CN100535753C - Immersion lithography system and method for illuminating semiconductor structure with photoresist layer - Google Patents
Immersion lithography system and method for illuminating semiconductor structure with photoresist layer Download PDFInfo
- Publication number
- CN100535753C CN100535753C CNB2004100568482A CN200410056848A CN100535753C CN 100535753 C CN100535753 C CN 100535753C CN B2004100568482 A CNB2004100568482 A CN B2004100568482A CN 200410056848 A CN200410056848 A CN 200410056848A CN 100535753 C CN100535753 C CN 100535753C
- Authority
- CN
- China
- Prior art keywords
- photoresist layer
- lithography system
- immersion lithography
- fluid
- infiltration fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920002120 photoresistant polymer Polymers 0.000 title claims abstract description 72
- 239000004065 semiconductor Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000000671 immersion lithography Methods 0.000 title claims abstract description 31
- 239000012530 fluid Substances 0.000 claims abstract description 118
- 230000003287 optical effect Effects 0.000 claims abstract description 43
- 230000008595 infiltration Effects 0.000 claims abstract 22
- 238000001764 infiltration Methods 0.000 claims abstract 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 25
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 20
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 19
- 229910052731 fluorine Inorganic materials 0.000 claims description 17
- 239000011737 fluorine Substances 0.000 claims description 17
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 16
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 14
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 claims description 14
- 235000013024 sodium fluoride Nutrition 0.000 claims description 8
- 239000011775 sodium fluoride Substances 0.000 claims description 8
- 235000003270 potassium fluoride Nutrition 0.000 claims description 7
- 239000011698 potassium fluoride Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 5
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims 1
- 235000011114 ammonium hydroxide Nutrition 0.000 claims 1
- 230000008676 import Effects 0.000 claims 1
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- 238000007654 immersion Methods 0.000 abstract description 105
- 238000001459 lithography Methods 0.000 abstract description 11
- 238000005286 illumination Methods 0.000 abstract description 2
- 238000001259 photo etching Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 43
- 238000000206 photolithography Methods 0.000 description 40
- -1 hydroxide ions Chemical class 0.000 description 34
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 18
- 238000009736 wetting Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 239000002253 acid Substances 0.000 description 8
- 238000004090 dissolution Methods 0.000 description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 6
- 229910004261 CaF 2 Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000003377 acid catalyst Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000010702 perfluoropolyether Substances 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 2
- 239000004914 cyclooctane Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- MARDFMMXBWIRTK-UHFFFAOYSA-N [F].[Ar] Chemical compound [F].[Ar] MARDFMMXBWIRTK-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种半导体元件的制程,特别是涉及浸润式光刻技术的系统、方法及其所使用的浸润流体。The invention relates to a manufacturing process of a semiconductor element, in particular to a system and a method of an immersion photolithography technology and an immersion fluid used therein.
背景技术 Background technique
在典型的光刻系统中,为了分辨点、线或影像等高解析图形,光刻系统必须具有高分辨率。在集成电路(IC)产业所使用的光刻系统中,一般是直接将光投影到光阻层上,以图形化电极元件。光刻系统已在IC产业中使用了数十年,并被期望用来解决50纳米线宽以下的制程。因此,改善光刻系统的分辨率已经成为半导体IC芯片制造商制作高密度、高速度半导体IC芯片最重要的课题之一。In a typical photolithography system, in order to distinguish high-resolution patterns such as dots, lines or images, the photolithography system must have high resolution. In photolithography systems used in the integrated circuit (IC) industry, light is typically projected directly onto a photoresist layer to pattern electrode elements. Lithography systems have been used in the IC industry for decades and are expected to address processes below 50nm line width. Therefore, improving the resolution of the lithography system has become one of the most important issues for semiconductor IC chip manufacturers to manufacture high-density, high-speed semiconductor IC chips.
对于光刻系统,其分辨率R由公式R=k1λ/NA决定。其中,k1是光刻常数,λ是影像光源的波长,NA是数值孔径,由公式NA=nsinθ计算得到,其中θ是系统中角的半开孔径,n是光刻系统和基材之间的材料的折射率。For a photolithography system, its resolution R is determined by the formula R=k 1 λ/NA. Among them, k 1 is the lithography constant, λ is the wavelength of the image light source, NA is the numerical aperture, calculated by the formula NA=nsinθ, where θ is the half-open aperture of the system center angle, and n is the distance between the lithography system and the substrate The refractive index of the material.
通常,有三种方法可以用来调整光刻蚀刻的分辨率,以改善光刻技术。第一种方法是减小影像光源的波长λ。例如,使用氩氟准分子激光(λ=193纳米)来代替G射线(λ=436纳米)以缩减波长。近来,影像光源的波长已可缩减到157纳米,甚至减小到超紫外线(EUV)的波长。第二种方法是减小光刻常数k1的值,例如,使用相位移光罩和偏轴照射可以将k1的值由0.6减至0.4。第三种方法则是通过改善光学设计、制造技术和计量控制来提升数值孔径NA的值。目前,数值孔径NA的值已可由0.35增至约0.8。但是,上述改善分辨率的常用方法已经接近物理和技术极限。例如,NA的值(即nsinθ)受n的限制,如果使用的是具有自由空间(free space)的光学系统,则此时n等于1,即NA的上限是1。Generally, there are three methods that can be used to adjust the resolution of photolithography etching to improve photolithography. The first method is to reduce the wavelength λ of the image light source. For example, an argon fluorine excimer laser (λ=193 nm) is used instead of G-rays (λ=436 nm) to reduce the wavelength. Recently, the wavelength of imaging light sources has been reduced to 157 nm, and even reduced to extreme ultraviolet (EUV) wavelengths. The second method is to reduce the value of the photoresist constant k1 , for example, the value of k1 can be reduced from 0.6 to 0.4 using a phase shift mask and off-axis illumination. The third method is to increase the value of numerical aperture NA by improving optical design, manufacturing technology and metrology control. Currently, the value of numerical aperture NA has been increased from 0.35 to about 0.8. However, the common methods for improving the resolution mentioned above are approaching the physical and technical limits. For example, the value of NA (ie, nsinθ) is limited by n. If an optical system with free space is used, n is equal to 1 at this time, that is, the upper limit of NA is 1.
相对于一般的光刻技术,近年来,浸润式光刻(immersionlithographic)技术已经发展到可以允许进一步增加NA(数值孔径)的值。在浸润式光刻技术中,基材被浸润在具有高折射率的液体或浸润流体下进行光刻制造,具有高折射率(n>1)的流体会填满光刻系统最外侧的光学单元(例如透镜)和基材之间的空隙(原本由空气填充),因此,利用此种方法,透镜可以具有大于1的NA值。全氟聚醚(PFPE)、环辛烷、去离子水(DI-water)等具有高折射率的流体,都可用于浸润式光刻技术中。由于NA值突破了原先的上限1,因此,与一般的光刻技术相比,浸润式光刻技术能够提供更为精密的光刻制造分辨率。In recent years, immersion lithographic technology has been developed to allow a further increase in the value of NA (Numerical Aperture) relative to general photolithographic technology. In immersion lithography, the substrate is immersed in a liquid with a high refractive index or an immersion fluid for lithography, and the fluid with a high refractive index (n>1) will fill the outermost optical unit of the lithography system (such as a lens) and the substrate (which is originally filled with air), therefore, using this method, the lens can have an NA value greater than 1. Perfluoropolyether (PFPE), cyclooctane, deionized water (DI-water) and other fluids with high refractive index can be used in immersion lithography. Since the NA value breaks through the original
用于浸润式光刻技术的高折射率流体应该满足以下几项要求:该流体对于所使用的具有特定波长的光线必须具有低的吸收系数;该流体必须具有适度高的折射率以修正整个系统的折射率;该流体必须与光学装置(镜头)和基板上的光阻具有化学上的相容性和良好的接触性。A high-refractive-index fluid for immersion lithography should meet several requirements: the fluid must have a low absorption coefficient for the light of the specific wavelength used; the fluid must have a moderately high refractive index to correct the overall system The refractive index; the fluid must have chemical compatibility and good contact with the optical device (lens) and the photoresist on the substrate.
以下总结了有关浸润式光刻技术的文件:The following summarizes the documents pertaining to immersion lithography:
(1)公开号为US 2002/0163629的美国专利Methods andapparatus employing an index matching medium。(1) Publication No. US 2002/0163629 US Patent Methods and apparatus employing an index matching medium.
(2)专利号为US5900354的美国专利Method for opticalinspection and lithography。(2) The US Patent No. US5900354 for Method for Optical Inspection and Lithography.
(3)专利号为US5610683的美国专利Immersion typeprojection exposure apparatus。(3) The U.S. Patent No. US5610683 Immersion typeprojection exposure apparatus.
(4)专利号为US5121256的美国专利Lithography systememploying a solid immersion lens。(4) The US Patent No. US5121256 Lithography system employing a solid immersion lens.
(5)J.A.Hoffnagle等。Liquid immersionDeep-ultraviolet interferometric lithography。J.VacuumScience and technology B,Vol.17,No.6,pp:3306-3309:1999。(5) J.A. Hoffnagle et al. Liquid immersion Deep-ultraviolet interferometric lithography. J. Vacuum Science and technology B, Vol.17, No.6, pp:3306-3309:1999.
(6)M.Switkes等。Immersion lithography at 157nm。J.Vacuum Science and technology B,Vol.19,No.6,pp:2353-2356:1999。(6) M. Switkes et al. Immersion lithography at 157nm. J. Vacuum Science and technology B, Vol.19, No.6, pp:2353-2356:1999.
传统的浸润式光刻技术以水作为浸润流体,但是作为浸润流体的水,其pH值没有被进一步控制住。如此一来,光刻技术所使用的光阻(特别是化学增幅光阻)会被浸润流体或水的氢氧根离子(OH-)污染。此外,某些光学透镜所使用的材料,例如氟化钙,在水中也会有一定的溶解度。The traditional immersion lithography technology uses water as the immersion fluid, but the pH value of the water used as the immersion fluid has not been further controlled. As a result, photoresists (especially chemically amplified photoresists) used in photolithography are contaminated with hydroxide ions (OH − ) from wetting fluids or water. In addition, the materials used in some optical lenses, such as calcium fluoride, also have a certain solubility in water.
因此,研发更好的浸润式光刻技术和方法,改善现有技术产生的问题,是半导体技术中一项急待研究的问题。Therefore, developing better immersion lithography techniques and methods to improve the problems caused by existing techniques is an urgent research issue in semiconductor technology.
发明内容 Contents of the invention
有鉴于此,本发明的目的在于提供一种浸润式光刻系统、适用于浸润式光刻系统的浸润流体,以及对上面形成有光阻层的半导体结构的照光方法,既提高浸润式光刻系统的分辨率,又减小浸润流体对光阻层的污染和对光学透镜的溶解。In view of this, the purpose of the present invention is to provide an immersion photolithography system, an immersion fluid suitable for an immersion photolithography system, and a method for illuminating a semiconductor structure with a photoresist layer formed thereon, which not only improves the immersion photolithography The resolution of the system is improved, and the contamination of the photoresist layer by the immersion fluid and the dissolution of the optical lens are reduced.
为了实现上述目的,本发明提供一种浸润式光刻系统,包含:一个光学表面,其中所述光学表面包含氟化钙或氟化镁;以及一个pH值小于7的浸润流体,其中该浸润流体至少与该光学表面的一部份接触,其中所述浸润流体中溶解有含氟的化合物,所述浸润流体中氟离子的浓度大于0.01摩尔/升。In order to achieve the above object, the present invention provides an immersion photolithography system, comprising: an optical surface, wherein the optical surface contains calcium fluoride or magnesium fluoride; and an immersion fluid with a pH value less than 7, wherein the immersion fluid In contact with at least a portion of the optical surface, wherein a fluorine-containing compound is dissolved in the wetting fluid, the concentration of fluoride ions in the wetting fluid is greater than 0.01 mol/liter.
根据本发明所述的浸润式光刻系统,所述浸润流体包含水。According to the immersion photolithography system of the present invention, the immersion fluid includes water.
根据本发明所述的浸润式光刻系统,所述浸润流体的pH值介于2至7之间。According to the immersion photolithography system of the present invention, the pH value of the immersion fluid is between 2 and 7.
根据本发明所述的浸润式光刻系统,所述浸润流体的pH值介于4-7之间。According to the immersion photolithography system of the present invention, the pH value of the immersion fluid is between 4-7.
根据本发明所述的浸润式光刻系统,所述浸润流体的pH值介于6至7之间。According to the immersion photolithography system of the present invention, the pH value of the immersion fluid is between 6 and 7.
根据本发明所述的浸润式光刻系统,所述光学表面包含二氧化硅。According to the immersion photolithography system of the present invention, the optical surface comprises silicon dioxide.
根据本发明所述的浸润式光刻系统,所述光学表面还包含熔硅。According to the immersion photolithography system of the present invention, the optical surface further includes molten silicon.
根据本发明所述的浸润式光刻系统,所述浸润流体中溶解有含氟的化合物。According to the immersion photolithography system of the present invention, the fluorine-containing compound is dissolved in the immersion fluid.
根据本发明所述的浸润式光刻系统,所述含氟化合物是由氟化钠、氟化钾、氢氟酸中的一种或多种混合而成的。According to the immersion photolithography system of the present invention, the fluorine-containing compound is formed by mixing one or more of sodium fluoride, potassium fluoride and hydrofluoric acid.
根据本发明所述的浸润式光刻系统,所述浸润流体中氟离子的浓度大于0.1摩尔/升。According to the immersion photolithography system of the present invention, the concentration of fluoride ions in the immersion fluid is greater than 0.1 mol/liter.
根据本发明所述的浸润式光刻系统,所述光学表面下方具有一个半导体元件基板,该半导体元件基板的最上层具有一个光阻层。According to the immersion photolithography system of the present invention, there is a semiconductor element substrate under the optical surface, and the uppermost layer of the semiconductor element substrate has a photoresist layer.
根据本发明所述的浸润式光刻系统,所述光阻层包含化学增幅型光阻。According to the immersion photolithography system of the present invention, the photoresist layer includes chemically amplified photoresist.
根据本发明所述的浸润式光刻系统,所述半导体元件基板浸润在所述浸润流体中。According to the immersion photolithography system of the present invention, the semiconductor element substrate is immersed in the immersion fluid.
根据本发明所述的浸润式光刻系统,所述半导体元件基板的下面具有支撑台座,该支撑台座浸润在所述浸润流体中。According to the immersion photolithography system of the present invention, a support base is provided under the semiconductor element substrate, and the support base is immersed in the immersion fluid.
为了实现上述目的,本发明还提供一种浸润式光刻系统,其特征在于该浸润式光刻系统包含:一个光学表面,其中所述光学表面包含氟化钙;一个pH值小于7的浸润流体,其中该浸润流体至少与该光学表面的一部份接触,其中所述浸润流体中溶解有含氟的化合物,所述浸润流体中氟离子的浓度大于0.01摩尔/升;以及一个波长小于197纳米的影像光源,其中,所述光学表面下方具有一个半导体元件基板,该半导体元件基板的最上层具有一个光阻层。In order to achieve the above object, the present invention also provides an immersion photolithography system, which is characterized in that the immersion photolithography system comprises: an optical surface, wherein the optical surface contains calcium fluoride; an immersion fluid with a pH value less than 7 , wherein the immersion fluid is in contact with at least a portion of the optical surface, wherein a fluorine-containing compound is dissolved in the immersion fluid, the concentration of fluoride ions in the immersion fluid is greater than 0.01 moles/liter; and a wavelength is less than 197 nanometers The image light source, wherein, there is a semiconductor element substrate under the optical surface, and the uppermost layer of the semiconductor element substrate has a photoresist layer.
根据本发明所述的浸润式光刻系统,所述浸润流体的pH值介于6至7之间。According to the immersion photolithography system of the present invention, the pH value of the immersion fluid is between 6 and 7.
根据本发明所述的浸润式光刻系统,所述浸润流体中溶解有含氟的化合物,该含氟化合物是由氟化钠、氟化钾、氢氟酸中的一种或多种混合而成的。According to the immersion photolithography system of the present invention, the fluorine-containing compound is dissolved in the immersion fluid, and the fluorine-containing compound is obtained by mixing one or more of sodium fluoride, potassium fluoride, and hydrofluoric acid. into.
根据本发明所述的浸润式光刻系统,所述浸润流体中氟离子的浓度大于0.01摩尔/升。According to the immersion photolithography system of the present invention, the concentration of fluoride ions in the immersion fluid is greater than 0.01 mol/liter.
为了实现上述目的,本发明提供一种对上面形成有光阻层的半导体结构的照光方法,包含:在光学表面和光阻层之间的空间中导入一个pH值小于7的浸润流体,其中所述光学表面包含氟化钙或氟化镁;以及提供一个光能量直接穿过该浸润流体照射到该光阻层上,其中所述浸润流体中溶解有含氟的化合物,所述浸润流体中氟离子的浓度大于0.01摩尔/升。In order to achieve the above object, the present invention provides a method for illuminating a semiconductor structure on which a photoresist layer is formed, comprising: introducing an immersion fluid with a pH value less than 7 into the space between the optical surface and the photoresist layer, wherein the The optical surface comprises calcium fluoride or magnesium fluoride; and providing a light energy directly passing through the immersion fluid to irradiate the photoresist layer, wherein the immersion fluid is dissolved with fluorine-containing compounds, and the fluoride ions in the immersion fluid The concentration is greater than 0.01 mol/L.
根据本发明所述的对上面形成有光阻层的半导体结构的照光方法,所述浸润流体的pH值介于2至7之间。According to the method of illuminating a semiconductor structure with a photoresist layer formed thereon according to the present invention, the pH value of the wetting fluid is between 2 and 7.
根据本发明所述的对上面形成有光阻层的半导体结构的照光方法,所述浸润流体的pH值介于6至7之间。According to the method of illuminating the semiconductor structure on which the photoresist layer is formed according to the present invention, the pH value of the wetting fluid is between 6 and 7.
根据本发明所述的对上面形成有光阻层的半导体结构的照光方法,所述浸润流体中溶解有含氟的化合物,该含氟化合物是由氟化钠、氟化钾、氢氟酸中的一种或多种混合而成的。According to the method for illuminating a semiconductor structure with a photoresist layer formed thereon in the present invention, a fluorine-containing compound is dissolved in the wetting fluid, and the fluorine-containing compound is formed from sodium fluoride, potassium fluoride, hydrofluoric acid One or more of them are mixed.
根据本发明所述的对上面形成有光阻层的半导体结构的照光方法,所述浸润流体中氟离子的浓度大于0.1摩尔/升。According to the method of illuminating a semiconductor structure on which a photoresist layer is formed according to the present invention, the concentration of fluorine ions in the wetting fluid is greater than 0.1 mol/liter.
根据本发明所述的对上面形成有光阻层的半导体结构的照光方法,所述光阻层包含化学增幅型光阻。According to the method for illuminating a semiconductor structure on which a photoresist layer is formed according to the present invention, the photoresist layer includes a chemically amplified photoresist.
根据本发明所述的对上面形成有光阻层的半导体结构的照光方法,该照光方法还包含对所述光阻层进行显影。According to the method for illuminating a semiconductor structure on which a photoresist layer is formed according to the present invention, the method for illuminating light further includes developing the photoresist layer.
根据本发明所述的对上面形成有光阻层的半导体结构的照光方法,对所述光阻层进行显影的步骤包括将所述光阻层浸润于四甲基氢氧化氨溶液。According to the method of illuminating the semiconductor structure on which the photoresist layer is formed according to the present invention, the step of developing the photoresist layer includes soaking the photoresist layer in tetramethylammonium hydroxide solution.
本发明提供的浸润式光刻系统和对上面形成有光阻层的半导体结构的照光方法,通过在光学表面和光阻层之间导入浸润流体,提高了光刻系统和半导体结构之间材料的折射率,进而提高了光刻系统的分辨率。同时,由于使浸润流体的pH值小于7,抑制了浸润流体中氢氧根离子对光阻层的污染,提高了后续制程的准确度;由于向浸润流体中引入光学透镜材料所包含的离子,利用同离子效应抑制了浸润流体对光学透镜的溶解,减小了浸润流体对光学透镜的损坏。The immersion photolithography system provided by the present invention and the method for illuminating the semiconductor structure with the photoresist layer formed thereon improve the refraction of the material between the photolithography system and the semiconductor structure by introducing the immersion fluid between the optical surface and the photoresist layer rate, thereby improving the resolution of the lithography system. At the same time, because the pH value of the immersion fluid is less than 7, the pollution of the photoresist layer by hydroxide ions in the immersion fluid is suppressed, and the accuracy of the subsequent process is improved; since the ions contained in the optical lens material are introduced into the immersion fluid, The same ion effect is used to suppress the dissolution of the immersion fluid to the optical lens and reduce the damage of the immersion fluid to the optical lens.
附图说明 Description of drawings
图1是本发明浸润式光刻技术系统的示意图。FIG. 1 is a schematic diagram of the immersion photolithography system of the present invention.
图2a和图2b是浸润流体(例如水)的氢氧根离子(OH-)与欲曝光的光阻层(感光材料)之间相互作用的示意图。2a and 2b are schematic diagrams illustrating the interaction between hydroxide ions (OH − ) of an immersion fluid (such as water) and a photoresist layer (photosensitive material) to be exposed.
图3a是被浸润流体中的碱(氢氧根离子、OH-)污染的光阻层具有T型剖面的示意图。Fig. 3a is a schematic diagram of a T-shaped cross-section of a photoresist layer polluted by alkali (hydroxide ions, OH - ) in the immersion fluid.
图3b是末被浸润流体中的碱(氢氧根离子、OH-)污染的光阻层具有较佳光阻剖面的示意图。FIG. 3 b is a schematic diagram of a better photoresist profile for a photoresist layer that is not polluted by alkali (hydroxide ions, OH − ) in the immersion fluid.
图4a和图4b是浸润流体(例如水)的氢离子(H+)与光学元件(透镜材料)之间相互作用的示意图。Figures 4a and 4b are schematic illustrations of the interaction between hydrogen ions (H + ) of an wetting fluid (eg water) and an optical element (lens material).
图5是浸润流体的pH值与氟化钙透镜溶解度的关系曲线。Fig. 5 is a graph showing the relationship between the pH value of the immersion fluid and the solubility of the calcium fluoride lens.
图6是浸润流体中F-的浓度与氟化钙透镜溶解度的关系曲线。Fig. 6 is the relationship curve between the concentration of F - in the immersion fluid and the solubility of calcium fluoride lens.
具体实施方式 Detailed ways
以下是本发明的较佳实施例,用来说明符合本发明的浸润式光刻系统及其使用方式。The following are preferred embodiments of the present invention to illustrate the immersion photolithography system and its usage according to the present invention.
图1是浸润式光刻技术系统10一个实施例的示意图。该浸润式光刻技术系统10包含一个影像光源20,该光源20发射一个光能量束21,并通过一个透镜22,然后该光能量束21通过一个屏蔽30和一个光学元件模块40,最后通过具有光学表面51的最外层透镜50。该最外层透镜50和感光材料70之间的空间使用浸润流体60填充,该感光材料70形成于半导体元件基板80上。FIG. 1 is a schematic diagram of one embodiment of an
在一个较佳实施例中,该半导体元件基板80可以是在它上面形成集成电路的半导体基板。例如,该半导体元件基板80可以是一个具有晶体管的硅晶基板(例如单晶硅基板或硅覆绝缘板)。In a preferred embodiment, the
感光材料70可以是一个光阻层或其它屏蔽材料。在一个较佳实施例中,感光材料70可以被图形化成十分小的尺寸,该具有十分小尺寸的图形化感光材料层可以用来,例如,形成多晶硅线(或是其它传导材料)的蚀刻罩幕,也可用来制作长度在50纳米以下的金属氧化物半导体(MOS)栅极。此外,该图形化感光材料层还可用来制作尺寸约为200纳米或以下的金属导线(例如铜金属镶嵌线)。
半导体元件基板80由一个晶圆支撑台座85支撑。如图1所示,浸润流体60位于最外层透镜50和感光材料70之间。为了简化图形并突出本发明的要点,图1只画出了最外层透镜50和感光材料70之间的浸润流体60。然而,在感光材料70的图形化过程中,基板80和/或台座85均可浸润于浸润流体60中。The
图2a是光刻系统10中的最外层透镜50、感光材料70和它们之间的浸润流体60的放大示意图。最外层透镜50与浸润流体60相接触。在传统光刻系统中,浸润流体60是水。但是其它流体,例如环辛烷和全氟聚醚(PFPE),也可用作浸润流体60。浸润流体60含有氢氧根离子(OH-)。如果浸润流体60是水,氢氧根离子会因水的解离而存在,其平衡式如下:FIG. 2 a is an enlarged schematic view of the
H2O(1)→H+ (aq)+OH- (aq) (公式I)H 2 O (1) →H + (aq) +OH - (aq) (Formula I)
其中,H+是氢离子,OH-是氢氧根离子。符号1和aq分别代表液体和水溶液状态。浸润流体60与感光材料70的上表面90相接触,如图2a所示,在界面90与感光材料或光阻70的一部分接触。其中,感光材料70可以是一个以193纳米、157纳米或更小的波长作为影像光源的光阻层。Among them, H + is a hydrogen ion, OH - is a hydroxide ion.
当预定区域的感光材料70在一定剂量光能量束21下曝光时,感光材料70的被曝光部份会产生一个光催化剂。感光材料70可以采用化学增幅型(CA)光阻,这种物质被广泛用于193纳米或157纳米波长的光刻技术中。通过曝光产生的催化剂通常是可释放出酸的催化剂,用HA表示。例如,催化剂HA会质子化一个光阻高分子材料的酯类官能基,形成较易溶解的酸,并且同时再产生质子或氢离子(H+),这个质子或氢离子会再去质子化其它酯类官能基,然后再形成其它会溶解的酸并且再生成H+。这个质子化、形成可溶解的酸类、再生质子的连续反应称为化学增幅型反应。When a predetermined area of the
图2b是浸润流体60(水)与已曝光感光材料70之间的界面90的放大透视图100。值得注意的是,可释放出酸的催化剂可能以HA的形式存在,或者解离成H+和A-的形式。在背景技术部分已经提到,浸润流体60中如果有大量氢氧根离子存在是十分不利的,因为浸润流体60中的氢氧根离子110会扩散到感光材料70与浸润流体60接触的表面,并且中和酸催化剂。因此,在感光材料70与浸润流体60接触的区域,感光材料70照光所产生的酸催化剂被消耗,导致在界面90附近的感光材料70的化学增幅型反应速率下降。FIG. 2 b is an
如图3a所示,在使用显影液,例如四甲基氢氧化铵(TMAH),对曝光后的感光材料70(光阻)显影后,光阻曝光的部分200会被溶解。然而,由于被曝光的感光材料70在邻近界面90的区域内化学增幅型反应速率较低,使得其在显影步骤的溶解范围变小,导致光阻线210具有T形剖面,如图3a所示。因此,如果感光材料表面不断有酸催化剂被中和,图形化后的感光材料70会具有较宽的线宽L1。As shown in FIG. 3 a , after the exposed photosensitive material 70 (photoresist) is developed with a developing solution such as tetramethylammonium hydroxide (TMAH), the exposed
根据本发明的一个较佳实施例,浸润流体60中OH-离子的浓度被控制在10-7mol/L(或mol/dm3,其中mol、L和dm分别代表摩尔、升和分米)。本发明通过减少OH-离子的浓度使其小于10-7mol/L,这样,光阻表面已曝光区域酸催化剂的消耗量会被抑制。因此,通过减少OH-离子的浓度和扩散到光阻的OH-离子的量,使图形化后的感光材料220具有如图3b所示的较佳的线宽L2。According to a preferred embodiment of the present invention, the concentration of OH - ions in the
在浸润流体60中加入过量的质子或氢离子是减少水中OH-离子浓度的一种方法。在水中加入额外的氢离子会使公式I的平衡向左移动,从而使OH-离子的浓度小于10-7mol/L。在浸润流体60中加入酸可以改变该浸润流体60中氢离子的浓度,而酸的种类可以是乙酸或甲酸等有机酸,也可以是稀盐酸或稀硫酸等无机酸,还可以混合使用。Adding an excess of protons or hydrogen ions to the
因此,根据本发明的一个较佳实施例,浸润流体60具有较过量的氢离子浓度以减低平衡式中氢氧根离子的浓度。根据本发明,浸润流体60中氢离子浓度的较佳值应该大于10-7mol/L,也就是说,该浸润流体60的pH值最好小于7,氢离子的浓度在室温(300K)下的较佳范围约为10-7mol/L至10-7mol/L,或10-7mol/L至10-4mol/L,或10-7mol/L至10-5mol/L,最佳范围约为10-7mol/L至10-6mol/L。在上述氢离子浓度范围内,浸润流体60的pH值小于7,较佳范围约为2至7之间,更佳范围约为4至7之间或约为5至7之间,最佳范围约为6至7之间。pH值的定义是-log[H+],其中[H+]是氢离子的摩尔浓度。在浸润流体60中加入酸可进一步改善光阻的化学放大效应。Therefore, according to a preferred embodiment of the present invention, the
图4a是浸润流体60(即水)与最外层透镜50接触的截面图,图4b是浸润流体60(即水)与最外层透镜50的光学表面51的放大透视图300。最外层透镜50的表面可能会有极小部份溶于浸润流体60中,透镜材料可以是二氧化硅、熔硅(fused silica)、氟化镁(MgF2)或氟化钙(CaF2)。以本发明一个较佳实施例所使用的氟化钙透镜材料为例,其溶于水后会形成钙离子(Ca2+)和氟离子(F-),如下所示:4a is a cross-sectional view of the wetting fluid 60 (ie water) in contact with the
CaF2(s)→Ca2+ (aq)+2F- (aq) (公式II)CaF 2(s) → Ca 2+ (aq) +2F - (aq) (Formula II)
在室温下,1升p H值为7的水可以溶解约3×10-4摩尔固体氟化钙。由于浸润流体不断流动,因此氟化钙透镜材料会以固定浓度溶解于水中,然后被水带走。溶解的量会随仪器使用时间(例如几年)的增加而增加。如果透镜材料在不同透镜区域的溶解度不同,会造成透镜表面变形,甚至会造成影像扭曲和仪器故障。At room temperature, 1 liter of water with a pH value of 7 can dissolve about 3×10 -4 moles of solid calcium fluoride. Due to the continuous flow of the immersion fluid, the calcium fluoride lens material is dissolved in the water at a fixed concentration and then carried away by the water. The amount dissolved will increase with the age of the instrument (eg, several years). If the solubility of the lens material is different in different lens regions, it will cause deformation of the lens surface, and even cause image distortion and instrument failure.
图5是CaF2在不同pH值(或酸度)的水中的摩尔溶解度。当水的pH值从7降低时,即酸性增加,CaF2的溶解度也会随之增加,其中当pH值小于4时,CaF2溶解度的增加更为显著。氟化钙在酸性水中溶解度增加的原因主要是因为氢离子浓度的增加。如果氢离子过量,则氢离子(H+)易于与氟离子(F-)结合而使平衡式向右移动,产生氢氟酸(HF)水溶液:Figure 5 is the molar solubility of CaF2 in water at different pH (or acidity). When the pH value of water decreases from 7, that is, the acidity increases, the solubility of CaF 2 will also increase, and when the pH value is less than 4, the increase of CaF 2 solubility is more significant. The increase in the solubility of calcium fluoride in acidic water is mainly due to the increase in the concentration of hydrogen ions. If there is an excess of hydrogen ions, hydrogen ions (H + ) are easy to combine with fluoride ions (F - ) to shift the balance to the right, resulting in hydrofluoric acid (HF) aqueous solution:
H+ (aq)+F- (aq)→HF(aq) (公式III)H + (aq) +F - (aq) → HF (aq) (Formula III)
因为氟离子在产生氢氟酸时被消耗了,所以公式II的平衡式会向右移动,造成更多的CaF2固体溶解,这会加速透镜CaF2材料的流失。因此,当pH值维持在7以下时,虽然可以减少对酸催化剂消耗的影响,但pH值不能过低,否则会导致CaF2透镜材料严重溶解。因此,本发明所述的浸润流体,其pH值大体在小于7的范围内,较佳范围是2至7,更佳范围是4至7,最佳范围是5至7,甚至6至7。Because fluoride ions are consumed in generating hydrofluoric acid, the equilibrium of Equation II will shift to the right, causing more CaF2 solids to dissolve, which will accelerate the loss of lens CaF2 material. Therefore, when the pH value is maintained below 7, although the impact on acid catalyst consumption can be reduced, the pH value should not be too low, otherwise it will cause severe dissolution of the CaF2 lens material. Therefore, the pH value of the immersion fluid described in the present invention is generally within the range of less than 7, preferably 2-7, more preferably 4-7, and most preferably 5-7, even 6-7.
由本发明的另一较佳实施例可知,利用同离子效应可以减少透镜材料的溶解度。例如,如果最外层透镜50的材料是CaF2,则使浸润流体60(水)中含有一定浓度的氟离子,即可抑制CaF2的溶解。根据同离子效应,额外添加的氟离子会使公式II向左移动,从而有效抑制CaF2的溶解。It can be seen from another preferred embodiment of the present invention that the solubility of lens materials can be reduced by using the same ion effect. For example, if the material of the
如图6所示,随着浸润流体60内氟离子浓度的增加,CaF2的摩尔溶解度会减少。具体作法可以是,在水中加入高溶解性的含氟化合物,如氟化钠、氟化钾、氢氟酸或以上物质的混合物。在本发明另一较佳实施例中,该含氟化合物以氢氟酸为佳,氢氟酸与氟化钠的混合物则更好。本发明所述的浸润流体,其氟离子浓度大于0.01mol/L,较佳值为大于0.05mol/L,最佳值为大于0.1mol/L。As shown in FIG. 6, as the concentration of fluoride ions in the
此外,值得注意的是,本发明所述的浸润式光刻系统还可以包含其它已知的适用于浸润式光刻技术的作法,例如,浸润式光刻系统可以在最外层透镜和被曝光部分的晶圆之间用浸润流体来浸润,或者将整片晶圆浸润在浸润流体中,或者将整个基台都浸润在浸润流体中。In addition, it is worth noting that the immersion lithography system described in the present invention may also include other known methods applicable to immersion lithography techniques, for example, the immersion lithography system may be exposed on the outermost lens and Part of the wafers are soaked with the immersion fluid, or the entire wafer is soaked in the immersion fluid, or the whole base is soaked in the immersion fluid.
虽然本发明已通过较佳实施例说明如上,但该较佳实施例并非用以限定本发明。本领域的技术人员,在不脱离本发明的精神和范围内,应有能力对该较佳实施例做出各种更改和补充,因此本发明的保护范围以权利要求书的范围为准。Although the present invention has been described above through preferred embodiments, the preferred embodiments are not intended to limit the present invention. Those skilled in the art should be able to make various changes and supplements to the preferred embodiment without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention is subject to the scope of the claims.
附图中符号的简单说明如下:A brief description of the symbols in the drawings is as follows:
10:浸润式光刻技术系统 22:透镜10: Immersion lithography system 22: Lens
20:影像光源 30:屏蔽20: image light source 30: shielding
21:光能量束 40:光学元件模块21: Light energy beam 40: Optical component module
50:最外层透镜 100:放大透视图50: Outermost lens 100: Magnified perspective view
51:光学表面 110:扩散至感光材料的氢氧根51: Optical surface 110: Hydroxide diffused into photosensitive material
60:浸润流体 离子60: Wetting Fluid Ions
70:感光材料 200:光阻曝光的部分70: Photosensitive material 200: Photoresist exposed part
80:半导体元件基板 210:具有T形剖面的光阻线80: Semiconductor element substrate 210: Photoresist line with T-shaped section
85:晶圆支撑台座 220:光阻线85: Wafer support pedestal 220: Photoresist line
90:感光材料的上表面 300:放大透视图90: Upper surface of photosensitive material 300: Enlarged perspective view
Claims (22)
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US49819503P | 2003-08-25 | 2003-08-25 | |
| US60/498,195 | 2003-08-25 | ||
| US10/803,712 US7700267B2 (en) | 2003-08-11 | 2004-03-18 | Immersion fluid for immersion lithography, and method of performing immersion lithography |
| US10/803,712 | 2004-03-18 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1655061A CN1655061A (en) | 2005-08-17 |
| CN100535753C true CN100535753C (en) | 2009-09-02 |
Family
ID=34594584
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2004100568482A Expired - Lifetime CN100535753C (en) | 2003-08-25 | 2004-08-25 | Immersion lithography system and method for illuminating semiconductor structure with photoresist layer |
Country Status (3)
| Country | Link |
|---|---|
| CN (1) | CN100535753C (en) |
| SG (1) | SG109582A1 (en) |
| TW (1) | TWI243409B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1996145B (en) * | 2005-12-31 | 2010-08-25 | 上海集成电路研发中心有限公司 | Method for reducing water pollution of optical elements in immersion type photoengraving technology |
| US7903232B2 (en) * | 2006-04-12 | 2011-03-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| CN100552877C (en) * | 2006-05-04 | 2009-10-21 | 台湾积体电路制造股份有限公司 | Etching apparatus, immersion tank, and etching method |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5900354A (en) * | 1997-07-03 | 1999-05-04 | Batchelder; John Samuel | Method for optical inspection and lithography |
| CN1573567A (en) * | 2003-05-30 | 2005-02-02 | Asml荷兰有限公司 | Lithographic apparatus and device manufacturing method |
| CN2746425Y (en) * | 2003-08-25 | 2005-12-14 | 台湾积体电路制造股份有限公司 | Immersion Lithography System |
-
2004
- 2004-08-17 TW TW93124633A patent/TWI243409B/en not_active IP Right Cessation
- 2004-08-23 SG SG200404744A patent/SG109582A1/en unknown
- 2004-08-25 CN CNB2004100568482A patent/CN100535753C/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5900354A (en) * | 1997-07-03 | 1999-05-04 | Batchelder; John Samuel | Method for optical inspection and lithography |
| CN1573567A (en) * | 2003-05-30 | 2005-02-02 | Asml荷兰有限公司 | Lithographic apparatus and device manufacturing method |
| CN2746425Y (en) * | 2003-08-25 | 2005-12-14 | 台湾积体电路制造股份有限公司 | Immersion Lithography System |
Also Published As
| Publication number | Publication date |
|---|---|
| TW200509214A (en) | 2005-03-01 |
| SG109582A1 (en) | 2005-03-30 |
| TWI243409B (en) | 2005-11-11 |
| CN1655061A (en) | 2005-08-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7700267B2 (en) | Immersion fluid for immersion lithography, and method of performing immersion lithography | |
| JP4323946B2 (en) | Exposure equipment | |
| US8852850B2 (en) | Method of photolithography using a fluid and a system thereof | |
| JP2005150290A (en) | Exposure apparatus and device manufacturing method | |
| US8179517B2 (en) | Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method | |
| US20060170889A1 (en) | Exposure Apparatus, Manufacturing Method of Optical Element, and Device Manufacturing Method | |
| KR20070032736A (en) | Exposure method and device manufacturing method | |
| JP4983257B2 (en) | Exposure apparatus, device manufacturing method, measuring member, and measuring method | |
| JP4565270B2 (en) | Exposure method, device manufacturing method | |
| CN100535753C (en) | Immersion lithography system and method for illuminating semiconductor structure with photoresist layer | |
| TWI441239B (en) | Lithographic device manufacturing method ,lithographic cell ,and computer program product | |
| KR100861173B1 (en) | Pattern Forming Method of Semiconductor Device Using Immersion Exposure Process | |
| US7724350B2 (en) | Immersion exposure apparatus and device manufacturing method | |
| JP5027154B2 (en) | Immersion exposure apparatus and immersion exposure method | |
| US8488102B2 (en) | Immersion fluid for immersion lithography, and method of performing immersion lithography | |
| CN2746425Y (en) | Immersion Lithography System | |
| JP4961709B2 (en) | Exposure apparatus, exposure method, and device manufacturing method | |
| JP2007258638A (en) | Immersion exposure method and immersion exposure device | |
| CN1624588B (en) | Immersion lithography system, method of illuminating semiconductor structures and manufacturing method | |
| CN2742470Y (en) | Immersion Lithography System | |
| JP2009200491A (en) | Liquid immersion ultraviolet photolithography method | |
| JP2007116073A (en) | Exposure method, exposure apparatus, and device manufacturing method | |
| US20060194142A1 (en) | Immersion lithography without using a topcoat | |
| US8368869B2 (en) | Lithography apparatus with an optical fiber module | |
| TWI253107B (en) | Immersion lithography without using a topcoat |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CX01 | Expiry of patent term |
Granted publication date: 20090902 |
|
| CX01 | Expiry of patent term |