CN100459044C - Method for forming nano single crystal silicon and making method of non volatile semiconductor memory - Google Patents
Method for forming nano single crystal silicon and making method of non volatile semiconductor memory Download PDFInfo
- Publication number
- CN100459044C CN100459044C CNB200610028783XA CN200610028783A CN100459044C CN 100459044 C CN100459044 C CN 100459044C CN B200610028783X A CNB200610028783X A CN B200610028783XA CN 200610028783 A CN200610028783 A CN 200610028783A CN 100459044 C CN100459044 C CN 100459044C
- Authority
- CN
- China
- Prior art keywords
- silicon
- nano
- layer
- rich
- crystal silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 99
- 229910021421 monocrystalline silicon Inorganic materials 0.000 title claims abstract description 98
- 239000004065 semiconductor Substances 0.000 title claims abstract description 80
- 238000007667 floating Methods 0.000 claims abstract description 51
- -1 silicate ion Chemical class 0.000 claims abstract description 37
- 239000010409 thin film Substances 0.000 claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 claims abstract description 21
- 239000013078 crystal Substances 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 167
- 239000010703 silicon Substances 0.000 claims description 167
- 239000010410 layer Substances 0.000 claims description 163
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 150
- 239000010408 film Substances 0.000 claims description 53
- 239000000758 substrate Substances 0.000 claims description 46
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 32
- 229920005591 polysilicon Polymers 0.000 claims description 32
- 238000000137 annealing Methods 0.000 claims description 30
- 238000002955 isolation Methods 0.000 claims description 20
- 238000005468 ion implantation Methods 0.000 claims description 19
- 238000000151 deposition Methods 0.000 claims description 15
- 239000005543 nano-size silicon particle Substances 0.000 claims description 15
- 230000015654 memory Effects 0.000 claims description 13
- 239000011229 interlayer Substances 0.000 claims description 12
- 238000005530 etching Methods 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 8
- 230000003667 anti-reflective effect Effects 0.000 claims description 7
- 150000004767 nitrides Chemical class 0.000 claims description 7
- 239000011856 silicon-based particle Substances 0.000 claims description 6
- 239000005380 borophosphosilicate glass Substances 0.000 claims description 5
- 239000005360 phosphosilicate glass Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 229920002120 photoresistant polymer Polymers 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 claims 1
- 239000007320 rich medium Substances 0.000 abstract description 7
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 238000005265 energy consumption Methods 0.000 abstract description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 abstract 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract 3
- 238000010438 heat treatment Methods 0.000 abstract 1
- 229960003753 nitric oxide Drugs 0.000 abstract 1
- 235000019391 nitrogen oxide Nutrition 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 17
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 238000010586 diagram Methods 0.000 description 11
- 229910052814 silicon oxide Inorganic materials 0.000 description 9
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 229910020286 SiOxNy Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical group [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 102100022717 Atypical chemokine receptor 1 Human genes 0.000 description 1
- 101000678879 Homo sapiens Atypical chemokine receptor 1 Proteins 0.000 description 1
- 229910007264 Si2H6 Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
技术领域 technical field
本发明涉及形成纳米单晶硅层的方法和制造半导体器件的方法。具体地说,本发明涉及在绝缘衬底上外延生长纳米单晶硅层的方法和制造含有纳米单晶硅浮栅的非挥发性半导体存储器的方法。The invention relates to a method for forming a nanometer single crystal silicon layer and a method for manufacturing a semiconductor device. Specifically, the present invention relates to a method for epitaxially growing a nano-single-crystal silicon layer on an insulating substrate and a method for manufacturing a non-volatile semiconductor storage device containing a nano-single-crystal silicon floating gate.
背景技术 Background technique
非挥发性存储器例如可擦除可编程只读存储器(electrically programmableread-only memory,EPROM)、电可擦可编程只读存储器(electrically-erasableprogrammable read-only memory,EEPROM)以及快闪存储器(flash memory)目前广泛用做计算机系统的数据存储器件。这些非挥发性存储器通常包括大量具有电学绝缘性能的栅极,也就是通常所说的浮栅。纳米单晶硅浮栅由于快速编程能力、低耗电性、高耐受性和较高的密度一致性受到了广泛的关注。Non-volatile memory such as erasable programmable read-only memory (electrically programmable read-only memory, EPROM), electrically erasable programmable read-only memory (electrically-erasable programmable read-only memory, EEPROM) and flash memory (flash memory) It is currently widely used as a data storage device for computer systems. These non-volatile memories usually include a large number of gates with electrical insulation properties, which are commonly referred to as floating gates. Nano-single crystal silicon floating gates have attracted extensive attention due to their fast programming capability, low power consumption, high endurance, and high density uniformity.
由于纳米单晶硅优越的物理性能如电子封闭(electron confinement)、光致发光和电子发射等性能,其制备方法也得到了一定的发展。如公开号为US20050048796的美国专利申请提供了一种形成纳米单晶硅的工艺。具体的工艺步骤为:第一步,用氢原子团对基体表面进行处理,所述的氢原子团是通过对氢气进行等离子体沉积得到的;第二步,通过含有硅的气体的热化学反应沉积晶粒尺寸在10nm以下的单晶硅,所述的含有硅的气体可以是SiH4或者Si2H6与氢气的混合气体;第三步,通过使用氧气、氧原子或者氮原子中的一种,将单晶硅原子用氧原子或者氮原子连接起来。上述的三个步骤可以循环进行,直到达到设定的纳米单晶硅的厚度。但是上述方法很难控制每一个纳米单晶硅晶粒的尺寸和形状,也难以控制形成的纳米单晶硅的密度。Due to the superior physical properties of nano-single crystal silicon, such as electron confinement, photoluminescence and electron emission, its preparation methods have also been developed to a certain extent. For example, US Patent Application Publication No. US20050048796 provides a process for forming nanometer single crystal silicon. The specific process steps are as follows: the first step is to treat the surface of the substrate with hydrogen atom groups, and the hydrogen atom groups are obtained by plasma deposition of hydrogen gas; Single crystal silicon with particle size below 10nm, the silicon-containing gas can be a mixed gas of SiH4 or Si2H6 and hydrogen; the third step, by using one of oxygen, oxygen atoms or nitrogen atoms, the single crystal silicon Atoms are connected by oxygen or nitrogen atoms. The above three steps can be performed cyclically until the set thickness of nanometer single crystal silicon is reached. However, it is difficult to control the size and shape of each nano-single-crystal silicon grain in the above-mentioned method, and it is also difficult to control the density of the formed nano-single-crystal silicon.
比较常见的另一种形成纳米单晶硅的方法是退火处理法,主要是采用高化学当量的非晶氮化硅膜沉积形成纳米单晶硅颗粒。如美国专利号为6774061的专利方案提供了一种形成纳米单晶硅的方法,具体的工艺为:在硅基体上形成二氧化硅层;在二氧化硅层上形成一个曝光的掩膜层;在掩膜层上形成至少一个开口;通过掩膜层上所述的至少一个开口将硅离子植入二氧化硅层,离子植入的能量在0.1~7keV;在700到800℃的情况下对半导体基体进行退火处理,使植入的硅离子变成有序分布的的纳米单晶硅。但是本方法也很难控制每一个纳米单晶硅晶粒的尺寸,也难以控制形成的纳米单晶硅的数量。Another common method for forming nano-single-crystal silicon is the annealing method, which mainly uses high chemical equivalent amorphous silicon nitride film deposition to form nano-single-crystal silicon particles. For example, the US Patent No. 6774061 patent solution provides a method for forming nano-single crystal silicon. The specific process is: forming a silicon dioxide layer on the silicon substrate; forming an exposed mask layer on the silicon dioxide layer; Forming at least one opening on the mask layer; implanting silicon ions into the silicon dioxide layer through the at least one opening on the mask layer, the ion implantation energy is 0.1-7keV; The semiconductor substrate is annealed, so that the implanted silicon ions become orderly distributed nanometer single crystal silicon. However, this method is also difficult to control the size of each nano-single-crystal silicon grain, and it is also difficult to control the quantity of formed nano-single-crystal silicon.
由于上述形成纳米单晶硅的方法不能有效控制纳米单晶硅的数量、尺寸和形状,因此,在使用上述方法制备的纳米单晶硅作为非挥发性存储器的浮栅时,存储器的编程速度和数据保持能力很难同时得到提高。Because the method for forming nanometer single crystal silicon cannot effectively control the quantity, size and shape of nanometer single crystal silicon, therefore, when using the nanometer single crystal silicon prepared by the above method as the floating gate of the non-volatile memory, the programming speed of the memory and Data retention is difficult to improve at the same time.
发明内容 Contents of the invention
本发明解决的问题是针对现有技术中纳米单晶硅的形成工艺的缺陷,提供一种纳米单晶硅形成方法,这种方法能够有效控制形成的纳米单晶硅晶粒的数量和尺寸。本发明还提供了含有纳米单晶硅浮栅的非挥发性半导体存储器的方法。The problem to be solved by the present invention is to provide a method for forming nano-silicon, which can effectively control the quantity and size of nano-silicon grains formed, aiming at the defects in the formation process of nano-single-crystal silicon in the prior art. The invention also provides a method for a non-volatile semiconductor storage device containing a nanometer single-crystal silicon floating gate.
本发明是通过下面的技术方案来实现的:一种纳米单晶硅的形成方法,具体的工艺步骤为:The present invention is achieved through the following technical solutions: a method for forming nano-silicon, the specific process steps are:
在半导体基体上形成富硅介质薄膜层;Forming a silicon-rich dielectric film layer on a semiconductor substrate;
将硅离子植入富硅介质薄膜层;Implanting silicon ions into the silicon-rich dielectric film layer;
对半导体基体进行退火处理,在富硅介质薄膜层中形成纳米单晶硅。Annealing is performed on the semiconductor substrate to form nanometer single crystal silicon in the silicon-rich dielectric thin film layer.
所述的半导体基体可以是硅或者绝缘体上硅(SOI)。The semiconductor substrate may be silicon or silicon-on-insulator (SOI).
所述的富硅介质薄膜层可以是富硅氧化物SiOx(0<X<2)或者富硅氮氧化物SiOxNy(0<X<1、0<Y<1)。The silicon-rich dielectric film layer may be silicon-rich oxide SiOx (0<X<2) or silicon-rich oxynitride SiOxNy (0<X<1, 0<Y<1).
所述的富硅介质薄膜层的折射率为1.48至1.98。The refractive index of the silicon-rich dielectric film layer is 1.48 to 1.98.
硅离子植入时采用离子垂直植入的方式,环境中的硅离子的密度为1×1014至1×1016个/cm2,比较优选的是4×1015至1×1016个/cm2,离子植入的能量为50至300keV,比较优选的是100至120keV。Silicon ion implantation adopts the method of ion vertical implantation, and the density of silicon ions in the environment is 1×10 14 to 1×10 16 /cm 2 , preferably 4×10 15 to 1×10 16 /cm 2 . cm 2 , the ion implantation energy is 50 to 300keV, more preferably 100 to 120keV.
对半导体基体在NH3、N2、H2或者Ar氛围下进行退火处理,退火温度在700到1000℃之间,可使富硅介质层中的原子分解成纳米单晶Si和硅的氧化物或者硅的氮氧化物的形式。Annealing the semiconductor substrate in NH 3 , N 2 , H 2 or Ar atmosphere, the annealing temperature is between 700 and 1000°C, which can decompose the atoms in the silicon-rich dielectric layer into nano single crystal Si and silicon oxide Or in the form of silicon oxynitride.
根据所采用的富硅介质中硅原子含量的不同,以及植入的硅离子密度的不同,退火后形成的纳米单晶硅原子的密度在1x1010/cm2至1x1012/cm2之间,微粒直径在1至10nm之间。According to the content of silicon atoms in the silicon-rich medium used and the density of implanted silicon ions, the density of nano single crystal silicon atoms formed after annealing is between 1x10 10 /cm 2 and 1x10 12 /cm 2 , The particle diameter is between 1 and 10 nm.
对半导体基体进行退火处理的温度应该严格控制在700至1000℃之间,在上述的温度范围较易形成纳米单晶硅且有较低的热预算。The temperature for annealing the semiconductor substrate should be strictly controlled between 700 and 1000°C. In the above temperature range, it is easier to form nanometer single crystal silicon and has a lower thermal budget.
另一方面,本发明提供了含有纳米单晶硅浮栅的非挥发性半导体存储器的方法,本方法包括下列步骤:On the other hand, the present invention provides the method that contains the non-volatile semiconductor memory of nano single crystal silicon floating gate, and this method comprises the following steps:
在半导体基体上形成沟槽隔离结构;forming a trench isolation structure on the semiconductor substrate;
在基体上形成一氧化层;Form an oxide layer on the substrate;
在上述氧化层上形成多晶硅层和纳米单晶硅浮栅;Forming a polysilicon layer and a nanometer monocrystalline silicon floating gate on the above-mentioned oxide layer;
刻蚀上述多晶硅层、纳米单晶硅浮栅和氧化层形成控制门;Etching the above-mentioned polysilicon layer, nano single crystal silicon floating gate and oxide layer to form a control gate;
在半导体基体中形成漏源区;Forming a drain source region in a semiconductor substrate;
在控制门上形成氮化物或者氮氧化物隔离层;Forming a nitride or oxynitride isolation layer on the control gate;
在隔离层上沉积层间介电层,并形成连接存储器内电路的触点。An interlayer dielectric layer is deposited on the isolation layer and forms the contacts to the circuits within the memory.
上述的氧化层为隧道门氧化层,所述氧化物材料为氮氧化硅(SiON)、富硅氧化物(SRO)、HfO2、Al2O3或者SiN。The aforementioned oxide layer is a tunnel gate oxide layer, and the oxide material is silicon oxynitride (SiON), silicon-rich oxide (SRO), HfO 2 , Al 2 O 3 or SiN.
上述在氧化层上形成多晶硅层和纳米单晶硅浮栅的工艺方法为:The process method for forming a polysilicon layer and a nano-single-crystal silicon floating gate on the oxide layer is as follows:
在所述氧化层上沉积富硅介质薄膜;Depositing a silicon-rich dielectric film on the oxide layer;
在富硅介质薄膜层上沉积多晶硅层;Depositing a polysilicon layer on the silicon-rich dielectric film layer;
将硅离子通过多晶硅层植入富硅介质薄膜层;Implanting silicon ions into the silicon-rich dielectric film layer through the polysilicon layer;
对半导体基体进行退火处理,在富硅介质薄膜层中形成纳米单晶硅。Annealing is performed on the semiconductor substrate to form nanometer single crystal silicon in the silicon-rich dielectric thin film layer.
所述的富硅介质薄膜层可以是富硅氧化物SiOx(0<X<2)或者富硅氮氧化物SiOxNy(0<X<1、0<Y<1)。The silicon-rich dielectric film layer may be silicon-rich oxide SiOx (0<X<2) or silicon-rich oxynitride SiOxNy (0<X<1, 0<Y<1).
所述的富硅介质薄膜层的折射率为1.48至1.98,优选的折射率为1.58至1.80。The refractive index of the silicon-rich dielectric film layer is 1.48 to 1.98, preferably 1.58 to 1.80.
上述硅离子植入时环境中的硅离子的密度为1×1014至1×1016个/cm2,较好的是4×1015至1×1016个/cm2。The density of silicon ions in the environment during the silicon ion implantation is 1×10 14 to 1×10 16 /cm 2 , preferably 4×10 15 to 1×10 16 /cm 2 .
上述硅离子植入的能量为50至300keV,较好的是100至120keV。The energy of the aforementioned silicon ion implantation is 50 to 300 keV, preferably 100 to 120 keV.
根据权利要求20所述的所述的含有纳米单晶硅浮栅的非挥发性半导体存储器的方法,其特征在于,硅离子植入的能量为。According to the method of the non-volatile semiconductor storage device containing nano-single crystal silicon floating gate according to claim 20, it is characterized in that the energy of silicon ion implantation is .
对半导体基体进行退火处理的退火温度为700至1000℃。The annealing temperature for annealing the semiconductor substrate is 700 to 1000°C.
对半导体基体进行退火处理后在富硅介质薄膜层中形成纳米单晶硅原子的密度为1x1010/cm2至1x1012/cm2。After annealing the semiconductor substrate, the density of nano-single crystal silicon atoms formed in the silicon-rich dielectric thin film layer is 1x10 10 /cm 2 to 1x10 12 /cm 2 .
上述含有纳米单晶硅浮栅的非挥发性半导体存储器的方法中刻蚀上述多晶硅层、纳米单晶硅浮栅和氧化层形成控制门的工艺为:在多晶硅层上沉积氮氧化硅抗反射介电覆膜,并喷涂光刻胶、曝光和显影,定义出控制门的位置,然后清除控制门之外的氮氧化硅抗反射介电覆膜层、多晶硅层、富硅介质薄膜层和隧道门氧化层。In the above-mentioned method of non-volatile semiconductor memory containing nano-silicon floating gate, the process of etching the above-mentioned polysilicon layer, nano-silicon floating gate and oxide layer to form a control gate is as follows: depositing silicon oxynitride anti-reflection medium on the polysilicon layer Electric coating, and spray photoresist, exposure and development, define the position of the control gate, and then remove the silicon nitride oxide anti-reflective dielectric coating layer, polysilicon layer, silicon-rich dielectric film layer and tunnel gate outside the control gate oxide layer.
形成控制门后,每一控制门中包含的每一纳米单晶硅浮栅内含有的纳米单晶硅粒子的数量为1至100,粒子直径为1nm至10nm。After the control gate is formed, the number of nano single crystal silicon particles contained in each nano single crystal silicon floating gate contained in each control gate is 1 to 100, and the particle diameter is 1 nm to 10 nm.
上述含有纳米单晶硅浮栅的非挥发性半导体存储器的方法,形成的隔离层为氮化物或者氮氧化物。In the above-mentioned method of the non-volatile semiconductor memory containing the nano-single-crystal silicon floating gate, the isolation layer formed is nitride or oxynitride.
上述含有纳米单晶硅浮栅的非挥发性半导体存储器的方法,所述的层间介电层为高密度等离子体磷硅玻璃(HDP PSG)或者硼磷硅玻璃(BPSG)。In the method of the above-mentioned non-volatile semiconductor storage device containing nano single crystal silicon floating gate, the interlayer dielectric layer is high-density plasma phosphosilicate glass (HDP PSG) or borophosphosilicate glass (BPSG).
上述含有纳米单晶硅浮栅的非挥发性半导体存储器的方法,所述的触点为金属钨或者多晶硅。In the method for the above-mentioned non-volatile semiconductor storage device containing nano single-crystal silicon floating gate, the contact is metal tungsten or polysilicon.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明提供的纳米单晶硅的形成方法,由于采用的富硅介质薄膜中硅原子的数量可以通过调整形成富硅介质薄膜的工艺参数进行控制,而且随后在富硅介质薄膜中植入硅离子,植入的硅离子的密度也可以通过调节植入硅离子时环境中硅离子的密度确定,因此,采用本发明提供的纳米单晶硅的形成方法生成的纳米单晶硅原子的数量较多,密度在1x1010/cm2至1x1012/cm2之间,并且纳米微粒的数量可以进行控制,同时,生长的纳米单晶硅直径在1至10nm之间,形状为圆球状。1. The method for forming nano-silicon single crystal silicon provided by the present invention, because the quantity of silicon atoms in the silicon-rich dielectric film can be controlled by adjusting the process parameters for forming the silicon-rich dielectric film, and then implanted in the silicon-rich dielectric film Silicon ions, the density of implanted silicon ions can also be determined by adjusting the density of silicon ions in the environment when implanting silicon ions. Therefore, the number of nano single crystal silicon atoms generated by the method for forming nano single crystal silicon provided by the invention More, the density is between 1x10 10 /cm 2 and 1x10 12 /cm 2 , and the number of nanoparticles can be controlled. At the same time, the diameter of the grown nano-single crystal silicon is between 1 and 10nm, and the shape is spherical.
2、本发明在700到1000℃的温度范围内进行退火,相对于现有技术中退火温度必须大于1050℃的工艺,退火温度明显降低,具有较低的热预算,降低了对能源的消耗和生产成本;并且,由于退火之前富硅介质薄膜中硅原子的含量较高,在本发明的温度范围内即可容易的形成纳米单晶硅。2. The present invention performs annealing within the temperature range of 700 to 1000°C. Compared with the process in which the annealing temperature must be greater than 1050°C in the prior art, the annealing temperature is significantly lower, has a lower thermal budget, and reduces energy consumption and production cost; and, since the content of silicon atoms in the silicon-rich dielectric film is relatively high before annealing, nanometer single crystal silicon can be easily formed within the temperature range of the present invention.
3、用本发明提供的方法制备的纳米单晶硅浮栅具有纳米单晶硅晶粒的尺寸易于控制、密度高等优点,并且数据存储量大,数据在在断电情况下不会丢失。3. The nano-single crystal silicon floating gate prepared by the method provided by the present invention has the advantages of easy control of the size of the nano-single crystal silicon crystal grain, high density, etc., and has a large data storage capacity, and the data will not be lost when the power is turned off.
附图说明 Description of drawings
图1是本发明提供的纳米单晶硅的形成方法中半导体基体表面形成富硅介质薄膜层的剖面结构示意图。Fig. 1 is a schematic cross-sectional structure diagram of forming a silicon-rich dielectric film layer on the surface of a semiconductor substrate in the method for forming nano-single-crystal silicon provided by the present invention.
图2本发明提供的纳米单晶硅的形成方法中硅离子植入富硅介质薄膜层之后半导体基体的剖面结构示意图。Fig. 2 is a schematic cross-sectional structure diagram of a semiconductor substrate after silicon ions are implanted into a silicon-rich dielectric thin film layer in the method for forming nano-silicon single crystal provided by the present invention.
图3本发明提供的纳米单晶硅的形成方法中半导体基体退火之后富硅介质薄膜层中形成纳米单晶硅的剖面结构示意图。Fig. 3 is a schematic cross-sectional structure diagram of forming nano-single-crystal silicon in the silicon-rich dielectric film layer after the annealing of the semiconductor substrate in the method for forming nano-single-crystal silicon provided by the present invention.
图4本发明提供的非挥发性半导体存储器形成方法中半导体基体形成绝缘隔离层之后的剖面结构示意图。FIG. 4 is a schematic cross-sectional structure diagram of a semiconductor substrate after forming an insulating isolation layer in the method for forming a non-volatile semiconductor memory provided by the present invention.
图5本发明提供的非挥发性半导体存储器形成方法中半导体基体表面形成高K值隧道门氧化层之后的剖面结构示意图。5 is a schematic cross-sectional structure diagram after forming a high-K value tunnel gate oxide layer on the surface of a semiconductor substrate in the method for forming a non-volatile semiconductor memory provided by the present invention.
图6本发明提供的非挥发性半导体存储器形成方法中半导体基体表面形成富硅介质薄膜层、多晶硅氧化层、并植入硅离子时的剖面结构示意图。Fig. 6 is a schematic cross-sectional structure diagram of forming a silicon-rich dielectric thin film layer, a polysilicon oxide layer, and implanting silicon ions on the surface of a semiconductor substrate in the method for forming a non-volatile semiconductor memory provided by the present invention.
图7本发明提供的非挥发性半导体存储器形成方法中半导体基体中富硅介质薄膜层内退火形成纳米单晶硅的剖面结构示意图。Fig. 7 is a schematic cross-sectional structure diagram of nano-single-crystal silicon formed by annealing in the silicon-rich dielectric thin film layer in the semiconductor substrate in the method for forming the non-volatile semiconductor memory provided by the present invention.
图8本发明提供的非挥发性半导体存储器形成方法中刻蚀多晶硅层、纳米单晶硅浮栅和氧化层形成控制门后的剖面结构示意图。Fig. 8 is a schematic cross-sectional structure diagram after etching a polysilicon layer, a nano-single crystal silicon floating gate and an oxide layer to form a control gate in the method for forming a non-volatile semiconductor memory provided by the present invention.
图9本发明提供的非挥发性半导体存储器形成方法中在半导体基体中形成漏源区后的剖面结构示意图。FIG. 9 is a schematic cross-sectional structure diagram after forming a drain-source region in a semiconductor substrate in the method for forming a non-volatile semiconductor memory provided by the present invention.
图10本发明提供的非挥发性半导体存储器形成方法中形成氮化物或者氮氧化物隔离区后的剖面结构示意图。FIG. 10 is a schematic cross-sectional structure diagram after forming a nitride or oxynitride isolation region in the method for forming a non-volatile semiconductor memory provided by the present invention.
图11本发明提供的非挥发性半导体存储器形成方法中形成层间导电层和触点后的剖面结构示意图。FIG. 11 is a schematic cross-sectional view of the formation of the interlayer conductive layer and contacts in the method for forming the non-volatile semiconductor memory provided by the present invention.
具体实施方式 Detailed ways
下面结合附图对本发明的具体实施方式做详细的说明。The specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
实施例1Example 1
本发明提供了一种纳米单晶硅的形成方法,具体的工艺步骤为:1)在半导体基体上形成富硅介质薄膜层;2)将硅离子植入富硅介质薄膜层;3)对半导体基体进行退火处理。The invention provides a method for forming nano-silicon single crystal. The specific process steps are: 1) forming a silicon-rich dielectric thin film layer on a semiconductor substrate; 2) implanting silicon ions into the silicon-rich dielectric thin film layer; The substrate is annealed.
参考图1所示,为在半导体基体101上形成富硅介质薄膜层102后的剖面结构示意图。图1中所示的半导体基体101为硅,还可以使用绝缘体上硅(SOI)作为半导体基体101。图1中所示的的富硅介质薄膜层102可以是富硅氧化物SiOx(0<X<2)或者富硅氮氧化物SiOxNy(0<X<1、0<Y<1)。所述的富硅氧化物SiOx(0<X<2)以及富硅氮氧化物SiOxNy(0<X<1、0<Y<1)中硅原子的含量可以根据需要通过控制富硅介质薄膜层102的生成工艺进行控制。Referring to FIG. 1 , it is a schematic cross-sectional structure diagram after forming a silicon-rich dielectric
本发明中富硅氧化物SiOx(0<X<2)的形成工艺可以通过本领域技术人员公知的任何方法制备。作为一种优选的实施方式,本发明给出一种富硅氧化物SiOx(0<X<2)薄膜层的形成工艺。The formation process of the silicon-rich oxide SiOx (0<X<2) in the present invention can be prepared by any method known to those skilled in the art. As a preferred embodiment, the present invention provides a process for forming a silicon-rich oxide SiOx (0<X<2) thin film layer.
采用N2O和SiH4做为反应原料沉积富硅氧化物SiOx(0<X<2)介质薄膜层,化学反应的总反应式为:Using N 2 O and SiH 4 as reaction raw materials to deposit silicon-rich oxide SiO x (0<X<2) dielectric film layer, the overall reaction formula of the chemical reaction is:
SiH4+N2O→SiOx+H2+H2O+挥发性物质SiH 4 +N 2 O→SiO x +H 2 +H 2 O+volatile matter
上述反应可以在等离子体氛围以及N2、He或者Ar气氛下进行。所述的等离子体氛围包括硅离子(Si+)、氢离子(H+)、以及氧离子(O-)或者电子氛围等。使用本领域技术人员熟知的现有等离子增强化学气相沉积设备(PECVD),在N2氛围中,将硅基体放置在反应室内,同时保持反应室中N2的流量在400至2000sccm的条件下,通入300至1200sccm的N2O气体和50至200sccm的SiH4气体,在反应室内的压力(pressure)为1.0至5torr,射频功率为50至250瓦(watt),温度为300至400℃的情况下,反应1至20秒(sec)即可生成富硅氧化物SiOx薄膜层。The above reaction can be carried out in plasma atmosphere and N 2 , He or Ar atmosphere. The plasma atmosphere includes silicon ions (Si + ), hydrogen ions (H + ), and oxygen ions (O − ) or an electron atmosphere and the like. Using existing plasma-enhanced chemical vapor deposition equipment (PECVD) well known to those skilled in the art, in N atmosphere, silicon substrate is placed in the reaction chamber, while maintaining the flow of N in the reaction chamber under the condition of 400 to 2000 sccm, 300 to 1200 sccm of N 2 O gas and 50 to 200 sccm of SiH 4 gas are fed, the pressure in the reaction chamber is 1.0 to 5 torr, the radio frequency power is 50 to 250 watts (watt), and the temperature is 300 to 400 ° C. In some cases, the silicon-rich oxide SiO x thin film layer can be formed by reacting for 1 to 20 seconds (sec).
采用上述的方法制备的富硅氧化物SiOx(0<X<2)介质薄膜层的折射率为1.48至1.98,比较优选的范围为1.58至1.80。折射率的大小反映了富硅介质中硅原子的浓度大小,一般情况下,富硅介质中硅的浓度越大,薄膜的折射率就越高。The refractive index of the silicon-rich oxide SiO x (0<X<2) dielectric thin film layer prepared by the above method is 1.48 to 1.98, and a more preferable range is 1.58 to 1.80. The magnitude of the refractive index reflects the concentration of silicon atoms in the silicon-rich medium. Generally, the greater the concentration of silicon in the silicon-rich medium, the higher the refractive index of the film.
在一个比较优选的实施例中,采用等离子增强化学气相沉积设备,将硅基体放置在反应室内,在N2氛围中,保持反应室中通入N2的流量为1600sccm的情况下,通入的N2O的流量为70sccm,SiH4的流量为115sccm,在反应室内的压力为5torr,射频功率为135watt,温度为400℃的条件下反应15sec。制备的富硅氧化物SiOx薄膜层的折射率为1.80。In a more preferred embodiment, the plasma enhanced chemical vapor deposition equipment is used, the silicon substrate is placed in the reaction chamber, and in the N atmosphere, the flow of N in the reaction chamber is maintained at 1600 sccm. The flow rate of N 2 O is 70 sccm, the flow rate of SiH 4 is 115 sccm, the pressure in the reaction chamber is 5 torr, the radio frequency power is 135 watt, and the temperature is 400° C. for 15 sec. The refractive index of the prepared silicon-rich oxide SiO x film layer is 1.80.
本发明中富硅氮氧化物SiOxNy(0<X<1、0<Y<1)介质薄膜层的形成工艺也可以通过本领域技术人员公知的任何方法制备。作为一种优选的实施方式,本发明给出一种富硅氮氧化物SiOxNy(0<X<1、0<Y<1)介质薄膜层的形成工艺。The formation process of the silicon-rich oxynitride SiO x N y (0<X<1, 0<Y<1) dielectric film layer in the present invention can also be prepared by any method known to those skilled in the art. As a preferred embodiment, the present invention provides a process for forming a silicon-rich oxynitride SiO x N y (0<X<1, 0<Y<1) dielectric film layer.
当采用的富硅介质薄膜层为富硅氮氧化物SiOxNy(0<X<1、0<Y<1)介质薄膜层时,一般采用N2O和SiH4做为反应原料,化学反应的总反应式为:When the silicon-rich dielectric thin film layer used is silicon-rich oxynitride SiO x N y (0<X<1, 0<Y<1) dielectric thin film layer, N 2 O and SiH 4 are generally used as reaction raw materials, chemical The overall reaction formula is:
SiH4+N2O→SiOXNY+H2+H2O+挥发性物质SiH 4 +N 2 O→SiO X N Y +H 2 +H 2 O+volatile matter
上述反应可以在N2、He或者Ar气氛下进行。使用本领域技术人员熟知的现有等离子增强化学气相沉积设备,在Ar气氛下,将硅基体放置在反应室内,同时保持反应室中Ar的流量为3000至5000sccm的条件下,通入50至150sccm的N2O和50至200sccm的SiH4,在反应室内的压力为2.0至10torr,射频功率为80至230瓦的条件下,温度为300至400℃的情况下反应1至20sec,即可生成富硅氮氧化物SiOxNy(0<X<1、0<Y<1)介质薄膜层。The above reaction can be carried out under N 2 , He or Ar atmosphere. Using the existing plasma-enhanced chemical vapor deposition equipment well known to those skilled in the art, under the Ar atmosphere, the silicon substrate is placed in the reaction chamber, while maintaining the flow rate of Ar in the reaction chamber as 3000 to 5000sccm, feed 50 to 150sccm N 2 O and 50 to 200 sccm of SiH 4 , under the conditions of the pressure in the reaction chamber of 2.0 to 10torr, the radio frequency power of 80 to 230 watts, and the temperature of 300 to 400 ° C for 1 to 20 sec, can generate Silicon-rich oxynitride SiO x N y (0<X<1, 0<Y<1) dielectric film layer.
采用上述的方法制备的富硅氮氧化物SiOxNy(0<X<1、0<Y<1)介质薄膜层的折射率为1.48至1.98,比较优选的范围为1.58至1.80。The refractive index of the silicon-rich oxynitride SiO x N y (0<X<1, 0<Y<1) dielectric film layer prepared by the above method is 1.48 to 1.98, and the preferred range is 1.58 to 1.80.
在一个比较优选的实施例中,采用等离子增强化学气相沉积设备,反室中通入N2的流量为3800sccm,通入的N2O的流量为70sccm,SiH4的流量为115sccm,在反应室内的压力为5torr,射频功率为135watt,温度为400℃的条件下反应15sec,生成的富硅氮氧化物介质薄膜层的折射率为1.60。In a more preferred embodiment, adopt plasma-enhanced chemical vapor deposition equipment, feed N in the reverse chamber The flow of 2 is 3800 sccm, the flow of N 2 O that feeds is 70 sccm, the flow of SiH 4 is 115 sccm, in the reaction chamber The pressure is 5 torr, the radio frequency power is 135 watt, and the temperature is 400°C for 15 sec, and the refractive index of the formed silicon-rich oxynitride dielectric film layer is 1.60.
本发明所提供的富硅介质薄膜层中硅的浓度就越大,有助于控制后形成的纳米单晶硅中硅原子的密度。The higher the concentration of silicon in the silicon-rich dielectric thin film layer provided by the present invention, the greater the control of the density of silicon atoms in the nanometer single crystal silicon formed later.
参考图2所示,将硅离子直接植入富硅介质薄膜层102。硅离子植入时可以离子采用垂直植入的方式,环境中的硅离子的密度为1×1014至1×1016个/cm2,比较优选的是4×1015至1×1016个/cm2,离子植入的能量为50至300keV,比较优选的是100至120keV。Referring to FIG. 2 , silicon ions are directly implanted into the silicon-rich
将硅离子植入富硅介质薄膜层,可以使富硅介质薄膜层中硅的含量变的更高,并且采用离子注入的方式可以更好的控制植入的硅离子的含量,使随后在富硅介质薄膜层中形成的纳米单晶硅的数量得到有效的控制。Implanting silicon ions into the silicon-rich dielectric thin film layer can increase the silicon content in the silicon-rich dielectric thin film layer, and the implanted silicon ion content can be better controlled by ion implantation, so that the subsequent The quantity of nano single crystal silicon formed in the silicon dielectric thin film layer is effectively controlled.
参考图3所示,对半导体基体101为700至1000℃进行退火处理,可在富硅介质薄膜层102内生成数量、尺寸和形状都可控的纳米单晶硅103。Referring to FIG. 3 , annealing the
在一个具体实施例中,对半导体基体在NH3、N2、H2或者Ar气氛围下进行退火处理,退火温度为700至1000℃,使富硅介质薄膜层中的富硅氧化物或者富硅氮氧化物原子即可分解成尺寸、形状和数量都可控的纳米单晶硅和硅氧化物SiOx(或者SiOxNy),其中纳米单晶硅原子的密度为1x1010/cm2至1x1012/cm2。从图3中可以看出,退火后,纳米单晶硅原子在富硅介质薄膜层中均匀分布,形状为圆球状,硅原子直径为1至10nm。In a specific embodiment, the semiconductor substrate is annealed in NH 3 , N 2 , H 2 or Ar atmosphere, and the annealing temperature is 700 to 1000° C., so that the silicon-rich oxide or rich silicon in the silicon-rich dielectric film layer Silicon oxynitride atoms can be decomposed into nano single crystal silicon and silicon oxide SiO x (or SiO x N y ) with controllable size, shape and quantity, and the density of nano single crystal silicon atoms is 1x10 10 /cm 2 to 1x10 12 /cm 2 . It can be seen from Fig. 3 that after annealing, the nano-single-crystal silicon atoms are evenly distributed in the silicon-rich dielectric film layer, the shape is spherical, and the diameter of the silicon atoms is 1 to 10 nm.
对半导体基体进行退火处理的温度应该保持为700到1000℃,相对于现有技术中退火温度必须大于1050℃的工艺,退火温度明显降低。这是由于本发明首先采用了富硅介质薄膜,薄膜中含有硅原子的含量较高,随后又通过离子植入工艺植入数量可控的硅离子,因此,富硅介质薄膜中的硅离子含量变的更高,在700至1000℃退火之后,即可容易的形成纳米单晶硅,并且可以容易的控制纳米单晶硅的数量、形状和尺寸。The annealing temperature for the semiconductor substrate should be maintained at 700 to 1000° C. Compared with the process in the prior art where the annealing temperature must be greater than 1050° C., the annealing temperature is significantly lower. This is because the present invention firstly adopts the silicon-rich dielectric film, which contains a relatively high content of silicon atoms, and then implants a controlled amount of silicon ions through the ion implantation process. Therefore, the silicon ion content in the silicon-rich dielectric film It becomes higher, and after annealing at 700 to 1000°C, nano-single-crystal silicon can be easily formed, and the quantity, shape and size of nano-single-crystal silicon can be easily controlled.
本发明采用比较低的退火温度,具有较低的热预算,降低了对能源的消耗和生产成本。The invention adopts relatively low annealing temperature, has low thermal budget, and reduces energy consumption and production cost.
上述方法制备的纳米单晶硅可以用作非挥发性存储器件的浮栅,也可以用于制作纳米发光器件的有源层。The nano single crystal silicon prepared by the above method can be used as a floating gate of a non-volatile storage device, and can also be used to make an active layer of a nano light emitting device.
实施例2Example 2
本发明提供了含有纳米单晶硅浮栅的非挥发性半导体存储器的方法,本方法包括下列步骤:在半导体基体上形成沟槽隔离结构;在基体上形成一氧化层;在上述氧化层上形成多晶硅层和纳米单晶硅浮栅;在半导体基片上形成控制门;在半导体基体中形成漏源区;形成氮化物或者氮氧化物隔离区;沉积层间导电层,并形成触点。The invention provides a method for a non-volatile semiconductor storage device containing a nanometer single-crystal silicon floating gate. The method comprises the following steps: forming a trench isolation structure on a semiconductor substrate; forming an oxide layer on the substrate; forming an oxide layer on the above-mentioned oxide layer. Polysilicon layer and nano-silicon floating gate; forming a control gate on a semiconductor substrate; forming a drain source region in a semiconductor substrate; forming a nitride or oxynitride isolation region; depositing an interlayer conductive layer and forming a contact.
以P型半导体基体为例,并参考图4,对半导体基体201表面进行清洁之后,在基体201内采用浅沟槽隔离(STI)技术形成隔离沟槽202,形成隔离沟槽202的技术可以是本领域技术人员熟知的现有技术。Taking the P-type semiconductor substrate as an example, and with reference to FIG. 4 , after the surface of the
参考图5,在半导体基体201上形成一氧化层203,所述的氧化层203为隧道门氧化物,所述的隧道门氧化物可以是氮氧化硅(SiON)、富硅氧化物(SRO)、HfO2、Al2O3或者SiN,沉积上述隧道门氧化物的技术为本领域技术人员熟知的现有技术。Referring to FIG. 5, an
参考图6和图7,在氧化层203上形成多晶硅层和纳米单晶硅浮栅。形成多晶硅层和纳米单晶硅浮栅的工艺步骤包括:在氧化层203上沉积富硅介质薄膜层204;在富硅介质薄膜层204上沉积多晶硅层205;将硅离子通过多晶硅层205植入富硅介质薄膜层204;对半导体基体201进行退火处理,富硅介质薄膜层204中形成均匀分布的纳米单晶硅206,即可作为浮栅使用。Referring to FIG. 6 and FIG. 7 , a polysilicon layer and a nanometer single crystal silicon floating gate are formed on the
参考图6,在氧化层203上沉积富硅介质薄膜层204,所述的富硅介质薄膜层204可以是富硅氧化物SiOx(0<X<2)或者富硅氮氧化物SiOxNy(0<X<1、0<Y<1),富硅氧化物以及富硅氮氧化物的制备方法与本发明实施例1纳米单晶硅的形成方法中沉积富硅介质薄膜层的方法相同。生成的富硅介质薄膜层204的厚度在1.5nm至50nm之间。Referring to Fig. 6, on the
然后在富硅介质薄膜层204上沉积多晶硅层205,所述的多晶硅层205的厚度在10至200nm之间,在非挥发性半导体存储器中作为控制门电极使用。沉积多晶硅层205的工艺方法为本领域技术人员熟知的低压化学气相沉积法(LPCVD)。Then a
然后,通过所述的多晶硅层205将硅离子植入所述的富硅介质薄膜层204。硅离子植入时采用离子垂直植入的方式,环境中的硅离子的密度为1×1014至10×1015个/cm2,比较优选的是1×1016至4×1015个/cm2,离子植入的能量为50至300keV,比较优选的是120keV。根据需要,可以控制离子植入时硅离子的含量和离子植入的能量,控制植入富硅介质薄膜层204的硅离子的数量。Then, silicon ions are implanted into the silicon-rich
将硅离子植入富硅介质薄膜层,可以使富硅介质薄膜层中硅的含量变的更高,并且采用离子注入的方式可以更好的控制硅离子的含量,使随后在富硅介质层中形成的纳米单晶硅的数量得到有效的控制。Implanting silicon ions into the silicon-rich dielectric film layer can make the content of silicon in the silicon-rich dielectric film layer higher, and the method of ion implantation can better control the content of silicon ions, so that the subsequent silicon-rich dielectric layer The amount of nano single crystal silicon formed in the process is effectively controlled.
参考图7,对半导体基体201进行退火处理,退火后,富硅介质薄膜层204内生成纳米单晶硅206。含有均匀分布的纳米单晶硅206的富硅介质薄膜层204即可作为非挥发性半导体存储器的浮栅。Referring to FIG. 7 , the
在对半导体基体201进行退火处理的工艺是将半导体基体201在NH3、N2、H2或者Ar氛围下进行的,退火温度在700至1000℃之间。The process of annealing the
进行退火处理之后,使得使富硅介质薄膜层204中过量的硅原子以及通过离子植入方法植入的硅离子转换成纳米单晶硅206和硅氧化物SiOx(或者SiOxNy)。由于富硅介质薄膜层204中的硅原子以及植入的硅离子的数量都可通过控制制备的工艺参数进行控制,因此,形成的纳米单晶硅粒子的数量可控。同时,采用本方法形成的纳米单晶硅粒子的形状和尺寸可也控。本发明提供的纳米单晶硅浮栅中硅原子的密度在1x1010/cm2至1x1012/cm2之间,粒子直径在1至10nm之间,形状为圆球状。After the annealing treatment, the excess silicon atoms in the silicon-rich dielectric
参考图8,刻蚀上述多晶硅层205、纳米单晶硅浮栅和氧化层203形成控制门。形成控制门的方法为本领域技术人员熟知的现有技术。本实施例中,给出一个比较优选的技术方案:在多晶硅层205上沉积氮氧化硅(SiON)抗反射介电覆膜(DARC)层(图中未示出),作为随后步骤的保护层,沉积氮氧化硅抗反射介电覆膜层的方法为普通的等离子增强化学气相沉积法(PECVD);在氮氧化硅抗反射介电覆膜层上喷涂光刻胶,根据设计好的控制门的图案进行光刻胶的曝光和显影,定义出控制门的位置,然后通过化学刻蚀的方法清除控制门之外的氮氧化硅抗反射介电覆膜层、多晶硅层205、纳米单晶硅浮栅和氧化层203,形成如图8所示的控制门,所述的纳米单晶硅浮栅为含有纳米单晶硅206的富硅介质薄膜层204。所述每一控制门中包含的每一纳米单晶硅浮栅内含有的纳米单晶硅粒子的数量在1至100之间,粒子直径在1nm至10nm之间。Referring to FIG. 8 , the
参考图9,在半导体基体201中形成漏源区207。本发明采用植入工艺进行源极或者漏极的掺杂工艺,形成漏源区207。在一个实施例中,半导体基体201选用p型硅,因此,对源极和漏极进行N型掺杂植入。Referring to FIG. 9 , a
参考图10,在控制门上形成隔离层208。所述的隔离层为氮化物或者氮氧化物,这层隔离层208在随后的层间介电层的刻蚀工艺中作为刻蚀停止层起到保护栅极结构的作用。Referring to FIG. 10, an
参考图11,在隔离层208上沉积层间介电层209,并形成连接存储器内电路的触点210。在所述隔离层208上沉积层间介电层209,所述的层间介电层为高密度等离子体磷硅玻璃(HDP PSG)或者硼磷硅玻璃(BPSG),上述层间介电层的沉积方法可以使用现有技术,在本发明的一个实施例中可以采用次大气压气相沉积法(SACVD)制备。然后,在层间介电层内通过刻蚀的方法形成沟槽,并在沟槽内沉积触点材料,并采用化学机械抛光的方法抛光层间介电层和触点材料。所述的触点为金属钨或者多晶硅(poly silicon),在电路中起到导通电路的作用。Referring to FIG. 11, an
虽然本发明已以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention has been disclosed above with preferred embodiments, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (15)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB200610028783XA CN100459044C (en) | 2006-07-10 | 2006-07-10 | Method for forming nano single crystal silicon and making method of non volatile semiconductor memory |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB200610028783XA CN100459044C (en) | 2006-07-10 | 2006-07-10 | Method for forming nano single crystal silicon and making method of non volatile semiconductor memory |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101106078A CN101106078A (en) | 2008-01-16 |
| CN100459044C true CN100459044C (en) | 2009-02-04 |
Family
ID=38999900
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB200610028783XA Active CN100459044C (en) | 2006-07-10 | 2006-07-10 | Method for forming nano single crystal silicon and making method of non volatile semiconductor memory |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100459044C (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103943625B (en) * | 2014-03-24 | 2016-08-31 | 上海华力微电子有限公司 | A kind of NAND flash memory device and manufacture method thereof |
| CN104538286B (en) * | 2015-01-05 | 2018-06-22 | 武汉新芯集成电路制造有限公司 | The method for reducing and adjusting film surface energy |
| CN111696849A (en) * | 2019-03-13 | 2020-09-22 | 上海新微技术研发中心有限公司 | Composite film, composite silicon wafer, and preparation method and application thereof |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0817577A (en) * | 1994-03-24 | 1996-01-19 | Univ Surrey | Luminescence silicon material and its formation method as well as treatment method of luminescence base material and electroluminescence device |
| CN1305232A (en) * | 2001-02-27 | 2001-07-25 | 南京大学 | MOSFET memory with composite nm-grain Ge/Si float grid structure |
| US6774061B2 (en) * | 2000-03-15 | 2004-08-10 | Stmicroelectronics S.R.L. | Nanocrystalline silicon quantum dots within an oxide layer |
| US20050048796A1 (en) * | 2003-08-29 | 2005-03-03 | Anelva Corporation | Forming method and a forming apparatus of nanocrystalline silicon structure |
| US6962850B2 (en) * | 2003-10-01 | 2005-11-08 | Chartered Semiconductor Manufacturing Ltd. | Process to manufacture nonvolatile MOS memory device |
-
2006
- 2006-07-10 CN CNB200610028783XA patent/CN100459044C/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0817577A (en) * | 1994-03-24 | 1996-01-19 | Univ Surrey | Luminescence silicon material and its formation method as well as treatment method of luminescence base material and electroluminescence device |
| US6774061B2 (en) * | 2000-03-15 | 2004-08-10 | Stmicroelectronics S.R.L. | Nanocrystalline silicon quantum dots within an oxide layer |
| CN1305232A (en) * | 2001-02-27 | 2001-07-25 | 南京大学 | MOSFET memory with composite nm-grain Ge/Si float grid structure |
| US20050048796A1 (en) * | 2003-08-29 | 2005-03-03 | Anelva Corporation | Forming method and a forming apparatus of nanocrystalline silicon structure |
| US6962850B2 (en) * | 2003-10-01 | 2005-11-08 | Chartered Semiconductor Manufacturing Ltd. | Process to manufacture nonvolatile MOS memory device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101106078A (en) | 2008-01-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2449579B1 (en) | Methods of forming oxide layers on substrates | |
| US7544625B2 (en) | Silicon oxide thin-films with embedded nanocrystalline silicon | |
| KR101043530B1 (en) | Plasma Surface Treatment for Silicon and Metal Nanocrystal Nucleation | |
| TWI549163B (en) | Surface stabilization process for reducing dopant diffusion | |
| CN101290886B (en) | Manufacturing method of grid dielectric layer and grid | |
| WO2004021423A1 (en) | Method of forming nanocrystals | |
| TW201239954A (en) | Methods and apparatus for conformal doping | |
| JP2009021608A (en) | Integrated scheme for forming interpoly dielectrics for non-volatile memory devices | |
| TW200913069A (en) | Methods for low temperature oxidation of a semiconductor device | |
| US20150380561A1 (en) | Metal oxide tft stability improvement | |
| CN100561690C (en) | Non-volatile semiconductor memory and manufacturing method thereof | |
| CN100459044C (en) | Method for forming nano single crystal silicon and making method of non volatile semiconductor memory | |
| TW200410316A (en) | Method of manufacturing semiconductor devices | |
| TW200408074A (en) | Method of manufacturing a flash memory cell | |
| KR100953023B1 (en) | Gate electrode formation method | |
| US20030216000A1 (en) | Methods of forming programmable memory devices | |
| TWI243414B (en) | Method of forming gate electrode in flash memory device | |
| TWI272698B (en) | Method of fabricating flash memory device | |
| CN116322052B (en) | Method for manufacturing a flash memory floating gate | |
| CN104299904B (en) | The forming method of flash cell | |
| KR100699846B1 (en) | Method of forming silicon nanocrystals using SiH4 plasma ion implantation and semiconductor device including the same | |
| KR101038398B1 (en) | Floating gate film formation method of semiconductor device | |
| JPH10256404A (en) | Method for manufacturing semiconductor device | |
| KR20020002717A (en) | Method for forming a flash memory cell | |
| KR100955924B1 (en) | Method for forming contact plug of semiconductor device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| ASS | Succession or assignment of patent right |
Owner name: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING |
|
| C41 | Transfer of patent application or patent right or utility model | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20111116 Address after: 201203 Shanghai City, Pudong New Area Zhangjiang Road No. 18 Co-patentee after: Semiconductor Manufacturing International (Beijing) Corporation Patentee after: Semiconductor Manufacturing International (Shanghai) Corporation Address before: 201203 Shanghai City, Pudong New Area Zhangjiang Road No. 18 Patentee before: Semiconductor Manufacturing International (Shanghai) Corporation |