[go: up one dir, main page]

CN100495775C - Lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide and preparation method thereof - Google Patents

Lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide and preparation method thereof Download PDF

Info

Publication number
CN100495775C
CN100495775C CNB2007100600496A CN200710060049A CN100495775C CN 100495775 C CN100495775 C CN 100495775C CN B2007100600496 A CNB2007100600496 A CN B2007100600496A CN 200710060049 A CN200710060049 A CN 200710060049A CN 100495775 C CN100495775 C CN 100495775C
Authority
CN
China
Prior art keywords
lithium
zirconium
phosphorus
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2007100600496A
Other languages
Chinese (zh)
Other versions
CN101150190A (en
Inventor
周大桥
吴孟涛
孟凡玉
吕超
陈菁菁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin B&M Science and Technology Co Ltd
Original Assignee
Tianjin B&M Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin B&M Science and Technology Co Ltd filed Critical Tianjin B&M Science and Technology Co Ltd
Priority to CNB2007100600496A priority Critical patent/CN100495775C/en
Publication of CN101150190A publication Critical patent/CN101150190A/en
Application granted granted Critical
Publication of CN100495775C publication Critical patent/CN100495775C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

This invention relates to LiCoO2 doped with Zr and P, positive material of Li ionic secondary cells and its preparation method characterizing that the chemical formula is: LiZrxCo(1-x-y)PyO2, in which, it is a laminated structure, and x=0.001-0.003, y=0.02-06, the preparation steps are as folow: 1, mixing Co3O4, CoCO3 or CoC2O4 with Li2CO3 or LiOH in the atomic ratio of Li and Co(0.9801.05) :1.00, 2, baking it for 6-24h under 600-1000deg.C, 3, crushing LiCoO2 to particles of 6-15mum, 4, mixing the LiCoO2 and water 1-3times weight into pulp, 5, adding ZrNO3 and phosphate at the same time, 6, spraying and drying it, 7, baking it for 4-12h under 600-1000deg.C, 8, crushing the doped LiCoO2 to particles of 6-15mum.

Description

锂离子二次电池正极材料锆、磷掺杂型钴酸锂及其制备方法 Lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide and preparation method thereof

技术领域 technical field

本发明涉及锂离子二次电池正极材料领域,尤其涉及一种锂离子二次电池正极材料锆、磷掺杂型钴酸锂及其制备方法。The invention relates to the field of positive electrode materials for lithium ion secondary batteries, in particular to zirconium and phosphorus-doped lithium cobalt oxide, a positive electrode material for lithium ion secondary batteries, and a preparation method thereof.

背景技术 Background technique

随着现代信息技术的迅猛发展,手机、笔记本电脑和数码相机等便携式电子产品对高性价比的电池的需求日益强烈。锂离子二次电池由于具有能量密度高、无记忆效应等优点,在便携式电器领域得到了广泛的应用。但由于目前商业化锂离子电池采用的大多为纯钴酸锂,未进行掺杂,因此表层结构不稳定,使锂离子电池衰降快,循环性能差,且在循环过程中易出现表层结构破坏,引起电池内阻升高,在剧烈充放电环境或短路情况下,蓄积热量使电池温度上升,到200℃左右时,正极材料会与电解液反应释放出氧气导致压力增大,引起电池爆炸;从而影响了锂离子电池的循环性能和使用安全性。因此循环性能好,且安全性高的锂离子二次电池的研究开发日益得到重视,而正极材料作为提高电池循环性能和安全性的关键材料成为行业关注焦点。With the rapid development of modern information technology, portable electronic products such as mobile phones, notebook computers and digital cameras have increasingly strong demand for cost-effective batteries. Due to the advantages of high energy density and no memory effect, lithium-ion secondary batteries have been widely used in the field of portable electrical appliances. However, since most of the current commercial lithium-ion batteries use pure lithium cobalt oxide without doping, the surface structure is unstable, which makes the lithium-ion battery decay quickly, the cycle performance is poor, and the surface structure is prone to damage during the cycle. , causing the internal resistance of the battery to increase. In the case of severe charging and discharging or short circuit, the accumulated heat will increase the temperature of the battery. When it reaches about 200 ° C, the positive electrode material will react with the electrolyte to release oxygen, which will increase the pressure and cause the battery to explode; Thereby affecting the cycle performance and safety of lithium-ion batteries. Therefore, the research and development of lithium-ion secondary batteries with good cycle performance and high safety has been paid more and more attention, and the positive electrode material has become the focus of the industry as a key material for improving battery cycle performance and safety.

发明内容 Contents of the invention

本发明的主要目的在于针对上述问题提供一种结构稳定、充放电循环性能好的锂离子二次电池正极材料锆、磷掺杂型钴酸锂及其制备方法。该正极材料为层状结构,其制备方法主要是通过锆元素和磷元素掺杂使钴酸锂表层形成一层稳定的磷酸锆掺杂层来提高钴酸锂材料表面的结构稳定性,降低钴酸锂在电解液中的溶解,从而提高循环性能和安全性能。The main purpose of the present invention is to provide a lithium-ion secondary battery positive electrode material zirconium and phosphorus-doped lithium cobaltate with stable structure and good charge-discharge cycle performance and a preparation method thereof. The positive electrode material has a layered structure, and its preparation method is mainly to form a stable zirconium phosphate doped layer on the surface of lithium cobalt oxide by doping zirconium and phosphorus elements to improve the structural stability of the lithium cobalt oxide material surface and reduce cobalt. The dissolution of lithium oxide in the electrolyte improves the cycle performance and safety performance.

本发明解决其技术问题所采用的具体技术方案是:The concrete technical scheme that the present invention solves its technical problem adopts is:

一种锂离子二次电池正极材料锆、磷掺杂型钴酸锂,其特征在于其化学式为:LiZrxCo(1-x-y)PyO2,其中x=0.01~0.03,y=0.02~0.06,具有层状结构。A lithium ion secondary battery positive electrode material zirconium, phosphorus doped lithium cobalt oxide, characterized in that its chemical formula is: LiZr x Co (1-xy) P y O 2 , wherein x = 0.01 ~ 0.03, y = 0.02 ~ 0.06, with layered structure.

上述锂离子二次电池正极材料锆、磷掺杂型钴酸锂的制备方法,其特征在于包括如下步骤:The preparation method of the above-mentioned lithium-ion secondary battery positive electrode material zirconium, phosphorus-doped lithium cobaltate is characterized in that it comprises the following steps:

1).将四氧化三钴或碳酸钴或草酸钴和碳酸锂或氢氧化锂按锂、钴原子比为(0.98~1.05):1.00混合均匀;1). Mix tricobalt tetroxide or cobalt carbonate or cobalt oxalate and lithium carbonate or lithium hydroxide according to the atomic ratio of lithium and cobalt (0.98~1.05): 1.00;

2).将混合后的原料置入焙烧炉中,在空气气氛中焙烧,焙烧温度为800~1000℃,焙烧时间为6~24小时;2). Put the mixed raw materials into a roasting furnace, and roast them in an air atmosphere. The roasting temperature is 800-1000°C, and the roasting time is 6-24 hours;

3).将焙烧后的产物钴酸锂进行粉碎,粉末的平均粒度D50为6~15um;3). Grinding the calcined lithium cobaltate product, the average particle size D50 of the powder is 6-15um;

4).将钴酸锂粉末置入反应釜中,加水搅拌成浆状,水的重量为钴酸锂粉末重量的1~3倍。在搅拌浆料的同时加入浓度为1~2mol/L的硝酸锆溶液和浓度为1~2mol/L的可溶磷酸盐溶液,Zr,P,Co的原子比为:Zr/P/Co=x/y/(1-x-y),其中x=0.01~0.03,y=0.02~0.06,通过液相沉淀在钴酸锂表面均匀包覆锆元素和磷元素,反应釜温度为10~50℃,硝酸锆和磷酸盐溶液每小时的加入量分别为反应釜中料浆体积的1%~5%,搅拌桨最外侧的线速度为2~5m/s;4). Put the lithium cobaltate powder into a reaction kettle, add water and stir to form a slurry, the weight of the water is 1 to 3 times the weight of the lithium cobaltate powder. While stirring the slurry, add a zirconium nitrate solution with a concentration of 1 to 2 mol/L and a soluble phosphate solution with a concentration of 1 to 2 mol/L, and the atomic ratio of Zr, P and Co is: Zr/P/Co=x /y/(1-x-y), where x=0.01~0.03, y=0.02~0.06, uniformly coat zirconium and phosphorus on the surface of lithium cobaltate by liquid phase precipitation, the temperature of the reaction kettle is 10~50℃, nitric acid The addition of zirconium and phosphate solutions per hour is 1% to 5% of the volume of the slurry in the reactor, and the linear speed of the outermost side of the stirring paddle is 2 to 5m/s;

5).将由步骤4)获得的浆料在喷雾干燥机中进行喷雾干燥,干燥后粉末粒度D50为10~50um;5). The slurry obtained in step 4) is spray-dried in a spray dryer, and the powder particle size D50 after drying is 10-50um;

6).将喷雾干燥后的粉末状物料置入焙烧炉,在空气气氛中进行焙烧,焙烧温度为600~1000℃,时间为4~12小时,获得锆、磷掺杂型钴酸锂,其化学式为:LiZrxCo(1-x-y)PyO2其中x=0.01~0.03,y=0.02~0.06,具有层状结构;6). Put the spray-dried powdered material into a roasting furnace, and roast it in an air atmosphere at a roasting temperature of 600-1000° C. for 4-12 hours to obtain zirconium and phosphorus-doped lithium cobaltate. The chemical formula is: LiZr x Co (1-xy) P y O 2 where x = 0.01 ~ 0.03, y = 0.02 ~ 0.06, with a layered structure;

7).将焙烧后得到的锆、磷掺杂型钴酸锂进行粉碎,粉末的平均粒度D50为6~15um。7). Grinding the zirconium and phosphorus-doped lithium cobaltate obtained after calcination, the average particle size D 50 of the powder is 6-15um.

所述的可溶磷酸盐为磷酸氨、磷酸氢二氨或磷酸二氢氨。The soluble phosphate is ammonium phosphate, diammonium hydrogen phosphate or ammonium dihydrogen phosphate.

本发明的有益效果是:本发明提供的锂离子二次电池正极材料是在现有二次电池正极材料纯钴酸锂的基础上进行锆、磷掺杂,形成锆、磷掺杂型钴酸锂,采用的制备方法是首先合成钴酸锂,然后通过液相沉淀和喷雾干燥在其表面均匀的掺杂锆元素和磷元素,采用液相沉淀和喷雾干燥的方法,既可保证掺杂的均匀性,又能保证钴酸锂在掺杂过程中晶粒不受到破坏,从而实现整个颗粒表面的均匀掺杂;又因为该正极材料同时掺杂锆元素和磷元素两种元素,使钴酸锂表层形成一层稳定的磷酸锆掺杂层来提高钴酸锂材料表面的结构稳定性,降低钴酸锂在电解液中的溶解,从而提高了锂离子电池的循环性能和安全性能。The beneficial effects of the present invention are: the lithium ion secondary battery positive electrode material provided by the present invention is based on the existing secondary battery positive electrode material pure cobalt oxide lithium, doping with zirconium and phosphorus to form zirconium and phosphorus doped cobalt acid Lithium, the preparation method adopted is to first synthesize lithium cobalt oxide, and then uniformly dope zirconium and phosphorus elements on its surface through liquid phase precipitation and spray drying. Uniformity can ensure that the crystal grains of lithium cobalt oxide are not damaged during the doping process, so as to achieve uniform doping on the entire particle surface; and because the positive electrode material is doped with zirconium and phosphorus elements at the same time, the cobalt oxide A stable zirconium phosphate doped layer is formed on the lithium surface layer to improve the structural stability of the lithium cobaltate material surface and reduce the dissolution of lithium cobaltate in the electrolyte, thereby improving the cycle performance and safety performance of the lithium-ion battery.

附图说明 Description of drawings

图1是实施例4制备的正极材料在电子显微镜下的SEM;Fig. 1 is the SEM of the cathode material prepared in embodiment 4 under an electron microscope;

图2是实施例4制备的正极材料的物相XRD。Fig. 2 is the phase XRD of the cathode material prepared in Example 4.

以下结合附图和实施例对本发明详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.

具体实施方式 Detailed ways

实施例1Example 1

一种锂离子二次电池正极材料锆、磷掺杂型钴酸锂,其化学式为:A lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide, its chemical formula is:

LiZrxCo(1-x-y)PyO2,其中x=0.02,y=0.04,具有层状结构。LiZr x Co (1-xy) P y O 2 , where x=0.02, y=0.04, has a layered structure.

上述锂离子二次电池正极材料锆、磷掺杂型钴酸锂的制备方法,包括如下步骤:The preparation method of the above-mentioned lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide comprises the following steps:

1).按锂、钴原子比1.03:1.00,将碳酸钴2000.0克和氢氧化锂687.6克混合均匀;1). According to the atomic ratio of lithium and cobalt 1.03:1.00, 2000.0 grams of cobalt carbonate and 687.6 grams of lithium hydroxide are mixed uniformly;

2).将混合后的原料置入焙烧炉中,在空气气氛中焙烧,焙烧温度为900℃,焙烧时间为12小时;2). Put the mixed raw materials into a roasting furnace, and roast them in an air atmosphere. The roasting temperature is 900°C, and the roasting time is 12 hours;

3).将焙烧后的产物钴酸锂进行粉碎,粉末的平均粒度D50为10~12um;3). Grinding the calcined lithium cobalt oxide, the average particle size D50 of the powder is 10-12um;

4).将钴酸锂粉末1000.0克置入反应釜中,加水2000.0克搅拌成浆状,在搅拌浆料的同时,通过蠕动泵加入浓度为1mol/L的硝酸锆溶液0.217L和浓度为2mol/L的磷酸氢二氨溶液0.217L,Zr,P,Co的原子比为:Zr/P/Co=0.02/0.04/0.94,通过液相沉淀在钴酸锂表面均匀包覆锆元素和磷元素,反应釜温度为40℃,硝酸锆和磷酸氢二氨溶液每小时的加入量分别为50mL/h,搅拌桨最外侧的线速度为3m/s;4). Put 1000.0 grams of lithium cobaltate powder into the reaction kettle, add 2000.0 grams of water and stir to form a slurry. While stirring the slurry, add 0.217 L of zirconium nitrate solution with a concentration of 1 mol/L and a concentration of 2 mol through a peristaltic pump /L diammonium hydrogen phosphate solution 0.217L, the atomic ratio of Zr, P, and Co is: Zr/P/Co=0.02/0.04/0.94, uniformly coat zirconium and phosphorus on the surface of lithium cobaltate by liquid phase precipitation , the temperature of the reaction kettle is 40°C, the addition amount of zirconium nitrate and diammonium hydrogen phosphate solution per hour is 50mL/h respectively, and the outermost linear speed of the stirring blade is 3m/s;

5).将由步骤4)获得的浆料在喷雾干燥机中进行喷雾干燥,干燥后粉末粒度D50为10~50um;5). The slurry obtained in step 4) is spray-dried in a spray dryer, and the powder particle size D50 after drying is 10-50um;

6).将喷雾干燥后的粉末状物料置入焙烧炉,在空气气氛中进行焙烧,焙烧温度为900℃,时间为8小时,获得锆、磷掺杂型钴酸锂,其化学式为:LiZr0.02Co0.94P0.04O2,具有层状结构;6). Put the spray-dried powdered material into a roasting furnace and roast it in an air atmosphere at a roasting temperature of 900°C for 8 hours to obtain zirconium and phosphorus-doped lithium cobaltate, whose chemical formula is: LiZr 0.02 Co 0.94 P 0.04 O 2 , with layered structure;

7).将焙烧后得到的锆、磷掺杂型钴酸锂进行粉碎,得到平均粒度D50为10~13um的产品。7). Grinding the zirconium and phosphorus-doped lithium cobalt oxide obtained after roasting to obtain a product with an average particle size D50 of 10-13um.

实施例2Example 2

一种锂离子二次电池正极材料锆、磷掺杂型钴酸锂,其化学式为:A lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide, its chemical formula is:

LiZrxCo(1-x-y)PyO2其中x=0.01,y=0.02,具有层状结构。LiZr x Co (1-xy) P y O 2 where x = 0.01, y = 0.02, has a layered structure.

上述锂离子二次电池正极材料锆、磷掺杂型钴酸锂的制备方法,包括如下步骤:The preparation method of the above-mentioned lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide comprises the following steps:

1).按锂、钴原子比1.02:1.00,将四氧化三钴1000.0克和碳酸锂470.1克混合均匀;1). By lithium, cobalt atomic ratio 1.02:1.00, 1000.0 grams of cobalt tetroxide and 470.1 grams of lithium carbonate are mixed uniformly;

2).将混合后的原料置入焙烧炉中,在空气气氛中焙烧,焙烧温度为800℃,焙烧时间为24小时;2). Put the mixed raw materials into a roasting furnace and roast in an air atmosphere at a roasting temperature of 800°C and a roasting time of 24 hours;

3).将焙烧后的产物钴酸锂进行粉碎,粉末的平均粒度D50为6~8um;3). Grinding the calcined lithium cobalt oxide, the average particle size D50 of the powder is 6-8um;

4).将钴酸锂粉末1000.0克置入反应釜中,加水1000.0克搅拌成浆状,在搅拌浆料的同时,通过蠕动泵加入浓度为1mol/L的硝酸锆溶液0.105L和浓度为2mol/L的磷酸二氢氨溶液0.105L,Zr,P,Co的原子比为:Zr/P/Co=0.01/0.02/0.97,通过液相沉淀在钴酸锂表面均匀包覆锆元素和磷元素,反应釜温度为20℃,硝酸锆和磷酸二氢氨溶液每小时的加入量为20mL/h,搅拌桨最外侧的线速度为2m/s;4). Put 1,000.0 grams of lithium cobaltate powder into the reaction kettle, add 1,000.0 grams of water and stir to form a slurry. While stirring the slurry, add 0.105 L of zirconium nitrate solution with a concentration of 1 mol/L and a concentration of 2 mol through a peristaltic pump /L of ammonium dihydrogen phosphate solution 0.105L, the atomic ratio of Zr, P, and Co is: Zr/P/Co=0.01/0.02/0.97, uniformly coat zirconium and phosphorus on the surface of lithium cobaltate by liquid phase precipitation , the temperature of the reaction kettle is 20°C, the addition amount of zirconium nitrate and ammonium dihydrogen phosphate solution per hour is 20mL/h, and the outermost linear speed of the stirring blade is 2m/s;

5).将由步骤4)获得的浆料在喷雾干燥机中进行喷雾干燥,干燥后粉末粒度D50为10~50um;5). The slurry obtained in step 4) is spray-dried in a spray dryer, and the powder particle size D50 after drying is 10-50um;

6).将喷雾干燥后的粉末状物料置入焙烧炉,在空气气氛中进行焙烧,焙烧温度为600℃,时间为12小时,获得锆、磷掺杂型钴酸锂,其化学式为:LiZr0.01Co0.97P0.02O2,具有层状结构;6). Put the spray-dried powdered material into a roasting furnace and roast it in an air atmosphere. The roasting temperature is 600°C for 12 hours to obtain zirconium and phosphorus doped lithium cobalt oxide. Its chemical formula is: LiZr 0.01 Co 0.97 P 0.02 O 2 , with layered structure;

7).将焙烧后得到的锆、磷掺杂型钴酸锂进行粉碎,得到平均粒度(D50)为6~8um的产品。7). Grinding the zirconium and phosphorus doped lithium cobaltate obtained after calcination to obtain a product with an average particle size (D 50 ) of 6-8 um.

实施例3Example 3

一种锂离子二次电池正极材料锆、磷掺杂型钴酸锂,其化学式为:A lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide, its chemical formula is:

LiZrxCo(1-x-y)PyO2,其中x=0.03,y=0.06,具有层状结构。LiZr x Co (1-xy) PyO 2 , where x=0.03, y=0.06, has a layered structure.

上述锂离子二次电池正极材料锆、磷掺杂型钴酸锂的制备方法,包括如下步骤:The preparation method of the above-mentioned lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide comprises the following steps:

1).按锂、钴原子比0.98:1.00,将四氧化三钴1000.0克和碳酸锂451.6克混合均匀;1). By lithium, cobalt atomic ratio 0.98:1.00, 1000.0 grams of cobalt tetroxide and 451.6 grams of lithium carbonate are mixed uniformly;

2).将混合后的原料置入焙烧炉中,在空气气氛中焙烧,焙烧温度为1000℃,焙烧时间为6小时;2). Put the mixed raw materials into a roasting furnace, and roast in an air atmosphere, the roasting temperature is 1000°C, and the roasting time is 6 hours;

3).将焙烧后的产物钴酸锂进行粉碎,粉末的平均粒度D50为13~15um;3). Grinding the calcined lithium cobalt oxide, the average particle size D50 of the powder is 13-15um;

4).将钴酸锂粉末1000.0克置入反应釜中,加水3000.0克搅拌成浆状,在搅拌浆料的同时,通过蠕动泵加入浓度为1mol/L的硝酸锆溶液0.337L和浓度为2mol/L的磷酸氨溶液0.337L,Zr,P,Co的原子比为:Zr/P/Co=0.03/0.06/0.91,通过液相沉淀在钴酸锂表面均匀包覆锆元素和磷元素,反应釜温度为50℃,硝酸锆和磷酸氨溶液每小时的加入量为200mL/h,搅拌桨最外侧的线速度为5m/s;4). Put 1,000.0 grams of lithium cobaltate powder into the reaction kettle, add 3,000.0 grams of water and stir to form a slurry. While stirring the slurry, add 0.337 L of zirconium nitrate solution with a concentration of 1 mol/L and a concentration of 2 mol through a peristaltic pump /L of ammonium phosphate solution 0.337L, the atomic ratio of Zr, P, and Co is: Zr/P/Co=0.03/0.06/0.91, uniformly coat zirconium and phosphorus on the surface of lithium cobaltate by liquid phase precipitation, and react The temperature of the kettle is 50°C, the addition amount of zirconium nitrate and ammonium phosphate solution per hour is 200mL/h, and the outermost linear speed of the stirring blade is 5m/s;

5).将由步骤4)获得的浆料在喷雾干燥机中进行喷雾干燥,干燥后粉末粒度D50为10~50um;5). The slurry obtained in step 4) is spray-dried in a spray dryer, and the powder particle size D50 after drying is 10-50um;

6).将喷雾干燥后的粉末状物料置入焙烧炉,在空气气氛中进行焙烧,焙烧温度为1000℃,时间为4小时,获得锆、磷掺杂型钴酸锂,其化学式为:LiZr0.03Co0.91P0.06O2,具有层状结构;6). Put the spray-dried powdered material into a roasting furnace and roast it in an air atmosphere. The roasting temperature is 1000°C for 4 hours to obtain zirconium and phosphorus doped lithium cobaltate. Its chemical formula is: LiZr 0.03 Co 0.91 P 0.06 O 2 , with layered structure;

7).将焙烧后得到的锆、磷掺杂型钴酸锂进行粉碎,得到平均粒度(D50)为13~15um的产品。7). Grinding the zirconium and phosphorus doped lithium cobaltate obtained after calcination to obtain a product with an average particle size (D 50 ) of 13-15 um.

施例4Example 4

一种锂离子二次电池正极材料锆、磷掺杂型钴酸锂,其化学式为:LiZrxCo(1-x-y)PyO2,其中x=0.01,y=0.03,具有层状结构。A zirconium and phosphorus doped lithium cobaltate lithium ion secondary battery cathode material, the chemical formula is: LiZr x Co (1-xy) P y O 2 , where x=0.01, y=0.03, and has a layered structure.

上述锂离子二次电池正极材料锆、磷掺杂型钴酸锂的制备方法,包括如下步骤:The preparation method of the above-mentioned lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide comprises the following steps:

1).按锂、钴原子比1.05:1.00,将四氧化三钴1000.0克和碳酸锂483.9克混合均匀;1). By lithium, cobalt atomic ratio 1.05:1.00, 1000.0 grams of cobalt tetroxide and 483.9 grams of lithium carbonate are mixed uniformly;

2).将混合后的原料置入焙烧炉中,在空气气氛中焙烧,焙烧温度为900℃,焙烧时间为12小时;2). Put the mixed raw materials into a roasting furnace, and roast them in an air atmosphere. The roasting temperature is 900°C, and the roasting time is 12 hours;

3).将焙烧后的产物钴酸锂进行粉碎,粉末的平均粒度D50为10~12um;3). Grinding the calcined lithium cobalt oxide, the average particle size D50 of the powder is 10-12um;

4).将钴酸锂粉末1000.0克置入反应釜中,加水3000.0克搅拌成浆状,在搅拌浆料的同时,通过蠕动泵加入浓度为1mol/L的硝酸锆溶液0.105L和浓度为2mol/L的磷酸氨溶液0.341L,Zr,P,Co的原子比为:Zr/P/Co=0.01/0.03/0.96,通过液相沉淀在钴酸锂表面均匀包覆锆元素和磷元素,反应釜温度为30℃,硝酸锆和磷酸氨溶液每小时的加入量为100mL/h,搅拌桨最外侧的线速度为3m/s;4). Put 1000.0 grams of lithium cobaltate powder into the reaction kettle, add 3000.0 grams of water and stir to form a slurry. While stirring the slurry, add 0.105 L of zirconium nitrate solution with a concentration of 1 mol/L and a concentration of 2 mol through a peristaltic pump /L of ammonium phosphate solution 0.341L, the atomic ratio of Zr, P, and Co is: Zr/P/Co=0.01/0.03/0.96, uniformly coat zirconium and phosphorus on the surface of lithium cobaltate by liquid phase precipitation, and react The temperature of the kettle is 30°C, the addition amount of zirconium nitrate and ammonium phosphate solution per hour is 100mL/h, and the outermost linear speed of the stirring blade is 3m/s;

5).将由步骤4)获得的浆料在喷雾干燥机中进行喷雾干燥,干燥后粉末粒度D50为10~50um;5). The slurry obtained in step 4) is spray-dried in a spray dryer, and the powder particle size D50 after drying is 10-50um;

6).将喷雾干燥后的粉末状物料置入焙烧炉,在空气气氛中进行焙烧,焙烧温度为950℃,时间为8小时,获得锆、磷掺杂型钴酸锂,其化学式为:LiZr0.01Co0.96P0.03O2,具有层状结构;6). Put the spray-dried powdered material into a roasting furnace and roast it in an air atmosphere at a roasting temperature of 950°C for 8 hours to obtain zirconium and phosphorus-doped lithium cobaltate, whose chemical formula is: LiZr 0.01 Co 0.96 P 0.03 O 2 , with layered structure;

7).将焙烧后得到的锆、磷掺杂型钴酸锂进行粉碎,得到平均粒度D50为10~13um的产品。7). Grinding the zirconium and phosphorus-doped lithium cobalt oxide obtained after roasting to obtain a product with an average particle size D50 of 10-13um.

图1是本实施例制备的正极材料在电子显微镜下的SEM,由图可以看出掺杂后在钴酸锂颗粒表面黏附了一层细小的粉末,能谱分析后富含锆和磷元素。Figure 1 is the SEM of the positive electrode material prepared in this example under an electron microscope. It can be seen from the figure that a layer of fine powder adheres to the surface of lithium cobaltate particles after doping, and is rich in zirconium and phosphorus elements after energy spectrum analysis.

图2是本实施例制备的正极材料的物相XRD,由图可以看出物相为纯钴酸锂物相,掺杂后钴酸锂主体的层状结构未受到破坏。Figure 2 is the phase XRD of the positive electrode material prepared in this example. It can be seen from the figure that the phase is pure lithium cobaltate phase, and the layered structure of the main body of lithium cobaltate is not damaged after doping.

施例5Example 5

一种锂离子二次电池正极材料锆、磷掺杂型钴酸锂,其化学式为:A lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide, its chemical formula is:

LiZrxCo(1-x-y)PyO2,其中x=0.02,y=0.06,具有层状结构。LiZr x Co (1-xy) P y O 2 , where x=0.02, y=0.06, has a layered structure.

上述锂离子二次电池正极材料锆、磷掺杂型钴酸锂的制备方法,包括如下步骤:The preparation method of the above-mentioned lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide comprises the following steps:

1).按锂、钴原子比1.05:1.00,将草酸钴2000.0克和氢氧化锂482.9克混合均匀;1). According to the atomic ratio of lithium and cobalt of 1.05:1.00, 2000.0 grams of cobalt oxalate and 482.9 grams of lithium hydroxide are mixed evenly;

2).将混合后的原料置入焙烧炉中,在空气气氛中焙烧,焙烧温度为800℃,焙烧时间为22小时;2). Put the mixed raw materials into a roasting furnace and roast in an air atmosphere at a roasting temperature of 800°C and a roasting time of 22 hours;

3).将焙烧后的产物钴酸锂进行粉碎,粉末的平均粒度D50为10~12um;3). Grinding the calcined lithium cobalt oxide, the average particle size D50 of the powder is 10-12um;

4).将钴酸锂粉末1000.0克置入反应釜中,加水2000.0克搅拌成浆状,在搅拌浆料的同时,通过蠕动泵加入浓度为1mol/L的硝酸锆溶液0.221L和浓度为2mol/L的磷酸氨溶液0.663L,Zr,P,Co的原子比为:Zr/P/Co=0.02/0.06/0.92,通过液相沉淀在钴酸锂表面均匀包覆锆元素和磷元素,反应釜温度为45℃,硝酸锆和磷酸氨溶液每小时的加入量为80mL/h,搅拌桨最外侧的线速度为3m/s;4). Put 1000.0 grams of lithium cobaltate powder into the reaction kettle, add 2000.0 grams of water and stir to form a slurry. While stirring the slurry, add 0.221 L of zirconium nitrate solution with a concentration of 1 mol/L and a concentration of 2 mol through a peristaltic pump /L of ammonium phosphate solution 0.663L, the atomic ratio of Zr, P, and Co is: Zr/P/Co=0.02/0.06/0.92, uniformly coat zirconium and phosphorus on the surface of lithium cobaltate by liquid phase precipitation, and react The temperature of the kettle is 45°C, the amount of zirconium nitrate and ammonium phosphate solution added per hour is 80mL/h, and the outermost linear speed of the stirring blade is 3m/s;

5).将由步骤4)获得的浆料在喷雾干燥机中进行喷雾干燥,干燥后粉末粒度D50为10~50um;5). The slurry obtained in step 4) is spray-dried in a spray dryer, and the powder particle size D50 after drying is 10-50um;

6).将喷雾干燥后的粉末状物料置入焙烧炉,在空气气氛中进行焙烧,焙烧温度为900℃,时间为8小时,获得锆、磷掺杂型钴酸锂,其化学式为:LiZr0.02Co0.92P0.06O2,具有层状结构;6). Put the spray-dried powdered material into a roasting furnace and roast it in an air atmosphere at a roasting temperature of 900°C for 8 hours to obtain zirconium and phosphorus-doped lithium cobaltate, whose chemical formula is: LiZr 0.02 Co 0.92 P 0.06 O 2 , with layered structure;

7).将焙烧后得到的锆、磷掺杂型钴酸锂进行粉碎,得到平均粒度D50为10~13um的产品。7). Grinding the zirconium and phosphorus-doped lithium cobalt oxide obtained after roasting to obtain a product with an average particle size D50 of 10-13um.

对比例comparative example

1).按锂、钴原子比为1.02:1.00将1000克四氧化三钴和469.8克碳酸锂混合均匀;1). By lithium, cobalt atomic ratio is 1.02:1.00 1000 grams of tricobalt tetroxide and 469.8 grams of lithium carbonate are mixed uniformly;

2).将混合后的原料置入焙烧炉中,在空气气氛中焙烧,焙烧温度为900℃,焙烧时间为12小时,获得钴酸锂;2). Put the mixed raw materials into a roasting furnace and roast them in an air atmosphere at a roasting temperature of 900°C for 12 hours to obtain lithium cobaltate;

3).将焙烧后得到的钴酸锂进行粉碎,得到平均粒度D50为10~13um的产品。3). Grinding the lithium cobaltate obtained after roasting to obtain a product with an average particle size D50 of 10-13um.

本发明在上述实施例中使用的原料,如四氧化三钴,碳酸钴,草酸钴,碳酸锂,硝酸锆,氢氧化锂,磷酸氢二氨,磷酸氨及磷酸二氢氨均为市售常规化学原料,所用设备也均为市售常规设备。The raw materials used in the above embodiments of the present invention, such as tricobalt tetroxide, cobalt carbonate, cobalt oxalate, lithium carbonate, zirconium nitrate, lithium hydroxide, diammonium hydrogen phosphate, ammonium phosphate and ammonium dihydrogen phosphate are commercially available conventional chemical raw materials, The equipment used is also commercially available conventional equipment.

表1循环性能测试表列出了用上述实施例和对比例制得的锂离子二次电池正极材料钴酸锂的电性能测试结果。锂离子扣式电池正极材料组成为:90%正极活性物质+5%导电碳黑+5%PVDF;电池负极为纯锂;电解液为1molLiPF6的1:1(EC+DEC);隔膜为Cellgard2400微孔隔膜。电压范围为3.0-4.3V,充放电倍率为0.2C。使用的充放电设备为蓝电充放电仪。Table 1 Cycle performance test table lists the electrical performance test results of lithium cobaltate lithium ion secondary battery anode material prepared by the above-mentioned examples and comparative examples. Lithium-ion button battery positive electrode material composition: 90% positive electrode active material + 5% conductive carbon black + 5% PVDF; battery negative pole is pure lithium; electrolyte is 1:1 (EC+DEC) of 1molLiPF 6 ; diaphragm is Cellgard2400 Microporous membrane. The voltage range is 3.0-4.3V, and the charge and discharge rate is 0.2C. The charging and discharging equipment used is the blue electric charging and discharging instrument.

从表1中数据可以看出,虽然普通钴酸锂首次放电容量略高,但循环20次后放电容量已经低于掺杂型钴酸锂,说明锆、磷掺杂型钴酸锂在循环过程中结构稳定性更好,掺杂后在表层的磷酸锆起到了稳定结构的作用。It can be seen from the data in Table 1 that although the initial discharge capacity of ordinary lithium cobalt oxide is slightly higher, the discharge capacity after 20 cycles is already lower than that of doped lithium cobalt oxide, which shows that zirconium and phosphorus doped lithium cobalt oxide are in the process of cycling. The stability of the middle structure is better, and the zirconium phosphate on the surface after doping plays a role in stabilizing the structure.

表1  循环性能测试表Table 1 Cycle performance test table

Figure C200710060049D00091
Figure C200710060049D00091

Claims (2)

1、一种锂离子二次电池正极材料的制备方法,所述的锂离子二次电池正极材料的化学式为:LiZrxCo(1-x-y)PyO2,其中x=0.01~0.03,y=0.02~0.06,具有层状结构;其特征在于包括如下步骤:1. A preparation method for a lithium ion secondary battery positive electrode material, the chemical formula of the lithium ion secondary battery positive electrode material is: LiZr x Co (1-xy) P y O 2 , wherein x=0.01~0.03, y =0.02~0.06, has layered structure; It is characterized in that comprising the following steps: 1)将四氧化三钴或碳酸钴或草酸钴和碳酸锂或氢氧化锂按锂、钴原子比为(0.98~1.05):1.00混合均匀;1) Mix tricobalt tetroxide or cobalt carbonate or cobalt oxalate and lithium carbonate or lithium hydroxide according to the atomic ratio of lithium and cobalt (0.98~1.05): 1.00; 2)将混合后的原料置入焙烧炉中,在空气气氛中焙烧,焙烧温度为800~1000℃,焙烧时间为6~24小时;2) Put the mixed raw materials into a roasting furnace, and roast in an air atmosphere, the roasting temperature is 800-1000°C, and the roasting time is 6-24 hours; 3)将焙烧后的产物钴酸锂进行粉碎,粉末的平均粒度D50为6~15um;3) Pulverizing the calcined lithium cobalt oxide, the average particle size D50 of the powder is 6-15um; 4)将钴酸锂粉末置入反应釜中,加水搅拌成浆状,水的重量为钴酸锂粉末重量的1~3倍,在搅拌浆料的同时加入浓度为1~2mol/L的硝酸锆溶液和浓度为1~2mol/L的可溶磷酸盐溶液,Zr,P,Co的原子比为:Zr/P/Co=x/y/(1-x-y),其中x=0.01~0.03,y=0.02~0.06,通过液相沉淀在钴酸锂表面均匀包覆锆元素和磷元素,反应釜温度为10~50℃,硝酸锆和磷酸盐溶液每小时的加入量分别为反应釜中料浆体积的1%~5%,搅拌桨最外侧的线速度为2~5m/s;4) Put the lithium cobaltate powder into the reaction kettle, add water and stir to form a slurry, the weight of the water is 1 to 3 times the weight of the lithium cobaltate powder, and add nitric acid with a concentration of 1 to 2mol/L while stirring the slurry Zirconium solution and concentration are the soluble phosphate solution of 1~2mol/L, Zr, P, the atomic ratio of Co is: Zr/P/Co=x/y/(1-x-y), wherein x=0.01~0.03, y=0.02~0.06, uniformly coat zirconium and phosphorus elements on the surface of lithium cobaltate by liquid phase precipitation, the temperature of the reactor is 10~50℃, and the addition amount of zirconium nitrate and phosphate solution per hour is respectively the material in the reactor 1% to 5% of the slurry volume, the outermost linear velocity of the stirring paddle is 2 to 5m/s; 5)将由步骤4)获得的浆料在喷雾干燥机中进行喷雾干燥,干燥后粉末粒度D50为10~50um;5) The slurry obtained in step 4) is spray-dried in a spray dryer, and the powder particle size D50 after drying is 10-50um; 6)将喷雾干燥后的粉末状物料置入焙烧炉,在空气气氛中进行焙烧,焙烧温度为600~1000℃,时间为4~12小时,获得锆、磷掺杂型钴酸锂,其化学式为:LiZrxCo(1-x-y)PyO2,其中x=0.01~0.03,y=0.02~0.06,具有层状结构;6) Put the spray-dried powdered material into a roasting furnace, and roast it in an air atmosphere at a roasting temperature of 600-1000°C for 4-12 hours to obtain zirconium and phosphorus-doped lithium cobaltate, which has the chemical formula It is: LiZr x Co (1-xy) P y O 2 , where x=0.01~0.03, y=0.02~0.06, having a layered structure; 7)将焙烧后得到的锆、磷掺杂型钴酸锂进行粉碎,粉末的平均粒度D50为6~15um。7) The zirconium and phosphorus-doped lithium cobaltate obtained after calcination are pulverized, and the average particle size D 50 of the powder is 6-15 um. 2、根据权利要求1所述的锂离子二次电池正极材料锆、磷掺杂型钴酸锂的制备方法,其特征在于所述的可溶磷酸盐为磷酸氨、磷酸氢二氨或磷酸二氢氨。2. The preparation method of zirconium and phosphorous-doped lithium cobaltate, the anode material of lithium ion secondary battery according to claim 1, characterized in that said soluble phosphate is ammonium phosphate, diammonium hydrogen phosphate or diammonium phosphate hydrogen ammonia.
CNB2007100600496A 2007-10-30 2007-10-30 Lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide and preparation method thereof Active CN100495775C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100600496A CN100495775C (en) 2007-10-30 2007-10-30 Lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100600496A CN100495775C (en) 2007-10-30 2007-10-30 Lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide and preparation method thereof

Publications (2)

Publication Number Publication Date
CN101150190A CN101150190A (en) 2008-03-26
CN100495775C true CN100495775C (en) 2009-06-03

Family

ID=39250597

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100600496A Active CN100495775C (en) 2007-10-30 2007-10-30 Lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide and preparation method thereof

Country Status (1)

Country Link
CN (1) CN100495775C (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447105B (en) * 2010-10-14 2014-03-26 清华大学 Lithium nickel oxide composite material and preparation method thereof and lithium ion battery
CN102347471B (en) * 2010-08-02 2014-03-26 清华大学 Lithium-nickel-cobalt-manganese oxide composite material particle and preparation method thereof as well as battery
US8568620B2 (en) 2010-08-02 2013-10-29 Tsinghua University Electrode composite material, method for making the same, and lithium ion battery using the same
CN102447106B (en) * 2010-10-15 2014-03-26 清华大学 Spinel lithium manganate composite material and preparation method thereof as well as lithium ion battery
CN102456868B (en) * 2010-11-03 2014-03-26 清华大学 Lithium titanate composite material and preparation method thereof and lithium ion battery
CN102347473B (en) * 2010-08-02 2014-03-26 清华大学 Anode composite material particle of lithium ion battery and preparation method thereof
CN102544464B (en) 2010-12-28 2014-06-25 清华大学 Lithium titanate composite material, preparation method thereof and lithium ion battery
CN102569764B (en) 2010-12-28 2015-05-20 清华大学 Lithium titanate composite material, preparation method thereof and lithium ion battery
US20130101893A1 (en) * 2011-10-25 2013-04-25 Apple Inc. High-voltage lithium-polymer batteries for portable electronic devices
CN102842712A (en) * 2012-09-26 2012-12-26 天津巴莫科技股份有限公司 Preparation method of cladded lithium cobalt oxide anode material
JP6293256B2 (en) 2013-03-12 2018-03-14 アップル インコーポレイテッド High voltage, high volume energy density lithium-ion battery using advanced cathode material
US9716265B2 (en) 2014-08-01 2017-07-25 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
CN104766725B (en) * 2015-03-12 2017-06-20 广东工业大学 A kind of preparation method and applications for electrode material for super capacitor
US10297821B2 (en) 2015-09-30 2019-05-21 Apple Inc. Cathode-active materials, their precursors, and methods of forming
US20180114983A9 (en) 2016-03-14 2018-04-26 Apple Inc. Cathode active materials for lithium-ion batteries
CN109715561B (en) 2016-09-20 2020-09-22 苹果公司 Cathode active material with improved particle morphology
JP2019530630A (en) 2016-09-21 2019-10-24 アップル インコーポレイテッドApple Inc. Surface-stabilized cathode material for lithium ion battery and synthesis method thereof
CN107611422B (en) * 2017-07-19 2019-12-31 国家纳米科学中心 A kind of method and application of P non-equivalent substitution of Mn doped modified lithium manganese nickel oxide
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US12074321B2 (en) 2019-08-21 2024-08-27 Apple Inc. Cathode active materials for lithium ion batteries
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
US12206100B2 (en) 2019-08-21 2025-01-21 Apple Inc. Mono-grain cathode materials
CN111362254B (en) * 2020-03-17 2022-07-05 广西师范大学 Preparation method and application of nitrogen-doped carbon nanotube-supported phosphorus-doped cobalt tetroxide composite material
CN112670500B (en) * 2020-12-28 2023-05-26 天津巴莫科技有限责任公司 High-compaction quick-charge positive electrode material and preparation method thereof
CN115893512A (en) * 2022-11-23 2023-04-04 荆门市格林美新材料有限公司 Doped cobalt carbonate and preparation method and application thereof

Also Published As

Publication number Publication date
CN101150190A (en) 2008-03-26

Similar Documents

Publication Publication Date Title
CN100495775C (en) Lithium ion secondary battery cathode material zirconium, phosphorus doped lithium cobalt oxide and preparation method thereof
CN109980219B (en) Full gradient nickel-cobalt-manganese cathode material, ruthenium oxide coating material and preparation method thereof
CN103500827B (en) Lithium ion battery and multi-element positive material thereof as well as preparation method of multi-element positive material
CN103682316B (en) Preparation method of long-life, high-capacity lithium-ion battery ternary cathode material
CN111422919B (en) Quaternary positive electrode material and preparation method thereof, positive electrode, battery
CN103094550B (en) Preparation method of lithium-rich anode material
CN104993121B (en) A kind of nickel manganese blending anode material for lithium-ion batteries and preparation method thereof
CN109004198A (en) Metal oxide and preparation method thereof
CN106602009A (en) Lithium-rich positive electrode modified material of lithium ion battery and preparation method of lithium-rich positive electrode modified material
CN103811743A (en) Lithium-rich anode material, lithium battery anode and lithium battery
WO2014040410A1 (en) Lithium-rich solid solution positive electrode composite material and method for preparing same, lithium ion battery positive electrode plate and lithium ion battery
CN104241626A (en) Sol-gel preparation method of lithium vanadate negative electrode material of lithium ion battery
CN102637866A (en) Method for preparing lithium ion battery anode material with concentration gradient
CN105958054A (en) Method for lanthanum phosphate coated lithium ion battery cathode material nickel cobalt lithium manganate
CN104103826B (en) The manufacturing method of laminar structure lithium nickel metal oxide and lithium secondary battery comprising the oxide
CN107834050A (en) A kind of lithium-enriched cathodic material of lithium ion battery and its improved method
CN102583583B (en) A kind of lithium ion battery manganese cobalt lithium oxide anode material and preparation method thereof
CN105185980A (en) A kind of preparation method of TiO2-coated layered lithium-rich ternary positive electrode material
CN106910887A (en) A kind of lithium-rich manganese-based anode material, its preparation method and the lithium ion battery comprising the positive electrode
CN102931383A (en) Preparation method of composite anode material of lithium-ion power battery
CN114597372B (en) Ultra-high nickel anode material and preparation method and application thereof
CN108493435A (en) Anode material for lithium-ion batteries Li (Ni0.8Co0.1Mn0.1)1-xYxO2And preparation method
CN103178252B (en) A kind of anode material for lithium-ion batteries and preparation method thereof
CN107611372A (en) A kind of high power capacity high-voltage lithium-battery cathode material and preparation method thereof
CN106784677A (en) A kind of preparation of lithium-enriched cathodic material of lithium ion battery and improved method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 300384 Tianjin Huayuan Industrial Park No. 5 Yuan Lu GUI

Patentee after: Tianjin Bamo Technology Co.,Ltd.

Address before: 300384 Tianjin Huayuan Industrial Park No. 5 Yuan Lu GUI

Patentee before: TIANJIN B & M SCIENCE AND TECHNOLOGY JOINT-STOCK Co.,Ltd.