变压器50还包括势垒74c,用来隔离高、低压线圈54、56和外壳60。The transformer 50 also includes a
绝缘势垒和垫片还位于变压器10的其他接地元件之间。Insulation barriers and spacers are also located between other grounded elements of the
变压器50的外壳60内充满诸如矿物油76之类的绝缘液体。矿物油76起在外壳60内的绝缘和冷却介质的作用。从而,例如,高、低压线圈54、56以及势垒74a和垫片72a可以通过矿物油76隔离。The
高、低压线圈54、56的每一个具有它们自己的由诸如纤维素压板或纸之类的固体材料和诸如矿物油之类的绝缘液体形成的内部绝缘系统。Each of the high and low voltage coils 54, 56 has their own internal insulation system formed of a solid material such as cellulose pressboard or paper and an insulating liquid such as mineral oil.
在图3中以简化示意方式示出了电源变压器50的绝缘系统(包括绝缘系统的内部和外部结构)。The insulation system of the power transformer 50 (including the internal and external structure of the insulation system) is shown in a simplified schematic form in FIG. 3 .
涉及方法10的具体细节如下。方法10包括在电源变压器50的绝缘系统中识别异常情况的出现,和异常情况的大体位置。这些是通过隔离电源变压器50内的绝缘系统的离散区域,和在一组受控条件下检查每个隔离区域实现的(图1中的步骤12、13和14)。更具体地说,绝缘系统内的各个节点可以接地或装上防护装置以便在绝缘系统内隔离节点到节点或节点到地的区域,从而能够测量这些区域各个的电介质损耗。例如,可以给电源变压器50中的磁芯52或高压套管62或低压套管64装防护装置以便隔离绝缘系统的各个区域。作为一个具体例子,通过给低压线圈56装防护装置能够隔离高压线圈54和地之间的绝缘区域。Specific
使用电源变压器绝缘系统设计中通常本领域技术人员公知的常规技术能够实现绝缘系统每个隔离区域的检查。例如,上述美国国家标准化组织确定的功率因数测试可以用作检查。功率因数测试可以通过在区域每端处的节点或终端上设置例如10000v的交流电压而实施于隔离区域。换句话说,将电压施加于由绝缘系统隔离区域隔离的导线例如高压线圈54两端。外加电压典型地具有近似等于电源变压器50的电源频率例如60hertz的频率。然后可以测量流过绝缘系统的所得到的电容性电流,以及外加电压和电流之间的相角。Inspection of each isolation area of the insulation system can be accomplished using conventional techniques generally known to those skilled in the art in power transformer insulation system design. For example, the power factor test determined by the American National Standards Organization mentioned above can be used as a check. A power factor test can be performed on an isolated area by placing an AC voltage of eg 10000v on a node or terminal at each end of the area. In other words, a voltage is applied across the wires, such as the
通过计算电压和电流之间相角的余弦可以获得绝缘系统隔离区域的功率因数,该功率因数表现出在那里的电介质损耗(或“tan-δ”)。将功率因数与预定值比较以便确定在该区域内是否存在异常情况。例如,功率因数比0.005或0.5%大则说明有异常情况。The power factor in the isolated region of an insulation system can be obtained by calculating the cosine of the phase angle between the voltage and current, which represents the dielectric loss (or "tan-delta") there. The power factor is compared with a predetermined value to determine whether there is an abnormal condition in the area. For example, a power factor greater than 0.005 or 0.5% indicates an abnormal situation.
或者,通过频域电介质频谱学,也就是通过在将外加电压的频率设置为预定范围即大约0.01hertz和1000hertz之间的各个值时测量绝缘系统隔离区域的电介质损耗,实施用于异常情况的检查。“电介质损耗对特定区域的频率”的所得到的图形表示(典型地为曲线)在以下称为区域的“电介质响应”。Alternatively, the inspection for anomalies can be carried out by frequency-domain dielectric spectroscopy, that is, by measuring the dielectric loss in isolated regions of the insulation system when the frequency of the applied voltage is set to various values within a predetermined range, i.e., between approximately 0.01 hertz and 1000 hertz . The resulting graphical representation (typically a curve) of "dielectric loss versus frequency for a particular region" is hereinafter referred to as the "dielectric response" of the region.
使用本领域技术人员公知的电源变压器绝缘系统设计的常规技术,基于外加电压、测量电流,以及外加电压和测量电流之间的测量相角能够量化电介质损耗。用于产生输入电压和测量所得到的电流和相角的适合装置可以从通用电气公司型号为no.IDA200获得。从用于特定区域的测量电压、电流和相角获得的电介质响应在下面称为该区域的“测量电介质响应”。Dielectric loss can be quantified based on the applied voltage, the measured current, and the measured phase angle between the applied voltage and the measured current, using conventional techniques for power transformer insulation system design known to those skilled in the art. A suitable device for generating the input voltage and measuring the resulting current and phase angle is available from General Electric Company, model no. IDA200. The dielectric response obtained from the measured voltage, current and phase angle for a particular region is hereinafter referred to as the "measured dielectric response" for that region.
将测量电介质响应与绝缘系统相应区域的计算电介质响应比较以便确定在该区域是否存在异常情况。计算电介质响应是没有存在异常情况的区域的电介质响应的理论表示。计算电介质响应基于区域内绝缘材料的材料特性和几何形状(包括在区域内起绝缘材料作用的任何油的材料特性)。计算电介质响应还基于当获得测量电介质响应时绝缘材料的温度。The measured dielectric response is compared to the calculated dielectric response for the corresponding region of the insulation system to determine if an anomaly exists in that region. The calculated dielectric response is a theoretical representation of the dielectric response in regions where no anomalies exist. The calculated dielectric response is based on the material properties and geometry of the insulating material in the zone (including the material properties of any oil that acts as an insulating material in the zone). Calculating the dielectric response is also based on the temperature of the insulating material when the measured dielectric response was obtained.
针对每一个频率计算理论电介质损耗,在所述每一个频率上,使用通常本领域技术人员公知的电源变压器绝缘系统设计的常规技术,基于上述因数测量电介质损耗。计算电介质响应表示这些值的曲线,作为频率的函数。The theoretical dielectric loss was calculated for each frequency at which the dielectric loss was measured based on the above factors using conventional techniques for power transformer insulation system design generally known to those skilled in the art. Calculate the dielectric response curve representing these values as a function of frequency.
测量电介质响应和计算电介质响应之间的偏差比预定数量大说明在绝缘系统相应区域内存在异常情况,并且从而提供显示异常情况近似位置的指示。A deviation between the measured and calculated dielectric responses greater than a predetermined amount indicates the presence of an anomaly within the corresponding region of the insulation system and thereby provides an indication showing the approximate location of the anomaly.
应注意到用于确定异常情况的出现和近似位置的上述检查仅作为示范的目的描述,其他类型的诊断测试也可以用于这些特定检查的场所。It should be noted that the above tests for determining the presence and approximate location of abnormalities are described for exemplary purposes only, and that other types of diagnostic tests may also be used in the context of these specific tests.
在识别异常情况的出现和近似位置之后,也就是,在已经识别具有异常情况的绝缘系统的区域之后(步骤16)识别异常情况的类型。更具体地说,产生表现出测量电介质响应和计算电介质响应之间偏差的图形表示(典型地为曲线)(步骤18)。这个图形表示在下面称为相应区域的“电介质频率响应签名”或“DFR签名”。After identifying the occurrence and approximate location of the abnormal condition, ie after having identified the area of the insulation system with the abnormal condition (step 16 ), the type of the abnormal condition is identified. More specifically, a graphical representation (typically a curve) showing the deviation between the measured and calculated dielectric responses is generated (step 18). This graphical representation is referred to below as the "dielectric frequency response signature" or "DFR signature" of the corresponding region.
通过用在每个取样频率处的测量电介质损耗减去在相应频率处的计算电介质损耗产生DFR签名。用每个频率的计算电介质损耗除在该频率处的计算和测量电介质损耗之间的差值,然后乘以100。这些值的合计曲线绘制成频率的函数表示DFR签名。换句话说,DFR签名是标准化签名函数,该函数在绝缘系统的正常电介质损耗频率频谱内易于改变。The DFR signature is generated by subtracting the calculated dielectric loss at each sampling frequency from the measured dielectric loss at the corresponding frequency. Divide the difference between the calculated and measured dielectric losses at each frequency by the calculated dielectric loss at that frequency and multiply by 100. The sum of these values is plotted as a function of frequency to represent the DFR signature. In other words, the DFR signature is a normalized signature function that tends to vary within the normal dielectric loss frequency spectrum of the insulation system.
随后,将DFR签名与其它DFR签名比较以便确定在测试区域内出现的异常情况的类型(步骤20)。申请人已经发现异常情况的特定类型常常为具有独特或与众不同的特征的DFR签名。相应于特定类型异常情况的每个DFR签名的“图书馆”或数据库能够从具有公知异常情况的电源变压器获得的DFR签名或从实验室试验集合。Subsequently, the DFR signature is compared with other DFR signatures to determine the type of anomaly that occurred within the test area (step 20). Applicants have discovered that particular types of anomalies are often DFR signatures with unique or distinctive characteristics. A "library" or database of each DFR signature corresponding to a particular type of anomaly can be obtained from DFR signatures of power transformers with known anomalies or assembled from laboratory tests.
比较来自具有异常情况的电源变压器50的区域的DFR签名与数据库中的DFR签名能够简化区域中出现的异常情况的类型的识别。换句话说,使测试区域的DFR签名的轮廓与相应于公知异常情况的参考DFR签名的轮廓相匹配能够简化该异常情况的识别(步骤22、24)。相反地,如果测试区域的DFR签名的轮廓与参考DFR签名的轮廓的匹配不能获得,则不能识别异常情况的类型(步骤25)(应注意到DFR签名随相应区域的几何结构而改变。因而,参考DFR签名必须相应于被估算的绝缘系统的特定区域的几何形状)。Comparing DFR signatures from regions of power transformers 50 with abnormal conditions with DFR signatures in the database can simplify the identification of the type of abnormal conditions occurring in the region. In other words, matching the contours of the DFR signature of the test area with the contours of the reference DFR signatures corresponding to known anomalies can simplify the identification of the anomalies (
上述步骤可以一直重复直到检查完电源变压器内绝缘系统的全部区域的异常情况(步骤26)。The above steps can be repeated until the abnormal conditions of all areas of the insulation system in the power transformer are checked (step 26).
方法10可以作为在新近制造、新近修理,或新近重新整修的电源变压器例如电源变压器10上的检查执行。方法10还可以在电源变压器10使用时,也就是电源变压器10安装在实地操作位置时作为日常检查执行。而且,方法10可以在使用标准功率因数测试或实际上的其它类型诊断工具识别到异常情况的出现之后执行,以便分类异常情况的具体类型。
通常,用于电源变压器例如电源变压器50的其它类型诊断测试能够识别异常情况的出现,但是不能区别异常情况的具体类型。方法10能够识别异常情况的具体类型,并且特别地能够在不拆卸电源变压器50的情况下和不排泄电源变压器50的绝缘油的情况下执行。方法10尤其在电源变压器10使用时有利。更具体地说,通过简化异常情况的具体类型的识别,方法10能够在异常情况是可以在原位上进行校正的类型时防止变压器10的不必要拆除和拆卸。因此,通过使用方法10能够避免常常与从操作位置拆除电源变压器或者拆卸电源变压器以便诊断异常情况联系在一起的努力、花费和停机时间。此外,方法10可以利用容易获得的、现有的设备执行,并且实施方法10需要的时间、努力和技能相对较低。Typically, other types of diagnostic tests for power transformers such as power transformer 50 can identify the presence of an abnormal condition, but cannot distinguish the specific type of abnormal condition. The
而且,方法10能够识别常规诊断测试通常会误诊的异常情况。例如,在变压器例如变压器50中高功率因数的一种通常事故是磁芯接地电路中的过度电阻。这种特定异常情况可以由磁芯和磁芯接地条之间比正常电阻高的电阻或由磁芯中各层之间比正常电阻高的电阻引起。常规诊断测试例如功率因数测试通常不能区分磁芯接地电路中的过度电阻和电源变压器的纤维素绝缘材料内的潮湿。因此,由于磁芯接地电路中的过度电阻而展示高功率因数的电源变压器有时会在变压器的纤维素绝缘材料中存在潮湿的错误信息基础上经受不必要的烘干过程。Furthermore, the
相反,方法10能够清楚地识别诸如变压器10之类的变压器的磁芯接地电路中比正常电阻高的电阻。例如,图4描述了一系列用于类似于电源变压器50的双线圈电源变压器的磁芯接地电路的用实验方法确定的DFR签名。通过将不同电阻的电阻器连接到电源变压器的接地条,磁芯接地电路的电阻在数值范围内变化。在磁芯接地电路的电阻设置为图4中所示的每个数值时测量用于绝缘系统的相应区域的DFR签名。In contrast,
图4示出了在磁芯接地电阻的不同值处的DFR签名实质上与低频率输入电压处的电阻相同。然而,DFR签名的轮廓实质上在高频率输入电压处变化。更具体地说,相应于电阻的每个不同值的DFR签名在高频率输入电压处具有独特轮廓。相应于电阻的每个值的DFR签名的特殊性可以用来识别变压器磁芯接地电路中比正常电阻高的电阻,不太可能把比正常电阻高的电阻误诊为与绝缘材料相关的异常情况。Figure 4 shows that the DFR signature at different values of the core ground resistance is substantially the same as the resistance at the low frequency input voltage. However, the profile of the DFR signature varies substantially at high frequency input voltages. More specifically, the DFR signature corresponding to each different value of resistance has a unique profile at high frequency input voltages. The specificity of the DFR signature corresponding to each value of resistance can be used to identify higher than normal resistance in the transformer core ground circuit, making it less likely to misdiagnose higher than normal resistance as an abnormality related to insulation materials.
而且,功率因数测试在输入电压的一个频率处执行,因此功率因数测试不能诊断测试频率以外的频率处的显示其自身的异常情况。相反,DFR签名是在输入电压频率的范围上获得,因此DFR签名能够识别功率因素测试的单个测试频率以外的频率处的显示其自身的异常情况。Also, the power factor test is performed at one frequency of the input voltage, so the power factor test cannot diagnose anomalies that manifest themselves at frequencies other than the test frequency. Instead, the DFR signature is obtained over a range of input voltage frequencies, so the DFR signature is able to identify anomalies that manifest themselves at frequencies other than the single test frequency of the power factor test.
图5描述了在类似于电源变压器50的主变压器内诊断和校正异常情况之前和之后获得的实际DFR签名。最初基于高功率因数读数(比0.5%高)检测异常情况的出现。随后,在主变压器的检查追溯到负载抽头变换器中使用的电力地连接到主变压器的辅助变压器时,基于测量DFR签名和相应于高磁芯接地电阻的参考DFR签名之间的比较,异常情况被识别为主变压器磁芯接地电路中比正常电阻高的电阻。FIG. 5 depicts actual DFR signatures obtained before and after diagnosing and correcting abnormal conditions in a main transformer similar to power transformer 50 . The presence of abnormal conditions is initially detected based on high power factor readings (higher than 0.5%). Subsequently, when the inspection of the main transformer was traced back to the auxiliary transformer used in the load tap changer which is electrically grounded to the main transformer, based on the comparison between the measured DFR signature and the reference DFR signature corresponding to the high core ground resistance, abnormal conditions Identified as a higher than normal resistance in the main transformer core ground circuit.
图5描述了在调节辅助变压器以便减小主变压器中的高磁芯接地电阻之前和之后测量的绝缘系统受影响区域的DFR签名。图5示出了DFR签名在这个异常情况校正之前具有与修理之后的DFR签名有关的独特轮廓(修复之后的DFR签名的轮廓典型地是那个没有任何异常情况的特定几何形状的绝缘区域)。Figure 5 depicts the DFR signature of the affected area of the insulation system measured before and after tuning the auxiliary transformer in order to reduce the high core-to-ground resistance in the main transformer. Figure 5 shows that the DFR signature before this anomaly correction has a unique profile relative to the DFR signature after repair (the profile of the DFR signature after repair is typically that particular geometrically shaped insulating region without any anomaly).
图6描述了来自具有比正常电阻高的磁芯接地电阻的第一变压器的绝缘区域的第一电介质频率响应签名。图6还描述了来自具有正常磁芯接地电阻的第二变压器的绝缘区域的第二电介质频率响应签名。如图6所示,很明显,通过受影响区域的电介质频率响应签名的独特轮廓能够识别这种特定类型的条件。Figure 6 depicts a first dielectric frequency response signature from an isolated region of a first transformer having a higher than normal core resistance to ground. Figure 6 also depicts a second dielectric frequency response signature from an isolated region of a second transformer with normal core-to-ground resistance. As shown in Figure 6, it is clear that this particular type of condition can be identified by the unique profile of the dielectric frequency response signature of the affected area.
图7描述了从具有相对较高级别湿度的绝缘区域获得的DFR签名,和从具有相对较低级别湿度的绝缘区域获得的第二DFR签名。图8描述了从展示化学污染的绝缘区域获得的DFR签名。这些DFR签名的独特轮廓每个都实质上与绝缘异常情况的特定类型一致,因此可以用来识别绝缘系统其他区域的这种异常情况。Figure 7 depicts a DFR signature obtained from an insulating area with a relatively higher level of humidity, and a second DFR signature obtained from an insulating area with a relatively lower level of humidity. Figure 8 depicts the DFR signature obtained from an insulating region exhibiting chemical contamination. The unique profiles of these DFR signatures are each substantially consistent with a specific type of insulation anomaly and can therefore be used to identify such anomalies in other areas of the insulation system.
应理解尽管在上述描述已经陈述了本发明的许多特征和优点,但是这些公开的内容仅仅是说明性的,可以在本发明原理范围内在附属权利要求所限定的宽泛含义内对本发明做出更改。It is to be understood that while the foregoing description has set forth many of the features and advantages of the invention, such disclosure is illustrative only and that changes may be made in the invention within the broad meaning defined in the appended claims, within the scope of the principles of the invention.
Claims (20)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US36967102P | 2002-04-03 | 2002-04-03 | |
| US60/369,671 | 2002-04-03 | ||
| US10/310,103 | 2002-12-04 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1451970A CN1451970A (en) | 2003-10-29 |
| CN100447575C true CN100447575C (en) | 2008-12-31 |
Family
ID=29250465
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB031092098A Expired - Fee Related CN100447575C (en) | 2002-04-03 | 2003-04-03 | Method for identifying abnormal conditions in power transformers |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100447575C (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102007419B (en) * | 2008-04-14 | 2014-02-19 | Abb研究有限公司 | Determining the degraded insulating capacity in an insulation provided between two objects of an inductively operated element |
| CN109100622A (en) * | 2018-07-11 | 2018-12-28 | 云南电网有限责任公司电力科学研究院 | Installation simulator for the experiment of converter transformer paper oil insulation high pressure characteristics |
| CN110568301A (en) * | 2019-09-16 | 2019-12-13 | 国网河北省电力有限公司电力科学研究院 | A Detection Mode Prediction Method Based on Effective Detection Rate of Transformer State Quantity |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102998338B (en) * | 2012-11-20 | 2015-04-22 | 中国电力科学研究院 | Dielectric response characteristic-based insulation dampness diagnosis method for transformer oil paper |
| CN104678267A (en) * | 2015-02-11 | 2015-06-03 | 华南理工大学 | Method for indirectly measuring dielectric loss of insulation layer of cable |
| KR102558782B1 (en) * | 2016-05-04 | 2023-07-21 | 엘에스일렉트릭(주) | Apparatus for predicting power loss of transformer |
| RU2643940C1 (en) * | 2016-12-30 | 2018-02-06 | Общество с ограниченной ответственностью Научно-производственное объединение "Логотех" | Method of vibratory unavailable diagnosis of transformer |
| CN115864310B (en) * | 2022-11-22 | 2025-05-27 | 重庆大学 | Multi-parameter fusion power transformer defect identification, state classification and active safety protection method |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1039659A (en) * | 1988-05-16 | 1990-02-14 | 株式会社日立制作所 | Be used for the abnormality diagnostic system and method for high voltage electric power equip ment |
| US5150059A (en) * | 1989-11-09 | 1992-09-22 | B & C Diagnostics Kft. | Method and apparatus for testing the condition of insulating system |
| CN1184940A (en) * | 1996-12-09 | 1998-06-17 | 株式会社日立制作所 | Insulation equipment diagnosis system and partial discharge detection method |
| US6088658A (en) * | 1997-04-11 | 2000-07-11 | General Electric Company | Statistical pattern analysis methods of partial discharge measurements in high voltage insulation |
-
2003
- 2003-04-03 CN CNB031092098A patent/CN100447575C/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1039659A (en) * | 1988-05-16 | 1990-02-14 | 株式会社日立制作所 | Be used for the abnormality diagnostic system and method for high voltage electric power equip ment |
| US5150059A (en) * | 1989-11-09 | 1992-09-22 | B & C Diagnostics Kft. | Method and apparatus for testing the condition of insulating system |
| CN1184940A (en) * | 1996-12-09 | 1998-06-17 | 株式会社日立制作所 | Insulation equipment diagnosis system and partial discharge detection method |
| US6088658A (en) * | 1997-04-11 | 2000-07-11 | General Electric Company | Statistical pattern analysis methods of partial discharge measurements in high voltage insulation |
Non-Patent Citations (2)
| Title |
|---|
| Analysis and modeling of dielectric responsesofpowertransformer insulation. Zheng Tong Yao、Tapan Kumar Saha,.Power Engineering Society Summer Meeting,Vol.vol1 . 2002 |
| Analysis and modeling of dielectric responsesofpowertransformer insulation. Zheng Tong Yao、Tapan Kumar Saha,.Power Engineering Society Summer Meeting,Vol.vol1 . 2002 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102007419B (en) * | 2008-04-14 | 2014-02-19 | Abb研究有限公司 | Determining the degraded insulating capacity in an insulation provided between two objects of an inductively operated element |
| CN109100622A (en) * | 2018-07-11 | 2018-12-28 | 云南电网有限责任公司电力科学研究院 | Installation simulator for the experiment of converter transformer paper oil insulation high pressure characteristics |
| CN110568301A (en) * | 2019-09-16 | 2019-12-13 | 国网河北省电力有限公司电力科学研究院 | A Detection Mode Prediction Method Based on Effective Detection Rate of Transformer State Quantity |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1451970A (en) | 2003-10-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Zhang et al. | Asset-management of transformers based on condition monitoring and standard diagnosis | |
| US8219335B2 (en) | Electric winding displacement detection method and apparatus | |
| US6870374B2 (en) | Process for identifying abnormalities in power transformers | |
| US20120130663A1 (en) | On-line diagnostic method for health monitoring of a transformer | |
| US20110022338A1 (en) | Determining degraded insulating ability in an inductively operating element | |
| CN100447575C (en) | Method for identifying abnormal conditions in power transformers | |
| Yasid et al. | The Effect of short circuit fault in three-phase core-typed transformer | |
| KR20140038261A (en) | Apparatus for diagnosing a transformer and method for the same | |
| US7960977B2 (en) | Determining degraded insulating ability in insulation provided between two objects of an inductively operating element | |
| JP6164022B2 (en) | Interlayer insulation diagnosis method for winding equipment | |
| Yasid et al. | Interpretation of sweep frequency response analysis traces on inter-turn short circuit fault | |
| Lapworth et al. | Condition assessment techniques for large power transformers | |
| Toudji et al. | Predictive diagnostic based on HF modeling of electrical machines windings | |
| Zhang et al. | Experimental investigation of localized axial winding displacement in a high frequency range for power transformers | |
| Tahir et al. | Optimization of FRA by an improved numerical winding model: disk space variation | |
| JP2004226299A (en) | Degradation diagnosis device for rotating electrical machine windings | |
| Sinvula et al. | A proposed power transformers failure assessment method for resolving harmonic distortion problem | |
| Robalino et al. | Evaluation of Distribution Class Transformers Using Narrow Band Dielectric Frequency Response Measurements | |
| Robalino et al. | Investigation of EHV current transformer failure by dielectric frequency response technique | |
| Thakur | Diagnostic measurement practices for instrument transformers | |
| Krishnan et al. | Review of the Monitoring Diagnostic Methods of Oil Immersed Transformers | |
| KR102124787B1 (en) | method for analyzing condition Based Risk of power equipment | |
| Dhanve et al. | Analysis of failed and working power transformer and their diagnostics | |
| Lee et al. | Life evaluation method of cast-resin transformer by tan delta measurement: a cast study | |
| Zhang et al. | Transformer diagnostic and assessment methodology |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20180529 Address after: Baden, Switzerland Patentee after: ABB Switzerland Co.,Ltd. Address before: Zurich Patentee before: ABB Technology AG |
|
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20210512 Address after: Baden, Switzerland Patentee after: ABB grid Switzerland AG Address before: Baden, Switzerland Patentee before: ABB Switzerland Co.,Ltd. |
|
| TR01 | Transfer of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081231 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |