CN100454025C - Energy Meter and Power Monitoring System - Google Patents
Energy Meter and Power Monitoring System Download PDFInfo
- Publication number
- CN100454025C CN100454025C CNB2006100273964A CN200610027396A CN100454025C CN 100454025 C CN100454025 C CN 100454025C CN B2006100273964 A CNB2006100273964 A CN B2006100273964A CN 200610027396 A CN200610027396 A CN 200610027396A CN 100454025 C CN100454025 C CN 100454025C
- Authority
- CN
- China
- Prior art keywords
- energy meter
- electric energy
- module
- voltage
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
一种电子仪表技术领域的电能表以及功率监视系统,所述的电能表具有两个模块:传感器模块和通讯模块,两个模块由一个微处理器进行控制。传感器模块完成对电参数的采样和计算,通讯模块完成与传感器模块数据交换并通过TCP/IP协议栈进行网络通讯处理。所述的功率监视系统包括:具有传感器模块和通讯模块的电能表以及用户监视装置,用户监视装置有电能表管理模块,用于显示并储存通过网络从所述通讯模块接收到的数据,并对电能表进行管理。该电能表能够同时对多个独立的电器设备进行监视和控制。该电能表具有Web服务器和功率监视系统,能够通过因特网传送采集到的电参数,能够长时间收集电参数并保存到用户监视装置上。
An electric energy meter and a power monitoring system in the technical field of electronic instruments, the electric energy meter has two modules: a sensor module and a communication module, and the two modules are controlled by a microprocessor. The sensor module completes the sampling and calculation of electrical parameters, and the communication module completes data exchange with the sensor module and performs network communication processing through the TCP/IP protocol stack. The power monitoring system includes: an electric energy meter with a sensor module and a communication module, and a user monitoring device. The user monitoring device has an electric energy meter management module for displaying and storing data received from the communication module through the network, and for Energy meters are managed. The energy meter can simultaneously monitor and control multiple independent electrical equipment. The electric energy meter has a Web server and a power monitoring system, can transmit the collected electric parameters through the Internet, and can collect electric parameters for a long time and save them on the user's monitoring device.
Description
技术领域 technical field
本发明涉及电子仪表技术领域,具体是一种电能表以及功率监视系统,即能够进行电力测量处理、计算处理、网络通信处理的电能表以及具备该电能表的功率监视系统。The invention relates to the technical field of electronic instruments, in particular to an electric energy meter and a power monitoring system, that is, an electric energy meter capable of performing power measurement processing, calculation processing, and network communication processing, and a power monitoring system equipped with the electric energy meter.
背景技术 Background technique
为了降低电能的使用量,有必要正确并低成本地测量出每一个电器设备或者对建筑物的每一个特定范围的电能消费量。目前,作为测量用电设备功率的电能表有一种配有微处理器的数字式功率表。如日本专利文献5-172859所示,拾取输入电压波形和输入电流波形进行A/D转换,根据转换后的电压和电流数据求出瞬态功率值,然后计算采集信号期间的平均功率值,平均功率值和时间的乘积即为电能值。数字式功率表能够进行数值采样处理以及电能运算处理,其特征为能够简单地实现多制式,且比机械式感应功率表精度高。In order to reduce the consumption of electric energy, it is necessary to accurately and cost-effectively measure the electric energy consumption of each electrical device or each specific area of a building. At present, there is a digital power meter equipped with a microprocessor as an electric energy meter for measuring the power of electric equipment. As shown in Japanese Patent Document 5-172859, the input voltage waveform and the input current waveform are picked up for A/D conversion, and the instantaneous power value is obtained according to the converted voltage and current data, and then the average power value during the signal acquisition period is calculated, and the average The product of power value and time is the energy value. The digital power meter can perform numerical sampling processing and electric energy calculation processing, and is characterized in that it can easily realize multi-system, and has higher precision than the mechanical induction power meter.
但是,上述数字式功率表没有远程控制功能,所以必须去现场读取电器设备的电能使用情况。此外,对输入电压波形和输入电流波形不是连续采样,而是每隔一定间隔进行采样,所以所采样的数据上有可能会出现误差。However, the above-mentioned digital power meter has no remote control function, so it is necessary to go to the site to read the power usage of the electrical equipment. In addition, the input voltage waveform and the input current waveform are not continuously sampled, but are sampled at regular intervals, so there may be errors in the sampled data.
发明内容 Contents of the invention
本发明的目的是在于针对现有技术中的不足,提供一种电能表以及功率监视系统,使其能够通过因特网监视和控制电器设备的电力使用量,具有高精度低成本的特点。The purpose of the present invention is to solve the deficiencies in the prior art, and provide an electric energy meter and a power monitoring system, which can monitor and control the power consumption of electrical equipment through the Internet, and have the characteristics of high precision and low cost.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
本发明的第1个方面所提出的电能表具有传感器模块和通讯模块。传感器模块,用于对电气设备的电压电流信号进行采样处理、并利用所采样的测定值进行电流值、电压值、功率值的运算处理。通讯模块,用于与所述传感器模块进行数据交换并通过TCP/IP协议栈进行网络通讯处理。在所述传感器模块所进行的电压、电流的采样和运算处理以及在所述通讯模块所进行的与所述传感器模块的数据交换和网络通讯处理是由一个微处理器进行控制。The electric energy meter provided by the first aspect of the present invention has a sensor module and a communication module. The sensor module is used for sampling and processing the voltage and current signals of the electrical equipment, and using the sampled measurement values to perform calculation processing of current values, voltage values, and power values. The communication module is used for exchanging data with the sensor module and performing network communication processing through the TCP/IP protocol stack. The sampling and calculation processing of voltage and current in the sensor module, as well as the data exchange and network communication processing with the sensor module in the communication module are controlled by a microprocessor.
通常,电能表的传感器模块是由一个微处理器进行电压电流信号采样处理、并利用所采样的测定值进行电流值、电压值、功率值的运算处理。通讯模块是由另一个微处理器进行控制,完成与传感器模块数据交换并通过TCP/IP协议栈进行网络通讯处理。Usually, the sensor module of the electric energy meter uses a microprocessor to sample and process the voltage and current signals, and uses the sampled measured values to perform calculations on the current value, voltage value, and power value. The communication module is controlled by another microprocessor, completes the data exchange with the sensor module and performs network communication processing through the TCP/IP protocol stack.
但是,本发明第1个方面所提出的电能表中传感器模块和通讯模块共用一个微处理器,即由一个微处理器进行传感器模块的电压电流信号采样处理、并利用所采样的测定值进行电流值、电压值、功率值的运算处理以及通讯模块的与所述传感器模块进行数据交换和网络通讯处理。因此大大降低了电能表的价格。However, the sensor module and the communication module in the electric energy meter proposed in the first aspect of the present invention share a microprocessor, that is, a microprocessor performs sampling processing of the voltage and current signals of the sensor module, and uses the sampled measured value to perform current processing. value, voltage value, power value calculation processing, and the communication module performs data exchange and network communication processing with the sensor module. Therefore, the price of the energy meter is greatly reduced.
本发明的第2个方面所提出的电能表中,当所述微处理器执行对所述电压和电流进行采样处理进程(P1)时,所述运算处理进程(P2)以及所述通讯模块与传感器模块的数据交换和网络通讯处理进程(P3)处于就绪状态,当执行所述运算处理进程(P2)时,对所述电压和电流进行采样处理进程(P1)以及所述通讯模块与传感器模块的数据交换和网络通讯处理进程(P3)处于就绪状态,当执行所述通讯模块与传感器模块的数据交换和网络通讯处理进程(P3)时,对所述电压和电流进行采样处理进程(P1)以及所述运算处理进程(P2)处于就绪状态。In the electric energy meter proposed in the second aspect of the present invention, when the microprocessor executes the sampling processing process (P1) for the voltage and current, the calculation processing process (P2) and the communication module and The data exchange and network communication processing process (P3) of the sensor module is in a ready state, and when the operation processing process (P2) is executed, the voltage and current sampling processing process (P1) and the communication module and the sensor module are The data exchange and network communication processing process (P3) is in a ready state, and when the data exchange and network communication processing process (P3) between the communication module and the sensor module is executed, the voltage and current are sampled and processed (P1) And the operation processing process (P2) is in a ready state.
所述微处理器具有Flash存储器和RAM。由直接读取存储器(DMA)的采样模式进行电压和电流的采样处理进程。在此,电压和电流采样处理进程(P1),运算处理进程(P2)以及通讯模块与传感器模块的数据交换和网络通讯处理进程(P3)分别通过中断程序而启动,从而实现了由一个微处理器实现P1,P2,P3的进程。The microprocessor has Flash memory and RAM. The sampling process of voltage and current is performed by the sampling mode of direct access memory (DMA). Here, the voltage and current sampling processing process (P1), the calculation processing process (P2), the data exchange between the communication module and the sensor module and the network communication processing process (P3) are respectively started by interrupting the program, thereby realizing a microprocessor The device realizes the processes of P1, P2, and P3.
本发明的第3个方面所提出的电能表,传感器模块能对相互独立的多个电气设备的电压电流信号进行采样处理;所述微处理器对多个电气设备按时间差进行采样处理(P1,P1’,P1”)。在这里不只对一个电器设备的电能数据进行测量,还能对相互独立的多个电气设备的电压电流信号进行采样处理。所以可以提高电能表的使用效率。In the electric energy meter proposed in the third aspect of the present invention, the sensor module can sample the voltage and current signals of a plurality of electrical equipment independent of each other; the microprocessor performs sampling processing (P1, P1', P1"). Here, not only the energy data of one electrical device is measured, but also the voltage and current signals of multiple independent electrical devices are sampled and processed. Therefore, the use efficiency of the energy meter can be improved.
本发明的第4个方面所提出的电能表,传感器模块还包括切换部,用于切换需要进行电压电流信号采样处理的电气设备;所述微处理器在进行运算处理进程(P2)或网络通讯处理进程(P3)之前切换需要进行电压电流信号采样处理的电气设备。在这里从多个电器设备中对指定的电器设备执行电压和电流采样处理进程(P1)时,先由切换部进行电器设备的切换以指定将要进行运算处理进程(P2)或网络通讯处理进程(P3)的电器设备。In the electric energy meter proposed in the fourth aspect of the present invention, the sensor module also includes a switching part, which is used to switch electrical equipment that needs to perform voltage and current signal sampling processing; Before the processing process (P3), switch the electrical equipment that needs to perform voltage and current signal sampling processing. Here, when the voltage and current sampling process (P1) is executed on the specified electrical equipment from multiple electrical equipment, the switching part first performs the switching of the electrical equipment to designate the calculation process (P2) or the network communication process ( P3) electrical equipment.
本发明的第5个方面所提出的电能表,所述微处理器根据电源周期调节对电压电流信号进行采样处理的时间间隔。In the energy meter proposed in the fifth aspect of the present invention, the microprocessor adjusts the time interval for sampling the voltage and current signals according to the power cycle.
在本发明中用一个微处理器进行传感器模块的电压电流信号采样处理和运算处理以及通讯模块的与所述传感器模块进行数据交换和网络通讯处理。所以对输入电压波形和输入电流波形的采样不是连续采样,而是对它们按一定间隔进行采样,所以在采样的数据上有可能会出现误差。在此,根据电源周期调节对电压电流信号进行采样处理的时间间隔,求得最适合的采样间隔。按照这个采样间隔去采样,可以最低限度地抑制因间隔采样所带来的数据误差。In the present invention, a microprocessor is used to perform voltage and current signal sampling processing and calculation processing of the sensor module, and the communication module performs data exchange and network communication processing with the sensor module. Therefore, the sampling of the input voltage waveform and the input current waveform is not continuous sampling, but they are sampled at certain intervals, so there may be errors in the sampled data. Here, the time interval for sampling the voltage and current signals is adjusted according to the power cycle to obtain the most suitable sampling interval. Sampling according to this sampling interval can minimize the data error caused by interval sampling.
本发明的第6个方面所提出的电能表,所述微处理器根据电源周期以及采样处理间隔,对电流值、电压值、功率值进行修正。In the energy meter proposed by the sixth aspect of the present invention, the microprocessor corrects the current value, voltage value, and power value according to the power supply cycle and the sampling processing interval.
在这里为了抑制因间隔采样所带来的数据误差,对电流值、电压值、功率值进行修正。这时根据电源周期和采样间隔对电流值、电压值、功率值进行修正,可以最低限度地抑制了因间隔采样所带来的数据误差,从而提高了电能表的精度。Here, in order to suppress the data error caused by interval sampling, the current value, voltage value, and power value are corrected. At this time, the current value, voltage value, and power value are corrected according to the power cycle and sampling interval, which can minimize the data error caused by interval sampling, thereby improving the accuracy of the energy meter.
本发明的第7个方面所提出的电能表,所述微处理器根据所采样的电流或电压的最终测定值,对电流值、电压值、功率值进行修正。在这里为了抑制因间隔采样所带来的数据误差,所述微处理器控制成根据所采样的电流或电压的最终测定值,对电流值、电压值、功率值进行修正。从而能得出最恰当的修正值,因而提高了电能表的精度。In the energy meter proposed by the seventh aspect of the present invention, the microprocessor corrects the current value, voltage value, and power value based on the final measured value of the sampled current or voltage. Here, in order to suppress data errors caused by interval sampling, the microprocessor is controlled to correct the current value, voltage value, and power value according to the final measured value of the sampled current or voltage. Therefore, the most appropriate correction value can be obtained, thereby improving the accuracy of the electric energy meter.
本发明的第8个方面所提出的电能表,微处理器的电路板包括电源电路、模拟电路和数字电路,其中,电源电路和模拟电路以及数字电路的地线具有共同的连接点。In the electric energy meter proposed by the eighth aspect of the present invention, the circuit board of the microprocessor includes a power supply circuit, an analog circuit and a digital circuit, wherein the ground wires of the power supply circuit, the analog circuit and the digital circuit have a common connection point.
在这里,例如电源电路的接地点和模拟电路的接地点以及数字电路的接地点作为共同的连接点连到接地点上。假如各个接地点连接在不同的接地点,容易产生因接地点不同而发生的误差。微处理器的电路板的电源电路和模拟电路以及数字电路具有共同的连接点。从而抑制了连接点间发生的误差,也提高了电能表的精度。Here, for example, the ground point of the power circuit, the ground point of the analog circuit, and the ground point of the digital circuit are connected to the ground point as a common connection point. If each grounding point is connected to a different grounding point, errors due to different grounding points are likely to occur. The power circuit of the circuit board of the microprocessor and the analog and digital circuits have a common connection point. In this way, errors occurring between connection points are suppressed, and the accuracy of the electric energy meter is also improved.
本发明的第9个方面所提出的电能表,所述模拟电路,其包含的放大器电路为差动放大器电路。In the electric energy meter proposed by the ninth aspect of the present invention, the amplifier circuit included in the analog circuit is a differential amplifier circuit.
本发明的第10个方面所提出的电能表,通讯模块还具有Web服务器,在Web服务器网页上可更新测量的功率参数。In the energy meter proposed by the tenth aspect of the present invention, the communication module further has a web server, and the measured power parameters can be updated on the web page of the web server.
在这里因电能表的通讯模块具有Web服务器,可以通过因特网传送电能表测量的功率参数。Here, because the communication module of the electric energy meter has a Web server, the power parameters measured by the electric energy meter can be transmitted through the Internet.
本发明的第11个方面所提出的功率监视系统,包括:具有传感器模块和通讯模块的电能表以及用户监视装置,其中用户监视装置还具有电能表管理模块,用于显示并储存通过网络从所述通讯模块接收到的数据,并对电能表进行管理。The power monitoring system proposed in the eleventh aspect of the present invention includes: an electric energy meter with a sensor module and a communication module, and a user monitoring device, wherein the user monitoring device also has an electric energy meter management module for displaying and storing information from The data received by the above-mentioned communication module is used to manage the electric energy meter.
本发明的第12个方面所提出的功率监视系统,电能表管理模块可在用户监视装置上执行,且由电能表通讯模块的Web服务器通过网络传送到用户监视装置上执行。In the power monitoring system proposed in the twelfth aspect of the present invention, the energy meter management module can be executed on the user monitoring device, and is transmitted to the user monitoring device by the Web server of the energy meter communication module through the network for execution.
本发明的第13个方面所提出的功率监视系统,用户监视装置还包括记忆模块,记忆模块记录电能表的长期运行情况和从电能表传送到电能表管理模块的电参数,同时可以通过表格和图形的方式展示记忆的内容。且电能表管理模块可长时间在用户监视装置上执行,并收集从电能表通讯模块的Web服务器传送的数据并保存。In the power monitoring system proposed in the thirteenth aspect of the present invention, the user monitoring device also includes a memory module, which records the long-term operation of the electric energy meter and the electric parameters transmitted from the electric energy meter to the electric energy meter management module, and can simultaneously pass the table and Graphically display the contents of the memory. And the energy meter management module can be executed on the user monitoring device for a long time, and collects and saves the data transmitted from the Web server of the energy meter communication module.
本发明的第14个方面所提出的功率监视系统,电能表管理模块可在用户监视装置上设定收集数据开始时间、收集数据停止时间以及收集数据时间间隔。In the power monitoring system proposed in the fourteenth aspect of the present invention, the energy meter management module can set the start time of data collection, the stop time of data collection and the time interval of data collection on the user monitoring device.
本发明的第15个方面所提出的功率监视系统,电能表管理模块可将测定值以及测定当前时刻储存在所述用户监视装置的记忆模块上。In the power monitoring system proposed in the fifteenth aspect of the present invention, the electric energy meter management module can store the measured value and the current measured time in the memory module of the user monitoring device.
本发明的第11个方面至第15个方面所提出的功率监视系统,包括:具有传感器模块和通讯模块的电能表以及用户监视装置。其中,用户监视装置还具有电能表管理模块,可显示通过网络从通讯模块所收到的数据,且可保存和运算上述数据。从而通过网络实现本发明的第1个方面至第10个方面所提出的记载的任何一种电能表的管理。The power monitoring system proposed by the eleventh aspect to the fifteenth aspect of the present invention includes: a power meter with a sensor module and a communication module, and a user monitoring device. Among them, the user monitoring device also has a power meter management module, which can display the data received from the communication module through the network, and can save and calculate the above data. Therefore, the management of any electric energy meter mentioned in the first aspect to the tenth aspect of the present invention is realized through the network.
附图说明 Description of drawings
图1中,(a)为电能表的外观图,(b)传感器连接部放大图。In Fig. 1, (a) is an external view of an electric energy meter, and (b) is an enlarged view of a sensor connection part.
图2为多功能电能表的原理示意图。Figure 2 is a schematic diagram of the principle of the multi-function electric energy meter.
图3为多功能电能表的电器电路模块关系图。Fig. 3 is a relational diagram of electrical circuit modules of the multifunctional electric energy meter.
图4中,(a)为电压信号和电流信号的波形图,(b)为电压脉冲信号图。In Fig. 4, (a) is a waveform diagram of a voltage signal and a current signal, and (b) is a diagram of a voltage pulse signal.
图5为电压信号和电流信号的采样过程图。Fig. 5 is a diagram of the sampling process of the voltage signal and the current signal.
图6为电压信号的信号周期图。FIG. 6 is a signal period diagram of a voltage signal.
图7中,(a)为电压脉冲信号图,(b)为电压信号和电流信号的采样误差图,(c)为(b)虚线部分放大图。In Fig. 7, (a) is a voltage pulse signal diagram, (b) is a sampling error diagram of a voltage signal and a current signal, and (c) is an enlarged diagram of a dotted line in (b).
图8为功率监视系统示意图。FIG. 8 is a schematic diagram of a power monitoring system.
图9为功率监视系统通迅模式图。FIG. 9 is a communication mode diagram of the power monitoring system.
图10为从多功能电能表Web服务器下载的画面。Figure 10 is the screen downloaded from the web server of the multi-function electric energy meter.
图11为电器电路的种类及PT/CT率的显示画面。Fig. 11 is a display screen of the type of electrical circuit and the PT/CT rate.
图12为累计有效功率/累计无效功率复位时的界面。Figure 12 is the interface when the accumulated active power/accumulated reactive power is reset.
图13为收集数据时的界面。Figure 13 is the interface when collecting data.
图14为配置IP地址界面。Figure 14 is the configuration IP address interface.
图15为Web服务器上载界面。Figure 15 is the web server upload interface.
上述图中,1电能表主体外壳,2通道1电流互感器CT,3通道1变压器PT,4通道2变压器PT,5RJ-45接口,6通道2电流互感器CT,7通道2电流互感器CT,8网络连接线,9单相两线电力线,10三相三线电力线,11PT和CT连接部,12传感器模块,13通讯模块,14微处理机模块电路,15存储器模块电路,16开关电源模块电路,17网络接口模块电路,18信号处理模块电路,18a电路1的信号处理电路,18b电路2的信号处理电路,18c电路1和电路2的切换电路,19电压信号,20电流信号,21电压脉冲信号,22读取电路类型和PT/CT率的图标,23设置电路类型和PT/CT率的图标,24复位有用功/无用功的图标,25图标显示区,26显示当前通道电路类型的图标,27通道选择图标,28当前时间,29当前值,30累计值,31多功能电能表的个数选择图标,32多功能电能表的IP地址输入区,33时间设置区,34保存文件的路径设置区,35启动和停止按钮,36状态条,60微处理机,80用户监视装置,100电能表,200功率监视系统。In the above figure, 1 electric energy meter main shell, 2 channels 1 current transformer CT, 3 channels 1 transformer PT, 4 channels 2 transformers PT, 5RJ-45 interface, 6 channels 2 current transformers CT, 7 channels 2 current transformers CT , 8 network connection line, 9 single-phase two-wire power line, 10 three-phase three-wire power line, 11PT and CT connection part, 12 sensor module, 13 communication module, 14 microprocessor module circuit, 15 memory module circuit, 16 switching power supply module circuit , 17 network interface module circuit, 18 signal processing module circuit, 18a signal processing circuit of circuit 1, 18b signal processing circuit of circuit 2, 18c switching circuit of circuit 1 and circuit 2, 19 voltage signal, 20 current signal, 21 voltage pulse Signal, 22 icon for reading circuit type and PT/CT rate, 23 icon for setting circuit type and PT/CT rate, 24 icon for reset active/reactive work, 25 icon display area, 26 icon for displaying current channel circuit type, 27 Channel selection icon, 28 Current time, 29 Current value, 30 Cumulative value, 31 Multi-function electric energy meter number selection icon, 32 Multi-functional electric energy meter IP address input area, 33 Time setting area, 34 Save file path setting Area, 35 start and stop buttons, 36 status bar, 60 microprocessor, 80 user monitoring device, 100 electric energy meter, 200 power monitoring system.
具体实施方式 Detailed ways
下面,结合附图以及实施例来说明有关本发明的电能表和功率监视系统。In the following, the electric energy meter and the power monitoring system related to the present invention will be described with reference to the drawings and embodiments.
图1为,能够同时测量单相两线电路和三相三线电路的电能表100的外观图。电能表主体外壳1上设有多个连接点11。在这里单相两线的电器回路的电流传感器2和变压器3以及单相三线的电器回路的电流传感器6,7和变压器4分别通过电线连接到连接部11上。FIG. 1 is an external view of an
图1(a)所示,单相两线和单相三线是互相独立的通道。用户监视装置可根据需要设定电器设备的电路类型,比如说单相两线和单相三线以及三相三线。当电力线电压9,10小于240V时,图1(a)中的变压器3,4可以省略。电流互感器2,6,7为如图1(b)所示的钳形互感器,用户不需要断开电力线的绝缘层,只需把钳形互感器夹到电力线上即可。As shown in Figure 1(a), single-phase two-wire and single-phase three-wire are mutually independent channels. The user monitoring device can set the circuit type of electrical equipment according to needs, such as single-phase two-wire, single-phase three-wire and three-phase three-wire. When the
此外,该电能表可以单独测定任意的通道。这时不必输入不需测定的通道的信号。再者,该电能表不需要额外的电源,通道1或通道2的电压输入同时可作为电能表电源模块的输入。In addition, the energy meter can measure any channel independently. At this time, it is not necessary to input the signals of the channels that do not need to be measured. Furthermore, the energy meter does not require an additional power supply, and the voltage input of
如图2为电能表100的系统方框图。如图2所示,电能表100主要由两部分组成:传感器模块STIM 12和通讯模块NCAP 13。FIG. 2 is a system block diagram of the
传感器模块STIM 12包括:电流变流器CT2,6,7、变压器PT 3,4、电子数据库TEDS 12a、数据交换寄存器12b、电参数计算器12c、模拟信号调理器12d,并负责对用电设备的电参数拾取、采样和计算,同时负责对电能表的管理。用电设备的电信号(电流和电压)由传感器通过电流变流器CT 2,6,7及内藏变压器得到交流弱信号。The
所输入的交流弱信号通过模拟信号调理器12d转化成0~5V的直流信号。电参数计算器12c对0~5V的直流信号进行采样,并根据采样的电压瞬时值和电流瞬时值计算电压有效值、电流有效值、功率因数、频率、有用功率、无用功率、有用功和无用功。传感器电子数据库TEDS 12a完成对电能表工作状况的管理,如配置电能表IP地址,设置电能表当前所测量用电设备的电路类型、使用变压器和电流互感器的比率,用电设备用电量的管理等。The input AC weak signal is converted into a 0-5V DC signal by the
通讯模块NCAP 13具有数据交换寄存器13a,TCP/IP协议处理器13b,网页服务器13c,TCP/IP协议栈13d,网络控制器13e,并负责电能表与客户端的数据交换,以及进行网络通信。The
网络控制器13e实现电能表与Ethernet(以太网)的物理接口,接收和发送网络数据。TCP/IP协议栈13d是实现地址解析协议ARP、网际协议IP、用户数据报协议UDP、网络控制消息协议ICMP、传输控制协议TCP和超文本传输协议HTTP,解析和打包网络数据。The
当接收数据时,TCP/IP协议处理器13b从网络控制器13e的接收缓冲区读出数据包,经过链接层、网络层、传输层和应用层对数据包进行解析;当发送数据时,TCP/IP协议处理器13b对待发送的数据经过相反的过程进行添加报头,把字符和数据打包成发送的数据包,送到网络控制器13e的发送缓冲区,启动发送命令完成发送。网页服务器13c负责网页的管理和把网页需要的文本保存到保存装置上,保存装置是指FLASH存储器等。When receiving data, the TCP/
在这里传感器模块12和通讯模块13共用一个微处理器60。微处理器60进行数据的演算处理(p2)以及通讯模块和传感器模块之间的数据交换处理以及网络通讯处理(p3)。Here, the
图3为电能表100的传感器模块的硬件电路。如图3所示,电能表100的传感器模块主要有以下几部分组成:开关电源模块电路16、存储器模块电路15、CPU模块电路14、网络接口模块电路17和信号采样处理模块电路18。FIG. 3 is a hardware circuit of the sensor module of the
在这里开关电源模块电路16和CPU模块电路14以及信号采样处理模块电路18利用共有的连接点来接地的。还有信号采样处理模块电路18的放大器电路为差动放大器电路。Here, the switching power supply module circuit 16, the CPU module circuit 14 and the signal sampling processing module circuit 18 are grounded through a common connection point. Also, the amplifier circuit of the signal sampling processing module circuit 18 is a differential amplifier circuit.
此外,开关电源模块电路16和CPU模块电路14以及信号采样处理模块电路18使用了互相不影响的模拟电路用的电源和地以及数字电路用的电源和地。模拟电略用的电源和数字电路用的电源使用了共有的连接点来连接。而且模拟电路用的地和数字电路用的地也使用了共有的连接点来连接。换句话说,使用了一个地连接点。从而增强了模拟电路和数字电路的独立性,也可以减少不必要的乱码进入到其他部分的电器电路上,实现了信号处理电路的稳定性。In addition, the switching power supply module circuit 16, the CPU module circuit 14, and the signal sampling processing module circuit 18 use power and ground for analog circuits and power and ground for digital circuits that do not affect each other. The power supply for analog circuits and the power supply for digital circuits are connected using a common connection point. Moreover, the ground used for the analog circuit and the ground used for the digital circuit are also connected using a shared connection point. In other words, a ground connection point is used. Thereby, the independence of the analog circuit and the digital circuit is enhanced, and unnecessary garbled codes can be reduced from entering into other electrical circuits, thereby realizing the stability of the signal processing circuit.
此外,设在信号采样处理部输入端,用于放大输入信号的电路为差动放大器电路。In addition, the circuit for amplifying the input signal provided at the input end of the signal sampling processing part is a differential amplifier circuit.
如图2所示的外部电流传感器2,6,7里取得的0~30mA的交流电流信号和以及由内藏变压器所取得的交流弱电压信号,经过模拟信号调理12d后转换成0V~5V的弱电信号。切换电路18c按照微处理器60的命令,将CPU模块电路14的I/O口控制在电路118a或者电路218b之间进行切换,As shown in Figure 2, the 0~30mA AC current signal obtained by the external
微处理器60设定对通道1和通道2进行采样处理以及A/D变换处理的时间间隔,并对采样后的数据进行演算处理,并计算得到电参数值。CPU模块电路14实现电参数的采样、计算和TCP/IP协议栈。存储器模块电路15由512K的FLASH存储器和32K的RAM存储器组成,FLASH和RAM存储器分别用来存储英文、中文两种语言的网页和临时数据。网络接口模块电路17完成电能表与Internet的物理接口,实现电能表100和外界的信息交换。开关电源模块以通道1的电压为输入,通过整形、滤波等电路产生5V的恒流电作为电能表的电源。The
图4(a)所示的是,由电流变流器CT 2,6,7所得到的电流信号的波形和由变压器PT3,4所得到的电压信号的波形。图中,19表示电压信号,20表示电流信号。图4(b)所示的是,把电压信号通过演算放大电路,脉冲整形之后生成的脉冲信号21。该脉冲信号传送到微处理器的外部中断引脚,在信号电平的下降沿微处理器产生中断,在中断程序中激活采样处理进程(P1)。中断复位初始化之后,通过微处理器60进行数据的演算处理(P2)以及通讯模块和传感器模块进行数据交换以及进行网络通讯处理(P3)。Figure 4(a) shows the waveforms of the current signals obtained by the
图4中,由电压信号19产生的同步脉冲信号21作为微处理器60计数器的信号源。在复位初始化后,IP电能表的3个进程P1,P2,P3都处于待机就绪状态。等到电压信号的第一个周波到来,也就是t0时刻,微处理器外部中断引脚发生电平跳变而产生中断。在中断程序中,置采样标志为1,激活电压电流信号采样进程(P1)。在电压信号19的第一个周波,微处理器60对通道118a的电压信号19和电流信号20进行采样,把采样的数值保存到RAM存储器中。在采样进程(P1)处于执行状态时,进程P2和P3处于就绪状态。在t1时刻,微处理器60外部中断引脚的电平再次发生跳变产生中断,在中断程序中采样标志变为0,同时设置电参数计算标志为1,进程P2处于执行状态,进程P1、P3处于就绪状态。微处理器60根据采样的电压信号、电流信号瞬时值计算电压有效值、电流有效值等八个电参数值。电参数计算结束后,保存有用功率、无用功率的累积值到微处理器的内部数据Flash存储器内。In FIG. 4 , the synchronous pulse signal 21 generated by the
在t2时刻,电参数计算标志设置为0时,在随后的N-2电压周期内,电压电流信号采样进程(P1)和电参数计算并保存进程(P2)都处于就绪状态,网络通讯进程(P3)处于执行状态,微处理器60响应来自客户端的请求进行通讯处理。时刻t2是个不确定的值,根据电压信号频率和计算量的大小,电参数计算的时间在1个或2个周波之内。N-2个周波的网络通讯结束后,微处理器60切换到另外一个通道做同样的处理。这样周而复始的循环,采用一个微处理器按时间分割的方法实现了电压电流信号的采样(P1)、电参数的计算和保存(P2)、网络通讯(P3)三个进程。At time t2 , when the electrical parameter calculation flag is set to 0, in the following N-2 voltage cycles, the voltage and current signal sampling process (P1) and the electrical parameter calculation and saving process (P2) are both in the ready state, and the network communication process (P3) is in the execution state, and the
图5表示电压电流信号采样(P1)进程。在此,19’为电压信号,20’为电流信号。在外部中断程序中置采样标志为1后,启动微处理器的定时器,定时时间为ΔT,模式为连续装载模式。定时时间到达时产生定时器中断,在定时器中断程序中启动微处理器的DMA采样,对电压信号和电流信号进行连续采样。采样结束后保存采样结果到指定的存储器空间。然后等待下一个定时器中断,等到下一个定时器中断发生时启动下一次DMA来采样,直到采样标志被清除为止。在此,以电流信号采样泄漏的修正来说明电压信号以及电流信号的采样泄漏的修正方法。Figure 5 shows the voltage and current signal sampling (P1) process. Here, 19' is a voltage signal, and 20' is a current signal. After setting the sampling flag as 1 in the external interrupt program, start the timer of the microprocessor, the timing time is ΔT, and the mode is continuous loading mode. When the timing time arrives, a timer interrupt is generated, and the DMA sampling of the microprocessor is started in the timer interrupt program, and the voltage signal and the current signal are continuously sampled. After sampling, save the sampling result to the specified memory space. Then wait for the next timer interrupt, and start the next DMA to sample when the next timer interrupt occurs, until the sampling flag is cleared. Here, the method of correcting the sampling leakage of the voltage signal and the current signal is described by using the correction of the sampling leakage of the current signal.
下面以电压为例,说明补偿电压信号以及电流信号的采样误差的修正方法。Taking voltage as an example, the correction method for compensating the sampling error of the voltage signal and the current signal will be described below.
通常,连续的电压信号的实际值u是根据下面的计算式(1)计算:Usually, the actual value u of the continuous voltage signal is calculated according to the following formula (1):
离散化后,电压的有效值(2π周期内的采样数为N)是根据下面的计算式(2)计算:After discretization, the effective value of the voltage (the number of samples in a 2π period is N) is calculated according to the following formula (2):
在式(2)中,电压信号u的信号周期设定为如图6所示均匀分成N个采样周期。但是实际的使用环境中,输入信号不一定是很均匀,会产生偏差,还有信号处理电路不稳定造成信号周期有微小的变化,所以很难保证信号周期T均分为N个采样周期。因而用计算式(2)来计算的话,容易发生误差。也就是图7所示的采样误差。图7(a)表示电压信号的脉冲信号。图7(b)里19a表示电压信号,19b表示电流信号。图7(c)中斜线部分为把图7(b)的虚线部分放大的图。在图7(b)中电压和电流的信号周期并未被采样周期TS均分。也就是说,因t1和t2的间隔比采样周期TS短,会发生采样误差。图7(c)的斜线部分A和B是各表示电压信号的采样泄漏和电流信号的采样误差。In formula (2), the signal period of the voltage signal u is set to be evenly divided into N sampling periods as shown in FIG. 6 . However, in the actual use environment, the input signal is not necessarily very uniform, there will be deviations, and the signal processing circuit is unstable, resulting in slight changes in the signal period, so it is difficult to ensure that the signal period T is evenly divided into N sampling periods. Therefore, it is easy to make an error when calculated by calculation formula (2). This is the sampling error shown in Figure 7. Fig. 7(a) shows a pulse signal of a voltage signal. 19a in FIG. 7(b) represents a voltage signal, and 19b represents a current signal. The hatched portion in FIG. 7(c) is an enlarged view of the dotted line portion in FIG. 7(b). In Fig. 7(b), the signal periods of voltage and current are not evenly divided by the sampling period TS. That is, since the interval between t1 and t2 is shorter than the sampling period TS, a sampling error occurs. The slanted parts A and B in FIG. 7(c) respectively represent the sampling leakage of the voltage signal and the sampling error of the current signal.
在此,通过计算式(3)来计算电流信号的实效值,可以修正电流信号的采样误差,以此保证采样的精度。Here, by calculating the effective value of the current signal through formula (3), the sampling error of the current signal can be corrected, so as to ensure the accuracy of sampling.
还有,从图7可知,i0=iN。当t2和t1间的间隔微小时,可以假定 从而从计算式(3)得到下面的计算式(4)。Also, as can be seen from FIG. 7, i 0 =i N . When the interval between t2 and t1 is small, it can be assumed that The following calculation formula (4) is thus obtained from the calculation formula (3).
在式(4)中,(t2-t1)为未知数,该未知数可利用T、Ts以及N计算。作为另一种方法,为了计算t2和t1之间的间隔,可在外部中断发生时(t2)读取2进制计数器的计算值。根据2进制计数器的计算值的增加,计算出t2和t1之间的时间间隔。理论上说,根据上述的修正可以得到电流信号比较正确的值。In formula (4), (t 2 -t 1 ) is an unknown number, which can be calculated using T, Ts, and N. As another method, in order to calculate the interval between t2 and t1, the calculated value of the binary counter can be read when an external interrupt occurs (t2). The time interval between t2 and t1 is calculated according to the increase of the calculated value of the binary counter. Theoretically speaking, a relatively correct value of the current signal can be obtained according to the above correction.
下面说明功率监视系统。图8所示的功率监视系统200包括电能表100和用户监视装置80。电能表100具有图2里的传感器模块12和通讯模块13用户监视装置80具有电能表管理模块,用于显示并储存通过网络从通讯模块13接收到的数据,并对电能表进行管理。The power monitoring system will be described below. The
图9表示的是用户的用户监视装置80和电能表100的网页服务器13c之间的数据的交换过程。首先从用户监视装置80向电能表100的网页服务器13c发出通信开始的请求,网页服务器13c得到通信开始的请求之后,马上给用户监视装置80回答。之后从用户监视装置80再一次发出数据传送的请求,网页服务器13c得到数据传送的请求之后,马上给用户监视装置80传送数据并下载。之后用户监视装置80里出现如图10的界面。FIG. 9 shows the data exchange process between the
在网页的最上面是关于电能表配置的三个标签:读取电路类型和PT/CT率22、读取电路类型和PT/CT率23、复位有用功/无用功24。On the top of the web page are three labels about the energy meter configuration: read circuit type and PT/
用户在用户监视装置80界面点击“读取电路类型和PT/CT率”22标签时,在标签显示区25显示电能表两个通道的电路类型和PT/CT率。点击“设置电路类型和PT/CT率”23标签在图11中标签显示区25显示如图10所示的界面,可以分别设置电能表两个通道的电路类型和PT/CT率,通过下拉菜单对电路类型可以在单相两线、单相三线和三相三线之间选择。点击“累计有用功/累计无用功的复位”24标签在图12中标签显示区25显示如图10所示的界面,通过不同的组合对于两个通道的累计值可以进行清零。通道选择27在电能表的两个通道之间进行选择,当选定某个通道时,当前值29、累计值30显示为该通道的电参数值。为了提高电能表的性能,以上客户端和电能表之间的数据交换都是通过UDP协议。客户端每一秒钟通过UDP协议向电能表100请求一次数据传送的要求来更新网页上显示的数据。When the user clicks on the “read circuit type and PT/CT rate” 22 label on the
电能表管理模块可以采用“数据收集软件”(如图13)和“IP配置及网页上载软件”(如图14和图15)。The energy meter management module can use "data collection software" (as shown in Figure 13) and "IP configuration and web page upload software" (as shown in Figure 14 and Figure 15).
“数据收集软件”用于长时间收集局域网上的电能表采集数据。该软件可以在设置的时间段内收集用电设备的用电情况,并将数据存为CSV(电子表格)格式的文件,便于用户对设备的维护。如图13所示的界面,该软件可以同时收集局域网上的8个电能表的数据,在IP地址输入区32输入电能表的IP地址。在时间设置区33可以设置收集的起始时间、终止时间和每收集一个数据的时间间隔。可以随意选择保存文件的目录,每个电能表的数据保存为一个文件,文件名为起始时间和电能表的IP地址的组合。每要收集一个数据,客户端发送一个UDP包到电能表请求数据,电能表通过UDP协议把最新的电参数值发送到客户端。"Data collection software" is used to collect data collected by electric energy meters on the LAN for a long time. The software can collect the electricity consumption of electrical equipment within a set period of time, and save the data as a file in CSV (electronic form) format, which is convenient for users to maintain the equipment. As the interface shown in Figure 13, this software can collect the data of 8 energy meters on the local area network at the same time, and input the IP address of the energy meters in the IP
如图14所示,“IP配置及网页上载软件”用来配置局域网上的任何指定电能表100的IP地址。客户端通过设定电能表100的IP地址,利用IP地址与电能表100进行通信。As shown in FIG. 14 , the "IP configuration and webpage upload software" is used to configure the IP address of any specified
作为通信端的电能表100得到基于IEEE1451标准的传感器模块12的电子数据库TEDS(传感器电子数据库)的数据,以TEDS格式保存下来。电能表100所接收的TEDS格式数据,用户通过网络通讯可在用户监视装置80上阅览。The
例如,在电能表100的网页服务器13c内,,从TEDS格式的数据生成HTML格式的数据,并通过HTTP通信,可以在用户监视装置80上阅览。这时,每发生TEDS格式的数据的更新,电能表100也更新生成新的HTML格式的数据,并存储在存储器模块15上。通过用户监视装置80对电能表100的网页服务器13c发出阅览请求,以更新用户监视装置80内的数据。For example, in the
此外,还可以通过JAVATM界面,用于实时表示电能表100的网页服务器13c的TEDS格式的数据。用户监视装置80把所述的界面下载下来并执行,以此可实时地通过用户监视装置80从电能表100的网页服务器13c上取得数据并可进行阅览。In addition, the data in the TEDS format of the
本发明与现有技术相比,具有以下效果:Compared with the prior art, the present invention has the following effects:
本发明的第1方面所提出的电能表,可通过一个微处理器进行传感器模块中电压、电流的采样和运算处理以及在通讯模块中与传感器模块的数据交换和网络通讯处理。因此,可降低多功能电能表整体成本。The energy meter proposed in the first aspect of the present invention can use a microprocessor to perform sampling and calculation processing of voltage and current in the sensor module, as well as data exchange and network communication processing with the sensor module in the communication module. Therefore, the overall cost of the multifunctional electric energy meter can be reduced.
本发明的第2方面所提出的电能表,可通过一个微处理器实现P1、P2、P3的处理:其中电压及电流值的采样处理P1、数据的运算处理P2、通讯模块与传感器模块的数据交换和网络通讯处理P3,是通过各自的中断程序所激活。The energy meter proposed in the second aspect of the present invention can realize the processing of P1, P2, and P3 through a microprocessor: the sampling processing of voltage and current values P1, the arithmetic processing of data P2, the data of the communication module and the sensor module Switching and network communication processing P3 are activated by their respective interrupt routines.
本发明的第3方面所提出的电能表,不仅对一个电器设备的功率值进行测量,同时可对各自独立的多个电器设备的电压及电流执行采样,可提高电能表的使用效率。The electric energy meter proposed in the third aspect of the present invention not only measures the power value of one electrical device, but also samples the voltage and current of multiple independent electrical devices, which can improve the efficiency of the electric energy meter.
本发明的第4方面所提出的电能表,是在多个电器设备中,对指定的电器设备执行电压及电流值的采样处理P1时,首先通过切换模块进行电器设备的切换,采样结束后执行运算处理P2或网络通讯处理P3的电器设备。The electric energy meter proposed in the fourth aspect of the present invention is to execute the sampling process P1 of the voltage and current value of the specified electrical equipment among a plurality of electrical equipment, first switch the electrical equipment through the switching module, and execute after the sampling Electrical equipment for operation processing P2 or network communication processing P3.
本发明的第5方面所提出的电能表,根据电源周期调整采样处理的时间间隔,计算出最佳时间间隔,并根据该间隔执行采样处理,可将采样的误差降低到最低限度。The electric energy meter proposed in the fifth aspect of the present invention adjusts the sampling processing time interval according to the power supply cycle, calculates the optimal time interval, and executes sampling processing according to the interval, so that the sampling error can be reduced to a minimum.
本发明的第6方面所提出的电能表为,根据电源周期及采样间隔,对电流值、电压值或功率值进行修正,可将采样值的误差降低到最低限度,并可提高多功能电能表的精确度。The energy meter proposed in the sixth aspect of the present invention is to correct the current value, voltage value or power value according to the power supply cycle and the sampling interval, so that the error of the sampling value can be reduced to a minimum, and the multifunctional energy meter can be improved. the accuracy.
本发明的第7方面所提出的电能表为,根据所采样的电流或电压的最终测定值,对电流值、电压值或功率值进行修正。因此,可获取最佳修正值,并可提高多功能电能表的精确度。The electric energy meter proposed by the seventh aspect of the present invention corrects the current value, the voltage value or the power value based on the final measured value of the sampled current or voltage. Therefore, the optimum correction value can be obtained, and the accuracy of the multifunctional electric energy meter can be improved.
本发明的第8方面所提出的电能表,使电源电路、模拟电路和数字电路具有共同的连接点,可抑制连接点之间误差的发生,以此可提高多功能电能表的精确度。In the electric energy meter proposed in the eighth aspect of the present invention, the power supply circuit, the analog circuit and the digital circuit have a common connection point, and the occurrence of errors between the connection points can be suppressed, thereby improving the accuracy of the multifunctional electric energy meter.
本发明的第9方面所提出的电能表为,模拟电路的放大器电路为差动放大器电路。In the watt-hour meter proposed by
本发明的第10方面所提出的电能表为,在多功能电能表上进一步配置Web服务器,可通过网络传送由该电能表测量的功率参数。The electric energy meter proposed by the tenth aspect of the present invention is that a web server is further configured on the multifunctional electric energy meter, and the power parameters measured by the electric energy meter can be transmitted through the network.
本发明的第11至第15方面所提出的功率监视系统,包括具有传感器模块和通讯模块的电能表以及用户监视装置,其中,用户监视装置还具有电能表管理模块,用于显示并储存通过网络从所述通讯模块接收到的数据,并对电能表进行管理。因此,可通过网络,对本发明的第1至第10方面所提出的任意一个功能进行管理。The power monitoring system proposed in the 11th to 15th aspects of the present invention includes a power meter with a sensor module and a communication module and a user monitoring device, wherein the user monitoring device also has a power meter management module for displaying and storing data through the network. The data received from the communication module is used to manage the electric energy meter. Therefore, any one of the functions proposed in the first to tenth aspects of the present invention can be managed through the network.
Claims (8)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2006100273964A CN100454025C (en) | 2006-06-08 | 2006-06-08 | Energy Meter and Power Monitoring System |
| JP2007153041A JP2007327961A (en) | 2006-06-08 | 2007-06-08 | Wattmeter and power monitoring system |
| JP2011247739A JP2012032409A (en) | 2006-06-08 | 2011-11-11 | Wattmeter and power monitoring system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2006100273964A CN100454025C (en) | 2006-06-08 | 2006-06-08 | Energy Meter and Power Monitoring System |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1858600A CN1858600A (en) | 2006-11-08 |
| CN100454025C true CN100454025C (en) | 2009-01-21 |
Family
ID=37297523
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2006100273964A Expired - Fee Related CN100454025C (en) | 2006-06-08 | 2006-06-08 | Energy Meter and Power Monitoring System |
Country Status (2)
| Country | Link |
|---|---|
| JP (2) | JP2007327961A (en) |
| CN (1) | CN100454025C (en) |
Families Citing this family (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101552490B (en) * | 2008-05-13 | 2012-06-06 | 汤德明 | Efficiency service system of electrical power unit |
| US20110285382A1 (en) * | 2010-05-18 | 2011-11-24 | General Electric Company | Power meter phase identification |
| CN102081152A (en) * | 2010-11-25 | 2011-06-01 | 深圳市科陆电子科技股份有限公司 | Calibration device and method for out-of-band accessory direct-current electric energy meter |
| JP5429145B2 (en) * | 2010-12-02 | 2014-02-26 | オムロン株式会社 | Physical quantity information providing system, measuring apparatus, physical quantity information providing method, measuring apparatus control method, and control program |
| JP2012132812A (en) * | 2010-12-22 | 2012-07-12 | Hitachi Industrial Equipment Systems Co Ltd | Power distribution monitoring system |
| US8635036B2 (en) * | 2011-01-04 | 2014-01-21 | General Electric Company | Systems, methods, and apparatus for providing energy management utilizing a power meter |
| CN103018582A (en) * | 2011-09-28 | 2013-04-03 | 南京丹迪克科技开发有限公司 | Power quality monitoring system |
| JP6041784B2 (en) * | 2013-10-30 | 2016-12-14 | 三菱電機株式会社 | Power measuring apparatus, power measuring method, and program |
| CN103983822B (en) * | 2014-05-23 | 2017-03-15 | 国家电网公司 | A kind of kilowatt-hour meter intelligent self-cleaning reason and burglary-resisting system |
| EP3098610B8 (en) * | 2015-05-29 | 2019-06-05 | HAMEG Instruments GmbH | Power measuring device and measuring system for measuring the power of multiple phases in a multi-phase system |
| CN104991116A (en) * | 2015-06-24 | 2015-10-21 | 中山市木易万用仪器仪表有限公司 | dynamometer |
| US10545182B2 (en) * | 2016-03-17 | 2020-01-28 | Texas Instruments Incorporated | Crosstalk calibration for multi-channel systems |
| CN109696595B (en) * | 2019-01-28 | 2021-07-23 | 恒大恒驰新能源汽车研究院(上海)有限公司 | Analog electric meter and control method thereof |
| CN109738696B (en) * | 2019-02-28 | 2019-11-19 | 江苏海恩德电气有限公司 | Remote bill control ammeter and working method based on independent duplex |
| CN110261673B (en) * | 2019-05-14 | 2021-10-15 | 哈尔滨工业大学 | A virtual pulse power measurement system and method based on voltage and current double pulse signals |
| CN113611926B (en) * | 2021-07-26 | 2023-01-17 | 珠海格力电器股份有限公司 | Current sampling device and method of flyback equalization circuit and battery equalization system |
| CN114062804A (en) * | 2021-11-01 | 2022-02-18 | 广东电网有限责任公司广州供电局 | A power quality monitoring device with wave recording function |
| CN114415101B (en) * | 2021-12-30 | 2024-09-03 | 广西电网有限责任公司 | Smart meter operation error diagnosis and analysis method and system |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2083756U (en) * | 1991-03-29 | 1991-08-28 | 刘生仁 | High-recision multi-function intelligent kilowatt-hour meter |
| JPH05172859A (en) * | 1991-12-26 | 1993-07-13 | Yokogawa Electric Corp | Power measuring device |
| CN2169139Y (en) * | 1993-12-06 | 1994-06-15 | 王智强 | Computer watthour meter |
| CN1106539A (en) * | 1994-02-05 | 1995-08-09 | 裴立凡 | Digital automatic phase amplitude compensation method and watt metering device using the same |
| CN2247819Y (en) * | 1995-12-01 | 1997-02-19 | 同济大学 | Cluster type electric civil electric energy meter |
| CN2417479Y (en) * | 2000-05-10 | 2001-01-31 | 沈阳长白工控科技有限公司 | AC power sampling device with self error regulation |
| US20020013670A1 (en) * | 2000-07-28 | 2002-01-31 | Ouellette Maurice J. | Methods and apparatus for secure programming of an electricity meter |
| CN1355432A (en) * | 2000-11-30 | 2002-06-26 | 广东科龙电器股份有限公司 | Full-electronic intelligent kilowatt-hour meter |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4221057C2 (en) * | 1992-06-26 | 1997-02-13 | Texas Instruments Deutschland | Method of recording electrical energy consumption |
| JPH09135543A (en) * | 1995-11-06 | 1997-05-20 | Nissin Electric Co Ltd | Power system measuring system |
| JP3323469B2 (en) * | 1996-07-10 | 2002-09-09 | 松下電器産業株式会社 | Multi-circuit watt-hour meter |
| JP2000249723A (en) * | 1999-02-26 | 2000-09-14 | Hitachi Ltd | Measurement terminal device |
| JP3447622B2 (en) * | 1999-07-15 | 2003-09-16 | 四国電力株式会社 | Watt hour meter |
| JP3378233B2 (en) * | 2000-10-13 | 2003-02-17 | 三誠産業株式会社 | High frequency power tester |
| JP3515080B2 (en) * | 2001-04-18 | 2004-04-05 | 日東工業株式会社 | Power monitor and switchboard system using the same |
| WO2003081264A1 (en) * | 2002-03-25 | 2003-10-02 | Mitsubishi Denki Kabushiki Kaisha | Electronic watthour meter and power-associated quantity calculating circuit |
| JP2005233879A (en) * | 2004-02-23 | 2005-09-02 | Toshiba Corp | Single-phase three-wire watt-hour meter with line current monitoring function and its line current management system |
| JP2005249549A (en) * | 2004-03-03 | 2005-09-15 | Kawamura Electric Inc | Pulse signal arithmetic unit |
| JP2006084180A (en) * | 2004-09-14 | 2006-03-30 | Chugoku Electric Power Co Inc:The | Electric energy sensor and security system utilizing it |
-
2006
- 2006-06-08 CN CNB2006100273964A patent/CN100454025C/en not_active Expired - Fee Related
-
2007
- 2007-06-08 JP JP2007153041A patent/JP2007327961A/en active Pending
-
2011
- 2011-11-11 JP JP2011247739A patent/JP2012032409A/en active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2083756U (en) * | 1991-03-29 | 1991-08-28 | 刘生仁 | High-recision multi-function intelligent kilowatt-hour meter |
| JPH05172859A (en) * | 1991-12-26 | 1993-07-13 | Yokogawa Electric Corp | Power measuring device |
| CN2169139Y (en) * | 1993-12-06 | 1994-06-15 | 王智强 | Computer watthour meter |
| CN1106539A (en) * | 1994-02-05 | 1995-08-09 | 裴立凡 | Digital automatic phase amplitude compensation method and watt metering device using the same |
| CN2247819Y (en) * | 1995-12-01 | 1997-02-19 | 同济大学 | Cluster type electric civil electric energy meter |
| CN2417479Y (en) * | 2000-05-10 | 2001-01-31 | 沈阳长白工控科技有限公司 | AC power sampling device with self error regulation |
| US20020013670A1 (en) * | 2000-07-28 | 2002-01-31 | Ouellette Maurice J. | Methods and apparatus for secure programming of an electricity meter |
| CN1355432A (en) * | 2000-11-30 | 2002-06-26 | 广东科龙电器股份有限公司 | Full-electronic intelligent kilowatt-hour meter |
Non-Patent Citations (1)
| Title |
|---|
| 电能表自动抄表系统中应用的传感器技术. 梁福平,刘国忠.国内科技,第2期. 1999 * |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2012032409A (en) | 2012-02-16 |
| JP2007327961A (en) | 2007-12-20 |
| CN1858600A (en) | 2006-11-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100454025C (en) | Energy Meter and Power Monitoring System | |
| CN103901280A (en) | Intelligent thunder and lightning monitoring device | |
| EP3132519A1 (en) | Method and apparatus for a cloud-based power quality monitor | |
| CN202166679U (en) | Intelligent dynamic-collecting terminal for three-phase electric energy data | |
| CN103487778B (en) | A kind of analog quantity bearing calibration and the single CPU low-voltage protection device based on the method | |
| CN111181246B (en) | Energy consumption analysis method and system based on intelligent circuit breaker | |
| CN202177664U (en) | Single-phase electric energy data dynamic acquisition intelligent terminal | |
| CN113238081A (en) | Intelligent electric meter terminal | |
| CN101458275A (en) | High temperature resistant three phase intermediate frequency electric quantity acquisition module | |
| CN102621492A (en) | Detection device for switched reluctance generator | |
| CN109387697B (en) | Wireless phase measurement device, time synchronization method and wireless phase measurement method | |
| CN101950268A (en) | Real-time monitoring scheme for clock frequency of controller | |
| CN104750096B (en) | A kind of method of analog input formula combining unit accuracy correction | |
| CN102103199B (en) | Digital signal generating device and method based on three-phase power system model | |
| CN201247268Y (en) | Electronic two-in-one electric energy meter | |
| CN204679550U (en) | Electric energy accurate measuring device under a kind of fluctuating load | |
| CN209542825U (en) | A kind of on-line monitoring system of CVT measurement error state | |
| CN103217581A (en) | Method and system for achieving line parameter identification based on steady state telemetry technology | |
| CN110031132A (en) | High-precision flow heat integrating instrument | |
| CN101871947B (en) | Method and device for measuring wind speed in real time | |
| CN211180611U (en) | NB-MBUS collector powered by battery | |
| CN212365789U (en) | Circuit breaker | |
| CN104597355B (en) | A kind of conducting wire measurement method of parameters based on conducting wire parameter measurement instrument | |
| RU2643923C1 (en) | Electricity meter | |
| CN201876506U (en) | Intelligent digital display meter for direct-current power |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090121 Termination date: 20120608 |