CN100447688C - Electronic cam control method and servo motor control system - Google Patents
Electronic cam control method and servo motor control system Download PDFInfo
- Publication number
- CN100447688C CN100447688C CNB2005101254400A CN200510125440A CN100447688C CN 100447688 C CN100447688 C CN 100447688C CN B2005101254400 A CNB2005101254400 A CN B2005101254400A CN 200510125440 A CN200510125440 A CN 200510125440A CN 100447688 C CN100447688 C CN 100447688C
- Authority
- CN
- China
- Prior art keywords
- curve
- cam
- control
- asynchronous
- acceleration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Making Paper Articles (AREA)
Abstract
本发明提供一种在同步控制区间和非同步控制区间的变位点,加速度等可以平滑地连接、不发生振动等的电子凸轮控制方法。这是一种使用伺服电机的电子凸轮的控制方法。具有进行以一定速度使控制对象物移动的控制的同步控制区间,以及具有进行使所述控制对象物从该同步控制区间的结束位置移动到下一个同步控制区间的开始位置的控制的非同步控制区间,所述非同步控制区间中的控制对电子凸轮的位置控制使用五次函数,对电子凸轮的速度控制使用四次函数,对电子凸轮的加速度控制使用三次函数,从而控制使所述非同步控制区间和所述同步控制区间切换的变化点附近的电子凸轮的动作平滑。
The present invention provides an electronic cam control method in which displacement points, accelerations, and the like can be smoothly connected between a synchronous control section and an asynchronous control section, without vibration. This is a control method of an electronic cam using a servo motor. There is a synchronous control section in which the control object is moved at a constant speed, and an asynchronous control in which the control object is moved from the end position of the synchronous control section to the start position of the next synchronous control section interval, the control in the asynchronous control interval uses a quintic function for the position control of the electronic cam, uses a quartic function for the speed control of the electronic cam, and uses a cubic function for the acceleration control of the electronic cam, so that the control makes the asynchronous The operation of the electronic cam near the change point of switching between the control interval and the synchronous control interval is smooth.
Description
技术领域 technical field
本发明涉及电子凸轮的控制方法及伺服电机控制系统。The invention relates to a control method of an electronic cam and a servo motor control system.
背景技术 Background technique
包装机械等各种产业机械使用伺服电机等可控制速度的电机作为驱动源。包装机械包括:连续抽出带状的包装薄膜并供给到包装机本体的薄膜供给部件;每隔规定间隔对包装机本体供给被包装物的被包装物供给部件;以及包装机本体。包装机本体被适当加工(例如,筒状制袋、袋成型)为可以用供给的包装薄膜包裹包装物的形态,同时将被包装物收纳到该加工好的包装薄膜内。然后,以收纳到包装薄膜中的状态运送被包装物,在该运送途中,通过将包装薄膜的适当位置进行封闭(seal)、切割从而制造出各个包装体。Various industrial machines such as packaging machines use speed-controllable motors such as servo motors as drive sources. The packaging machine includes: a film supply unit that continuously draws out a strip-shaped packaging film and supplies it to the packaging machine body; a packaged object supply unit that supplies the packaged objects to the packaging machine body at predetermined intervals; and the packaging machine body. The main body of the packaging machine is properly processed (for example, tubular bag making, bag forming) into a form that can wrap the packaged object with the supplied packaging film, and at the same time store the packaged object in the processed packaging film. Then, the object to be packaged is transported in a state housed in the packaging film, and during the transportation, the packaging film is sealed and cut at an appropriate position to manufacture individual packages.
对于沿行进方向的薄膜侧缘(纵封闭、中央封闭)和与行进方向正交的方向(横封闭、末端封闭)进行对于通常包装薄膜的封闭处理。各封闭部位分别使用不同类型的封闭装置进行封闭处理。The sealing process for conventional packaging films is carried out for the side edges of the film in the direction of travel (longitudinal seal, central seal) and in the direction perpendicular to the direction of travel (transverse seal, end seal). Each sealing position is sealed with different types of sealing devices.
而且,在包装机械的情况下,例如,作为在薄膜供给部件中连续抽出带状的薄膜的处理,或由被包装物供给部件运送被包装物的同时对包装机本体供给的处理,或包装机中的各封闭装置的驱动源,分别使用伺服电机或其它的电机。Moreover, in the case of a packaging machine, for example, as a process of continuously drawing out a strip-shaped film in a film supply part, or a process of feeding a packaged object to the packaging machine body while being conveyed by a packaged object supply part, or a packaging machine The drive source of each closing device in the drive source respectively uses servomotor or other electric machinery.
用于对包装薄膜向与行进方向正交的方向进行封闭的末端封闭装置包括上下一对的末端封闭器(内置加热器),使该末端封闭器以规定的轨迹移动,由末端封闭器的前端的封闭面之间从上下以规定的压力夹住包装薄膜,从而使包装薄膜的接触部位熔融,并热封闭。末端封闭器的封闭面的移动轨迹如大致区别,则有圆形、以大致矩形为代表的非圆形的两种。采用前者的圆形的轨迹的称为转动式,在上下一对旋转轴上分别安装末端封闭器。而且,将旋转轴向一定方向旋转,则末端封闭器也旋转移动。此时,末端封闭器的封闭面形成圆弧状,同时该圆弧的曲率半径与圆形的轨迹曲率半径大致一致。由此,从封闭器面的行进方向侧缓慢线接触,作为结果,形成相当于封闭面的宽度的末端封闭部位。The end closure device used to seal the packaging film in the direction perpendicular to the traveling direction includes a pair of upper and lower end closures (built-in heaters), which move the end closures in a prescribed trajectory, and the front end of the end closures The packaging film is clamped from top to bottom with a specified pressure between the sealing surfaces of the packaging film, so that the contact parts of the packaging film are melted and heat-sealed. If the moving track of the closing surface of the end closure is roughly different, there are two types of circular and non-circular represented by a roughly rectangular shape. The former circular trajectory is called a rotary type, and end closures are installed on the upper and lower pairs of rotating shafts. Furthermore, when the rotary shaft is rotated in a certain direction, the end closure also rotates and moves. At this time, the closing surface of the end closure is formed in an arc shape, and the radius of curvature of the arc is substantially consistent with the radius of curvature of the circular track. As a result, line contact is made slowly from the side in the advancing direction of the closure surface, and as a result, a terminal closure portion corresponding to the width of the closure surface is formed.
采用大致矩形等非圆形的轨迹的末端封闭装置有方形运动(box motion)式和曲柄运动式。两种方法都以由上下一对末端封闭器夹住薄膜的状态水平移动,从而封闭面与包装薄膜的末端封闭部位接触的时间延长。该方式由于可以延长对于薄膜的加热时间,所以适用于包装薄膜难以熔融、软化,难以热封闭的薄膜材料的情况。There are box motion type and crank motion type of the end closure device adopting a non-circular locus such as a substantially rectangular shape. Both methods move horizontally in a state where the film is clamped by the upper and lower pair of end sealers, so that the time for the sealing surface to be in contact with the end sealing portion of the packaging film is prolonged. Since this method can prolong the heating time for the film, it is suitable for the case where the packaging film is difficult to melt and soften, and it is difficult to heat seal the film material.
另外,在末端封闭装置中,在末端封闭器的封闭面上内置切割器,通过将包装薄膜向横向末端封闭同时切断,从而从包装薄膜的前端依次将收纳了被包装物的包装体一一分离制造。In addition, in the end closure device, a cutter is built in the sealing surface of the end closure, and the packaging film containing the packaged objects is separated one by one from the front end of the packaging film by closing and cutting the packaging film toward the lateral end. manufacture.
进而,末端封闭装置在末端封闭器每一次旋转(一次公转)移动时,将包装薄膜的规定部位(前后的被包装物之间的薄膜部位)向横向封闭。从而,需要进行控制,以使一对末端封闭器配合实施包装薄膜的末端封闭的规定部位到达末端封闭装置的设置位置的定时来夹住包装薄膜。换言之,在控制使包装薄膜以一定速度运送的情况下,在包装同一制品时,由于包装间距(包装薄膜的末端封闭部位的间隔)也相等,因此末端封闭器之间需要以一定的时间(运送速度×包装间距)间隔进行夹住薄膜的动作。Furthermore, the end closing device seals a predetermined portion of the packaging film (film portion between front and rear packaged objects) in the lateral direction every time the end sealer moves (one revolution). Therefore, it is necessary to perform control so that the pair of end sealers sandwich the packaging film in accordance with the timing at which a predetermined portion for performing end closure of the packaging film reaches the position where the end closure device is installed. In other words, when the packaging film is controlled to be transported at a certain speed, when the same product is packaged, since the packaging distance (the distance between the end sealing parts of the packaging film) is also equal, it takes a certain amount of time (transportation time) between the end closures. Speed x packaging pitch) to clamp the film at intervals.
另一方面,在末端封闭器夹住包装薄膜的期间,需要使包装薄膜的运送速度和末端封闭器的封闭面的移动速度相等。而且,在多数情况下,在使末端封闭器一次旋转(一次公转)的全期间中的末端封闭器的封闭面的移动速度为一定时,不能由一对末端封闭器夹住要求的末端封闭部位。On the other hand, it is necessary to make the conveying speed of the packaging film equal to the moving speed of the sealing surface of the end closure while the packaging film is clamped by the end closure. Moreover, in many cases, when the moving speed of the sealing surface of the end closure is constant during one rotation (one revolution) of the end closure, the required end sealing position cannot be clamped by a pair of end closures. .
因此,通常末端封闭器的封闭面之间夹住包装薄膜的期间控制为末端封闭器的封闭面与包装薄膜的传送速度同步,以与传送速度同一速度移动,在封闭面离开包装薄膜期间,适当控制封闭面的移动速度,接着在封闭面之间夹住包装薄膜时,与包装薄膜中的正确的末端封闭部位接触,并可以热封闭。Therefore, usually the closing surface of the end closure is clamped between the packaging film and controlled so that the closing surface of the end closure is synchronized with the conveying speed of the packaging film and moves at the same speed as the conveying speed. When the sealing surface leaves the packaging film, the appropriate The speed of movement of the sealing surfaces is controlled, and then when the packaging film is clamped between the sealing surfaces, it is in contact with the correct end closure location in the packaging film and can be heat-sealed.
最近使用伺服电机作为末端封闭装置用的驱动源,通过使用伺服电机的电子凸轮控制,使末端封闭器进行如上述的动作(速度变化)。这里,将与薄膜的传送速度同步的期间称作同步控制区间,将与薄膜的传送速度不同步的期间称作非同步控制区间。在同步控制区间中,电子凸轮控制根据薄膜的传送速度而被唯一地指定。具体来说,在转动式的情况下,伺服电机的转速为等速,在方形运动式或曲柄运动式的情况下,通过规定的模式对伺服电机的转速进行增减速控制。Recently, a servo motor is used as a drive source for the end sealer, and the end sealer is operated as described above (speed change) by electronic cam control using the servo motor. Here, the period in synchronization with the conveyance speed of the film is called a synchronous control period, and the period out of synchronization with the conveyance speed of the film is called an asynchronous control period. In the synchronous control section, the electronic cam control is uniquely specified according to the conveying speed of the film. Specifically, in the case of the rotary type, the rotational speed of the servo motor is constant, and in the case of the square motion type or the crank motion type, the rotational speed of the servo motor is controlled to increase or decrease according to a predetermined pattern.
如上所述,同步控制区间中的伺服电机的转速根据包装薄膜的传送速度而被唯一地指定,根据实施末端封闭的包装间距(包装间隔)和包装薄膜的传送速度,一次的同步控制区间的时间和一次的非同步控制区间的时间分别被唯一地求解。从而,如单纯地考虑,则通过将在非同步控制区间中末端封闭器要移动的距离(电机的转角)除以分配给该非同步控制区间的时间,从而可以通过使非同步控制区间等速运动而使末端封闭器的封闭面在要求的定时位于下一个同步控制区间开始位置。As mentioned above, the rotation speed of the servo motor in the synchronous control section is uniquely specified according to the conveying speed of the packaging film, and the time of one synchronous control section is determined according to the packaging distance (packing interval) for performing end sealing and the conveying speed of the packaging film. The times of the asynchronous control intervals of and once are uniquely solved, respectively. Therefore, as a simple consideration, by dividing the distance (rotation angle of the motor) to be moved by the end sealer in the asynchronous control section by the time allocated to the asynchronous control section, it can be obtained by making the non-synchronous control section constant speed Movement so that the closing surface of the end closure is at the start position of the next synchronous control interval at the required timing.
作为使用该伺服电机的电子凸轮控制,现有专利文献1中公开的技术。该专利文献1中公开的控制方法是使用对于横向切割薄膜的旋转切割装置或横向封闭薄膜的封闭装置的伺服电机的电子凸轮控制的一例,其目的在于,对于电子凸轮的位置和速度,使从非同步控制区间向同步控制区间的变化点附近的控制平滑。As electronic cam control using this servo motor, the technology disclosed in
具体来说,专利文献1中公开的技术由于是应用于转动式的技术,因此电子凸轮的速度被控制成在同步控制区间为直线(等速),在非同步控制区间为三次曲线。Specifically, since the technology disclosed in
[专利文献1]特开2000-198094号公报[Patent Document 1] JP-A-2000-198094
在上述专利文献1中公开的发明中,对于电子凸轮的加速度,不能使从非同步控制区间到同步控制区间的变化点附近的控制平滑。这样,如果加速度波形在非同步控制区间和同步控制区间之间不连续,则恐怕在此产生振动。特别,随着一单位时间的制造个数增加,高速动作的要求提高,在从非同步控制区间切换为同步控制区间的变化点附近容易引起振动,成为高速控制的障碍。In the invention disclosed in
进而,在脱机(offline)生成电子凸轮控制用的凸轮表的方法中,关于脱机中的同步曲线的同步开始位置、同步范围、同步比率的变更、或为了防止机械干涉而通过特定点等的变更指示,不能实时生成非同步凸轮曲线并进行,需要再次生成凸轮表,效率性降低。Furthermore, in the method of generating a cam table for electronic cam control offline, the synchronization start position, synchronization range, and synchronization ratio of the synchronization curve in offline are changed, or specific points are passed in order to prevent mechanical interference, etc. It is impossible to generate and carry out the asynchronous cam curve in real time, and the cam table needs to be regenerated, which reduces the efficiency.
发明内容 Contents of the invention
本发明的目的在于提供一种电子凸轮的控制方法以及伺服电机控制系统,在同步控制区间和非同步控制区间的变位点,电子凸轮的加速度等可以平滑地连接,不发生振动等。The object of the present invention is to provide a control method of an electronic cam and a servo motor control system, in which the acceleration of the electronic cam can be smoothly connected at the displacement point between the synchronous control section and the non-synchronous control section without vibration.
本发明的电子凸轮的控制方法是使用了伺服电机的电子凸轮的控制方法,具有:进行用于使控制对象物对于主轴位置在相同的时期移动到相同的位置的控制的同步控制区间;以及进行用于使所述控制对象物从该同步控制区间的结束位置移动到下一个同步控制区间的开始位置的控制的非同步控制区间。而且,所述非同步控制区间中的控制,通过The control method of the electronic cam of the present invention is a control method of the electronic cam using a servo motor, and has: a synchronous control section for controlling the object to be controlled to move to the same position at the same time with respect to the position of the main shaft; and performing An asynchronous control section used for control of moving the control object from the end position of the synchronous control section to the start position of the next synchronous control section. Also, the control in the asynchronous control interval, by
对电子凸轮的位置控制使用五次函数,Use the quintic function for the position control of the electronic cam,
对电子凸轮的速度控制使用四次函数,Use the quartic function for the speed control of the electronic cam,
对电子凸轮的加速度控制使用三次函数,可以平滑地控制所述非同步控制区间和所述同步控制区间被切换的变化点附近的电子凸轮的动作。By using a cubic function for the acceleration control of the electronic cam, it is possible to smoothly control the operation of the electronic cam near the change point where the asynchronous control section and the synchronous control section are switched.
此外,优选可以作为各函数的输入参数而随时接受作为非同步控制区间的结束位置信息的主轴位置、凸轮位置、凸轮速度、凸轮加速度的值。In addition, it is preferable that the values of the main shaft position, cam position, cam speed, and cam acceleration as the end position information of the asynchronous control section can be accepted as input parameters of each function at any time.
进而,优选作为所述非同步控制区间的开始位置信息,对于每个控制循环,将上一次的控制循环中求出的主轴位置、凸轮位置、凸轮速度、凸轮加速度的值作为各函数的输入参数。Furthermore, preferably as the start position information of the asynchronous control section, for each control cycle, the values of the main shaft position, cam position, cam speed, and cam acceleration obtained in the previous control cycle are used as input parameters of each function .
进而,优选求所述五次函数,使其通过作为所述非同步控制区间的途中特定通过点而设定的对于主轴位置的凸轮位置,并求所述三次函数,以使该途中特定通过点的凸轮加速度为0。Furthermore, it is preferable to obtain the quintic function so that it passes through the cam position with respect to the main shaft position set as a specified passing point on the way of the asynchronous control section, and obtain the cubic function so that the specified passing point on the way The cam acceleration is 0.
另一方面,本发明的伺服电机控制系统是具有进行用于使控制对象物对于主轴位置在相同的时期移动到相同的位置的控制的同步控制区间,以及进行用于使所述控制对象物从该同步控制区间的结束位置移动到下一个同步控制区间的开始位置的控制的非同步控制区间的伺服电机控制系统,包括:临界点条件设定部件,设定对于非同步控制区间的开始位置以及结束位置的主轴位置、凸轮位置、凸轮速度、凸轮加速度;判断部件,基于取得的主轴位置判断是同步控制区间内还是非同步控制区间内;控制曲线生成部件,该判断部件的判断结果,在非同步控制区间的情况下,基于所述非同步控制区间的开始位置以及结束位置的凸轮位置、凸轮速度、凸轮加速度,求由五次函数构成的对于主轴位置的凸轮位置的非同步曲线、由四次函数构成的对于主轴位置的凸轮速度的非同步曲线、通过三次函数的对于主轴位置的加速度的非同步曲线;以及基于由该控制曲线生成部件求出的各非同步曲线和所述取得的主轴位置,生成并输出用于使伺服电机动作的输出信息的部件。On the other hand, the servo motor control system of the present invention has a synchronous control section for controlling the object to be controlled to move to the same position at the same timing with respect to the spindle position, and a synchronous control section for moving the object to be controlled from The servo motor control system of the asynchronous control interval of the control of the control of the end position of the synchronous control interval moving to the start position of the next synchronous control interval includes: a critical point condition setting part, which is set for the start position of the asynchronous control interval and The main shaft position, cam position, cam speed, and cam acceleration of the end position; the judging part, based on the obtained main shaft position, judges whether it is in the synchronous control interval or the asynchronous control interval; the control curve generation part, the judgment result of the judging part is In the case of a synchronous control section, based on the cam position, cam speed, and cam acceleration at the start position and end position of the asynchronous control section, an asynchronous curve of the cam position with respect to the main shaft position, which is composed of a quintic function, is obtained. An asynchronous curve of the cam speed with respect to the position of the main shaft constituted by a secondary function, an asynchronous curve of the acceleration with respect to the position of the main shaft by a cubic function; Position, a component that generates and outputs output information for operating the servo motor.
而且,优选即使是非同步控制区间中,也可以输入该非同步控制区间的结束位置的主轴位置、凸轮位置、凸轮速度、凸轮加速度的值,所述控制曲线生成部件基于该输入的各值逐次生成所述各非同步曲线。Furthermore, it is preferable that even in the asynchronous control interval, the values of the spindle position, cam position, cam speed, and cam acceleration at the end position of the asynchronous control interval can be input, and the control curve generating means sequentially generates the values based on the input values. The various asynchronous curves.
所述控制曲线生成部件优选包括对非同步控制区间中的每个控制循环,将前一个循环的主轴位置、凸轮位置、凸轮速度、凸轮加速度作为非同步曲线的开始位置,生成本次的控制循环中的非同步曲线的功能。The control curve generating part preferably includes, for each control cycle in the asynchronous control interval, using the main shaft position, cam position, cam speed, and cam acceleration of the previous cycle as the starting position of the asynchronous curve to generate this control cycle Functions for asynchronous curves in .
进而,优选包括设定所述非同步控制区间的途中特定通过点的部件,所述控制曲线生成部件在非同步控制区间中生成非同步曲线时,进行求所述五次函数,使其通过所述设定的对于途中特定通过点的主轴位置的凸轮位置,并求三次函数,以使该途中特定通过点的凸轮加速度为0的处理。Furthermore, it is preferable to include means for setting a specific passing point on the way of the asynchronous control section, and the control curve generation means calculates the quintic function when generating an asynchronous curve in the asynchronous control section, and makes it pass through the The process of calculating the cam position of the main shaft position of the specified passing point on the way as described above, and calculating the cubic function so that the cam acceleration of the specified passing point on the way is 0.
进而,所述控制曲线生成部件可以包括在所述同步控制区间中,生成基于方形运动曲线或曲柄运动曲线设定的同步曲线的功能。Furthermore, the control curve generation means may include a function of generating a synchronization curve set based on a square motion curve or a crank motion curve in the synchronization control section.
根据本发明,通过非同步曲线中对于主轴位置的凸轮位置的特性使用五次曲线,可以在非同步控制区间和同步控制区间之间平滑地连接加速度等。此外,在非同步控制区间中也以控制循环逐次计算非同步曲线,从而即使目标位置变更也可以对应。此外,通过将在前一个控制循环中求出的各值设定为下一个控制循环的非同步控制区间的开始位置的信息,假设目标值变更,也可以平滑地对应。According to the present invention, by using the quintic curve for the characteristics of the cam position with respect to the main shaft position in the asynchronous curve, it is possible to smoothly connect the acceleration and the like between the asynchronous control section and the synchronous control section. In addition, in the asynchronous control section, the asynchronous curve is calculated sequentially in the control cycle, so that it can cope even if the target position changes. In addition, by setting each value obtained in the previous control cycle as the information on the start position of the asynchronous control section of the next control cycle, even if the target value changes, smooth correspondence can also be achieved.
[用语的定义][definition of terms]
这里,主轴是指用于取得系统的整体的时间基准的轴。例如,通过在该轴上安装编码器来取得该主轴的信号,可以求出主轴的位置(主轴位置)。此外,由于用来取得时间基准,所以可以将控制系统的控制器的内部定时器用作主轴。此外,从动轴是对于主轴的动作,通过某种函数、变量、系数、常数而动作的轴。Here, the main axis refers to an axis for obtaining a time reference of the entire system. For example, the position of the main shaft (spindle position) can be obtained by attaching an encoder to the shaft to acquire the signal of the main shaft. In addition, since it is used to obtain the time reference, the internal timer of the controller of the control system can be used as the main axis. In addition, the slave axis is an axis that operates by some kind of function, variable, coefficient, or constant with respect to the operation of the main axis.
同步控制是指对于与主轴连接的部件(work),从动轴的机构的特定指定部分在相同时期位于相同位置地进行控制。从而,必然指定同步控制时的主轴和从动轴的关系的函数被决定。由该函数表示的是同步曲线。Synchronous control refers to the control of a specific designated part of the mechanism of the driven shaft at the same time and at the same position for the part (work) connected to the main shaft. Therefore, a function that necessarily specifies the relationship between the master axis and the slave axis during synchronous control is determined. Represented by this function is a synchronization curve.
此外,凸轮位置表示主轴和从动轴的位置关系。例如,实施方式中,角度θ为从动轴的位置,x为主轴的位置,因此凸轮的位置可以表现为In addition, the cam position represents the positional relationship between the master axis and the slave axis. For example, in the embodiment, the angle θ is the position of the driven shaft, and x is the position of the main shaft, so the position of the cam can be expressed as
θ=f(x)。θ = f(x).
从而,将上述算式以x微分,则成为凸轮速度(d θ/dx)。具体来说,成为Therefore, when the above formula is differentiated by x, it becomes the cam speed (d θ/dx). Specifically, become
dθ/dx=df(x)/dx。dθ/dx=df(x)/dx.
进而,将上述算式以x微分,则成为凸轮加速度(d2θ/dx2)。Furthermore, differentiating the above formula by x yields the cam acceleration (d 2 θ/dx 2 ).
d2θ/dx2=d2f(x)/dx2 d 2 θ/dx 2 =d 2 f(x)/dx 2
非同步控制是不进行上述同步控制的区间中的控制。换言之,在同步控制结束后到下一个同步控制开始之前,对凸轮位置、凸轮速度、凸轮加速度进行控制,在本发明中,在非同步控制结束时、即下一个同步控制开始的时刻,连接(不切断地连接)地控制凸轮速度、凸轮加速度。Asynchronous control is control in a section in which the aforementioned synchronous control is not performed. In other words, after the end of the synchronous control and before the start of the next synchronous control, the cam position, the cam speed, and the cam acceleration are controlled. (connect without disconnection) to control the cam speed and cam acceleration.
在本发明中,在同步控制区间和非同步控制区间的变位点,可以平滑地连接加速度等,并不发生振动等。In the present invention, the acceleration and the like can be smoothly connected at the displacement point between the synchronous control section and the asynchronous control section, and no vibration or the like occurs.
附图说明 Description of drawings
图1是表示本发明的应用了优选的一实施方式的包装系统的一例的图。FIG. 1 is a diagram showing an example of a packaging system to which a preferred embodiment of the present invention is applied.
图2是表示本发明的控制系统的一实施方式的图。FIG. 2 is a diagram showing an embodiment of the control system of the present invention.
图3是表示动作控制单元的功能的流程图。FIG. 3 is a flowchart showing the functions of the motion control unit.
图4是表示非同步控制区间内的非同步曲线(相位-位置特性)的图。Fig. 4 is a diagram showing an asynchronous curve (phase-position characteristic) in an asynchronous control section.
图5是表示非同步控制区间内的非同步曲线(相位-速度特性)的图。Fig. 5 is a diagram showing an asynchronous curve (phase-velocity characteristic) in an asynchronous control section.
图6是表示非同步控制区间内的非同步曲线(相位-加速度特性)的图。Fig. 6 is a diagram showing an asynchronous curve (phase-acceleration characteristic) in an asynchronous control section.
图7是表示变更了非同步控制区间内的目标值的情况下的非同步曲线(相位-位置特性)的图。7 is a diagram showing an asynchronous curve (phase-position characteristic) when the target value in the asynchronous control section is changed.
图8是表示变更了非同步控制区间内的目标值的情况下的非同步曲线(相位-速度特性)的图。FIG. 8 is a diagram showing an asynchronous curve (phase-velocity characteristic) when the target value in the asynchronous control section is changed.
图9是表示变更了非同步控制区间内的目标值的情况下的非同步曲线(相位-加速度特性)的图。9 is a diagram showing an asynchronous curve (phase-acceleration characteristic) when the target value in the asynchronous control section is changed.
图10是表示指定了非同步控制区间内的要通过的特定点的情况下的非同步曲线(相位-位置特性)的图。Fig. 10 is a diagram showing an asynchronous curve (phase-position characteristic) when a specific point to pass within the asynchronous control section is specified.
图11是表示指定了非同步控制区间内的要通过的特定点的情况下的非同步曲线(相位-速度特性)的图。FIG. 11 is a diagram showing an asynchronous curve (phase-velocity characteristic) when a specific point to be passed within the asynchronous control section is designated.
图12是表示指定了非同步控制区间内的要通过的特定点的情况下的非同步曲线(相位-加速度特性)的图。FIG. 12 is a diagram showing an asynchronous curve (phase-acceleration characteristic) when a specific point to pass within the asynchronous control section is specified.
图13是表示方形运动式的末端封闭装置的一例的示意图。Fig. 13 is a schematic diagram showing an example of a square movement type end closure device.
图14是将方形运动的机构抽象化,表示电子凸轮和包装薄膜的关系的图。Fig. 14 is a diagram showing the relationship between the electronic cam and the packaging film by abstracting the mechanism of the square movement.
图15是表示方形运动式的同步控制区间内的同步曲线(相位-位置特性)的图。FIG. 15 is a diagram showing a synchronization curve (phase-position characteristic) in a synchronization control interval of a square motion method.
图16是表示方形运动式的同步控制区间内的同步曲线(相位-速度特性)的图。Fig. 16 is a diagram showing a synchronization curve (phase-velocity characteristic) in a synchronization control section of a square motion method.
图17是表示方形运动式的同步控制区间内的同步曲线(相位-加速度特性)的图。FIG. 17 is a diagram showing a synchronization curve (phase-acceleration characteristic) in a synchronization control section of a square motion method.
图18是表示方形运动式的末端封闭装置中的相位-位置特性中的同步曲线和非同步曲线的图。Fig. 18 is a diagram showing a synchronous curve and an asynchronous curve in phase-position characteristics in a square-motion type end closure.
图19是表示方形运动式的末端封闭装置中的相位-速度特性中的同步曲线和非同步曲线的图。Fig. 19 is a diagram showing a synchronous curve and an asynchronous curve in phase-velocity characteristics in a square motion type end closure.
图20是表示方形运动式的末端封闭装置中的相位-加速度特性中的同步曲线和非同步曲线的图。Fig. 20 is a diagram showing a synchronous curve and an asynchronous curve in phase-acceleration characteristics in a square motion type end closure device.
图21是表示方形运动式的末端封闭装置中的相位-加速度特性中的同步曲线和非同步曲线的放大图。Fig. 21 is an enlarged view showing a synchronous curve and an asynchronous curve in phase-acceleration characteristics in a square motion type end closure.
图22是表示曲柄运动式的末端封闭装置的一例的示意图。Fig. 22 is a schematic diagram showing an example of a crank type end closure device.
图23是将曲柄运动的机构抽象化,表示电子凸轮和包装薄膜的关系的图。Fig. 23 is a diagram showing the relationship between the electronic cam and the packaging film by abstracting the mechanism of the crank movement.
图24是表示曲柄运动式的同步控制区间内的同步曲线(相位-位置特性)的图。FIG. 24 is a diagram showing a synchronization curve (phase-position characteristic) in a cranking type synchronization control section.
图25是表示曲柄运动式的同步控制区间内的同步曲线(相位-速度特性)的图。FIG. 25 is a diagram showing a synchronization curve (phase-velocity characteristic) in a cranking type synchronization control section.
图26是表示曲柄运动式的同步控制区间内的同步曲线(相位-加速度特性)的图。FIG. 26 is a diagram showing a synchronization curve (phase-acceleration characteristic) in a cranking type synchronization control section.
图27是表示曲柄运动式的末端封闭装置中的相位-位置特性中的同步曲线和非同步曲线的图。Fig. 27 is a diagram showing a synchronous curve and an asynchronous curve in phase-position characteristics in a crank type end closure device.
图28是表示曲柄运动式的末端封闭装置中的相位-速度特性中的同步曲线和非同步曲线的图。Fig. 28 is a diagram showing a synchronous curve and an asynchronous curve in the phase-velocity characteristics of the crank type end closure device.
图29是表示曲柄运动式的末端封闭装置中的相位-加速度特性中的同步曲线和非同步曲线的图。Fig. 29 is a diagram showing a synchronous curve and an asynchronous curve in phase-acceleration characteristics in a crank type end closure device.
具体实施方式Detailed ways
图1作为应用本发明的控制系统的一例,表示了对于包装装置的控制系统。首先,说明控制对象的包装装置。包装薄膜1由一对送料辊2夹住,随该送料辊2的旋转而连续地以一定速度被抽出。这样抽出的包装薄膜1通过制袋器3而被筒状地制袋。此外,同设置在制袋器3的上游侧的被包装物运送供给装置(手指式运送机(finger conveyer))4每隔一定间隔传送的被包装物5在规定的定时被供给到制袋器3内。由此,成为在被筒状地制袋的包装薄膜1内每隔规定间隔包含被包装物5的状态,并以该状态被传送。在制袋器3的下游侧配置中央封闭装置6、末端封闭装置7。中央封闭装置6由一对加热辊构成,夹住被筒状地制袋的包装薄膜内的两侧缘1a的重合部位,该两侧缘1a通过中央封闭装置6,从而被热封闭。末端封闭装置7将被筒状地制袋的包装薄膜1的规定位置(前后的被包装物之间)横向封闭同时切割,如后所述,有方形运动式、曲柄运动式等各种类型。所有类型都具有上下一对末端封闭器,该末端封闭器的前端相对面为封闭面。末端封闭器的封闭面以无接头状的规定的轨迹移动,该一对末端封闭器的封闭面在末端封闭器每一次旋转则从上下夹住一次包装薄膜,进行加热、加压从而热封闭。此外,该末端封闭器的封闭面上内置有切割器,将包装薄膜进行热封闭的同时进行切割而制造出包装体8。FIG. 1 shows a control system for a packaging device as an example of a control system to which the present invention is applied. First, the packaging device to be controlled will be described. The
送料辊2、中央封闭装置6以及末端封闭装置7分别与驱动电机M1~M3联动。各驱动电机M1~M3从控制器10接受指令值,以规定的转速进行旋转驱动。该控制器10组装(安装)在包装装置中,作为该包装装置用的控制器起作用。The feeding
在本实施方式中,由于以等速度使包装薄膜1移动,因此第一驱动电机M1也以一定速度等速旋转。此外,第二驱动电机M2以一定速度旋转驱动,以便中央封闭装置6的加热辊的周缘(与包装薄膜1的两侧缘1a接触的部位)的移动速度与包装薄膜1的移动速度相等或以稍快的速度动作。另外,在第一驱动电机M1的速度由于各种原因而增减速,包装薄膜的运送速度变动了的情况下,第二驱动电机M2的转速也与之随动地进行增减速控制。In this embodiment, since the
第三驱动电机M3使用伺服电机构成,根据包装薄膜1的运送状态对转速进行增减速控制。即,包装薄膜1在其一个侧缘每隔一定间隔印刷标记。该标记被印刷在对于末端封闭部位偏离了规定距离(包含0的情况)的位置。从而,由于知道从标记传感器S 1到末端封闭装置7的包装薄膜1的移动距离以及包装薄膜1的传送速度,因此通过标记传感器S1检测标记之后,求对应于该标记的末端封闭部位到达末端封闭装置7的定时。因此,在末端封闭器离开包装薄膜1的期间进行非同步控制,以便不进行规定的速度控制的包装薄膜1的末端封闭部位到达末端封闭装置7时,一对末端封闭器夹住包装薄膜,为了在该夹住的期间进行与包装薄膜1的传送速度一致的同步控制而对第三驱动电机M3进行控制。The third driving motor M3 is constituted by a servo motor, and the rotation speed is controlled to increase or decrease according to the conveying state of the
该包装装置基于控制器10的控制信号进行动作。控制器10包括电源单元11、动作控制单元(动作控制器)14、对该动作控制单元14进行数据设定的数据设定控制单元(数据设定控制器)15。这些各单元通过背板总线及其它方式被电、机械连接。当然,也可以连接除此以外的单元。另外,在本实施方式中,是进行使用伺服电机的电子凸轮控制的专用的控制器,但也可以将动作控制单元14和数据设定控制单元15作为构成可编程控制器(PLC)的单元,与CPU单元或IO单元等一起连接,与PLC一体化。This packaging device operates based on a control signal from the
由于基于包装薄膜1的移动来控制末端封闭装置7的动作,因此包装薄膜的运送为主轴,末端封闭装置7侧的动作(第三驱动电机M3)为从动轴。主轴的动作(包装薄膜1的运送)基于主轴编码器PG1的输出进行求解。该主轴编码器PG1例如可以使主轴编码器PG1的旋转轴与包装薄膜1接触,主轴编码器PG1随着包装薄膜1的移动而旋转,也可以与送料辊2的旋转轴联结,可以取各种方式。将该主轴编码器PG1的检测信号提供到动作控制单元14。此外,标记传感器S1的检测信号也被输入该动作控制单元14。而且,在动作控制单元14内进行运算处理,将基于该运算结果的指令值(或脉冲串)向伺服驱动器20输出。伺服驱动器20基于从动作控制单元14提供的指令值和与作为从动轴伺服电机的第三驱动电机M3联合的从动轴编码器PG2的输出信号,控制(同步控制、非同步控制)第三驱动电机M3的旋转动作。Since the movement of the
接着,说明作为本发明的主要部分的数据设定控制单元15以及动作控制单元14的内部结构。图2为了说明的方便而示意地记载了包装装置侧。作为控制对象的末端封闭装置7使用圆来示意地表示作为从动轴的电子凸轮。该电子凸轮每转一周,末端封闭器以规定的轨迹进行一个循环移动,在其途中从上下夹住一次包装薄膜1,并进行封闭、切割。Next, the internal configurations of the data setting
基于来自主轴编码器PG1的输出求包装薄膜从基准位置(重置的位置)移动的距离。在本实施方式中,不是在每次制造一个包装体时重置移动距离(变位),而是逐次累计地处理。伴随于此,从动轴(电子凸轮)的相位(凸轮位置:角度θ)也进行累计。换言之,假设在图2中,在将上方作为0度的从动轴的基准位置的情况下,第一次凸轮位置从0度变化到360度,但第二次凸轮位置从360度开始变化到720度。以下,继续进行累计,直到被重置。Based on the output from the spindle encoder PG1, the distance by which the packaging film has moved from the reference position (reset position) is calculated. In the present embodiment, the movement distance (displacement) is not reset every time one package is produced, but is processed sequentially and cumulatively. Along with this, the phase (cam position: angle θ) of the driven shaft (electronic cam) is also integrated. In other words, assuming that in Figure 2, in the case where the top is taken as the reference position of the driven shaft at 0 degrees, the first cam position changes from 0 degrees to 360 degrees, but the second cam position changes from 360 degrees to 720 degrees. After that, continue to accumulate until it is reset.
如图2所示,数据设定控制单元15包括条件设定部15a、凸轮临界点生成部15b。条件设定部15a接受动作开始位置、同步开始位置、同步范围、同步比率、非同步区间指定通过点、动作结束位置的输入。接受的各条件被提供给凸轮临界点生成部15b。As shown in FIG. 2 , the data setting
这里,动作开始位置、动作结束位置用于进行一系列的包装等动作从何处开始到何处结束的设定。一般,从动轴的相位(角度θ)从0度开始,成为360度×n(n为正整数)。Here, the operation start position and the operation end position are used to set where a series of packaging operations start and end. Generally, the phase (angle θ) of the driven shaft becomes 360 degrees×n (n is a positive integer) from 0 degrees.
同步开始位置用于指定电子凸轮的同步控制区间的开始位置,由从动轴的相位(角度θs)设定。The synchronous start position is used to designate the start position of the synchronous control section of the electronic cam, and is set by the phase (angle θs) of the slave shaft.
同步范围设定从同步开始位置起同步多长来进行封闭等动作。通过求同步开始位置+同步范围,可以计算同步结束位置。The synchronization range sets how long to synchronize from the synchronization start position to perform actions such as closing. By calculating the synchronization start position + synchronization range, the synchronization end position can be calculated.
同步比率通过对主轴位置进行乘法运算、除法运算,设定用于一边进行同步一边改变从动轴的速度比率的条件。通过该同步比率决定与同步控制区间中的主轴的移动距离(位置)对应的从动轴的位置(凸轮位置:角度θ),也指定从动轴的角速度等。换言之,同步控制区间中的同步曲线被指定。The synchronization ratio sets the condition for changing the speed ratio of the slave axis while performing synchronization by multiplying and dividing the position of the master axis. The position of the slave shaft (cam position: angle θ) corresponding to the movement distance (position) of the master shaft in the synchronous control section is determined by the synchronization ratio, and the angular velocity of the slave shaft is also specified. In other words, a synchronization profile in the synchronization control section is designated.
非同步区间指定通过点在非同步控制区间中有要通过的位置的情况下进行指定。例如,指定对于主轴位置的从动轴的位置等。The asynchronous section designation passing point is designated when there is a position to pass in the asynchronous control section. For example, specify the position of the slave axis with respect to the position of the master axis, etc.
这些各条件的设定(数据输入)例如使用安装在包装装置中的操作面板(可编程显示器、触摸面板等)由操作者初始输入。此外,人看到实际的包装处理等的状况而进行再设定,或基于传感器输出自动地进行再设定。The setting (data input) of each of these conditions is initially input by an operator using, for example, an operation panel (programmable display, touch panel, etc.) mounted on the packaging device. In addition, a person performs resetting while seeing the actual situation of packaging processing, etc., or resetting is performed automatically based on sensor output.
凸轮临界点生成部15b基于由条件设定部15a设定的成为基准的各条件和经由动作控制单元14取得的当前的主轴位置x,求同步曲线和非同步曲线的临界点的凸轮位置、凸轮速度以及凸轮加速度。同步曲线根据控制对象的末端封闭装置的机构以及薄膜传送速度而被唯一地决定,具体由同步比率决定。因此,在从同步控制区间切换到非同步控制区间的临界点的主轴位置、凸轮位置、凸轮速度以及凸轮加速度,和从非同步控制区间切换到同步控制区间的临界点的主轴位置、凸轮位置、凸轮速度、以及凸轮加速度分别基于同步曲线求出。换言之,非同步曲线结束位置表示同步曲线开始位置,求作为该临界点的四个值的The cam critical
xe=主轴位置xe = spindle position
θe=凸轮位置θe = cam position
ωe=凸轮速度ωe = cam speed
αe=凸轮加速度。αe = cam acceleration.
同样,非同步曲线开始位置表示同步曲线结束位置,求作为该临界点的四个值的Similarly, the starting position of the non-synchronous curve represents the end position of the synchronous curve, and the four values of the critical point are calculated as
xs=主轴位置xs = spindle position
θs=凸轮位置θs = cam position
ωs=凸轮速度ωs = cam speed
αs=凸轮加速度。αs = cam acceleration.
具体来说,第一次包装处理中的各变位点的主轴位置xe、xs由条件设定部15a提供,同步曲线也预先提供给凸轮临界点生成部15b,从而通过运算各主轴位置的凸轮位置、凸轮速度、凸轮加速度而可以求出。进而,如上所述,由于主轴位置和凸轮位置被累计,因此进行第二次以后的包装处理时的各临界点的主轴位置xe、xs仅通过依次加上包装间距(末端封闭间隔)的距离而可以求出。此外,各临界点的凸轮位置θe、θs通过加上360度而可以求出。另外,如果没有条件设定的变更,则各临界点的凸轮速度和凸轮加速度在第二次以后的包装处理中也取相同值。由于从动作控制单元14取得主轴位置信息,因此当前在进行第几次包装处理可以根据该值识别,根据需要而计算新的临界点的各值,并设定在动作控制单元14。Specifically, the main shaft positions xe and xs of each displacement point in the first packaging process are provided by the
另一方面,在设定了非同步区间指定通过点的情况下,基于非同步曲线计算基于非同步曲线指定的通过点(特定点)中的四个值On the other hand, in the case where the asynchronous section specified passing point is set, four values among the passing points (specific points) specified based on the asynchronous curve are calculated based on the asynchronous curve
xm=主轴位置xm = spindle position
θm=凸轮位置θm = cam position
ωm=凸轮速度ωm = cam speed
αm=凸轮加速度。αm = cam acceleration.
这里,非同步曲线对于凸轮位置为五次曲线,对于凸轮速度为四次曲线,对于凸轮加速度为三次曲线。换言之,凸轮位置在非同步控制区间中通过非同步曲线开始位置(同步曲线结束位置)和非同步曲线结束位置(同步曲线开始位置)的五次曲线成为基本的非同步控制区间中的控制曲线。而且,在指定了该非同步区间指定通过点的情况下,求通过该指定的通过点(特定点)的五次曲线,并将其设为非同步控制区间的控制曲线(非同步曲线)。Here, the asynchronous curve is a quintic curve for cam position, a quartic curve for cam velocity, and a cubic curve for cam acceleration. In other words, the quintic curve in which the cam position passes through the asynchronous curve start position (synchronous curve end position) and the asynchronous curve end position (synchronous curve start position) in the asynchronous control section becomes the basic control curve in the asynchronous control section. Then, when the designated passing point of the asynchronous section is designated, a quintic curve passing through the designated passing point (specific point) is obtained and used as a control curve (asynchronous curve) of the asynchronous control section.
如图2所示,动作控制单元14包括:取得主轴的当前的位置信息等的当前信息取得部14a、控制曲线生成部14b、凸轮设定部14c、命令设定部14d、当前位置重置部14e。As shown in FIG. 2 , the
当前信息取得部14a包括环形计数器,通过由该环形计数器对来自主轴编码器PG1的脉冲输出进行计数,从而求当前的主轴位置(离基准位置的距离),进而,根据单位时间从主轴位置移动的距离运算当前的主轴速度,进而根据该主轴速度的变化部分运算主轴加速度而进行求解。计算出的当前的主轴位置、主轴速度、主轴加速度被提供给凸轮临界点生成部15b、控制曲线生成部14b、命令设定部14d。The current
当前位置重置部14e用于对当前信息取得部14a的环形计数器进行重置,并使基准位置从0重新开始。例如,基于来自标记传感器S1的检测信号,可以随时发出。例如,另外准备的重置开关(机械式开关、基于操作面板(可编程显示器、触摸面板等)的触摸的电子开关等)被按下之后,以从标记传感器S1收到标记的检测信号为条件,对当前信息取得部14a发出重置命令。这样,不限于通过用户的输入,例如,在正常运转开始后从标记传感器S1输入了标记检测信号时,或通过标记传感器S1的标记检测达到一定数时等与预先决定的条件一致的情况下,也可以重置环形计数器。The current
控制曲线生成部14b用于生成同步曲线以及非同步曲线。即,控制曲线生成部14b从数据设定控制器15的凸轮临界点生成部15b取得非同步曲线结束位置(同步曲线开始位置)的四个值(xe=主轴位置、θe=凸轮位置、ωe=凸轮速度、αe=凸轮加速度)、非同步曲线开始位置(同步曲线结束位置)的四个值(xs=主轴位置、θs=凸轮位置、ωs=凸轮速度、αs=凸轮加速度)、同步比率。而且,从当前信息取得部14a接受当前的主轴位置x。The
而且,判断取得的当前的主轴位置是否在同步控制区间内,如果在同步控制区间内,则生成同步曲线,如果在非同步控制区间内,则生成非同步控制曲线。具体来说,同步曲线基于同步比率生成同步位置曲线、同步速度曲线、同步加速度曲线。Then, it is judged whether the acquired current spindle position is within the synchronous control interval, if within the synchronous control interval, a synchronous curve is generated, and if it is within the asynchronous control interval, an asynchronous control curve is generated. Specifically, the synchronization curve generates a synchronization position curve, a synchronization speed curve, and a synchronization acceleration curve based on the synchronization ratio.
另一方面,非同步曲线将取得的主轴位置(x)的值代入下述算式,分别计算规定凸轮位置的五次曲线、规定凸轮速度的四次曲线、规定凸轮加速度的三次曲线。On the other hand, the asynchronous curve substitutes the obtained value of the main shaft position (x) into the following formula to calculate the quintic curve for the specified cam position, the quartic curve for the specified cam speed, and the cubic curve for the specified cam acceleration.
[算式1][Equation 1]
系数coefficient
A5=6(θe-θs)/(xe-xs)5-3(ωe+ωs)/(xe-xs)4+0.5(αe-αs)/(xe-xs)3 A 5 =6(θe-θs)/(xe-xs) 5 -3(ωe+ωs)/(xe-xs) 4 +0.5(αe-αs)/(xe-xs) 3
A4=-15(θe-θs)/(xe-xs)4+(7ωe+8ωs)/(xe-xs)3+(1.5αs-αe)/(xe-xs)2 A 4 =-15(θ e -θ s )/(x e -x s ) 4 +(7ω e +8ω s )/(x e -x s ) 3 +(1.5α s -α e )/(x e -x s ) 2
A3=10(θe-θs)/(xe-xs)3-2(2ωe+3ωs)/(xe-xs)2+0.5(αe-3αs)/(xe-xs)A 3 =10(θ e -θ s )/(x e -x s ) 3 -2(2ω e +3ω s )/(x e -x s ) 2 +0.5(α e -3α s )/(x e -x s )
五次曲线quintic curve
θ(deg)=A5(x-xs)5+A4(x-xs)4+A3(x-xs)3+0.5αs(x-xs)2+ωs(x-xs)+θs θ(deg)=A 5 (xx s ) 5 +A 4 (xx s ) 4 +A 3 (xx s ) 3 +0.5α s (xx s ) 2 +ωs(xx s )+θ s
四次曲线Quartic curve
dθ/dx(deg/mm)=5A5(x-xs)4+4A4(x-xs)3+3A3(x-xs)2+αs(x-xs)+ωs dθ/dx(deg/mm)=5A 5 (xx s ) 4 +4A 4 (xx s ) 3 +3A 3 (xx s ) 2 +α s (xx s )+ω s
三次曲线cubic curve
d2θ/dx2(deg/mm2)=20A5(x-xs)3+12A4(x-xs)2+6A3(x-xs)+αs d 2 θ/dx 2 (deg/mm 2 )=20A 5 (xx s ) 3 +12A 4 (xx s ) 2 +6A 3 (xx s )+α s
在上述算式中,与非同步曲线结束位置有关的四个值使用从数据设定控制单元15的凸轮临界点生成部15b取得的数据。但是,关于非同步曲线开始位置,在进入非同步控制区间内的第一次非同步曲线生成处理时,从使用从凸轮临界点生成部15b取得的数据的循环的下一个控制循环,将前一个循环的主轴位置xs、凸轮位置θs、凸轮速度ωs、凸轮加速度αs设定为非同步曲线开始位置。这些各值使用由下级的凸轮设定部14计算出的值来设定。In the above formula, data acquired from the cam
通过这样,可以进行对于伺服系统中的五次曲线的同步曲线的实时插补控制。换言之,在一次包装处理中有目标值的变更的情况下,通常将前一次的控制循环中求出的各值作为非同步曲线开始位置,并求通过该非同步曲线开始位置和目标值之间的五次曲线及其它曲线,从而可以抑制指令值离散地急剧变化。当然,在不需要该实时插补控制的情况下,非同步曲线开始位置也可以使用从凸轮临界点生成部15b取得的数据。In this way, real-time interpolation control for the synchronization curve of the quintic curve in the servo system can be performed. In other words, when there is a change in the target value during a packaging process, the values obtained in the previous control cycle are usually used as the start position of the asynchronous curve, and the distance between the start position of the asynchronous curve and the target value is calculated. The quintic curve and other curves can suppress discrete and sharp changes in the command value. Of course, when this real-time interpolation control is unnecessary, the data acquired from the cam
凸轮设定部14c取得由控制曲线生成部14b生成的各曲线(同步曲线、非同步曲线),同时取得由当前信息取得部14a取得的主轴的当前位置x,设定对于当前的主轴位置的凸轮位置、凸轮速度以及凸轮加速度。The
即,控制曲线生成部14b根据当前的主轴位置生成同步曲线或非同步曲线的其中一个,并将该生成的曲线提供给凸轮设定部14c。从而,凸轮设定部14c通过将当前的主轴位置的值代入表示提供的曲线的函数中的变量x,分别求凸轮位置、凸轮速度、凸轮加速度。That is, the control
这样求出的凸轮位置θ、凸轮速度dθ/dx以及凸轮加速度d2θ/dx2为了下一个控制循环而传送到控制曲线生成部14b,同时传送到命令设定部14d。命令设定部14d从当前信息取得部14a取得主轴速度dx/dt(mm/sec)、主轴加速度d2x/dt2(mm/sec2)。基于这些取得的信息,并基于下述算式,求从动轴位置、从动轴速度、从动轴加速度,提供给伺服驱动器20。The cam position θ, cam speed dθ/dx, and cam acceleration d 2 θ/dx 2 obtained in this way are sent to the control
[算式2][Equation 2]
从动轴位置=凸轮位置θDriven shaft position = cam position θ
从动轴速度dθ/dt(deg/sec)=(dθ/dx)*(dx/dt)Driven shaft speed dθ/dt(deg/sec)=(dθ/dx)*(dx/dt)
从动轴加速度d2θ/dt2(deg/sec2)=(d2θ/dx2)*(dx/dt)2+(dθ/dx)*(d2x/dt2)Driven shaft acceleration d 2 θ/dt 2 (deg/sec 2 )=(d 2 θ/dx 2 )*(dx/dt) 2 +(dθ/dx)*(d 2 x/dt 2 )
图3表示动作控制单元14的动作流程图。该动作流程图在每个控制循环执行。即,首先当前信息取得部14a由主轴编码器PG1取得主轴的当前位置x(S1)。然后,控制曲线生成部14b基于取得的当前位置x判断主轴位置是否在同步控制区内(S2),在同步控制区间的情况下,生成同步曲线(S3),不在同步控制区间内(在非同步控制区内)的情况下,生成非同步曲线(五次曲线、四次曲线、三次曲线)(S4)。另外,各曲线的具体的处理如上述。FIG. 3 shows an operation flowchart of the
接着,凸轮设定部14c基于执行处理步骤S3或S4而生成的曲线(同步曲线/非同步曲线)设定电子凸轮的当前的值(凸轮位置、凸轮速度、凸轮加速度)(S5)。然后,该设定的值作为下一个控制循环时的非同步曲线开始位置被传送到控制曲线生成部14b(S6)。Next, the
基于执行处理步骤S5而求出的凸轮的各值,求对于伺服驱动器20的指令值,并输出(S7)。然后,判断是否继续(S8),在继续的情况下,返回处理步骤S1并进入下一个控制循环。是否继续的判断,例如根据是否输入包装处理的结束命令、停止命令,或是否与预先设定的条件(包装个数、结束时间)一致等而求出。Based on each value of the cam obtained by executing the processing step S5, a command value to the
如表示上述非同步控制区间内的控制曲线(非同步曲线)的一例,则如图4至图6所示。图4表示对于相位(主轴位置)的变位(从动轴的凸轮位置)的相关关系,图5表示对于相位(主轴位置)的速度的相位关系,图6表示对于相位(主轴位置)的加速度的相关关系。假设没有同步目标位置(非同步控制区间的结束位置或开始位置等临界点)的变更,则非同步控制区间内的凸轮位置、凸轮速度、凸轮加速度根据各图所示的曲线而反复执行。通过处理步骤S6,将基于当前的主轴位置设定的各值作为下一个控制循环时的非同步曲线开始位置来生成非同步曲线的情况也同样。而且,在任何的情况下,临界点的速度以及加速度成为0(大致0),因此可以平滑地与同步控制区间中的同步曲线连接,在临界点不产生振动、冲击等。An example of a control curve (asynchronous curve) in the above-mentioned asynchronous control section is shown in FIGS. 4 to 6 . Fig. 4 shows the correlation relationship with respect to the displacement (cam position of the driven shaft) with respect to the phase (main shaft position), Fig. 5 shows the phase relation with respect to the velocity of the phase (main shaft position), and Fig. 6 shows the acceleration with respect to the phase (main shaft position) related relationship. Assuming that there is no change in the synchronous target position (critical point such as the end position or start position of the asynchronous control section), the cam position, cam speed, and cam acceleration in the asynchronous control section are repeated according to the curves shown in each figure. The same applies to the case where the asynchronous curve is generated by using the values set based on the current spindle position as the asynchronous curve start position in the next control cycle by processing step S6. In any case, since the velocity and acceleration at the critical point are 0 (approximately 0), it can be smoothly connected to the synchronous curve in the synchronous control section, and no vibration, shock, etc. are generated at the critical point.
这里,如图7至图9所示,设定为非同步曲线开始位置的主轴位置xs=200mm、从动轴位置θs=225deg、速度ωs=0.382deg/mm、加速度αs=-0.00509deg/mm2。并设定为当初非同步曲线结束位置(同步曲线开始位置)的主轴位置xe=271mm、从动轴位置θe=495deg、速度ωe=0.267deg/mm、加速度αe=0.00250deg/mm2。Here, as shown in Figures 7 to 9, the main axis position xs = 200mm, the slave axis position θs = 225deg, the speed ωs = 0.382deg/mm, and the acceleration αs = -0.00509deg/mm are set as the starting position of the asynchronous curve. 2 . And set the master axis position xe=271mm, slave axis position θe=495deg, speed ωe=0.267deg/mm, acceleration αe=0.00250deg/mm 2 at the original asynchronous curve end position (synchronous curve start position).
在该状态下,在主轴位置为255mm时,变更为非同步曲线结束位置(同步曲线开始位置)的主轴位置xe=271mm、从动轴位置θe=600deg、速度ωe=0.763deg/mm、加速度αe=0.02012deg/mm2。于是,由于再设定连接该主轴位置为255mm的前一个位置、速度、加速度和变更了的各值的非同步曲线,因此可以防止机械的冲击、振动。In this state, when the main shaft position is 255mm, the main shaft position xe=271mm, the slave shaft position θe=600deg, the speed ωe=0.763deg/mm, and the acceleration αe are changed to the asynchronous curve end position (synchronous curve start position) =0.02012 deg/mm 2 . Then, since the asynchronous curve connecting the previous position, velocity, acceleration and changed values of the spindle position of 255 mm is re-set, mechanical shock and vibration can be prevented.
另外,假设在主轴位置为255mm时如上所述有各目标值的变更的情况下,如再设定连接作为这次的非同步控制区间的开始位置的主轴位置xs=200mm和新目标值的控制曲线(非同步曲线),则有时与当前的255mm时的各值相比,255mm时的各值(位置、速度、加速度)大不相同,这样,如图所示,不由连续的曲线连接,在该非连续点恐怕产生机械的冲击、振动。In addition, assuming that when the main shaft position is 255 mm, there are changes in the target values as described above, for example, resetting the control that connects the main shaft position xs = 200 mm, which is the start position of the asynchronous control section this time, and the new target value The curve (non-synchronous curve), sometimes compared with the current value of 255mm, the values (position, speed, acceleration) at 255mm are very different, so that, as shown in the figure, it is not connected by a continuous curve. This discontinuity point may cause mechanical shock and vibration.
这样,对于同步控制区间内的速度不一定、加速度在两端发生的同步曲线,也可以连接位置、速度、加速度,同时即使下一个同步曲线的开始位置、速度、加速度在途中改变,也可以连接位置、速度、加速度并驱动伺服系统。由此,可以减少给予机械系统的冲击、振动,进而对于同步曲线的开始位置、速度、加速度的变更也可以进行平滑的动作。In this way, for a synchronous curve whose speed is not constant in the synchronous control interval and whose acceleration occurs at both ends, it is also possible to connect the position, speed, and acceleration. Position, velocity, acceleration and drive servos. Thereby, the shock and vibration given to the mechanical system can be reduced, and smooth operation can also be performed for changes in the start position, speed, and acceleration of the synchronous curve.
接着,说明指定了非同步控制区间内的途中点的情况的对应。即,在通过数据设定控制单元15的条件设定部15a设定了非同步区间指定通过点(非同步控制区间内的途中点)的情况下,关于该途中点的信息(xm=主轴位置、θm=凸轮速度、ωm=凸轮速度、αm=凸轮加速度)经由凸轮临界点生成部15b被提供给控制曲线生成部14b。Next, the correspondence in the case where a midway point in the asynchronous control section is specified will be described. That is, when the
因此,在当前的主轴位置在非同步控制区间内的情况下,控制曲线生成部14b生成非同步曲线,但此时,在当前的主轴的位置x为xs≤x≤xm的情况下,求在上述各非同步曲线时的运算式中,设定为xe=xm、θe=θm。而且,在主轴当前位置x超过xm的时刻,在求上述各非同步曲线时的运算式中,设定为xs=xm、θs=θm。Therefore, when the current spindle position is within the asynchronous control interval, the
换言之,通过指定了的中间点,在五次曲线之间连接。由此,在中间点,由于速度以及加速度成为0(大致0)。In other words, connect between quintic curves through specified intermediate points. Thus, at the intermediate point, the velocity and acceleration become 0 (approximately 0).
如表示一例,则如图10至图12所示,非同步曲线的五次曲线从非同步曲线开始位置(同步曲线结束位置)通过途中特定通过点,如图所示,对通向非同步曲线结束位置(同步曲线开始位置)的曲线指定途中点并连接五次曲线和五次曲线。设定为非同步曲线开始位置的主轴位置xs=200mm、从动轴位置θs=225deg、速度ωs=0.382deg/mm、加速度αs=-0.00509deg/mm2。设定为非同步曲线结束位置(同步曲线开始位置)的主轴位置xe=271mm、从动轴位置θe=495deg、速度ωe=0.267deg/mm、加速度αe=-0.00250deg/mm2。途中特定通过点设定为主轴位置xm=250mm、从动轴位置θm=400deg、速度ωm=(θe-θm)/(xe-xm)=4.524deg/mm、加速度αm=0(deg/mm2)。于是,不会如表示相位和速度的关系的图11所示,停止速度,而且如表示相位和速度的关系的图12所示,可以连接加速度并进行平滑的动作。As an example, then as shown in Figure 10 to Figure 12, the quintic curve of the asynchronous curve passes through a specific passing point on the way from the asynchronous curve start position (synchronous curve end position), as shown in the figure, to the asynchronous curve The curve at the end position (synchronous curve start position) designates the midway point and connects the quintic curve and the quintic curve. The master axis position xs = 200 mm, the slave axis position θs = 225 deg, the velocity ωs = 0.382 deg/mm, and the acceleration αs = -0.00509 deg/mm 2 are set as the start position of the asynchronous curve. The main axis position xe=271mm, the slave axis position θe=495deg, the velocity ωe=0.267deg/mm, and the acceleration αe =-0.00250deg/mm 2 are set as the end position of the asynchronous curve (start position of the synchronous curve). The specific passing point on the way is set as the main axis position xm=250mm, the driven axis position θm=400deg, the speed ωm=(θe-θm)/(xe-xm)=4.524deg/mm, the acceleration αm=0(deg/mm 2 ). Therefore, instead of stopping the speed as shown in FIG. 11 showing the relationship between the phase and speed, smooth motion can be performed while continuing the acceleration as shown in FIG. 12 showing the relationship between the phase and speed.
接着,说明末端封闭装置7为方形运动类型的情况。图13是示意地表示方形运动式的末端封闭装置的图。如该图13所示,将由伺服电机构成的第三电机M3的旋转力经由带、链条等的传动部件7a传递给旋转板7b。旋转板7b上沿径向具有可往复移动的滑块7c。该滑块7c随旋转板7b的旋转而进行公转移动,同时在该公转移动时可向径向移动。进而,滑块7c与方形的导槽7d连接。由此,伴随旋转板7b的旋转,滑块7c进行公转,但该移动轨迹沿着由导槽7d规定的无接头状的轨迹。从而,通过生成沿导槽7d的包装薄膜1水平移动的区间7d’,滑块7c沿包装薄膜1在一定期间保持同一距离进行前进移动,然后,进行动作,以便到达经过上升移动→后退移动→下降移动而沿基准的水平移动的区间7d。另外,在图中,为了方便起见,仅记载了上侧,但下侧也有同样的机构。Next, the case where the
而且,通过将该滑块7c连接到末端封闭器而一体化,末端封闭器也沿滑块7c的移动轨迹移动。此时,在上述沿水平移动的区间7d’移动中的末端封闭器的封闭面可以接触到包装薄膜1,并从上下夹住,通过使旋转板7b旋转而使末端封闭器的移动速度和包装薄膜1的传送速度一致,可以进行同步控制。此外,除此以外的区间为非同步控制区间。Furthermore, by connecting the slider 7c to the end closure and integrating it, the end closure also moves along the movement locus of the slider 7c. At this time, the closing surface of the end closure that is moving in the above-mentioned horizontal movement section 7d' can touch the
另外,图13中表示大致矩形(各角为圆弧)的轨迹(二点划线),但非同步控制区间的轨迹为任意的。进而,用于以该规定的轨迹移动的机构也采用各种方式,可以没有旋转板7b等,也可以末端封闭器自身为滑块7c。重要的是,伴随第三驱动电机M3的旋转,末端封闭器以规定的无接头状的轨迹移动,只要在该移动途中与包装薄膜1平行地具有移动(此时,夹住包装薄膜进行封闭)区间即可,用于以该轨迹移动的机构为任意的。此外,第三驱动电机M3每一次旋转,则旋转板7b进行一次旋转也可以,不同也可以。上述电子凸轮的角度在图13中与旋转板7b的旋转角度对应。In addition, FIG. 13 shows a substantially rectangular locus (each corner is a circular arc) (two-dot chain line), but the locus of the asynchronous control section is arbitrary. Furthermore, the mechanism for moving along the predetermined trajectory can also adopt various forms, and the
图14将方形运动的机构抽象化,表示电子凸轮和包装薄膜1。如图14所示,在主轴的包装薄膜1被从基准位置(0mm)运送到x1时同步开始,主轴位置到达x2时同步结束。从而,同步控制区间中的包装薄膜1的移动距离为x2-x1。另一方面,在从动轴上从电子凸轮的位置为0度的基准位置起开始包装处理,但在第一次的包装处理中,从θ1时同步开始,在θ2时之前进行同步控制。从而,同步控制区间为θ2-θ1的角度范围。Figure 14 abstracts the mechanism of the square motion, representing the electronic cam and the
然后,成为非同步控制区间,该非同步控制区间的结束位置(下一个同步控制区间的开始位置)的主轴位置为x3、从动轴的凸轮位置为θ3,该同步控制区间的结束位置(下一个非同步控制区间的开始位置)的主轴位置为x4、从动轴位置为θ4。Then, it becomes an asynchronous control section, the end position of the asynchronous control section (the start position of the next synchronous control section) is the main axis position x3, the cam position of the slave axis is θ3, and the end position of the synchronous control section (below The starting position of a non-synchronous control interval) the position of the master axis is x4, and the position of the slave axis is θ4.
包装机械中的方形移动的凸轮曲线如下。主轴x、从动轴θ分别在x1≤x≤x2、θ1≤θ≤θ2时为同步控制区间。该同步控制区间中的凸轮位置θ、凸轮速度d θ/dx、凸轮加速度d2θ/dt2的各个同步曲线如下述算式[算式3]。The cam curve for square movement in packaging machinery is as follows. The main axis x and the driven axis θ are synchronous control intervals when x1≤x≤x2 and θ1≤θ≤θ2 respectively. The synchronous curves of the cam position θ, the cam speed d θ/dx, and the cam acceleration d 2 θ/dt 2 in the synchronous control interval are expressed in the following formula [Formula 3].
[算式3][Equation 3]
将同步开始点向前后移动的系数:xa变更同步比率的系数:b作为z=b(x-xa)Coefficient for moving the synchronization start point forward and backward: xa Coefficient for changing the synchronization ratio: b as z=b(x-xa)
凸轮位置cam position
θ=180[1-1/π*tan-1{(x2+x1-2z)/(x2-x1)*tan(π(θ2-θ1)/360)}]θ=180[1-1/π*tan -1 {(x 2 +x 1 -2z)/(x 2 -x 1 )*tan(π(θ 2 -θ 1 )/360)}]
凸轮速度cam speed
凸轮加速度Cam acceleration
根据上述算式,在以下的同步控制区间中,基于主轴的位置,对以下的位置、速度、加速度,对控制器的每个控制讯号进行设定并移动。Based on the above formula, in the following synchronous control section, based on the position of the main shaft, the following position, speed, and acceleration are set and moved for each control signal of the controller.
主轴的速度dx/dt(mm/sec)Spindle speed dx/dt(mm/sec)
主轴的加速度d2x/dt2(mm/sec2)Spindle acceleration d 2 x/dt 2 (mm/sec 2 )
从动轴位置=凸轮位置θDriven shaft position = cam position θ
从动轴速度dθ/dt(deg/sec)=(dθ/dx)*(dx/dt)Driven shaft speed dθ/dt(deg/sec)=(dθ/dx)*(dx/dt)
从动轴加速度d2θ/dt2(deg/sec2)=(d2θ/dx2)*(dx/dt)2+(dθ/dx)*(d2x/dt2)Driven shaft acceleration d 2 θ/dt 2 (deg/sec 2 )=(d 2 θ/dx 2 )*(dx/dt) 2 +(dθ/dx)*(d 2 x/dt 2 )
而且,基于上述算式的方形运动的同步控制区间中的动作曲线例如图15到图17所示,在各图中,输入实际单位进行表示。x0=0mm,x1=50mm,x2=200mm,θ0=0deg,θ1=135deg,θ2=225deg,R=106mm,y=75mm。Furthermore, the operation curves in the synchronous control interval of the square motion based on the above formula are shown, for example, in FIGS. x0=0mm, x1=50mm, x2=200mm, θ0=0deg, θ1=135deg, θ2=225deg, R=106mm, y=75mm.
接着,说明非同步控制区间的控制曲线的计算。首先,在非同步曲线开始位置(方形运动同步曲线结束位置)为主轴x=x2(mm)。如没有同步开始点的变动,则指定上述同步曲线的各算式如以下[算式4]所示,通过对该[算式4]代入x=x2,如[算式5]所示,可以求出同步结束位置中的各凸轮位置、凸轮速度、凸轮加速度的值。Next, calculation of the control curve in the asynchronous control section will be described. First, at the start position of the non-synchronous curve (the end position of the square motion synchronous curve) is the main axis x=x2 (mm). If there is no change in the synchronization start point, each formula for specifying the above synchronous curve is as shown in [Formula 4] below, and by substituting x=x2 for [Formula 4], as shown in [Formula 5], the end of synchronization can be obtained Values of each cam position, cam speed, and cam acceleration in position.
[算式4][Equation 4]
方形运动凸轮曲线(最初的凸轮)Square Action Cam Profile (Original Cam)
凸轮位置cam position
θ=180[1-1/π*tan-1{(x2+x1-2x)/(x2-x1)*tan(π(θ2-θ1)/360)}]θ=180[1-1/π*tan -1 {(x 2 +x 1 -2x)/(x 2 -x 1 )*tan(π(θ 2 -θ 1 )/360)}]
凸轮速度cam speed
凸轮加速度Cam acceleration
[算式5][Equation 5]
凸轮位置cam position
θ=θ2(deg)=180+(θ2-θ1)/2θ=θ2(deg)=180+(θ 2 -θ 1 )/2
凸轮速度cam speed
凸轮加速度Cam acceleration
由此,取入xs=x2,θs=θ2,ωs=ω2,αs=α2作为求出非同步曲线时之前的凸轮的值。Thus, xs=x2, θs=θ2, ωs=ω2, and αs=α2 are taken in as the values of the cam before the asynchronous curve is obtained.
此外,在没有目标值的变更的情况下,下一个同步控制区间从成为主轴位置x=x3时开始,在主轴位置为x3≤x≤x4之间,根据同步曲线进行控制。而且,该下一个同步控制区间中的凸轮位置θ、凸轮速度dθ/dx、凸轮加速度d2θ/dx2分别根据下述算式[算式6]所示的同步曲线被控制。In addition, when there is no change of the target value, the next synchronous control section starts when the main shaft position x=x3, and controls according to the synchronous curve when the main shaft position is x3≤x≤x4. Then, the cam position θ, cam speed dθ/dx, and cam acceleration d 2 θ/dx 2 in the next synchronous control section are respectively controlled according to the synchronous curve shown in the following formula [Formula 6].
[算式6][Equation 6]
方形运动凸轮曲线(下一个凸轮)Square motion cam profile (next cam)
凸轮位置cam position
θ=180[1-1/π*tan-1{(x4+x3-2x)/(x4-x3)*tan(π(θ4-θ3)/360)}]θ=180[1-1/π*tan -1 {(x 4 +x 3 -2x)/(x 4 -x 3 )*tan(π(θ 4 -θ 3 )/360)}]
凸轮速度cam speed
凸轮加速度Cam acceleration
而且,该同步控制区间的开始位置(x=x3)的各凸轮位置、凸轮速度、凸轮加速度的值可以执行[算式7]并求出。而且,该求出的各值成为主轴x的位置位于x2≤x≤x3的区间的非同步控制区间中的结束位置的各值、即该非同步控制区间中的各个目标值。换言之,作为xe=x3,θe=θ3,ωe=ω3,αe=α3,对非同步曲线随时设定。Furthermore, the values of the respective cam positions, cam speeds, and cam accelerations at the start position (x=x3) of the synchronous control section can be obtained by executing [Equation 7]. Then, the obtained values are the values of the end positions in the asynchronous control interval in which the position of the main axis x is in the interval of x2≦x≦x3, that is, the respective target values in the asynchronous control interval. In other words, as xe=x3, θe=θ3, ωe=ω3, αe=α3, it is set at any time for the asynchronous curve.
[算式7][Equation 7]
凸轮位置cam position
θ=θ3(deg)=180+(θ4-θ3)/2θ=θ3(deg)=180+(θ 4 -θ 3 )/2
凸轮速度cam speed
凸轮加速度Cam acceleration
而且,由于主轴位置x=x2时的目标值(非同步控制区间的结束位置的主轴位置)xe为x3,因此生成通过两点的五次曲线。而且,主轴当前位置x(mm)为xs≤x≤xe、即x2≤x≤x3时,对每控制循环求五次曲线并移动。此外,一次进入非同步控制区间内,如果求出各设定值(凸轮位置、凸轮速度、凸轮加速度),则随图3的流程图的处理步骤S6的执行,设定为下一个控制循环中的非同步曲线开始位置。这样,逐次更新非同步曲线开始位置,同时进行基于五次曲线的非同步控制,直到主轴位置x=x3为止。Furthermore, since the target value (main shaft position at the end position of the asynchronous control section) xe when the main shaft position x=x2 is x3, a quintic curve passing through two points is generated. Furthermore, when the current position x (mm) of the main shaft is xs≤x≤xe, that is, x2≤x≤x3, the curve is obtained five times per control cycle and moved. In addition, once entering the asynchronous control interval, if each set value (cam position, cam speed, cam acceleration) is obtained, then it is set as the next control cycle with the execution of the processing step S6 in the flow chart of Fig. 3 . The starting position of the asynchronous curve. In this way, the starting position of the asynchronous curve is updated successively, and at the same time, the asynchronous control based on the quintic curve is performed until the spindle position x=x3.
以后,交替执行控制动作区间和非控制动作区间,在途中变更了目标值的情况下,每次进行运算处理,非同步曲线为五次曲线,与同步曲线连接。Afterwards, the control operation interval and the non-control operation interval are alternately executed, and when the target value is changed midway, calculation processing is performed each time, and the asynchronous curve is a quintic curve, which is connected with the synchronous curve.
表示一例如图18到图21所示。换言之,如图18所示,如相位和变位,即使改变开始方形曲线的同步的位置或同步比率,如图19所示的相位和速度的特性所示,在临界点平滑地连接速度。同样,在图20所示的相位和加速度的特性中,如图21的放大图中可确认的,加速度也在临界点连接。从而,难以发生冲击和振动。而且,由于对各控制循环设定从动轴的伺服的目标位置、目标速度、目标加速度,所以在联机开始同步的情况下,即使改变比率也可以对应。An example is shown in Figure 18 to Figure 21. In other words, as shown in FIG. 18 , as shown in FIG. 18 , even if the position or the synchronization ratio to start the synchronization of the square curve is changed such as the phase and displacement, the speed is smoothly connected at the critical point as shown in the characteristics of the phase and speed shown in FIG. 19 . Similarly, in the characteristics of the phase and acceleration shown in FIG. 20 , as can be confirmed in the enlarged view of FIG. 21 , the acceleration is also connected at a critical point. Thus, shock and vibration hardly occur. Furthermore, since the servo target position, target speed, and target acceleration of the slave axis are set for each control cycle, it is possible to respond even if the ratio is changed when starting synchronization online.
接着,说明末端封闭装置7为曲柄运动类型的情况。图22是示意地表示曲柄运动式的末端封闭装置的图。如该图22所示,将由伺服电机构成的第三电机M3的旋转力经由带、链条等传动部件7a传递到旋转板(具有如曲臂的功能)7b。在旋转板7b的周缘附近设置曲柄销7f,连接棒7g的一端可旋转地与该曲柄销7f连接。该连接棒7g的另一端上连接滑块7h,该滑块7h可在导轨7i内往复直线运动。由此,如旋转板7b随第三驱动电机M3的旋转而旋转,则伴随于此,滑块7h通过曲柄机构重复进行往复直线运动。而且,将末端封闭器可上下移动地连接到该滑块7h。Next, a case where the
当然,图22中,仅记载了包装薄膜1的上侧机构,但下侧也设置同样的机构。而且,在规定的定时上下移动末端封闭器,在来到同步开始点时,从上下夹住包装薄膜,并以该状态前进移动,如到达同步结束点,则末端封闭器离开。然后,封闭器以规定的轨迹前后进移动,并到达基础的同步开始点。Of course, in FIG. 22, only the upper side mechanism of the
这样,在末端封闭器夹住包装薄膜时,控制(同步控制)旋转板7b的转速,以使末端封闭器即滑块7h的前进移动速度与包装薄膜1的传送速度一致,在除此以外的非同步控制区间中,包装薄膜的下一个末端封闭部位到达同步开始点时,进行控制,以便末端封闭器到达该同步开始点。In this way, when the end closure clamps the packaging film, the rotation speed of the
图23将曲柄运动的机构抽象化,表示曲柄机构和包装薄膜1。如图23所示,在主轴的包装薄膜1从基准位置(0mm)被传送到x1时,同步开始,在主轴位置到达x2时,同步结束。从而,同步控制区间中的包装薄膜1的移动距离为x2-x1。另一方面,在从动轴上,从电子凸轮的位置为0度的基准位置开始包装处理,在第一次的包装处理中,从θ1时开始同步,到θ2之前进行同步控制。从而,同步控制区间为θ2-θ1的角度范围。FIG. 23 abstracts the mechanism of the crank movement, showing the crank mechanism and the
然后,成为非同步控制区间,该非同步控制区间的结束位置(下一个同步控制区间的开始位置)的主轴位置为x3、从动轴的凸轮位置为θ3,该同步控制区间的结束位置(下一个非同步控制区间的开始位置)的主轴位置为x4、从动轴位置为θ4。Then, it becomes an asynchronous control section, the end position of the asynchronous control section (the start position of the next synchronous control section) is the main axis position x3, the cam position of the slave axis is θ3, and the end position of the synchronous control section (below The starting position of a non-synchronous control interval) the position of the master axis is x4, and the position of the slave axis is θ4.
曲柄运动的凸轮曲线如下。主轴x、从动轴θ分别为x1≤x≤x2、θ1≤θ≤θ2时为同步控制区间。该同步控制区间中的凸轮位置θ、凸轮速度dθ/dx、凸轮加速度d2θ/dx2的各个同步曲线如下述算式[算式8]。The cam curve for crank motion is as follows. When the main axis x and the driven axis θ are x1≤x≤x2 and θ1≤θ≤θ2 respectively, it is a synchronous control interval. The synchronous curves of the cam position θ, cam speed dθ/dx, and cam acceleration d 2 θ/dx 2 in the synchronous control interval are expressed in the following formula [Formula 8].
[算式8][Equation 8]
同步开始点前后移动的系数:xa变更同步比率的系数:bCoefficient of moving forward and backward of the synchronization start point: xa Coefficient of changing the synchronization ratio: b
y、R、L为常数。y, R, L are constants.
z=b(x-xa)z=b(x-xa)
凸轮位置cam position
顺时针clockwise
逆时针counterclockwise
凸轮速度cam speed
凸轮加速度Cam acceleration
根据上述算式,以下的同步控制区间中,基于主轴的位置对于以下的位置、速度、加速度在控制器的每个控制循环进行设定并移动。Based on the above formula, in the synchronous control section below, the following positions, speeds, and accelerations are set and moved based on the position of the main shaft for each control cycle of the controller.
主轴的加速度d2x/dt2(mm/sec2)Spindle acceleration d 2 x/dt 2 (mm/sec 2 )
从动轴位置=凸轮位置θDriven shaft position = cam position θ
从动轴速度dθ/dt(deg/sec)=(dθ/dx)*(dx/dt)Driven shaft speed dθ/dt(deg/sec)=(dθ/dx)*(dx/dt)
从动轴加速度d2θ/dt2(deg/sec2)=(d2θ/dx2)*(dx/dt)2+(dθ/dx)*(d2x/dt2)Driven shaft acceleration d 2 θ/dt 2 (deg/sec 2 )=(d 2 θ/dx 2 )*(dx/dt) 2 +(dθ/dx)*(d 2 x/dt 2 )
而且,基于上述算式的曲柄运动的同步控制区间中的动作曲线例如图24到图26所示,在各图中,输入实际单位进行表示。x0=44.2mm,x1=200mm,θ0=135度,θ1=225度,R=70mm,y=70mm,L=200mm。Furthermore, the operation curves in the synchronous control interval of the crank motion based on the above-mentioned formula are shown, for example, in FIGS. x0=44.2mm, x1=200mm, θ0=135 degrees, θ1=225 degrees, R=70mm, y=70mm, L=200mm.
接着,说明非同步控制区间的控制曲线的计算。首先,在非同步曲线开始位置(曲柄运动凸轮同步曲线结束位置)为主轴x=x2(mm)。如没有同步开始点的变动,则指定上述同步曲线的各算式如以下[算式9]所示,通过对该[算式4]代入x=x2,如[算式10]所示,可以求出同步结束位置中的各凸轮位置、凸轮速度、凸轮加速度的值。Next, calculation of the control curve in the asynchronous control section will be described. First, at the start position of the non-synchronous curve (the end position of the crank cam synchronous curve), the main axis x=x2 (mm). If there is no change in the synchronization start point, each equation for specifying the above-mentioned synchronization curve is as shown in [Equation 9] below, and by substituting x=x2 for [Equation 4], as shown in [Equation 10], the end of synchronization can be obtained Values of each cam position, cam speed, and cam acceleration in position.
[算式9][Equation 9]
y、R、L为常数。y, R, L are constants.
z=b(x-xa)z=b(x-xa)
凸轮位置cam position
顺时针clockwise
逆时针counterclockwise
凸轮速度cam speed
凸轮加速度Cam acceleration
[算式10][Equation 10]
曲柄运动凸轮曲线(最初的凸轮)Crank Cam Profile (Original Cam)
y、R、L为常数。y, R, L are constants.
z=b(x-xa)z=b(x-xa)
凸轮位置cam position
顺时针clockwise
逆时针counterclockwise
凸轮速度cam speed
凸轮加速度Cam acceleration
由此,取入xs=x2,θs=θ2,ωs=ω3,αs=α2作为求出非同步曲线时之前的凸轮的值。此外,在没有目标值的变更的情况下,下一个同步控制区间从成为主轴位置x=x3时开始,在主轴位置为x3≤x≤x4之间,根据同步曲线进行控制。而且,该下一个同步控制区间中的凸轮位置θ、凸轮速度dθ/dx、凸轮加速度d2θ/dx2分别根据下述算式[算式11]所示的同步曲线被控制。Thus, xs=x2, θs=θ2, ωs=ω3, and αs=α2 are taken in as the values of the cam before the asynchronous curve is obtained. In addition, when there is no change of the target value, the next synchronous control section starts when the main shaft position x=x3, and controls according to the synchronous curve when the main shaft position is x3≤x≤x4. Then, the cam position θ, cam speed dθ/dx, and cam acceleration d 2 θ/dx 2 in the next synchronous control section are respectively controlled according to the synchronous curve shown in the following formula [Formula 11].
[算式11][Equation 11]
曲柄运动凸轮曲线(下一个凸轮)Crank Cam Profile (Next Cam)
y、R、L为常数。y, R, L are constants.
凸轮位置cam position
顺时针clockwise
逆时针counterclockwise
凸轮速度cam speed
凸轮加速度Cam acceleration
而且,该同步控制区间的开始位置(x=x3)的各凸轮位置、凸轮速度、凸轮加速度的值可以执行[算式12]并求出。而且,该求出的各值成为主轴x的位置位于x2≤x≤x3之间的非同步控制区间中的结束位置的各值、即该非同步控制区间中的各个目标值。换言之,作为xe=x3,θe=θ3,ωe=ω3,αe=α3,对非同步曲线随时设定。Furthermore, the values of the respective cam positions, cam speeds, and cam accelerations at the start position (x=x3) of the synchronous control section can be obtained by executing [Equation 12]. Then, the obtained values are the values of the end positions in the asynchronous control interval in which the position of the main axis x is between x2≤x≤x3, that is, the respective target values in the asynchronous control interval. In other words, as xe=x3, θe=θ3, ωe=ω3, αe=α3, it is set at any time for the asynchronous curve.
[算式12][Equation 12]
凸轮位置cam position
θ(deg)=A5(x-xs)5+A4(x-xs)4+A3(x-xs)3+0.5αs(x-xs)2+ωs(x-xs)+θsθ(deg)=A5(x-xs) 5 +A4(x-xs) 4 +A3(x-xs) 3 +0.5αs(x-xs) 2 +ωs(x-xs)+θs
凸轮速度cam speed
dθ/dx(deg/mm)=5*A5(x-xs)4+4*A4(x-xs)3+3*A3(x-xs)2+αs(x-xs)+ωsdθ/dx(deg/mm)=5*A5(x-xs) 4 +4*A4(x-xs) 3 +3*A3(x-xs) 2 +αs(x-xs)+ωs
凸轮加速度Cam acceleration
d2θ/dx2(deg/mm2)=20*A5(x-xs)3+12*A4(x-xs)2+6*A3(x-xs)+αsd 2 θ/dx 2 (deg/mm 2 )=20*A5(x-xs) 3 +12*A4(x-xs) 2 +6*A3(x-xs)+αs
系数coefficient
A5=6(θe-θs)/(xe-xs)5-3(ωe+ωs)/(xe-xs)4+0.5(αe-αs)/(xe-xs)3 A 5 =6(θe-θs)/(xe-xs) 5 -3(ωe+ωs)/(xe-xs) 4 +0.5(αe-αs)/(xe-xs) 3
A4=-15(θe-θs)/(xe-xs)4+(7ωe+8ωs)/(xe-xs)3+(1.5αs-αe)/(xe-xs)2 A 4 =-15(θ e -θ s )/(x e -x s ) 4 +(7ω e +8ω s )/(x e -x s ) 3 +(1.5α s -α e )/(x e -x s ) 2
A3=10(θe-θs)/(xe-xs)3-2(2ωe+3ωs)/(xe-xs)2+0.5(αe-3αs)/(xe-xs)A 3 =10(θ e -θ s )/(x e -x s ) 3 -2(2ω e +3ω s )/(x e -x s ) 2 +0.5(α e -3α s )/(x e -x s )
而且,由于主轴位置x=x2时的目标值(非同步控制区间的结束位置的主轴位置)xe为x3,因此生成通过两点的五次曲线。而且,主轴当前位置x(mm)为xs≤x≤xe、即x2≤x≤x3时,对每控制循环求五次曲线并移动。此外,一次进入非同步控制区间内,如果求出各设定值(凸轮位置、凸轮速度、凸轮加速度),则随图3的流程图的处理步骤S6的执行,设定为下一个控制循环中的非同步曲线开始位置。这样,逐次更新非同步曲线开始位置,同时进行基于五次曲线的非同步控制,直到主轴位置x=x3为止。Furthermore, since the target value xe (the main shaft position at the end position of the asynchronous control section) when the main shaft position x=x2 is x3, a quintic curve passing through two points is generated. Furthermore, when the current position x (mm) of the main shaft is xs≤x≤xe, that is, x2≤x≤x3, the curve is obtained five times per control cycle and moved. In addition, once entering the asynchronous control interval, if each set value (cam position, cam speed, cam acceleration) is obtained, then it is set as the next control cycle with the execution of the processing step S6 in the flow chart of Fig. 3 . The starting position of the asynchronous curve. In this way, the starting position of the asynchronous curve is updated successively, and at the same time, the asynchronous control based on the quintic curve is performed until the spindle position x=x3.
以后,交替执行控制动作区间和非控制动作区间,在途中变更了目标值的情况下,每次进行运算处理,非同步曲线为五次曲线,与同步曲线连接。Afterwards, the control operation interval and the non-control operation interval are alternately executed, and when the target value is changed midway, calculation processing is performed each time, and the asynchronous curve is a quintic curve, which is connected with the synchronous curve.
表示一例如图27到图29所示。换言之,如图27所示,如相位和变位,即使改变开始方形曲线的同步的位置或同步比率,如图28所示的相位和速度的特性所示,在临界点平滑地连接速度。同样,在图29所示的相位和加速度的特性中,加速度也在临界点连接。从而,难以发生冲击和振动。而且,由于对各控制循环设定从动轴的伺服的目标位置、目标速度、目标加速度,所以在联机开始同步的情况下,即使改变比率也可以对应。An example is shown in Figure 27 to Figure 29. In other words, as shown in FIG. 27 , as shown in the phase and displacement, even if the position or the synchronization ratio to start the synchronization of the square curve is changed, as shown in the characteristics of the phase and speed shown in FIG. 28 , the speed is smoothly connected at the critical point. Likewise, in the characteristics of the phase and acceleration shown in FIG. 29, the acceleration is also connected at a critical point. Thus, shock and vibration hardly occur. Furthermore, since the servo target position, target speed, and target acceleration of the slave axis are set for each control cycle, it is possible to respond even if the ratio is changed when starting synchronization online.
在上述各实施方式中,都表示了应用于包装机械的末端封闭装置用的驱动电机(伺服电机)的控制的例子,但本发明不限定于此,例如也可以利用于对于对包装薄膜供给被包装物的被包装物运送供给部件的驱动电机(伺服电机)的控制。即,由于被包装物的传送速度和包装薄膜的传送速度通常不同,所以例如在以一定的速度传送包装薄膜的情况下,仅在对包装薄膜供给被包装物期间,使被包装物的传送速度与包装薄膜的传送速度同步,除此以外的期间,与包装薄膜的传送速度进行非同步控制,可以通过规定的非同步曲线(五次曲线等)控制。In each of the above-mentioned embodiments, an example of being applied to the control of the driving motor (servo motor) for the end sealing device of the packaging machine has been shown, but the present invention is not limited thereto, for example, it can also be used to control the drive motor (servo motor) for the packaging film supply Control of the driving motor (servo motor) of the packaged object conveying and supplying part. That is, since the conveying speed of the packaged object and the conveying speed of the packaging film are usually different, for example, in the case of conveying the packaging film at a certain speed, the conveying speed of the packaged object should be adjusted only during the supply of the packaged object to the packaging film. It is synchronized with the conveying speed of the packaging film, and asynchronously controlled with the conveying speed of the packaging film during other periods, and can be controlled by a predetermined asynchronous curve (a quintic curve, etc.).
作为末端封闭装置7的一方式,除了上述方形运动式或曲柄运动式以外,也有称为转动的类型。该转动类型的末端封闭装置7分别将末端封闭器直接或间接地安装在上下一对旋转轴上。而且,随着旋转轴的旋转,末端封闭器也旋转,在规定的定时上下的末端封闭器从上下夹住包装薄膜并进行封闭、切割。As one form of the
这里,与上述各类型的末端封闭装置同样,最初的同步控制区间开始位置的主轴位置为x1且从动轴位置为θ1,同步控制区间结束位置(非同步控制区间内开始位置)的主轴位置为x2且从动轴位置为θ2。而且,下一个同步控制区间开始位置的主轴位置为x3且从动轴位置为θ3,同步控制区间结束位置(非同步控制区间开始位置)的主轴位置为x4且从动轴位置为θ4。于是,产生θ1≤θ2≤θ3≤θ4,x1≤x2≤x3≤x4的关系。Here, similar to the above-mentioned types of end closure devices, the position of the main shaft at the start position of the initial synchronous control section is x1 and the position of the driven shaft is θ1, and the position of the main shaft at the end position of the synchronous control section (start position within the non-synchronous control section) is x2 and the slave axis position is θ2. Furthermore, the master axis position at the start position of the next synchronous control section is x3 and the slave axis position is θ3, and the master axis position at the end position of the synchronous control section (asynchronous control section start position) is x4 and the slave axis position is θ4. Then, the relationship of θ1≤θ2≤θ3≤θ4 and x1≤x2≤x3≤x4 arises.
而且,同步曲线由Also, the synchronization curve is given by
(θ-θ1)=(θ2-θ1)/(x2-x1)*(x-x1)(θ-θ1)=(θ2-θ1)/(x2-x1)*(x-x1)
表示。这里,θ是从动轴的位置,x是主轴的位置。express. Here, θ is the position of the driven shaft and x is the position of the main shaft.
以x对上述算式进行微分,则成为Differentiating the above formula with x, it becomes
dθ/dx=(θ2-θ1)/(x2-x1)。dθ/dx=(θ2-θ1)/(x2-x1).
即凸轮速度为That is, the cam speed is
ω1=ω2=(θ2-θ1)/(x2-x1)。ω1=ω2=(θ2-θ1)/(x2-x1).
进而以x对上述算式进行微分,则成为Further differentiating the above formula by x, it becomes
d2θ/dx2=0。凸轮加速度为0。d 2 θ/dx 2 =0. The cam acceleration is 0.
同样,下一个同步曲线表示为Likewise, the next synchronization curve is denoted as
(θ-θ3)=(θ4-θ3)/(x4-x3)*(x-x3)。(θ-θ3)=(θ4-θ3)/(x4-x3)*(x-x3).
将上述算式以x微分,则成为Differentiating the above formula by x, it becomes
dθ/dx=(θ4-θ3)/(x4-x3)。dθ/dx=(θ4-θ3)/(x4-x3).
凸轮速度为The cam speed is
ω3=ω4=(θ4-θ3)/(x4-x3)。进而,以x微分,则成为d2θ/dx2=0,凸轮加速度为0。ω3=ω4=(θ4-θ3)/(x4-x3). Furthermore, when differentiated by x, d 2 θ/dx 2 =0, and the cam acceleration becomes 0.
上述各值,即,将xs=x2,xe=x3,θs=θ2,θe=θ3代入[算式12]的算式,则The above values, that is, if xs=x2, xe=x3, θs=θ2, θe=θ3 are substituted into the formula of [Formula 12], then
ωs=ω2=(θ2-θ1)/(x2-x1)ωs=ω2=(θ2-θ1)/(x2-x1)
ωe=ω3=(θ4-θ3)/(x4-x3)ωe=ω3=(θ4-θ3)/(x4-x3)
作为αs=0αe=0代入,从而生成连接同步曲线间的非同步曲线。By substituting αs=0αe=0, an asynchronous curve connecting synchronous curves is generated.
由此,可以为平滑的波形。而且,根据上述实施方式,由于对xs、θs、ωs、αs代入前面的凸轮的值,因此即使下一个同步曲线被变更,也可以连接凸轮位置、凸轮速度、凸轮加速度。Thereby, a smooth waveform can be obtained. Furthermore, according to the above embodiment, since the previous cam values are substituted for xs, θs, ωs, and αs, even if the next synchronization curve is changed, the cam position, cam speed, and cam acceleration can be connected.
考虑应用于滚珠丝杠、齿轮齿条副的同步动作的情况。将从动轴的伺服电机安装到滚珠丝杠或者齿轮齿条副的机械系统。滚珠丝杠或者齿轮齿条副与主轴的部件平行地放置。该情况下的动作如下。Consider the case where it is applied to the synchronous action of a ball screw and a rack and pinion pair. A mechanical system that mounts the servomotor of the driven shaft to a ball screw or a rack and pinion pair. A ball screw or rack and pinion pair is placed parallel to the main shaft components. The operation in this case is as follows.
y=p×θy=p×θ
这里,y是滚珠丝杠或者齿轮齿条副的移动量,一般以mm表示。而且,在滚珠丝杠的情况下,成为Here, y is the movement amount of the ball screw or the rack and pinion pair, generally expressed in mm. Also, in the case of a ball screw, becomes
P=滚珠丝杠的螺距/360(度),P = pitch of the ball screw/360 (degrees),
在齿轮齿条副的情况下,成为In the case of a rack and pinion pair, becomes
P=小齿轮直径π/360(度)。P = pinion diameter π/360 (degrees).
x是主轴的位置,x is the position of the main axis,
由于有y2=p×θ2,y1=p×θ1的关系,所以同步曲线从Due to the relationship of y2=p×θ2, y1=p×θ1, the synchronization curve is from
(y-y1)=(y2-y1)/(x2-X1)*(x-x1),表示为(y-y1)=(y2-y1)/(x2-X1)*(x-x1), expressed as
(θ-θ1)=(θ2-θ1)/(x2-X1)*(x-x1)。(θ-θ1)=(θ2-θ1)/(x2-X1)*(x-x1).
这里,θ是从动轴的位置,x是主轴的位置,θ2是从动轴的同步曲线结束位置,θ1是从动轴的同步曲线开始位置,x2是主轴的同步曲线结束位置,x1是主轴的同步曲线开始位置。Here, θ is the position of the slave axis, x is the position of the master axis, θ2 is the end position of the synchronization curve of the slave axis, θ1 is the start position of the synchronization curve of the slave axis, x2 is the end position of the synchronization curve of the master axis, and x1 is the master axis The starting position of the synchronization curve.
将上述算式以x微分,则成为Differentiating the above formula by x, it becomes
dθ/dx=(θ2-θ1)/(x2-x1)。dθ/dx=(θ2-θ1)/(x2-x1).
即凸轮速度为That is, the cam speed is
ω1=(θ2-θ1)/(x2-x1)。ω1=(θ2-θ1)/(x2-x1).
如进一步以x微分,则成为If further differentiated by x, it becomes
d2θ/dx2=0,凸轮加速度为0。d 2 θ/dx 2 =0, the cam acceleration is 0.
从动轴移动出的位置即非同步曲线开始位置是主轴的位置为x0,从动轴的位置为0,凸轮位置ω0=0,凸轮加速度α0=0,非同步曲线结束位置(同步曲线开始位置)是主轴的位置为x1,从动轴的位置为θ1。The position where the driven axis moves out, that is, the start position of the asynchronous curve is that the position of the main axis is x0, the position of the driven axis is 0, the cam position ω0=0, the cam acceleration α0=0, the end position of the asynchronous curve (the start position of the synchronous curve ) is the position of the main axis is x1, and the position of the driven axis is θ1.
而且,凸轮速度为Also, the cam speed is
ω1=(θ2-θ1)/(x2-x1),ω1=(θ2-θ1)/(x2-x1),
凸轮加速度为The cam acceleration is
α1=0。α1=0.
而且,通过对上述[算式12]的算式代入xs=x0,xe=x1,θs=θ0,θe=θ1,ωs=ω0=0,ωe=ω1=(θ2-θ1)/(x2-x1),αs=0,αe=0,生成连接同步曲线间的非同步曲线。Furthermore, by substituting xs=x0, xe=x1, θs=θ0, θe=θ1, ωs=ω0=0, ωe=ω1=(θ2-θ1)/(x2-x1) into the above-mentioned [Formula 12], αs=0, αe=0, generate an asynchronous curve connecting the synchronous curves.
同步曲线结束位置(非同步曲线开始位置)是主轴的位置x2,从动轴的位置为θ2。凸轮速度ω2=(θ2-θ1)/(x2-x1),凸轮加速度为0。从动轴停止的位置、即非同步曲线结束位置是主轴的位置为x3,从动轴的位置为θ3。而且,凸轮速度、凸轮加速度α0为0。The end position of the synchronous curve (the start position of the non-synchronous curve) is the position x2 of the master axis, and the position of the slave axis is θ2. Cam speed ω2=(θ2-θ1)/(x2-x1), and cam acceleration is 0. The position where the driven axis stops, that is, the end position of the asynchronous curve, is x3 at the position of the main axis, and θ3 at the position of the driven axis. Also, the cam speed and cam acceleration α0 are zero.
同样,对[算式12]代入xs=x2,xe=x3,θs=θ2,θe=θ3,ωs=ω2=(θ2-θ1)/(x2-x1),ωe=0,αs=0,αe=0,可以生成连接同步曲线间的非同步曲线。Similarly, substitute xs=x2, xe=x3, θs=θ2, θe=θ3, ωs=ω2=(θ2-θ1)/(x2-x1), ωe=0, αs=0, αe= 0, it can generate asynchronous curves connecting synchronous curves.
作为包装机械以外的同步控制的应用,印刷机械也有效。印刷机械中纸等被印刷物和有印刷面的辊部分同步动作。该动作中,有时要对开始印刷的位置向前后校正。该校正动作通过使用本发明的五次曲线的非同步控制,可以平滑地进行校正动作。As an application of synchronous control other than packaging machines, printing machines are also effective. In the printing machine, the printed matter such as paper and the roller with the printing surface move synchronously. In this operation, it may be necessary to correct the printing start position forward and backward. This correction operation can be performed smoothly by using the asynchronous control of the quintic curve of the present invention.
滚珠丝杠或齿轮齿条副由于两端有界限,因此需要停止。因此,通过使用本发明,可以为平滑的波形。进而,通过应用上述实施方式,由于对xs、θs、ωs、αs输入前面的凸轮的值,因此即使同步曲线被变更,也可以连接凸轮位置、凸轮速度、凸轮加速度。A ball screw or rack and pinion pair needs to be stopped due to the bounds at both ends. Therefore, by using the present invention, a smooth waveform can be obtained. Furthermore, by applying the above-mentioned embodiment, since previous cam values are input to xs, θs, ωs, and αs, even if the synchronous curve is changed, the cam position, cam speed, and cam acceleration can be connected.
进而,也可以应用于单独的切割装置而不是封闭装置。此外,封闭或切割的对象不限于包装薄膜,也可以应用于各种薄片形状的东西。进而,不限于这样的封闭装置或切割装置,当然可以应用于使用了伺服电机的电子凸轮的控制方法、控制系统。Furthermore, it can also be applied to a separate cutting device instead of a closing device. In addition, objects to be sealed or cut are not limited to packaging films, but can also be applied to various sheet-shaped things. Furthermore, it is not limited to such a closing device or a cutting device, and of course it can be applied to a control method and a control system of an electronic cam using a servo motor.
例如,关于建材的同步切断,对于通过同步输送来的电子部件或底座的加工或部件的插入,对玻璃的同步切断或加工,对沿流水线输送来的汽车同步加工或插入部件等的同步控制,本发明的非同步控制通过使用非同步区间可以为平滑的波形。进而,通过应用上述实施方式,即使同步曲线变更,也可以连接凸轮位置、凸轮速度、凸轮加速度。For example, regarding the synchronous cutting of building materials, the processing of electronic components or bases through synchronous delivery or the insertion of components, the synchronous cutting or processing of glass, the synchronous control of synchronous processing or inserting parts of automobiles transported along the assembly line, etc., The asynchronous control of the present invention can have a smooth waveform by using the asynchronous section. Furthermore, by applying the above-described embodiment, even if the synchronization curve is changed, the cam position, the cam speed, and the cam acceleration can be connected.
进而,关于直行类的机器人、水平、圆筒、垂直机器人的多个轴的同步控制,通过对非同步区间中的机器人的各轴的动作使用本发明的非同步控制,可以为平滑的波形。进而,通过应用上述实施方式,即使同步曲线变更,也可以连接凸轮位置、凸轮速度、凸轮加速度。Furthermore, as for the synchronous control of multiple axes of a linear robot, horizontal, cylindrical, and vertical robots, a smooth waveform can be obtained by applying the asynchronous control of the present invention to the movement of each axis of the robot in the asynchronous section. Furthermore, by applying the above-described embodiment, even if the synchronization curve is changed, the cam position, the cam speed, and the cam acceleration can be connected.
Claims (7)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP332566/04 | 2004-11-17 | ||
| JP2004332566 | 2004-11-17 | ||
| JP329369/05 | 2005-11-14 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1782935A CN1782935A (en) | 2006-06-07 |
| CN100447688C true CN100447688C (en) | 2008-12-31 |
Family
ID=36773211
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2005101254400A Expired - Fee Related CN100447688C (en) | 2004-11-17 | 2005-11-17 | Electronic cam control method and servo motor control system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100447688C (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111971240A (en) * | 2018-04-17 | 2020-11-20 | 三菱电机株式会社 | Method for generating cam curve, device for generating cam curve, control device, conveying device, printing device, cutting device, and bag making machine |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5879800B2 (en) * | 2011-08-03 | 2016-03-08 | オムロン株式会社 | Synchronous control device |
| CN103076756A (en) * | 2011-10-25 | 2013-05-01 | 科比传动技术(上海)有限公司 | Method for realizing electronic cam function of servo driver |
| CN108494294B (en) * | 2011-11-12 | 2022-07-22 | 国际计测器株式会社 | Control method and control device |
| CN103157851B (en) * | 2011-12-19 | 2016-06-08 | 苏州汇川技术有限公司 | Flying shear control system and method |
| CN103163822B (en) * | 2011-12-19 | 2015-09-16 | 苏州汇川技术有限公司 | electronic cam control device and method |
| CN102650862B (en) * | 2012-05-15 | 2016-06-08 | 深圳市汇川控制技术有限公司 | The electronic cam control system of programmable logic controller and method |
| US20130317653A1 (en) * | 2012-05-24 | 2013-11-28 | Mitsubishi Electric Corporation | Electronic cam control device and electronic cam curve generating method |
| DE112013006576B4 (en) * | 2013-02-01 | 2023-09-07 | Mitsubishi Electric Corporation | synchronous control device |
| CN103439915A (en) * | 2013-08-13 | 2013-12-11 | 山东科技大学 | Electronic cam control method |
| CN104570927B (en) * | 2013-10-29 | 2017-12-08 | 西门子工厂自动化工程有限公司 | For positioning control device, the system and method for controlling stirring hand to move |
| CN104724331A (en) * | 2013-12-23 | 2015-06-24 | 奥利安机械工业(日本)株式会社 | Packing machine and control method for packing machine |
| CN105442110B (en) * | 2014-05-26 | 2018-01-23 | 西门子工厂自动化工程有限公司 | For the method and system for controlling spindle bottom to be molded |
| CN105739430B (en) * | 2016-05-10 | 2018-07-20 | 苏州新代数控设备有限公司 | Electronic cam control device and its electronic cam curve generation method |
| CN106406219B (en) * | 2016-12-16 | 2018-10-02 | 威科达(东莞)智能控制有限公司 | Programming-free electronic cam curve generation method for transverse cutting |
| CN107284751B (en) * | 2017-05-12 | 2020-05-26 | 深圳市汇川控制技术有限公司 | Packaging film shearing control system and method |
| CN108312553B (en) * | 2017-12-28 | 2020-06-09 | 泉州市汉威机械制造有限公司 | Control method of heat sealing mechanism |
| CN108415375B (en) * | 2018-02-07 | 2019-12-27 | 大连理工大学 | Electronic cam control method for multi-spindle machining |
| CN109828526B (en) * | 2019-01-18 | 2020-07-17 | 深圳市显控科技股份有限公司 | Electronic cam control method and related device |
| CN110825025B (en) * | 2019-10-24 | 2022-06-17 | 威科达(东莞)智能控制有限公司 | Programming-free electronic cam curve generation method for corrugated paper front edge paper feeding |
| CN112061497B (en) * | 2020-09-02 | 2022-09-06 | 西门子(中国)有限公司 | Packagine machine electronic cam curve determining method, packaging machine driving method and packaging machine |
| CN114967590B (en) * | 2021-02-26 | 2025-09-05 | 台达电子企业管理(上海)有限公司 | Control method of shearing mechanism |
| CN113200187B (en) * | 2021-05-27 | 2023-03-14 | 西门子工厂自动化工程有限公司 | Packing material pressing and cutting device and electronic cam curve determining method and device of packing machine |
| CN113625657B (en) * | 2021-08-18 | 2022-12-16 | 深圳市英威腾电气股份有限公司 | Motion control method and device based on electronic cam curve |
| CN114326579A (en) * | 2021-12-21 | 2022-04-12 | 杭州之山智控技术有限公司 | Realization method and servo driver of electronic cam function of special servo driver for die-cutting |
| CN114584028A (en) * | 2022-03-02 | 2022-06-03 | 浙江理工大学 | Toothbrush bristle planting system and method based on electronic cam control |
| CN114669791B (en) * | 2022-04-29 | 2024-01-26 | 西门子工厂自动化工程有限公司 | Shearing control system, method and shearing plate equipment |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07311609A (en) * | 1994-05-19 | 1995-11-28 | Toppan Printing Co Ltd | Electronic cam |
| JPH09277114A (en) * | 1996-04-17 | 1997-10-28 | Showa Denki Seisakusho:Kk | Control device for flying work machine |
| EP1071002A1 (en) * | 1998-03-12 | 2001-01-24 | Kabushiki Kaisha Yaskawa Denki | Servo system control device and control method |
| CN1336863A (en) * | 1999-01-11 | 2002-02-20 | 株式会社安川电机 | Electronic cam type rotary cutter control method and electronic cam curve generating method |
| US20040049302A1 (en) * | 2000-10-19 | 2004-03-11 | Ikuo Nagamatsu | Electronic cam device and method of preparing cam data in electronic cam device |
-
2005
- 2005-11-17 CN CNB2005101254400A patent/CN100447688C/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07311609A (en) * | 1994-05-19 | 1995-11-28 | Toppan Printing Co Ltd | Electronic cam |
| JPH09277114A (en) * | 1996-04-17 | 1997-10-28 | Showa Denki Seisakusho:Kk | Control device for flying work machine |
| EP1071002A1 (en) * | 1998-03-12 | 2001-01-24 | Kabushiki Kaisha Yaskawa Denki | Servo system control device and control method |
| CN1336863A (en) * | 1999-01-11 | 2002-02-20 | 株式会社安川电机 | Electronic cam type rotary cutter control method and electronic cam curve generating method |
| US20040049302A1 (en) * | 2000-10-19 | 2004-03-11 | Ikuo Nagamatsu | Electronic cam device and method of preparing cam data in electronic cam device |
Non-Patent Citations (1)
| Title |
|---|
| 凸轮机构从动件的Hermite修正等速运动规律. 蒋健康,苏红.西安理工大学学报,第10卷第4期. 1994 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111971240A (en) * | 2018-04-17 | 2020-11-20 | 三菱电机株式会社 | Method for generating cam curve, device for generating cam curve, control device, conveying device, printing device, cutting device, and bag making machine |
| CN111971240B (en) * | 2018-04-17 | 2021-10-15 | 三菱电机株式会社 | Cutting device, printing device, bag making machine and control method of cutting device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1782935A (en) | 2006-06-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100447688C (en) | Electronic cam control method and servo motor control system | |
| JP4003792B2 (en) | Servo motor control system | |
| JP2007328796A (en) | Method of controlling electronic cam | |
| US5566526A (en) | Device motor controlling apparatus for use in packaging machine | |
| JPH0629049B2 (en) | Seal body drive control device for horizontal bag filling and packaging machine | |
| US5689942A (en) | Drive motor controlling apparatus for use in packaging machine | |
| JPH0858705A (en) | Lateral bag-making/filling/packaging machine and its control method | |
| JPH0116740B2 (en) | ||
| US20060236659A1 (en) | Vertical filling-packaging device, and method of making bag by the device | |
| AU2001279961B2 (en) | Heat sealing apparatus for packaging machinery | |
| JPH07110645B2 (en) | Packaging machine operation control device | |
| JPH06255631A (en) | Device for controlling sealing pressure of packaging machine | |
| JP4141561B2 (en) | Packaging machine | |
| JP3654983B2 (en) | Initial setting method of horizontal seal timing of automatic packaging machine | |
| JPH0366208B2 (en) | ||
| JPH08169406A (en) | Vacuum packaging device | |
| JP2019089568A (en) | Bag filling and packaging machine | |
| JP2529037B2 (en) | Stop position control method and device in horizontal bag-making filling and packaging machine | |
| JP4764847B2 (en) | End seal device for horizontal bag making and filling machine | |
| RU166531U1 (en) | HORIZONTAL PACKING MACHINE | |
| JP2967165B2 (en) | Drive motor control device for packaging machine | |
| JPS6229362Y2 (en) | ||
| JP2003026103A (en) | Filling and packaging machine and method for its operation | |
| JPS63218008A (en) | Lateral type bag-making filling packaging machine | |
| US9809341B2 (en) | Counterbalanced servo end seal carriages |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081231 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |