CN100559850C - Method used for dominant color extraction - Google Patents
Method used for dominant color extraction Download PDFInfo
- Publication number
- CN100559850C CN100559850C CNB2005800220072A CN200580022007A CN100559850C CN 100559850 C CN100559850 C CN 100559850C CN B2005800220072 A CNB2005800220072 A CN B2005800220072A CN 200580022007 A CN200580022007 A CN 200580022007A CN 100559850 C CN100559850 C CN 100559850C
- Authority
- CN
- China
- Prior art keywords
- color
- color space
- tone
- mass
- painted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Image Processing (AREA)
- Processing Of Color Television Signals (AREA)
Abstract
Description
技术领域 technical field
本发明涉及使用多光源来产生和设置环境光效,典型地基于,或者结合例如来自视频显示的视频内容。更特别地,涉及一种实时地对视频内容采样或者子采样以提取主色信息的方法,并执行从视频内容的色空间到最好允许驱动多个环境光源的色空间的颜色映射转换。The present invention relates to the use of multiple light sources to generate and set ambient light effects, typically based on, or in conjunction with, eg video content from a video display. More particularly, it relates to a method of sampling or subsampling video content in real-time to extract dominant color information, and performing a color mapping conversion from the color space of the video content to a color space that preferably allows driving multiple ambient light sources.
背景技术 Background technique
工程师们为通过采样视频内容来扩展感觉感受已作了长时间的探索,例如通过扩大视屏和投影区域,将声音调制为真实的3维效果,并改善视频图像,包括宽的视频色域,分辨率和图像纵横比,例如可采用高清晰度(HD)数字电视和视频系统来实现。而且,电影,电视和视频播放器也试图利用视觉和听觉手段影响观看者的感受,例如通过巧妙地运用颜色,场景剪辑,视角,周围的场景和计算机辅助图形表示。这也将包括剧场舞台照明。灯光效果,例如,光效通常和视频或者戏剧场景同步编排,在按预期方案编码的合适的场景脚本编程的机器或者计算机的帮助下进行再现。Engineers have been exploring for a long time to expand the sensory experience by sampling video content, such as expanding the viewing screen and projection area, modulating the sound into a true 3D effect, and improving the video image, including a wide video color gamut, resolution High-definition (HD) digital television and video systems, for example. Moreover, film, television and video players also attempt to use visual and auditory means to influence the viewer's perception, such as through the clever use of color, scene cuts, perspective, surrounding scenes and computer-aided graphic representation. This will also include theater stage lighting. Lighting effects, such as light effects, are usually choreographed in sync with video or theatrical scenes, reproduced with the aid of machines or computers programmed with appropriate scene scripts encoded in the intended scheme.
在数字领域的现有技术中,包括没有计划或者没有脚本的场景在内,响应于场景快速变化的照明的自适应,在大场景中很不容易去协调,因为额外的高带宽位流需要利用目前的系统。In existing technologies in the digital domain, including unplanned or unscripted scenes, the adaptation of lighting in response to rapidly changing scenes is not easy to coordinate in large scenes because the additional high-bandwidth bitstream needs to utilize current system.
飞利浦(荷兰)和其它公司已经公开了利用远离视频显示的分离的光源,改变环境或周围的照明来改善视频内容方法,其应用于典型家庭或商业中,以及对于很多应用,对预期的光效进行在先编排或者编码。已经表明环境照明施加至视频显示或者电视能够减少视觉疲劳和提高真实性以及感受深度。Philips (Netherlands) and others have disclosed methods for improving video content by changing the ambient or ambient lighting using a separate light source remote from the video display, which is applied in a typical home or business, and for many applications, the desired light effect Perform prior arrangement or encoding. It has been shown that ambient lighting applied to a video display or television can reduce visual fatigue and increase realism and the perception of depth.
感觉感受是人类视觉方面的自然的功能,其利用巨大而复杂的感管和神经系统来产生对颜色和光效果的的感觉。人类能够区分大概1千万种不同的颜色。在人眼中,对于颜色接收或亮视觉,而具有大概2百万称作视锥的感觉体共三组,其具有光波长峰值分布在445nm、535nm以及565nm吸收分布,并具有大量的重叠。这三类视锥细胞形成所谓的三色系统,也因历史原因而被称为B(蓝)、G(绿)、R(红);峰值不必对应于那些用在显示中的任何主色,例如,常利用的RGB荧光体。也有用于暗适应的相互作用,或者所谓称作视网膜杆的夜视体。人眼典型地具有一亿两千万个视网膜杆,其影响视频感受,特别是在暗光条件下,例如在家庭影院中。Sensory perception is a natural function of the human visual aspect that utilizes a large and complex sensory tube and nervous system to produce the perception of color and light effects. Humans can distinguish about 10 million different colors. In the human eye, for color reception or photopic vision, there are three groups of approximately 2 million sensory bodies called cones, which have light wavelength peak distributions at 445nm, 535nm, and 565nm absorption distributions with a large amount of overlap. These three types of cones form what is known as the trichromatic system, also known for historical reasons as B (blue), G (green), R (red); the peaks do not have to correspond to any of the dominant colors that are used in displays, For example, commonly used RGB phosphors. There are also interactions for dark adaptation, or so-called night vision bodies called rods. The human eye typically has 120 million retinal rods, which affect video perception, especially in low light conditions, such as in a home theater.
颜色视频建立在人类视觉的规律上,众所周知,人类视觉的三色和对立通道理论已经被我们结合用来理解怎样影响眼睛去看期望的颜色与原始信号或者预期图像具有高逼真度的颜色和效果。在大多数颜色模型和空间中,三维或者坐标用来描述人的视觉感受。Color video is based on the laws of human vision. It is well known that the three-color and opposite-channel theory of human vision has been combined to understand how to influence the eye to see the desired color. The original signal or the expected image have high fidelity color and effect. . In most color models and spaces, three dimensions or coordinates are used to describe the human visual perception.
颜色视频完全依赖位变异构性,其允许利用少量的基准色质产生颜色感觉,而不是期望的颜色和特征的实际光。这样,利用有限数目的基准色质,整个色域的颜色在人的头脑中再现,例如全世界范围在视频再现中利用的众所周知的RGB(红,绿,蓝)三色系统。众所周知,例如,几乎所有的视频显示通过在每一个像素或者图像单元中产生近似相等数量的红光和绿光,而显示黄色场景。像素与其对向的立体角相比很小,而且眼睛误以为感知到黄色;它不能感知真实发射的绿色或者红色光。Color video relies entirely on metamerism, which allows color perception to be produced with a small amount of reference chromaticity, rather than actual light of desired colors and characteristics. In this way, the full gamut of colors is reproduced in the human mind using a limited number of reference chromaticities, such as the well known RGB (Red, Green, Blue) tristimulus system utilized worldwide in video reproduction. It is known, for example, that almost all video displays display a yellow scene by producing approximately equal amounts of red and green light in each pixel or picture element. The pixels are small compared to the solid angle they subtend, and the eye is mistaken to perceive yellow; it cannot perceive the green or red light that is actually emitted.
存在很多颜色模型和指定颜色的方式,包括众所周知的CIE(国际照明委员会(Commission Interationale de I’eclairage))颜色坐标系统,利用它来描述和规定用于视频再现的颜色。即时创造可以利用任意数量的颜色模型,包括运用未着色的对立颜色空间,比如CIE L*U*V*(CIELUV)或者CIE L*a*b*(CIELAB)系统。建立于1931年的CIE是所有颜色的管理和再现的基础,结果是利用三坐标x、y和z的色度图。该三维系统在最大亮度的区域根据x和y通常用于描述颜色,这个区域,称为1931x,y色度图,其被认为能描述所有人类可感知的颜色。这与颜色再现形成对比,在这里位变异构性欺骗了眼睛和大脑。现今,很多正在利用的颜色模型或者空间通过利用三种基本色或荧光体而再现颜色,其中有Adobe RGB,NTSC RGB,等。There are many color models and ways of specifying colors, including the well-known CIE (Commission Interationale de I'eclairage) color coordinate system, which is used to describe and specify colors for video reproduction. Instant Creation can utilize any number of color models, including the use of uncolored oppositional color spaces such as the CIE L*U*V* (CIELUV) or CIE L*a*b* (CIELAB) systems. The CIE, established in 1931, is the basis for the management and reproduction of all colors, resulting in a chromaticity diagram utilizing three coordinates x, y, and z. This three-dimensional system is commonly used to describe color in terms of x and y in the region of maximum luminance, this region, known as the 1931x,y chromaticity diagram, which is believed to describe all human-perceivable colors. This is in contrast to color reproduction, where metamerism tricks the eye and brain. Today, many color models or spaces in use reproduce colors by utilizing three primary colors or phosphors, among them Adobe RGB, NTSC RGB, etc.
特别应注意,视频系统通过利用这些三色激励系统所展示的所有可能颜色的范围是有限的。NTSC(国际电视标准委员会)RGB系统具有相对宽的可用颜色范围,但这个系统仅能再现人类能感知的所有颜色中的一半。利用传统视频系统的可用范围不能足够地再现多种蓝色和紫色、蓝绿色和橙色/红色。In particular, it should be noted that the range of all possible colors that video systems can exhibit by utilizing these tristimulus systems is limited. The NTSC (National Television Standards Committee) RGB system has a relatively wide range of usable colors, but this system can only reproduce half of all the colors that humans can perceive. The range of blues and violets, cyan and orange/red cannot be adequately reproduced with the available range of conventional video systems.
而且,人类视觉系统被赋予补偿和识别特性,对它的认识对于设计任何视频系统是必要的。人类的颜色能够以几种显示模式出现,在其中有目标模式和发光模式。Furthermore, the human visual system is endowed with compensatory and recognition properties, an understanding of which is essential for designing any video system. Human colors can appear in several display modes, among which are target mode and glow mode.
在目标模式中,光激励被感知为光源照射的物体所反射的光。在发光模式中,光激励被视为光源。发光模式包括在复杂场中的激励,其比其它激励更加明亮。它不包括已知为光源的激励,比如视频显示器,其亮度或辉度与景物或观看场地的全部亮度相同或更低,以便这种激励以目标模式显示。In target mode, the light stimulus is perceived as light reflected from an object illuminated by the light source. In luminescent mode, the optical stimulus is considered a light source. Luminescence patterns include stimuli in complex fields that are brighter than other stimuli. It does not include stimuli known as light sources, such as video displays, whose brightness or luminance is equal to or less than the full brightness of the scene or viewing site, so that such stimuli are displayed in the target mode.
值得注意的是,有很多颜色仅在目标模式中出现,在其中有,褐色、橄榄色、栗色、灰色、和浅褐肉色。没有例如作为褐色光发光源的灯,比如褐色交通灯。It's worth noting that there are a number of colors that only appear in target mode, among them, brown, olive, chestnut, gray, and beige flesh. There are no lamps, such as brown traffic lights, for example, as sources of brown light emission.
为此,补充给要增加物体颜色的视频系统的环境光不能这样利用亮光的作为直接光源。在近范围内的明亮的红色和绿色光的结合不能再现褐色或栗色,因此选择相当受限。仅具有变化的强度和饱和度的彩虹的光谱颜色能够通过对亮光源的光的直接观察再现出来。这强调对环境照明系统的精细控制的需要,比如在注意色调管理的情况下,从光源提供低亮度的光输出。在目前数据结构下,该精密控制还不能在快速变化和精细环境照明方式下寻址。For this reason, the ambient light supplemented to the video system to increase the color of the object cannot use bright light as a direct light source in this way. A combination of bright red and green lights at close range can't reproduce browns or maroons, so the options are rather limited. Only the spectral colors of the rainbow, with varying intensities and saturations, can be reproduced by direct observation of light from bright sources. This emphasizes the need for fine control over ambient lighting systems, such as providing low-level light output from light sources with attention to tone management. With current data structures, this fine-grained control cannot yet be addressed in fast-changing and fine-grained ambient lighting modes.
视频再现可采取很多形式。光谱颜色再现允许准确再现初始激励的光谱能量分布,但这不可在任何利用三主色的视频再现中实现。准确的颜色再现可复制人类视觉的三色值,产生与初始匹配的同质异性,但对于图像和原始场景的整体观察条件必须相似,以获得相似的显示。图像和原始场景的整体观察条件包括图像的边角,周围的亮度和色度,以及强光。不能经常获得精确的彩色再现的一个原因,是因为能在彩色监视器上产生的最大亮度的受到限制。Video reproduction can take many forms. Spectral color reproduction allows accurate reproduction of the spectral energy distribution of the original excitation, but this is not achievable in any video reproduction utilizing the three primary colors. Accurate color reproduction replicates the tristimulus values of human vision, yielding homogeneity to the original match, but overall viewing conditions must be similar for the image and original scene to obtain a similar display. The overall viewing conditions of the image and the original scene include the corners of the image, surrounding brightness and chromaticity, and glare. One reason accurate color reproduction cannot often be obtained is because of limitations on the maximum brightness that can be produced on a color monitor.
当三色值与原始场景的色度成比例,色度颜色再现提供了一种有用的替换。色度坐标被准确再现,但成比例地减少了亮度。如果原始的和再现的基准白色具有相同的色度,观察条件是相同的,且系统具有整体统一的灰度系数,色度颜色再现对视频系统是好的参考标准。由于在视频显示中产生亮度有限,不能获得与原始场景的色度和亮度匹配的等效的颜色再现。Chroma color reproduction provides a useful alternative when tristimulus values are proportional to the chroma of the original scene. The chromaticity coordinates are reproduced accurately, but with proportionally reduced brightness. Chroma color reproduction is a good reference standard for a video system if the original and reproduced reference whites have the same chroma, the viewing conditions are the same, and the system has an overall uniform gamma. Due to the limited luma produced in a video display, an equivalent color reproduction that matches the chroma and luminance of the original scene cannot be obtained.
实际中的大部分视频再现试图获得相应的颜色再现,在这里,如果原始场景被照亮而产生相同的平均亮度水平以及与再现中相同的基准白色色度,再现的颜色将具有与原始场景一致的颜色表现。然而,很多争论的最终目标是显示系统在实际中优选的颜色再现,在此观察者的偏好影响颜色的逼真度。例如,晒黑的皮肤颜色优选为真实皮肤的平均颜色,且天空优选为比实际更蓝的颜色,且叶子比实际更绿。即使相应的颜色再现被接受为设计标准,一些颜色比其它颜色更重要,比如肉色,其在很多再现系统比如NTSC视频标准中是特别处理的主题。Most video reproductions in practice attempt to achieve a corresponding color reproduction, where the reproduced colors will have the same color as the original scene if the original scene were lit to produce the same average luminance level and the same base white chromaticity as in the reproduction. color performance. However, the ultimate goal of much debate is to show the system's preferred color reproduction in practice, where observer preference affects color fidelity. For example, a tanned skin color is preferably the average color of real skin, and the sky is preferably a bluer color and leaves are greener than they actually are. Even if the corresponding color reproduction is accepted as design criteria, some colors are more important than others, such as flesh tones, which are the subject of special treatment in many reproduction systems such as the NTSC video standard.
在再现场景光线时,为获得白平衡的色适应是重要的。在适当调整的摄影机和显示器下,白色和中性灰以CIE标准日光光源D65的色度典型地再现。通过总是以相同的色度重现白色表面,该系统可模仿人类视觉系统,其固有地适应感知以使白色表面总是呈现相同的显示,而不管光源的色度,以使一张白纸,无论在阳光明媚的海滩上或是在室内场景的白炽灯下,都能表现为白色。在颜色再现中,白平衡调整通常通过在R,G和B通道中的增益控制而获得。Chromatic adaptation for white balance is important in reproducing scene lighting. With a properly adjusted camera and monitor, whites and neutral grays are typically reproduced at the chromaticity of the CIE standard daylight illuminant D65. By always reproducing white surfaces at the same chromaticity, the system mimics the human visual system, which inherently adapts perception so that white surfaces always present the same display, regardless of the chromaticity of the light source, so that a sheet of white paper , appearing white whether on a sunny beach or under incandescent lighting in an indoor scene. In color reproduction, white balance adjustments are usually achieved with gain controls in the R, G and B channels.
典型的彩色接收机的光输出典型地不是线性的,而是符合幂律关系来施加视频电压。光输出与提升至幂灰度系数的视频驱动电压成比例,在这里对彩色CRT(阴极射线管)灰度系数典型地为2.5,对其它类型的光源为1.8。在摄像机视频处理放大器中通过三个主要的亮度灰度系数校正器补偿该因子,以便经编码、传送和解码的主要视频信号实际上不是R、G和B,而是R1/(,G1/(和B1/(。色度颜色再现需要视频再现——包括摄像机,显示器和任何灰度调整电子设备——的整体灰度系数统一,但当尝试相应的颜色再现时,环境的亮度优先。例如,暗淡的环境需要的灰度系数大约为1.2,黑暗的环境为获得最佳的颜色再现需要的灰度系数大约为1.5。对RGB彩色空间,灰度系数是重要的执行问题。The light output of a typical color receiver is typically not linear, but follows a power law relationship to the applied video voltage. The light output is proportional to the video drive voltage raised to a power gamma, where gamma is typically 2.5 for a color CRT (cathode ray tube) and 1.8 for other types of light sources. This factor is compensated by three main gamma correctors in the camera video processing amplifier so that the main video signal encoded, transmitted and decoded is not actually R, G and B, but R 1/( , G 1 /( and B 1/( . Chroma color reproduction requires uniform gamma across the video reproduction - including cameras, monitors and any gamma adjustment electronics - but the brightness of the environment takes precedence when attempting to reproduce the color accordingly For example, a dark environment requires a gamma of approximately 1.2, and a dark environment requires a gamma of approximately 1.5 for optimal color reproduction. For the RGB color space, gamma is an important implementation issue.
大多数颜色再现编码利用标准RGB色空间,比如sRGB,ROMM RGB,Adobe RGB98,Apple RGB和比如在NTSC标准中所利用的视频RGB空间。典型地,图像被截取至传感器或源设备空间,其为特殊的设备和图像。其可以被转换到未着色的图像空间,这是表示原始色度的标准色空间(见定义部分)。Most color reproduction codes utilize standard RGB color spaces such as sRGB, ROMM RGB, Adobe RGB98, Apple RGB and video RGB spaces such as those utilized in the NTSC standard. Typically, images are captured to a sensor or source device space, which is specific to the device and image. It can be converted to an uncolored image space, which is a standard color space representing raw chromaticity (see Definitions section).
然而,视频图像往往直接从源设备空间转换至着色的图像空间(见定义部分),其表示某些真实的或虚拟的输出设备,比如视频显示的彩色空间。大部分存在的标准RGB色空间是着色的图像空间。例如,由摄像机和扫描仪产生的源和输出空间不是基于CIE的色空间,而是由光谱灵敏度和摄像机或扫描仪的其它特性限定的光谱空间。However, video images are often converted directly from the source device space to a rendered image space (see Definitions section), which represents some real or virtual output device, such as the color space of a video display. Most of the existing standard RGB color spaces are rendered image spaces. For example, the source and output spaces produced by cameras and scanners are not CIE-based color spaces, but spectral spaces defined by spectral sensitivity and other characteristics of the camera or scanner.
着色图像空间是基于真实或虚拟设备特性的色度的特殊设备的色空间。图像能够从着色的或未着色的图像空间转换到着色空间。这些转换的复杂性会变化,且能够包括复杂的图像依赖算法。这种转换是不可逆的,且放弃或压缩原始场景编码的一些信息,以适应特殊设备的动态范围和色域。A shaded image space is a device-specific color space based on the chromaticity of real or virtual device characteristics. Images can be converted from shaded or unshaded image space to shaded space. These transformations can vary in complexity and can include complex image-dependent algorithms. This conversion is irreversible and discards or compresses some information encoded in the original scene to accommodate the dynamic range and color gamut of a particular device.
目前仅有一种未着色的RGB色空间,其正在变成为标准的过程中,定义在ISO17321中的ISO RGB,多用于数字照相机的颜色特性。在现今的多数申请中,为了存档和数据转换,转换包括视频信号的图像至着色色空间。从一个着色图像或色空间转换到另一个,会导致严重的图像假象。在两设备之间色域和白点不匹配越多,则负面影响越大。Currently there is only one uncolored RGB color space, which is in the process of becoming a standard. The ISO RGB defined in ISO17321 is mostly used for the color characteristics of digital cameras. In most applications today, images including video signals are converted to a rendered color space for archiving and data conversion. Converting from one rendered image or color space to another can cause severe image artifacts. The more gamut and white point mismatches there are between the two devices, the greater the negative impact.
现有技术的环境光显示系统的一个缺点是从视频内容中对用于环境发射的代表颜色的提取还是有问题的。例如,像素色度的颜色平均经常导致灰色,褐色或其它偏色,这些不是视频场景或图像的感知的表示。从简单的色度平均中得到的颜色看起来常常是模糊不清和错选的,尤其是当其与图像特征,比如明亮的鱼或主背景如蓝天对比的时候。A disadvantage of prior art ambient light display systems is that the extraction of representative colors for ambient emissions from video content is problematic. For example, color averaging of pixel chromaticity often results in gray, brown or other color casts that are not a perceived representation of a video scene or image. Colors derived from simple chromaticity averaging often look blurry and misselected, especially when contrasted with image features such as bright fish or a dominant background such as a blue sky.
现有技术环境光显示系统的另一问题是还没有提供特殊的方法用于实时同步的操作,以将着色的三色值从视频转换到环境光源,从而得到合适的色度和表现。例如,从LED环境光源发送的光常常是刺眼的,并带有限制的或偏斜的色域——通常地,色调和色度难以评估和再现。例如,Akashi等人的美国专利6611297处理环境光的真实性,但没有提供特别的方法用来确保正确和令人满意的色度,且Akashi的297号专利并不允许实时分析视频,而是需要脚本或其等效物。Another problem with prior art ambient light display systems is that no special method has been provided for real-time synchronized operation to convert the rendered tristimulus values from video to ambient light for proper chromaticity and presentation. For example, light emitted from LED ambient light sources is often harsh and has a limited or skewed color gamut—often, hue and chromaticity are difficult to evaluate and reproduce. For example, U.S. Patent 6,611,297 to Akashi et al. deals with the realism of ambient light, but provides no special method to ensure correct and satisfactory chromaticity, and Akashi's 297 patent does not allow real-time analysis of video, but requires script or its equivalent.
另外,利用已校正的视频内容色空间的灰度系数的环境光源的设置常导致耀眼和明亮的颜色。另一现有技术的严重问题是需要转换大量用于驱动环境光源的信息,该环境光源作为实时视频内容的函数,以适应预期的快速变化的环境光环境,在其中期望良好的颜色匹配。Additionally, settings for ambient light sources that utilize the gamma of the corrected video content color space often result in dazzling and bright colors. Another serious problem with the prior art is the need to convert the large amount of information used to drive the ambient light source as a function of real-time video content to the expected rapidly changing ambient light environment where good color matching is desired.
因此,扩展通过环境照明结合典型三色视频显示系统所产生的颜色的可能色域是有益的,当开发人眼的特性时,比如在作为亮度级函数的不同颜色的相对目视光度中的变化,通过调节或改变传达给利用环境照明系统的视频用户的颜色和光特性,利用它来提高有益补偿效果、灵敏度和其它人类视觉的特性。Therefore, it would be beneficial to expand the possible gamut of colors produced by ambient lighting in conjunction with typical three-color video display systems, when exploiting the characteristics of the human eye, such as the change in relative visual luminosity of different colors as a function of brightness level , by adjusting or changing the color and light characteristics conveyed to video users utilizing ambient lighting systems, using it to enhance beneficial compensation effects, sensitivity and other characteristics of human vision.
在不受到灰度系数引起的失真影响下,产生有质量的环境氛围也是有益的。其进一步需要的是,能够提供一种方法,利用对平均的或定性的颜色值编码的节省的数据流,通过从选定的视频区域提取主色,用于提供更好的环境照明。其进一步需要的是,减少需要的数据流的大小。It is also beneficial to produce a quality ambience without the effects of gamma-induced distortion. It is a further need to be able to provide a method for providing better ambient lighting by extracting dominant colors from selected video regions with the savings of data streams encoding average or qualitative color values. It is further desired to reduce the size of the required data stream.
关于视频和电视工程、压缩技术、数据传送和编码、人类视觉、色彩场景和感知、色空间、色度、图像着色,以及包括视频再现的信息,将在下面的参考文献中引用,这些文献是这些信息在整体上的结合:参考[1]Color Perception,Alan R.Robertson,Physics Today,1992年12月,第45卷,第12期,24-29页;参考[2]The physics and Chemistryof Color,2rd,Kurt Nassau,John Wiley&Sons,Inc.,New York2001;参考[3]Principles of Color Technology,3ed,Roy S.Berns,JohnWiley &Sons,Inc.,New York,2000;参考[4]Standard Handbook ofVideo and Television Engineering,4ed,Jerry Whitaker and K.BlairBenson,McGraw-Hill,New York2003。Information on video and television engineering, compression techniques, data transmission and coding, human vision, color scenes and perception, color spaces, chromaticity, coloring of images, including video reproduction, is cited in the following references, which are The combination of these information as a whole: refer to [1] Color Perception, Alan R. Robertson, Physics Today, December 1992,
发明内容 Contents of the invention
本发明的不同实施例给出的方法包括利用像素水平统计或等效在某种程度上以尽可能少的计算量确定或提取一个或多个主色,但在同时,提供根据感知规律选择为主色的舒适和合适的色度。Various embodiments of the present invention present methods that use pixel-level statistics or equivalents to determine or extract one or more dominant colors in a way that requires as little computation as possible, but at the same time, provides a choice based on perceptual laws as The comfort and suitable shade of the main color.
本发明涉及从在着色色空间中编码的视频内容中提取主色的方法,通过环境光源来产生用于模拟的主色。方法步骤包括:[1]通过量化着色色空间中视频内容的至少一些像素色度,量化着色色空间,以形成指定颜色的分布;[2]从指定颜色的分布执行主色提取,以通过提取下面任一项产生主色:[a]指定颜色的模式;[b]指定颜色的中值;[c]指定颜色的色度的加权平均值;[d]使用加权函数的加权平均值;然后[3]从着色色空间将主色转换至于允许驱动环境光源的第二着色色空间。The present invention relates to a method of extracting dominant colors from video content encoded in a rendered color space, with ambient light sources being used to generate dominant colors for simulation. The method steps include: [1] quantizing the rendered color space by quantizing at least some pixel chromaticities of the video content in the rendered color space to form a distribution of specified colors; [2] performing dominant color extraction from the distribution of specified colors to obtain Either of the following produces the dominant color: [a] the mode of the specified color; [b] the median value of the specified color; [c] the weighted average of the chromaticities of the specified color; [d] the weighted average using a weighting function; and [3] Converts the primary color from the shading color space to a secondary shading color space that allows driving ambient light sources.
像素色度(或着色色空间)的量化可通过很多方法实现(见定义部分),其目标是通过在可能的颜色状态中寻求简化而减轻计算负担,比如从分配的大量色度(例如像素色度)缩减到较少数量的指定色度或颜色;或通过挑出选择像素的选择过程来减少像素数量;或装箱(binning)以产生代表性的像素或超像素。Quantization of pixel chromaticities (or shading color spaces) can be achieved in many ways (see Definitions section), the goal of which is to reduce the computational burden by seeking simplifications among the possible color states, e.g. from a large number of chromaticities allocated (e.g. degree) to a smaller number of specified shades or colors; or to reduce the number of pixels by a selection process that singles out selected pixels; or binning to produce representative pixels or superpixels.
如果通过将像素色度装箱到至少一个超像素,部分地执行着色色空间的量化,这样产生的超像素可具有与图像特征一致的尺寸、方向、形状或位置。在量化过程中利用指定的颜色可选择为区域颜色矢量,其不必在着色色空间中,比如可在第二着色色空间中。If the quantization of the shaded color space is performed in part by binning pixel chromaticities to at least one superpixel, the superpixels thus produced may have a size, orientation, shape or position consistent with image features. The color specified by the quantization process may be selected as an area color vector, which does not have to be in the rendered color space, for example may be in the second rendered color space.
一旦从指定颜色分布中选择了主色,然后可返回,即得到实际的像素色度以提炼主色。例如,可在指定的颜色分布中确定至少一种感兴趣的颜色,并提取在此指定的像素色度,以取得最终指定的真实的主色作为主色。这样,当指定颜色可为视频内容的粗略近似时,真实的主色能为环境发送提供正确的色度,但仍可节省本来需要的计算量。主色也可包括主色调色板。Once the dominant color has been selected from the specified color distribution, it is then possible to return to the actual pixel chromaticity to refine the dominant color. For example, at least one interesting color can be determined in the specified color distribution, and the pixel chromaticity specified here can be extracted to obtain the finally specified real main color as the main color. This way, when the specified color can be a rough approximation of the video content, the true dominant color provides the correct chromaticity for the ambient send, but still saves computation that would otherwise be required. Primary colors can also include primary color palettes.
其它可能的用于转化的实施例步骤[3]包括[3a]将主色从着色色空间转换至未着色色空间;然后[3b]将主色从未着色颜色的空间转换至第二着色色空间。这附加地包括矩阵转换,利用第一和第二三色主矩阵,转换着色色空间和第二着色色空间的原色到未着色色空间;和通过着色色空间原色、第一三色矩阵以及第二三色矩阵的逆矩阵进行矩阵相乘,获得颜色信息至第二着色色空间的转换。Other possible embodiments for conversion step [3] includes [3a] converting the dominant color from the shaded color space to the unshaded color space; then [3b] converting the dominant color from the space of the unshaded color to the second shaded color space. This additionally includes matrix transformations, using the first and second tricolor primary matrices, converting the primaries of the shaded color space and the second shaded color space to the unshaded color space; Matrix multiplication is performed on the inverse matrices of the two and three color matrices to obtain the conversion of the color information to the second coloring color space.
步骤[1]的像素色度可从提取区域获得,附加步骤[4]可包括从邻近提取区域的环境光源发射主色环境光。The pixel chromaticity of step [1] may be obtained from the extraction region, and the additional step [4] may include emitting dominant-color ambient light from an ambient light source adjacent to the extraction region.
步骤[2]的合理的加权函数允许从图像特征提取多个像素色度,且在先的视频帧可用于指导在后视频帧中选择主色。任何提取区域可选择为从视频帧中提取的图像特征。A reasonable weighting function of step [2] allows multiple pixel chromaticities to be extracted from image features, and previous video frames can be used to guide the selection of dominant colors in subsequent video frames. Any extracted region can be selected as an image feature extracted from a video frame.
这些步骤可以以很多方式结合,未着色色空间可以是CIE XYZ;在ISO标准17321定义的ISO RGB;摄影YCC;CIE LAB;或者任何其它未着色空间之一。且步骤[1],[2]和[3]基本与视频信号同步,利用第二着色色空间中的颜色信息,从视频显示或在视频显示的周围发射环境光。These steps can be combined in many ways, the uncolored color space can be CIE XYZ; ISO RGB as defined in ISO standard 17321; photographic YCC; CIE LAB; or any one of the other uncolored spaces. And steps [1], [2] and [3] are substantially synchronous with the video signal, using the color information in the second rendering color space to emit ambient light from or around the video display.
附图说明 Description of drawings
图1表示本发明简单的视频显示的前表面视图,展示了颜色信息提取区域和相关的环境光从六个环境光源发射;Figure 1 represents a front surface view of a simple video display of the present invention, showing color information extraction regions and associated ambient light emission from six ambient light sources;
图2表示一个房间的俯视图,部分示意图和部分截面图,其中,利用本发明,产生从多重环境光源发射的环境光。Figure 2 shows a top view, part schematic and part cross-sectional view, of a room in which ambient light emitted from multiple ambient light sources is generated using the present invention.
图3表示按照本发明的一个提取颜色信息并影响色空间转换以允许驱动环境光源的系统;Figure 3 shows a system according to the present invention for extracting color information and effecting color space conversion to allow driving ambient light sources;
图4表示从视频提取区域计算颜色信息均值的方程式;Figure 4 represents an equation for calculating the mean value of color information from a video extraction region;
图5表示现有技术转换着色主RGB至未着色色空间XYZ的矩阵方程式;Fig. 5 represents the matrix equation of prior art conversion coloring main RGB to uncolored color space XYZ;
图6和图7表示分别映射视频和环境光着色区域至未着色区域的矩阵方程式;Figures 6 and 7 represent matrix equations for mapping video and ambient light shaded areas to unshaded areas, respectively;
图8表示利用已知的矩阵逆向转化从未着色色空间XYZ得到环境光三色值R’G’B’的办法;Fig. 8 represents the way to obtain the ambient light tristimulus value R'G'B' from the uncolored color space XYZ by known matrix reverse conversion;
图9-11表示现有技术中利用白点方法推导三色主矩阵M;Figures 9-11 show that the white point method is used to derive the three-color main matrix M in the prior art;
图12表示类似于如图3所示的系统,另外包括一个用于环境发射的灰度系数校正步骤;Figure 12 shows a system similar to that shown in Figure 3, additionally including a gamma correction step for ambient emissions;
图13表示本发明所用的总的转换过程的原理图;Fig. 13 represents the schematic diagram of the overall conversion process used by the present invention;
图14表示本发明中利用的获得环境光源转换矩阵系数的处理步骤;Fig. 14 shows the processing steps of obtaining ambient light source conversion matrix coefficients utilized in the present invention;
图15表示本发明所用的估计视频提取和环境光再现的处理步骤;Figure 15 shows the processing steps for estimated video extraction and ambient light rendering used by the present invention;
图16表示按照本发明视频帧提取的示意图;Fig. 16 represents the schematic diagram that extracts according to the video frame of the present invention;
图17表示依照本发明的简化的色度评估处理步骤;Figure 17 shows simplified colorimetric evaluation processing steps according to the present invention;
图18表示如图3和12所示的提取步骤,为驱动环境光源,利用帧解码器、设置帧提取率并执行输出计算;Figure 18 shows the extraction steps as shown in Figures 3 and 12, to drive the ambient light source, utilize the frame decoder, set the frame extraction rate and perform output calculations;
图19和图20表示本发明颜色信息提取和处理的处理步骤;Fig. 19 and Fig. 20 represent the processing steps of color information extraction and processing in the present invention;
图21表示按照本发明总的过程的示意图,包括主色提取和到环境光色空间的转换;Figure 21 shows a schematic diagram of the general process according to the invention, including dominant color extraction and conversion to ambient light color space;
图22示意性地表示一种通过指定像素色度到指定颜色,量化来自视频内容的像素色度的可能的方法;Figure 22 schematically represents a possible method of quantizing pixel chromaticity from video content by specifying pixel chromaticity to specified color;
图23示意性地表示一种通过将像素色度存储至超像素而量化的可能的方法的例子;Figure 23 schematically represents an example of a possible method of quantization by storing pixel chromaticity to superpixels;
图24表示类似图23的存储过程,但是这里超像素的大小、方向、形状或者位置可以与图像特征一致地形成;Figure 24 represents a storage process similar to that of Figure 23, but here the size, orientation, shape or position of the superpixels can be formed consistently with the image features;
图25表示在标准笛卡尔CIE颜色图上区域颜色矢量和它们的颜色或者色度坐标,这里一个颜色矢量位于颜色色域的外面,颜色色域通过PAL/SECAM、NTSC和Adobe RGB颜色产生标准得到;Figure 25 shows area color vectors and their color or chromaticity coordinates on a standard Cartesian CIE color map, where a color vector lies outside the color gamut obtained by the PAL/SECAM, NTSC and Adobe RGB color generation standards ;
图26表示图25所示的CIE图的一部分的特写,另外表示像素色度和其在区域颜色矢量上的分布;Figure 26 shows a close-up of a portion of the CIE diagram shown in Figure 25, additionally showing pixel chromaticity and its distribution on area color vectors;
图27表示按照本发明展示指定颜色分布的模式一个可能的方法的直方图;Figure 27 shows a histogram showing one possible way of specifying patterns of color distribution according to the present invention;
图28表示按照本发明指定颜色分布的中值一个可能方法;Figure 28 shows one possible method of specifying the median value of a color distribution according to the present invention;
图29表示按照本发明通过指定颜色的色度的加权平均值的数学总和的一个可能的方法;Fig. 29 shows one possible method according to the present invention by specifying the mathematical sum of the weighted average of the chromaticity of the color;
图30表示按照本发明利用像素加权函数通过指定颜色的色度的加权平均值的数学总和的一个可能的方法;Figure 30 shows one possible method according to the present invention of using a pixel weighting function to pass the mathematical sum of the weighted average of the chromaticity of a given color;
图31表示在指定颜色分布中确定感兴趣的颜色,然后提取在那里的指定像素色度,以得到一个真实的主色并指定为主色的示意图;Fig. 31 represents the schematic diagram of determining the color of interest in the specified color distribution, and then extracting the specified pixel chromaticity there, to obtain a real main color and designate the main color;
图32示意性地表示按照本发明的主色提取可以多次执行或者分别同时执行以提供一系列主色;Fig. 32 schematically shows that dominant color extraction according to the present invention can be performed multiple times or respectively simultaneously to provide a series of dominant colors;
图33表示如图1所示的视频显示的简单的前表面图,表示按照图29和30示范的方法,将不同加权施加给优选的空间区域一个例子;Figure 33 shows a simple front surface view of the video display shown in Figure 1, showing an example of applying different weights to preferred spatial regions in accordance with the method demonstrated in Figures 29 and 30;
图34给出一个如图33所示的视频显示的简单的前表面图,图表式的表示按照本发明为主色提取的目的而提取一个图像特征;Fig. 34 provides a simple front surface diagram shown in a video as shown in Fig. 33, and the graphical representation extracts an image feature according to the purpose of main color extraction of the present invention;
图35给出本发明另一个实施例的图示,视频内容被解码成一组帧,籍以允许得到的一帧的主色至少部分地依赖前一帧的主色;Figure 35 presents an illustration of another embodiment of the present invention, video content is decoded into a set of frames, thereby allowing the dominant color of the resulting frame to depend at least in part on the dominant color of the previous frame;
图36表示按照本发明选择主色的省略过程的过程步骤。Figure 36 shows the process steps of the omission process for selecting a dominant color in accordance with the present invention.
具体实施方式 Detailed ways
定义definition
下列定义可以全文通用:The following definitions apply throughout:
-环境光源-将在随后的权利要求中,包括需要影响光产生的任何光产生电路或者驱动器。- Ambient light sources - will be included in the following claims to include any light generating circuitry or drivers needed to affect light generation.
-环境空间-将意味着任何和所有在视频显示单元外部的材料体或者空气或者空间。- Ambient Space - shall mean any and all volumes of material or air or space external to the Video Display Unit.
-指定颜色分布-将表示一组颜色,选择它用来代表(如用于计算目的)在视频图像或者视频内容中发现的像素色度的全部范围。- Specify Color Distribution - will represent a set of colors chosen to represent (eg for computational purposes) the full range of pixel chromaticities found in a video image or video content.
-色度-在驱动环境光源的上下文中,将表示一个规定光产生的颜色特征的机械、数值或者物理方式,并且将不暗含特别的方法论,例如用于NTSC或者PAL的电视广播。- Chromaticity - in the context of driving ambient light sources, shall denote a mechanical, numerical or physical way of specifying the color characteristics of light production, and shall imply no particular methodology, eg for NTSC or PAL television broadcasting.
-颜色信息-将包括色度和亮度的全部或者其中之一,或者功能等价量;- color information - will include all or one of chromaticity and lightness, or functionally equivalent quantities;
-计算机-将包括不仅是所有的处理器,例如利用已知结构的CPU(中央处理单元),还包括允许编码、解码、读、处理、执行设定代码或者变化代码的任何智能设备,例如可以执行同样功能的数字光学设备或者模拟电路。-Computers- shall include not only all processors, such as CPUs (Central Processing Units) utilizing known structures, but also any intelligent device that allows encoding, decoding, reading, processing, executing set codes or changing codes, such as can A digital optical device or an analog circuit that performs the same function.
-主色-将表示任何为环境发射目的而选择用来代表视频内容的色度,包括任何被选择用来说明这里公开的方法的颜色;- Predominant Color - shall mean any shade chosen to represent video content for ambient emission purposes, including any color chosen to illustrate the methods disclosed herein;
-提取区域-将包括任何整个视频图像或帧的子集。-Extract Regions - will include any entire video image or subset of frames.
-帧-将包括在视频内容内按时间顺序出现的图像信息,与产业中利用的词语“帧”一致,但是也将包括任何部分的(例如交错)或者全部的图像数据,用来在任何时刻或者在在任何间隔传送视频内容。- Frames - shall include image information that occurs in chronological order within the video content, consistent with the term "frame" used in the industry, but shall also include any partial (e.g. interleaved) or full Or deliver video content at any interval.
-测角色度-将涉及给定的作为视角或者观察角度的函数的不同颜色或者色度的性质,例如通过彩虹产生的。- Angularity - will refer to the property of a given different color or shade as a function of viewing angle or viewing angle, eg produced by a rainbow.
-测角光度-将涉及作为视角或观察角度的函数的给定的不同光亮度、传送和/或颜色的性质,例如发现于光芒四射、发火花或者回射现象。- Goniophotometry - will refer to the properties of a given different luminosity, transmission and/or color as a function of viewing angle or viewing angle, such as found in the phenomena of radiance, sparkling or retroreflection.
-插值-将包括在两组值之间的线性或者数学插值,还包括在两组已知的值之间为设定值的功能性描述;- Interpolation - will include linear or mathematical interpolation between two sets of values, as well as functional descriptions of set values between two sets of known values;
-光特征-在广义上,意思是例如由环境光源产生的任何光的性质的说明,包括除了亮度和色度的所有描述,例如光传输或者反射的程度;或者测角色度性质的描述,包括当观察环境光源时,产生的颜色、闪耀或者其它已知的现象作为视角的函数的程度;光输出方向,包括通过一个坡印廷或者其它传播矢量给予的方向性;或者光角度的分布的描述,例如立体角或者立体角分布函数。还可以包括一个规定其在环境光源位置的坐标,例如单元像素或者灯的位置。- light characteristics - in a broad sense means, for example, descriptions of properties of any light produced by ambient light sources, including all descriptions other than luminance and chromaticity, such as the degree of light transmission or reflection; or descriptions of angular-metric properties, including The degree of color, flare, or other known phenomenon produced when viewing an ambient light source as a function of viewing angle; the direction of light output, including directionality imparted by a Poynting or other propagation vector; or a description of the distribution of light angles , such as the solid angle or the solid angle distribution function. It can also include a coordinate specifying its position in an ambient light source, such as the position of a unit pixel or a light.
-亮度-将表示任何参数或者测得的明亮度、强度或者等价测量,并将不施加光产生的特定方法或者测量或者心理-生物的解释。- Brightness - shall denote any parameter or measured brightness, intensity or equivalent measure, and shall not impose a particular method or measurement or psycho-biological interpretation of light production.
-像素-将涉及真实的或者虚拟的视频像元,允许像素信息偏差的等价信息。- Pixels - will refer to real or virtual video pixels, allowing equivalent information for pixel information deviations.
-量化色空间-在说明书和权利要求的范围中,将涉及可能颜色状态的减少,例如导致从指定的大量色度(例如像素色度)到少量指定的色度或颜色;或者通过挑选被选择像素的选择过程,像素数目减少;或者装箱以产生代表性的像素或者超像素。- quantized color space - within the scope of the specification and claims, shall refer to a reduction of possible color states, e.g. resulting from a specified number of chromaticities (e.g. pixel chromaticities) to a small number of specified chromaticities or colors; or selected by picking Pixel selection process, the number of pixels is reduced; or binned to produce representative pixels or superpixels.
-着色色空间-将表示从作为设备和特定图像的传感器或者特定的光源或者显示设备截取的图像或者色空间。多数RGB色空间是着色图像空间,包括用来驱动视频显示D的视频显示空间。在附加权利要求中,视频显示和环境光源88的特定色空间是着色色空间。- Rendered color space - shall represent an image or color space captured from a sensor or a specific light source or display device as a device and a specific image. Most RGB color spaces are rendered image spaces, including the video display space used to drive the video display D. In the appended claims, the specific color space of the video display and ambient
-转换颜色信息至未着色色空间-在附加权利要求中将包含或者直接转换至未着色色空间,或者利用或者受益于通过利用三色主矩阵的逆转换,该三色主矩阵通过转换至未着色色空间(如图8所示的(M2)-1)而得到。- Transformation of color information to an uncolored color space - in the appended claims will include either direct conversion to an uncolored color space, or utilize or benefit from an inverse transformation by utilizing a three-color primary matrix by transforming to an uncolored color space It is obtained by coloring a color space ((M 2 ) -1 as shown in FIG. 8 ).
-未着色色空间-将表示一个标准或者非特定设备的色空间,例如这些利用标准CIE XYZ描述原图像的比色法;例如在ISO17321标准中定义的ISO RGB;摄影YCC;和CIE LAB色空间。- Uncolored color space - will denote a standard or device-neutral color space, such as those that utilize standard CIE XYZ colorimetry to describe raw images; such as ISO RGB as defined in the ISO17321 standard; photographic YCC; and CIE LAB color spaces .
-视频-将指示任何视觉或者光产生装置,无论需要能量产生光的有源设备,或者任何传送图像信息的传送媒体,例如办公大楼的窗子,或者从远处得到的图像信息的光波导。- Video - shall designate any visual or light-generating device, whether active device requiring energy to generate light, or any transmission medium for transmitting image information, such as windows in an office building, or optical waveguides for image information obtained from a distance.
-视频信号-将指示为控制视频显示单元传送的信号或者信息,因此包括任何音频部分。可以预期视频内容分析包括为音频部分可能的音频内容分析。一般地,视频信号可以包含任何类型的信号,例如利用任何数量的已知的调制技术的无线电频率信号;电信号,包括模拟和量化模拟波形;数字(电)信号,例如那些利用脉宽调制、脉冲数目调制、脉冲位置调制、PCM(脉冲编码调制)和脉冲放大调制;或者其它信号例如听觉信号,声音信号和光信号,它们都能够利用数字技术。其中仅仅顺序排列或者其它信息的数据,例如在基于计算机应用中,也可以利用。- Video signal - shall indicate the signal or information transmitted to control the video display unit, thus including any audio part. It is contemplated that video content analysis includes possible audio content analysis for the audio portion. In general, video signals may comprise any type of signal, such as radio frequency signals utilizing any number of known modulation techniques; electrical signals, including analog and quantized analog waveforms; digital (electrical) signals, such as those utilizing pulse width modulation, Pulse Number Modulation, Pulse Position Modulation, PCM (Pulse Code Modulation) and Pulse Amplification Modulation; or other signals such as auditory signals, sound signals and optical signals, all of which can utilize digital techniques. Data in which only sequential or other information, such as in computer-based applications, may also be utilized.
-加权-将涉及任何在这里给出的为特定的色度或者空间位置给出优先状态或者较高数学加权的等价方法。-Weighting-shall refer to any equivalent method given here to give priority status or higher mathematical weighting for particular chromaticities or spatial locations.
具体描述specific description
如果需要,按照本发明由视频内容得到的环境光形成为,允许对原始视频场景光有高的逼真度,然而保持高程度的环境光自由度特性仅需要低的计算负担。这允许具有小的颜色色域环境光源和亮度降低空间,来模拟从具有相对大的颜色色域和亮度响应曲线的更高级的光源发出的视频场景光。用于环境照明的可能的光源能够包括任何数目的已知的发光设备,包括LED(发光二极管)和相关的半导体辐射源;电致发光设备包括非半导体类型;白织灯,包括用卤素或者更高级的化学物质的更改类型;离子放电灯,包括荧光和氖灯;激光器;再调制的光源,例如通过利用LCD(液晶显示器)或者其它光调制器;光致发光发射器,或者任何数量已知的可控光源,包括功能类似显示器的阵列。Ambient lighting derived from video content in accordance with the present invention is formed, if desired, to allow a high degree of fidelity to the original video scene lighting, yet maintaining a high degree of ambient light freedom characteristics requires only a low computational burden. This allows ambient light sources with small color gamuts and luma reduction headroom to simulate video scene lighting from more advanced light sources with relatively large color gamuts and luma response curves. Possible light sources for ambient lighting can include any number of known light emitting devices, including LEDs (Light Emitting Diodes) and related semiconductor radiation sources; electroluminescent devices including non-semiconductor types; Advanced chemical modification types; ionizing discharge lamps, including fluorescent and neon lamps; lasers; remodulated light sources, such as by using an LCD (liquid crystal display) or other light modulator; photoluminescent emitters, or any number of known Controllable light sources, including arrays that function like displays.
这里给出的说明部分,将部分地首先涉及从视频内容提取颜色信息,随后,涉及提取方法,以获得能够代表视频图像或者场景的环境发射的主色或者真实颜色。The description given here will, in part, first relate to the extraction of color information from video content, and subsequently to extraction methods to obtain dominant or true colors that can represent the ambient emission of a video image or scene.
参考图1,其仅以示例性的目的用于说明按照本发明的视频显示D的简单前表面图。显示D可以包括任何数目已知的从着色色空间解码视频内容的设备,如NTSC、PAL或者SECAM广播标准,或者着色RGB空间,例如Adobe RGB。显示D可以包括可选择的颜色信息提取区域R1,R2,R3,R4,R5和R6,它们的边界可以与那些图解区域分离。颜色信息提取区域可以任意预先确定并具有产生特有环境光A8的特征,例如通过后面安装可控环境照明单元(未示出),其产生和发射如图所示的环境光L1、L2、L3、L4、L5和L6,例如通过将部分光泄漏到显示D安装的墙(未示出)上。可选择地,如图所示的显示帧Df自己也包括以简单的方式显示光的环境照明单元,包括向外向观看者(未示出)。如果希望,每一个颜色信息提取区域R1-R6可以单独的影响接近它的环境光。例如,如图所示,颜色信息提取区域R4可以影响环境光L4。Reference is made to Fig. 1 which, for exemplary purposes only, illustrates a simple front view of a video display D according to the invention. Display D may include any number of known devices that decode video content from a rendered color space, such as NTSC, PAL, or SECAM broadcast standards, or a rendered RGB space, such as Adobe RGB. Display D may include selectable color information extraction regions R1, R2, R3, R4, R5 and R6, whose boundaries may be separated from those graphical regions. The color information extraction area can be arbitrarily predetermined and has the characteristics of generating unique ambient light A8, for example by installing a controllable ambient lighting unit (not shown) behind, which generates and emits ambient light L1, L2, L3, L4, L5 and L6, for example by leaking part of the light onto a wall (not shown) where display D is mounted. Optionally, the display frame Df as shown in the figure also itself includes an ambient lighting unit for displaying light in a simple manner, including outwardly to a viewer (not shown). If desired, each color information extraction region R1-R6 can individually affect the ambient light proximate it. For example, as shown, the color information extraction region R4 may affect the ambient light L4.
参考图2,俯视图-部分的示意以及部分的截面图-显示场所或者环境空间A0,其中,利用本发明,产生来自多环境光源的环境光。在环境空间A0设置所示的座位和桌子7,配置它们以允许观看视频显示D。在环境空间A0也配置了大量环境照明单元,利用即时发明,其被随意地控制,包括所示的光扬声器1-4、所示的在沙发或者座位下面的地灯SL,还有一组配置在显示D周围的特殊模拟环境照明单元,即如图1所示的产生环境光Lx的中心灯。这些环境照明单元的每一个可以发射环境光A8,如图中阴影部分所示。Referring to Figure 2, a top view - part schematic and part cross-sectional view - shows a venue or ambient space A0 in which ambient light from multiple ambient light sources is generated using the present invention. Seats and tables 7 as shown are provided in ambient space A0, configured to allow video display D to be viewed. A large number of ambient lighting units are also configured in the ambient space A0, which can be controlled at will by using the instant invention, including the shown light speakers 1-4, the shown floor lamp SL under the sofa or seat, and a group of configurations in the A special simulated ambient lighting unit around D is shown, namely a central light producing ambient light Lx as shown in Fig. 1. Each of these ambient lighting units can emit ambient light A8, as indicated by the shaded portion in the figure.
与此即时发明结合,可以任意地从这些环境照明单元产生环境光,伴随从这些环境照明单元里得到但是实际上没有通过视频显示D发射的颜色或者色度。这允许开拓人眼的特征和视觉系统。值得注意,人视觉系统的亮度功能,其对于不同可视波长具有探测灵敏度,作为光等级的函数而变化。In conjunction with this immediate invention, ambient light can be arbitrarily generated from these ambient lighting units, with color or chromaticity emitted from these ambient lighting units but not actually displayed by the video. This allows exploiting the characteristics and visual system of the human eye. It is worth noting that the luminance function of the human visual system, which has a detection sensitivity for different visible wavelengths, varies as a function of light level.
例如,暗视或者夜视依靠倾向对蓝色和绿色更加敏感的视网膜杆。利用锥形细胞的明视更加适合探测长波长的光,例如红色和黄色。在剧院环境的黑色空间,通过调制或者变化传送给在环境空间中的视频观看者的颜色,可以稍微抵消不同颜色的相对发光度的这些变化作为光等级的函数。这可以通过从环境照明单元减去来完成,例如利用光调制器(未示出)的光扬声器1-4或者通过利用在光扬声器上增加元件,即光致发光发射器在环境释放前进一步改变光。光致发光发射器通过吸收或者经历来自光源的入射光的激励而执行颜色转换,然后再次发射在更高的期望波长中的光。光致发光发射器这种激励和再次发射,例如荧光染料,可以允许没有在原始视频图像或者光源中出现的新的颜色着色,或许也没有在显示D的固有操作的颜色或者颜色色域范围内。当希望的环境光Lx的亮度低时,这是有帮助的,例如在很黑的场景中,以及当希望的感知水平比通常没有光调制时得到的感知水平高时。For example, scotopic or night vision relies on retinal rods that tend to be more sensitive to blues and greens. Photopic vision using cone cells is better at detecting longer wavelengths of light, such as red and yellow. In the black space of a theater environment, by modulating or varying the colors delivered to a video viewer in the ambient space, these changes in the relative luminosity of the different colors can be somewhat offset as a function of light level. This can be done by subtracting from the ambient lighting unit, e.g. the optical speakers 1-4 using a light modulator (not shown) or by using an added element on the optical speaker, i.e. a photoluminescent emitter that changes further before ambient release. Light. Photoluminescent emitters perform color conversion by absorbing or undergoing excitation from incident light from a light source, and then re-emit light in a higher desired wavelength. This excitation and re-emission of photoluminescent emitters, such as fluorescent dyes, may allow new color rendering not present in the original video image or light source, and perhaps not within the inherent operating color or color gamut of the display D . This is helpful when the desired brightness of the ambient light Lx is low, eg in very dark scenes, and when the desired perceived level is higher than would normally be obtained without light modulation.
新颜色的产生可以提供新的和有趣的视觉效果。说明的例子可以是橙色光的产生,例如被称为寻觅的橙色,对于它,可用的荧光染料是众所周知的(参照参考[2])。给出的例子包括荧光颜色,其与一般的荧光现象和相关现象对立。利用荧光橙色或者其它荧光染料种类对低光条件尤其有用,这里红色和橙色的促进可以抵消暗视觉对长波长的灵敏度。The creation of new colors can provide new and interesting visual effects. An illustrative example could be the generation of orange light, for example the so-called seeking orange, for which useful fluorescent dyes are well known (cf. reference [2]). Examples given include fluorescent colors as opposed to general fluorescent and related phenomena. The use of fluorescent orange or other fluorescent dye species is especially useful for low light conditions, where red and orange boosts can counteract the sensitivity of scotopic vision to long wavelengths.
在环境照明单元利用荧光染料可以包括在染料类别中已知的染料,例如二萘嵌苯,萘酰亚胺,香豆素,噻吨,蒽醌,硫靛,以及专用的染料类别,例如由美国俄亥俄州克里夫兰日光荧光染料颜色公司生产的。可用的颜色包括阿帕契黄,底格里斯黄,大草原黄,Pocono黄,莫霍克黄,波拖马可河黄,万寿菊橙,渥太华红,伏尔加红,大马哈粉,以及哥伦比亚蓝。这些染料类别可以利用已知的过程组合到合成树脂中,例如PS、PET以及ABS。Utilization of fluorescent dyes in ambient lighting units may include dyes known in the class of dyes such as perylenes, naphthalimides, coumarins, thioxanthenes, anthraquinones, thioindigo, as well as specialized classes of dyes such as those produced by Manufactured by Daylight Fluorescent Dye Colors, Cleveland, Ohio, USA. Available colors include Apache Yellow, Tigris Yellow, Prairie Yellow, Pocono Yellow, Mohawk Yellow, Potomac Yellow, Marigold Orange, Ottawa Red, Volga Red, Damascus Pink, and Columbia Blue. These dye classes can be incorporated into synthetic resins such as PS, PET and ABS using known processes.
荧光染料和材料已经提高了视觉效果,因为它们可以设计得比同色度的非荧光材料亮很多。用于产生荧光颜色的传统的有机颜料的所谓耐久性问题,在近二十年得到了很大的解决,随着技术的进步,已经导致耐久性荧光颜料的发展,暴露在阳光下,其可保持它们逼真的着色7-10年。因此这些颜料在进入UV射线最小的家庭影院环境中几乎不受破坏。Fluorescent dyes and materials have improved visual performance because they can be engineered to be significantly brighter than non-fluorescent materials of the same shade. The so-called durability problem of traditional organic pigments used to produce fluorescent colors has been largely solved in the past two decades. With the advancement of technology, it has led to the development of durable fluorescent pigments, which can be exposed to sunlight. Keep them realistically colored for 7-10 years. These pigments are therefore virtually immune to damage in home theater environments with minimal exposure to UV rays.
可选择地,荧光光颜料能够利用,它们通过吸收短波长的光简单地工作,并且再次将该光作为例如红色或橙色的长波长的光发射。无机颜料的技术提高已经使可视光在激励下可以实现,例如蓝色和紫色,例如400-440nm的光。Alternatively, fluorescent photopigments can be utilized, which simply work by absorbing short wavelength light, and re-emitting this light as longer wavelength light, eg red or orange. Technological advances in inorganic pigments have enabled visible light excitation, such as blue and violet, such as 400-440nm light.
测角色度和测角光度作用能够相似地展开来产生不同光的作为视角函数的颜色、亮度和特征。为实现这一效果,环境照明单元1-4和SL和Lx能够单独的或者联合地利用已知的测角光度元件(未示出),例如金属的和珠光般的传递着色;利用公知的散射或者薄膜干涉作用的彩虹材料,例如利用鳞状实体;薄鳞片鸟嘌呤;或者有防腐剂的2-氨基次黄嘌呤。利用精细的云母或者其它物质作为扩散体,例如由氧化层、斑铜矿或者孔雀矿制造的光芒四射的材料;金属薄片、玻璃薄片或者塑料薄片;颗粒物质;油;毛玻璃,和毛塑料。Angular and goniophotometric effects can be similarly developed to produce different color, brightness, and characteristics of light as a function of viewing angle. To achieve this effect, the ambient lighting units 1-4 and SL and Lx can individually or in combination utilize known goniophotometric elements (not shown), such as metallic and pearlescent transfer shading; Or rainbow materials with thin-film interference, such as using scale-like entities; thin-scale guanine; or 2-aminohypoxanthine with preservatives. Utilize fine mica or other substances as diffusers, such as radiant materials made of oxide, bornite, or malachite; flakes of metal, glass, or plastic; particulate matter; oils; frosted glass, and frosted plastic.
参考图3,表示按照本发明提取颜色信息(例如主色或者真实颜色)和作用色空间转换以驱动环境光源的一个系统。在第一步骤,利用已知的技术从视频信号AVS提取颜色信息。Referring to FIG. 3, there is shown a system for extracting color information (such as primary color or true color) and effecting color space conversion to drive ambient light sources according to the present invention. In a first step, color information is extracted from the video signal AVS using known techniques.
视频信号AVS可以包括已知的用于MPEG编码、音频PCM编码等等的数字数据帧或者包。可以利用已知的编码方案给数据包,例如带有可变长度数据包的程序流,或者均匀平分数据包的传送流,或者其它单程序传送流的方案。可选择地,这里公开的功能步骤或者方框图可以利用计算机编码或者其它通信标准模拟,包括异步协议。The video signal AVS may comprise frames or packets of digital data known for MPEG encoding, audio PCM encoding, and the like. Known encoding schemes may be used for the data packets, such as program streams with variable length data packets, or transport streams with evenly divided data packets, or other single program transport stream schemes. Alternatively, the functional steps or block diagrams disclosed herein may be emulated using computer code or other communication standards, including asynchronous protocols.
作为一般的例子,所示的视频信号AVS可以经历所示的视频内容分析CA,可能利用已知的方法在所示的硬盘HD来回记录和传递选择的内容,可能应用所示的内容类型库或者其它存储在存储器MEM的信息。这能够允许选择视频内容的单独的、平行的、直接的、延迟的、连续的、周期的或者非周期的转换。由这些视频内容,可以执行所示的特征提取FE,例如一般地提取颜色信息(例如主色),或者从一个图像特征提取。颜色信息在着色色空间还要被编码,然后转换到未着色空间,例如利用所示的RUR映射转换电路10的CIE XYZ。这里的RUR代表希望的转换类型,即,着色-未着色-着色,这样RUR映射转换电路10进一步转换颜色信息至第二着色色空间,该第二着色色空间被形成为允许驱动所述环境光源88。RUR转换时优选的,但是可以利用其它的映射,只要能够利用环境光产生电路或其等价装置在第二着色色空间接收信息。As a general example, the shown video signal AVS may be subjected to the shown video content analysis CA, possibly using known methods to record and transfer selected content to and from the shown hard disk HD, possibly using the shown library of content types or Other information stored in memory MEM. This can allow selection of individual, parallel, direct, delayed, continuous, periodic or aperiodic switching of video content. From these video contents, the feature extraction FE shown can be performed, eg extraction of color information in general (eg dominant colors), or feature extraction from an image. The color information is also encoded in the shaded color space and then transformed to an unshaded space, such as CIE XYZ using the RUR
RUR映射转换电路10可以功能性地包含在计算机系统中,其利用软件来执行相同的功能,但是在解码由数据传送协议传送的分组信息的情况下,在电路10内存在一个存储器,其包含或者被更新以便包含相互关联或者提供着色色空间系数等等的信息。新产生的第二着色色空间是适当的并且希望将其用于驱动环境光源88(如图1和2所示),并且用所示的对环境光产生电路18的编码供给。环境光产生电路18从RUR映射转换电路10得到第二着色色空间信息,然后说明从任何用户界面以及任何合成偏好存储器(和U2一起所示)的任何输入,在参考所示的可能导致环境光(第二着色)色空间查找表格LUT之后,用于发展真实环境光输出控制参数(例如施加的电压)。将由环境光产生电路18产生的环境光输出控制参数供给所示的灯界面驱动器D88,以直接控制或供给所示的环境光源88,其可以包括单独的环境照明单元1-N,例如前面引用的如图1和2所示的环境光扬声器1-4,或者环境光中心灯Lx。The RUR
为减少任何实时计算负担,从视频信号AVS移除的颜色信息可以被省略或者限制。参考图4,表示从视频提取区域计算平均颜色信息的方程,用于讨论。可以预期,如下面叙述的(参见图18),视频信号AVS的视频内容将包含一系列时间序列视频帧,但是这并不是必需的。对于每一个视频帧或者等价时间框图,可以从每一个提取区域(例如R4)提取平均值或者其它颜色信息。每一个提取区域可以被设置以具有特定的大小,例如对100×376个像素。假设,例如帧频率为25帧/秒,对于每一个视频RGB三主色,在提取平均值(假设只有1字节需要规定8比特的颜色)之前提取区域R1-R6的合成的总数据将会是6×100×376×25或者5.64兆字节/秒。这种数据流很大,并且在RUR映射转换电路10中很难处理,因此,对每一个提取区域R1-R6的平均颜色的提取可以在特征提取FE中起作用。特别地,所示的能够对每一个m×n像素的提取区域的每一个像素求和RGB颜色通道值(如Rij),并且通过m×n像素的数目来达到每一个主RGB的均值,例如所示的为红色的Ravg。这样重复对每一个RGB颜色通道的求和,每一个提取区域的均值将会是一个三位字节RAVG=|Ravg,Gavg,Bavg|。对所有的提取区域R1-R6和每一个RGB颜色通道,重复同样的过程。提取区域的数目和大小可以与所示的不一样,也可以按照希望的那样划分。To reduce any real-time computational burden, the color information removed from the video signal AVS may be omitted or limited. Referring to Fig. 4, an equation representing the calculation of average color information from a video extraction region is used for discussion. It is contemplated, but not required, that the video content of video signal AVS will comprise a series of time-sequential video frames, as described below (see FIG. 18). For each video frame or equivalent time frame, average or other color information can be extracted from each extraction region (eg R4). Each extraction region can be set to have a specific size, for example, to 100×376 pixels. Assuming, for example, that the frame rate is 25 frames per second, for each of the three main colors of video RGB, the total data of the synthesis of the region R1-R6 extracted before extracting the average value (assuming that only 1 byte needs to specify 8 bits of color) will be That's 6 x 100 x 376 x 25 or 5.64 Mbytes/sec. This kind of data flow is very large, and it is difficult to handle in the RUR
通过RUR映射转换电路10执行颜色映射转换的下一步可以是所示的说明性的和利用所示的三色主矩阵表示,例如如图5所示,其中具有向量R,G,B的着色三色空间利用带有元素Xr,max,Yr,max,Zr,max三色主矩阵M转换,其中Xr,max是R最初在最大值输出的三色值。The next step in the color mapping transformation performed by the RUR
从着色色空间至未着色、单独设备空间的转换可以是图像和/或特别的设备-已知的线性化,像素重建(如果需要)和白点选择步骤可以被执行,随后是矩阵转换。在这种情况下,我们简单地选择采用着色视频输出空间作为转换至未着色色空间比色的出发点。未着色图像需要经过到第二着色空间的附加转换,以使它们可视或者可印刷,并且这样的RUR转换包括到第二着色空间的转换。The conversion from shaded color space to unshaded, device-only space can be image and/or device-specific - known linearisation, pixel reconstruction (if needed) and white point selection steps can be performed, followed by matrix conversion. In this case, we simply choose to use the shaded video output space as the starting point for the colorimetric conversion to the unshaded color space. Unrendered images need to undergo an additional transformation to a second rendering space in order to make them viewable or printable, and such RUR transformations include transformations to the second rendering space.
在第一可能的步骤,图6和7表示绘制视频着色色空间的矩阵方程,分别由主R,G,B和环境光着色色空间表示,分别由主R’,G’,B’表示,到所示的未着色色空间X,Y,Z,在这里,三色主矩阵M1转换视频RGB至未着色XYZ,三色主矩阵M2转换环境光源R’G’B’至所示的未着色XYZ色空间。使图8所示的着色空间RGB和R’G’B’相等,利用第一和第二三色主矩阵(M1,M2),允许矩阵转换着色(视频)色空间和第二着色(环境)色空间的原色RGB和R’G’B’到所述未着色色空间(RUR映射转换);通过着色视频色空间的原色RGB、第一三色矩阵M1和第二三色矩阵的逆矩阵(M2)-1进行矩阵相乘,得到颜色信息到第二着色色空间(R’G’B’)的转换。然而已知显示设备的三色主矩阵容易得到,本领域技术人员利用已知的白点法可以确定环境光源。In a first possible step, Figures 6 and 7 represent the matrix equations for drawing the video shading color space, denoted by the primary R, G, B and ambient shading color spaces, respectively, denoted by the primary R', G', B', to the unshaded color space X, Y, Z shown, where tristimulus M1 converts the video RGB to unshaded XYZ and trismatrix M2 converts the ambient light source R'G'B' to the shown Uncolored XYZ color space. Equalizing the shading spaces RGB and R'G'B' shown in FIG. 8, using the first and second tricolor primary matrices (M 1 , M 2 ), allows matrix transformation of the shading (video) color space and the second shading ( Primaries RGB and R'G'B' of ambient) color space to said unrendered color space (RUR mapping conversion); by rendering the primary colors RGB of video color space, the inverse of the first three-color matrix M1 and the second three-color matrix The matrix (M 2 ) -1 performs matrix multiplication to obtain the conversion of the color information into the second coloring color space (R'G'B'). However, the three-color main matrix of the known display device is easy to obtain, and those skilled in the art can use the known white point method to determine the ambient light source.
参考图9-11,表示现有技术利用白点法得到一般三色主矩阵M。在图9中,量SrXr代表每一个(环境光源)在最大输出的主三色值,Sr代表白点振幅,Xr代表由(环境)光源产生的主光的色度。利用白点方法,利用已知的光源色度矩阵的逆,矩阵方程使Sr与白点参考值矢量相等。图11是代数处理以提示白点基准值,例如Xw,是白点振幅或者亮度以及光源色度的乘积。贯穿始终,三色值X被设置等于色度x;三色值Y被设置等于色度y;三色值Z被限定为等于1-(x+y)。第二着色环境光源色空间的主色和基准白色元件能够用已知的技术,例如通过利用颜色光谱仪获得。Referring to Figs. 9-11, it shows that the prior art uses the white point method to obtain the general three-color main matrix M. In Figure 9, the quantities S r X r represent the primary tristimulus values at maximum output for each (ambient light source), S r represents the white point amplitude, and X r represents the chromaticity of the primary light produced by the (ambient) light source. Using the white point method, using the known inverse of the chromaticity matrix of the light source, the matrix equation equates S r to the white point reference value vector. Figure 11 is an algebraic process to suggest that a white point reference value, such as Xw , is the product of the white point amplitude or luminance and the chromaticity of the light source. Throughout, tristimulus X is set equal to chroma x; tristimulus Y is set equal to chroma y; tristimulus Z is constrained to equal 1-(x+y). The primary and reference white components of the second colored ambient light source color space can be obtained using known techniques, for example by using a color spectrometer.
可以发现第一着色视频色空间的相似的量。例如,已知当代的演播室监视器在北美、欧洲和日本有稍微不同的标准。但是,例如,在高清电视(HDTV)上基本的标准已经国际一致,这些基本的标准接近地代表演播室监视器在演播室视频、计算以及计算机图像方面的特征。这一标准正式地表示ITU-R推荐BT.709,其包括需要的参数,在这里,有关RGB的三色主矩阵(M)是:A similar amount can be found for the first rendering video color space. For example, contemporary studio monitors are known to have slightly different standards in North America, Europe, and Japan. But, for example, on high-definition television (HDTV), there has been international agreement on basic standards that closely represent the characteristics of studio monitors in terms of studio video, computing, and computer graphics. This standard formally represents the ITU-R recommendation BT.709, which includes the required parameters, where the three-color main matrix (M) for RGB is:
0.640 0.300 0.150 ITU-R BT.709的矩阵M0.640 0.300 0.150 Matrix M of ITU-R BT.709
0.330 0.600 0.0600.330 0.600 0.060
0.030 0.100 0.7900.030 0.100 0.790
白点的值也是已知的。The value of the white point is also known.
参考图12,和图3所示的系统相似,在为环境光发射的特征提取步骤FE之后,另外包括一个灰度系数校正步骤55。可选择地,灰度系数校正步骤55可以在由RUR映射转换电路10和环境光产生电路18执行的步骤之间执行。已发现LED环境光源的最佳灰度系数值是1.8,因此可以利用已知的数学计算得出的灰度系数值来执行用以抵消典型灰度系数为2.5的视频色空间的负灰度系数校正。Referring to FIG. 12 , similar to the system shown in FIG. 3 , after the feature extraction step FE for ambient light emission, a
一般地,RUR映射转换电路10,其能够是一个通过任何已知的适合的软件平台作用的功能块,执行如图13所示的一般RUR转换,在这里,所示的示意图获得包括例如视频RGB的着色色空间的视频信号AVS,并将其转换到例如CIE XYZ的未着色色空间;然后到第二着色色空间(环境光源RGB)。RUR转换之后,除了信号处理之外,如图所示,可以驱动环境光源88。Generally, the RUR
图14表示利用本发明获得环境光源转换矩阵系数的处理步骤,如图所示,其中步骤包括驱动环境光单元;以及所示的本领域中的检查输出线性度。如果环境光源原色是稳定的,(左边分叉所示,稳定原色),利用颜色光谱仪可以得到转换矩阵系数;另一方面,如果环境光源原色是不稳定的,(右边分叉所示,不稳定原色),可以复位在先给定的灰度系数校正(如图所示,复位灰度系数曲线)。Fig. 14 shows the processing steps of obtaining the conversion matrix coefficients of the ambient light source by using the present invention, as shown in the figure, wherein the steps include driving the ambient light unit; and checking the output linearity in the field shown. If the primary color of the ambient light source is stable, (as shown by the bifurcation on the left, stable primary color), the conversion matrix coefficient can be obtained by using a color spectrometer; on the other hand, if the primary color of the ambient light source is unstable, (as shown by the bifurcation on the right, unstable primary color), you can reset the previously given gamma correction (as shown in the figure, reset the gamma curve).
一般地,希望从提取区域例如R4中每一个像素提取颜色信息,但这不是必须的,作为代替,如果需要,对已选择像素的轮询可以允许快速评估平均颜色,或者快速产生提取区域颜色特征的发生。图15表示利用本发明视频提取评估和环境光再现的处理步骤,这里的步骤包括[1]准备视频再现色度(从着色色空间,例如视频RGB)的评估;[2]转换到未着色色空间;以及[3]为环境再现(第二着色色空间,例如LEDRGB)的转换色度评估。In general, it is desirable to extract color information from each pixel in an extraction region such as R4, but this is not required. Instead, polling of selected pixels may allow rapid evaluation of the average color, or rapid generation of extraction region color features, if desired. happened. Figure 15 shows the processing steps of video extraction evaluation and ambient light rendering using the present invention, where the steps include [1] preparing evaluation of video rendering chromaticity (from rendered color space, such as video RGB); [2] converting to uncolored color space; and [3] transformed chromaticity evaluation for ambient rendering (second rendering color space, eg LEDRGB).
按照本发明,已经发现需要用于从视频帧支持视频内容的提取和处理(例如主色)所需要的数据位流(参加下图18),可以通过明智的视频帧子采样来减少。参考图16,表示按照本发明视频帧提取的图表。示出了一系列独立的连续的视频帧F,即视频帧F1,F2,F3等等-例如由NTSC、PAL或者SECAM标准规定的独立交织或者没有交织的指定视频帧。通过进行内容分析和/或特征提取-例如提取主色信息-从选定的连续帧,例如帧F1和FN,可以减少数据负载或开销,同时保持可接受的环境光源的响应能力、现实性和逼真度。已经发现N=10时可以给出好的结果,即从10个连续帧中子采样一帧能够工作。这提供了在低处理额外开销的帧提取之间的刷新周期P,其中帧间插值过程能够提供显示D中的色度随时间变化的恰当的近似。提取被选择的帧F1和FN如图所示(提取)并且色度参数的中间插入值,如G2、G3和G4所示,提供了必须的颜色信息来通知前面引用的环境光源88的驱动过程。这避免了在帧2至帧N-1中简单凝固或者保持同样颜色信息的需要。例如在提取的帧F1和FN之间的整体色度差别覆盖插值帧G扩展的情况下,插入值可以线性地确定。可选择地,一个函数可以扩展以任何其它方式提取的帧F1和FN之间的色度差别,例如适合提取的颜色信息的时间显象的高阶近似。插值的结果可以用于通过预先访问帧F来影响插值帧(例如在DVD播放器中),或者可选择地,插值可以在没有预先选取帧F时用于影响将来的插值帧(例如在发射解码中的应用)。In accordance with the present invention, it has been found that the data bitstream required to support the extraction and processing of video content (eg dominant colors) from video frames (see Figure 18 below) can be reduced by judicious sub-sampling of video frames. Referring to FIG. 16, a diagram illustrating video frame extraction according to the present invention is shown. A series of independent consecutive video frames F are shown, ie video frames F1 , F2 , F3 and so on - eg specified video frames with independent interleaving or without interleaving as specified by NTSC, PAL or SECAM standards. By performing content analysis and/or feature extraction—such as extracting dominant color information—from selected consecutive frames, such as frames F 1 and F N , the data load or overhead can be reduced while maintaining acceptable responsiveness, realistic sexiness and fidelity. It has been found that N=10 gives good results, ie subsampling one frame out of 10 consecutive frames works. This provides a refresh period P between frame fetches with low processing overhead, where the interframe interpolation process can provide a good approximation of the chrominance in the display D over time. Extraction of selected frames F1 and FN as shown (extraction) and intermediate interpolation values of chroma parameters, shown as G2 , G3 and G4 , provide the necessary color information to inform the previously cited environment The driving process of the
图17表示按照本发明的简化的色度评估处理步骤。帧提取的较高阶分析可以相对本来可能的值扩大刷新周期P并扩大N。在帧提取期间,或者在提取区域Rx中选择的像素临时轮询中,可以处理所示的简化色度评估,这将导致要么下一帧提取的延迟,如左边所示,要么使全部帧提取开始,如右边所示。不论何种情况,插值继续进行(插值),带有延迟的下一帧提取导致凝固,或者增加利用的色度值。这将在位流或者额外开销的带宽方面提供甚至更加节约的操作。Figure 17 shows simplified colorimetric evaluation processing steps in accordance with the present invention. Higher order analysis of frame extraction can expand the refresh period P and expand N relative to what would otherwise be possible. During frame extraction, or in temporal polling of selected pixels in the extraction region Rx , the simplified chrominance evaluation shown can be processed, which will result in either a delay in the extraction of the next frame, as shown on the left, or make the entire frame Extraction begins, as shown on the right. In either case, the interpolation continues (interpolation), with a delay in fetching the next frame resulting in freezing, or increasing the chrominance value utilized. This would provide even more economical operation in terms of bitstream or overhead bandwidth.
图18表示图3和12的顶部,在这里一个可选择的提取步骤在所利用的帧解码器FD旁显示,在所示的步骤33,允许从提取区域(如R1)提取区域信息。进一步的处理或者组成的步骤35包括评估色度差别,并如所指示的一样,利用这些信息设置视频帧提取率。先于数据传输到环境照明和前面所示的产生电路18,如所示执行下一处理步骤,该步骤执行输出计算00,如图4的平均处理,或者如下面讨论的主色提取的。Figure 18 represents the top of Figures 3 and 12, where an optional extraction step is shown next to the frame decoder FD utilized, at
如图19所示,表示本发明的颜色信息提取和处理的一般处理步骤包括获得视频信号AVS;从选择的视频帧(例如前面引用的F1和FN)提取区域(颜色)信息;在选择的视频帧之间插值;RUR映射转换;可选择的灰度系数校正;并利用这些信息驱动环境光源(88)。如图20所示,在从选择帧信息的区域提取之后:可以插入另外两个处理步骤:可以执行选择帧F1和FN之间的色度差别评估,和依靠预定的准则,一个可以如指示设置新的帧提取率。这样,如果连续帧F1和FN之间的色度差别很大,或者增加很快(例如大的一级导数),或者满足其它一些准则,例如基于色度差别历史,然后可以增加帧提取率,这样减少了刷新周期P。然而,如果连续帧F1和FN之间的色度差别很小,并且很稳定或者没有快速增加(例如第一导数的绝对值低或者为零),或者满足其它的一些准则,例如基于色度差别历史,然后可以节省需要的数据位流并降低帧提取率,这样提高了刷新周期P。As shown in Figure 19, the general processing steps representing the color information extraction and processing of the present invention include obtaining the video signal AVS; interpolation between video frames; RUR mapping conversion; optional gamma correction; and using this information to drive ambient light sources (88). As shown in Figure 20, after the region extraction from the selected frame information: two further processing steps can be inserted: a chromaticity difference evaluation between the selected frames F1 and FN can be performed, and relying on predetermined criteria, one can be as Indicates to set a new frame fetch rate. Thus, if the chroma difference between consecutive frames F1 and FN is large, or increases rapidly (e.g. large first order derivative), or satisfies some other criterion, e.g. based on chroma difference history, then frame extraction can be increased rate, which reduces the refresh period P. However, if the chromaticity difference between consecutive frames F 1 and F N is small and stable or does not increase rapidly (for example, the absolute value of the first derivative is low or zero), or satisfies some other criteria, such as based on chromaticity The degree difference history can then save the required data bit stream and reduce the frame extraction rate, thus improving the refresh period P.
参考图21,表示按照本发明一个方面的一般处理过程。如图所示,作为一个可选择的步骤,可能减轻计算负担,[1]相应于视频内容的着色色空间被量化(QCS,量化色空间),例如通过利用以下给出的方法;然后[2]选择主色(或者主色的调色板)(DCE,主色提取);以及[3]颜色映射转换,例如执行RUR映射转换(10)(MT映射转换至R’G’B’)来提高产生的环境光的逼真度、范围和适合程度。Referring to Figure 21, there is shown a general processing in accordance with one aspect of the present invention. As shown, as an optional step, possibly reducing the computational burden, [1] the rendering color space corresponding to the video content is quantized (QCS, Quantized Color Space), for example by using the method given below; then [2 ] select the dominant color (or palette of dominant colors) (DCE, dominant color extraction); and [3] color mapping conversion, such as performing RUR mapping conversion (10) (MT mapping conversion to R'G'B') to Improves the realism, range, and fit of the resulting ambient light.
色空间的可选的量化可以减少可能颜色状态和/或要测量的像素的数目,并且可以利用不同的方法执行。作为一个例子,图22示意性地表示一个可能的量化视频内容的像素色度的方法。这里,如所示,说明性的视频主值R范围从值1至16,对任一个的这些主值R任意指定一个指定的颜色AC。这样,例如,无论何时,任一红色像素色度或者从1至16的值在视频内容中相遇,因此会取代指定的颜色AC,导致在表现视频图像特征所需要的颜色数目中,以因数16单独减少红原色。在这个例子中,对所有三原色,这样的可能颜色状态的减少会导致以16×16×16,或者4096-在用于计算的颜色的数目中-的因数减少。这在许多视频系统中的主色确定中减少计算负担是极其有用的,例如那些具有8位的颜色,其呈现256×256×256或者16.78兆的可能颜色状态。An optional quantization of the color space can reduce the number of possible color states and/or pixels to be measured and can be performed with different methods. As an example, Figure 22 schematically shows a possible method of quantizing pixel chromaticity of video content. Here, as shown, illustrative video master values R range from
另一个量化视频色空间的方法如图23所示,其示意性地表示另一个通过从大量像素Pi(例如所示的16)装箱像素色度到超像素XP的量化着色色空间的例子。装箱自身是一个方法,通过把相邻的像素数学地(或者计算的)加在一起以形成一个超像素,这个超像素自身被用于进一步的计算或者表示。这样,在视频格式一般地具有,例如,0.75兆像素,选择用来代替视频内容的超像素的数目可以减少用来计算的像素的数目至0.05兆或者任何其它希望的小数目。Another method of quantizing video color space is shown in Figure 23, which schematically represents another example of quantized rendering color space by binning pixel chrominance from a number of pixels Pi (
这样的超像素的数量、大小、方向、形状或者位置可以作为视频内容的函数而变化。这里,例如,有利于在特征提取FE期间来保证超像素XP仅从图像特征提取,而不是从边缘区域或者背景提取,超像素XP相应地形成。图24表示与图23相似的装箱过程,但是这里超像素的大小、方向、形状或者位置可以与所示的像素特征J8一致地形成。所示的图像特征J8是锯齿状的或者不规则的,没有直的水平或竖直的边缘。如图所示,选择的超像素XP相应地模仿或者模拟图像特征形状。除了具有定制的形状以外,还可以利用已知的像素等级计算技术通过图像特征J8影响超像素的位置、大小和方向。The number, size, orientation, shape or position of such superpixels may vary as a function of video content. Here, for example, it is advantageous during the feature extraction FE to ensure that the superpixels XP are only extracted from image features and not from edge regions or backgrounds, the superpixels XP being formed accordingly. Figure 24 shows a binning process similar to that of Figure 23, but here the size, orientation, shape or position of the superpixels can be formed consistent with the pixel feature J8 shown. Image feature J8 is shown as jagged or irregular, with no straight horizontal or vertical edges. As shown, the selected superpixel XP mimics or mimics the image feature shape accordingly. In addition to having a custom shape, the location, size and orientation of the superpixels can also be influenced by image features J8 using known pixel-level computing techniques.
量化可以使像素色度和替换的指定颜色(如指定颜色AC)一致。那些指定的颜色可以任意指定,包括利用优选的颜色矢量。因此,不利用指定颜色的可选的或者均匀的组,至少一些视频图像像素色度可以被设定为优选的颜色矢量。Quantization can make the pixel chromaticity consistent with an alternate specified color (such as specified color AC). Those specified colors can be specified arbitrarily, including using preferred color vectors. Thus, rather than utilizing an alternative or uniform set of specified colors, at least some video image pixel chromaticities can be set to preferred color vectors.
图25表示在标准笛卡尔CIE x-y色度图或者颜色图上的区域颜色矢量和它们的颜色或者色度坐标。这个图表示所有已知的颜色或者可感知的颜色在最大发光度处作为色度坐标x和y的函数,所示纳米光波长和CIE标准发光白点作为参考。3个区域光矢量V在此图上显示,在这里,可以看到一个颜色矢量V位于颜色色域的外面,颜色色域是通过PAL/SECAM、NTSC和Adobe RGB颜色产生标准(所示的色域)得到的。Figure 25 shows the area color vectors and their color or chromaticity coordinates on a standard Cartesian CIE x-y chromaticity diagram or color map. This graph represents all known or perceived colors at maximum luminance as a function of chromaticity coordinates x and y, with nanometer light wavelengths and the CIE standard luminescence white point shown as reference. The 3 area light vectors V are shown on this diagram, here, one can see that a color vector V lies outside the color gamut which is produced by the PAL/SECAM, NTSC and Adobe RGB color standards (color shown domain) obtained.
为了清楚,图26表示图25的CIE图的一部分的特写,另外表示像素色度Cp和它们指定的区域颜色矢量V。指定区域颜色矢量的标准可以改变,利用已知的计算技术,并可以包括欧几里得计算或者与其它特定颜色矢量V的距离。被标记的颜色矢量V,位于显示系统的着色色空间或者颜色色域外面;这可以允许优选的容易通过环境照明系统或者光源88产生的色度能变成用于量化着色(视频)色空间中的一种指定颜色。For clarity, Figure 26 shows a close-up of a portion of the CIE diagram of Figure 25, additionally showing pixel chromaticities Cp and their assigned area color vectors V. The criteria for specifying an area color vector can vary, using known calculation techniques, and can include Euclidean calculations or distances from other specific color vectors V. The marked color vector, V, lies outside the rendering color space or color gamut of the display system; this may allow the preferred chromaticity easily produced by the ambient lighting system or
一旦利用一个或多个上述给定的方法得出指定颜色的分布,下一步是执行从指定颜色分布中通过提取以下任一项进行主色提取:[a]指定颜色的方式;[b]指定颜色的中值;[c]指定颜色色度的加权平均值;或者[d]利用加权函数的加权平均值。Once the distribution of specified colors has been obtained using one or more of the methods given above, the next step is to perform dominant color extraction from the specified color distribution by extracting any of the following: [a] the way in which the color is specified; [b] the specified The median value of a color; [c] a weighted average of the chromaticity of a specified color; or [d] a weighted average using a weighting function.
例如,可以用直方图方法来选择以最高频率发生的指定颜色。图27表示的直方图给出了指定像素颜色或者最经常发生(参见坐标,像素百分比)的颜色(指定颜色),即,指定颜色分布的方式。该方式或十种已利用的指定颜色之中的大多数可以选择作为主色DC(已示出),用于通过环境照明系统的利用或模拟。For example, a histogram method can be used to select the specified color that occurs with the highest frequency. The histogram represented in Fig. 27 gives the assigned pixel color or the most frequently occurring (see coordinates, pixel percentage) color (assigned color), ie the manner in which assigned colors are distributed. This way or a majority of the ten utilized specified colors can be selected as the dominant color DC (shown) for utilization or simulation by the ambient lighting system.
同样的,指定颜色分布的中值可以被选择作为或者帮助影响主色DC的选择。图28示意性地表示指定颜色分布的中值,在这里选择显示的中值或者中间值(为偶数数目的指定颜色插值)作为主色DC。Likewise, the median value of a given color distribution can be chosen as or to help influence the choice of dominant color DC. Fig. 28 schematically shows the median value of the assigned color distribution, where the displayed median or middle value (interpolated for an even number of assigned colors) is selected as the dominant color DC.
可选择地,可以利用加权平均值执行指定颜色的求和,以便影响主色的选择,可能更加适合环境照明系统颜色色域的强度。图29表示指定颜色色度的加权平均值的数学求和。为了清楚,示出了单一变量R,但是可以利用任何数目的维度或者坐标(例如CIE坐标x和y)。色度变量R以像素坐标(或者超像素坐标,如果需要)i和j表示,在这个例子中i和j分别在1和n以及1和m之间取值。带有所示的索引i和j的色度变量R与像素加权函数W相乘,然后进行整体的求和;结果除以像素数目n×m以得到加权平均值。Alternatively, the summation of the specified colors may be performed using a weighted average in order to influence the selection of the dominant color, possibly more suited to the strength of the ambient lighting system's color gamut. Figure 29 shows the mathematical summation of weighted averages of the specified color chromaticities. For clarity, a single variable R is shown, but any number of dimensions or coordinates (eg, CIE coordinates x and y) could be utilized. The chromaticity variable R is expressed in pixel coordinates (or superpixel coordinates, if desired) i and j, which in this example take values between 1 and n and 1 and m, respectively. The chrominance variable R with indices i and j as shown is multiplied by the pixel weighting function W and summed overall; the result is divided by the number of pixels n x m to obtain a weighted average.
利用像素加权函数的相似的加权平均值如图30所示,除了所示的W也是所示的像素位置i和j的函数外,与图29相似,这允许空间主函数。通过也对像素位置加权,显示D的中心或者任何其它部分可以在主色DC的选择或者提取期间被强调,这将在下面讨论。A similar weighted average using a pixel weighting function is shown in Figure 30, similar to Figure 29, except that W shown is also a function of pixel positions i and j shown, which allows for a spatial principal function. By also weighting the pixel positions, the center or any other part of the display D can be emphasized during selection or extraction of the dominant color DC, as will be discussed below.
加权求和可以通过上面给出的给定提取区域信息步骤33执行,可以以任何已知的方式选择和存储W。像素加权函数W可以是任一函数或者算符,这样,可以包含整体,对于特定的像素位置,可以排除零。可以利用已知的技术识别图像特征,如图34所示,为了服务更大的目的,W可以被相应地改变。The weighted summation may be performed by the given extract
利用以上方法或者任何等价方法,一旦指定的颜色被选择为主色,通过环境照明系统,可以对用于表示的适当的色度执行更好的评估,特别是当考虑如果所有的色度和/或所有的视频像素时,需要的计算步骤比它们原本需要的更少。图31表示在指定颜色的分布中确定感兴趣的颜色,然后在那里提取指定的像素色度,以得到一个真实主色作为指定的主色。可以看出,像素色度Cp指定给两个指定的颜色AC;不选择在图的底部示出的指定颜色AC作为主色,然而上面的指定颜色被视作主色(DC)并被选作所示的感兴趣的颜色COI。然后可以进一步检查指定给(或者至少部分地)视为感兴趣的颜色COI的指定颜色AC的像素,并且通过直接读出它们的色度(例如利用均值,如图4所示,或者为特别的目的,在已经给定的小区域内,执行主色提取步骤),可以获得主色的更好的再现,在此所示作为真实主色TDC。任何为此需要的处理步骤可以利用上面给出的步骤和/或组件来完成,或者通过利用独立的真色选择器,其可以是已知的软件程序或者子程序或者任务电路或者其等价物。Using the above method, or any equivalent method, once the specified color has been selected as the dominant color, a better assessment of the appropriate chromaticity for representation can be performed by the ambient lighting system, especially when considering if all chromaticities and and/or all video pixels require fewer computational steps than they would otherwise require. Fig. 31 shows that the color of interest is determined in the distribution of specified colors, and then the specified pixel chromaticity is extracted there to obtain a real dominant color as the specified primary color. It can be seen that the pixel chromaticity Cp is assigned to the two assigned colors AC; the assigned color AC shown at the bottom of the figure is not selected as the dominant color, however the upper assigned color is considered the dominant color (DC) and is selected as Color of interest COI indicated. Pixels of the assigned color AC assigned to (or at least partially) considered the color COI of interest can then be further examined, and read out their chromaticity directly (e.g. using the mean value, as shown in Figure 4, or for a particular Purpose, within a small area already given, performing the dominant color extraction step), a better reproduction of the dominant color can be obtained, shown here as the true dominant color TDC. Any processing steps required for this purpose may be accomplished using the steps and/or components given above, or by using a separate true color selector, which may be a known software program or subroutine or task circuit or its equivalent.
如图32所示,按照本发明的主色提取可以执行多次或者独立地并行提供一主色调色板,其中主色DC可以包括主色DC1+DC2+DC3。As shown in FIG. 32 , the extraction of dominant colors according to the present invention can be performed multiple times or provide a palette of dominant colors independently and in parallel, wherein the dominant colors DC can include the dominant colors DC1+DC2+DC3.
如图30提到的,加权函数或者等价物可以通过像素位置提供加权,以允许对某些显示区域特别的考虑或者强调。图33表示如图1所示的视频显示的简单前表面图,并表示一个在优选的空间区域将不等加权提供给像素Pi的例子。例如,如图所示,显示的某些区域C可以利用数值上大的加权函数W加权,同时,一个提取区域(或者任何区域,例如场景背景)可以利用数值上小的加权函数W加权。As mentioned in Figure 30, a weighting function or equivalent may provide weighting by pixel location to allow special consideration or emphasis on certain display regions. Figure 33 shows a simple front surface view of the video display shown in Figure 1 and shows an example of providing unequal weights to pixels Pi at preferred spatial regions. For example, as shown, certain regions C of the display may be weighted with a numerically large weighting function W, while an extracted region (or any region, such as the scene background) may be weighted with a numerically small weighting function W.
如图34所示,这种加权或者强调可以施加在图像特征J8上,其中给出了图33所示的视频显示的简单的前表面图,在这里利用已知的技术通过特征提取步骤FE来选择图像特征J8(一条鱼)(参见图3和12)。图像特征J8可以是在所示的或者上面所述在主色提取DCE之中仅利用的视频内容,或者是利用的视频内容的一部分。Such weighting or emphasis can be applied to image features J8 as shown in FIG. 34, which gives a simple front surface view of the video display shown in FIG. Image feature J8 (a fish) is selected (see Figures 3 and 12). The image feature J8 may be only the video content utilized in the dominant color extraction DCE as shown or described above, or a portion of the video content utilized.
参考图35,可以看出利用这里给出的方法,允许通过至少部分地依赖前一帧的至少一个主色,获得为视频帧选取的主色。图示的帧F1,F2,F3和F4经历如图所示的获得主色提取DCE的过程,其目的是分别提取所示的主色DC1、DC2、DC3和DC4,其中,通过计算,可以建立为帧选择的主色,表示为DC4,作为所示的主色DC1、DC2和DC 3的函数(DC4=F(DC1,DC2,DC3))。这允许为帧F4选取主色DC4的任何简化过程,或者更好地通知其中前面的帧F1,F2,F3的主色选取,帮助影响主色DC4的选取。这个简化过程如图36所示,在这里用于减少计算负担,临时的主色提取DC4*利用色度评估,然后在下一步由从前面的帧(或者前面单一的帧)提取的主色来辅助,以帮助准备DC4的选择(利用简化过程准备DC4)。Referring to Figure 35, it can be seen that utilizing the method presented here allows obtaining the dominant color chosen for a video frame by relying at least in part on at least one dominant color of the previous frame. The illustrated frames F 1 , F 2 , F 3 and F 4 undergo the process of obtaining the dominant color extraction DCE as shown in the figure, the purpose of which is to extract the shown dominant colors DC1, DC2, DC3 and DC4 respectively, wherein, by Computationally, the dominant color chosen for the frame, denoted DC4, can be established as a function of the shown dominant colors DC1, DC2 and DC3 (DC4 = F(DC1, DC2, DC3)). This allows any simplification of the selection of the dominant color DC4 for frame F4, or better informs the selection of the dominant color of the previous frames F1 , F2 , F3 therein, helping to influence the selection of the dominant color DC4. This simplification process is shown in Figure 36 and is used here to reduce the computational burden. Temporary dominant color extraction DC4* utilizes chrominance evaluation, which is then assisted in the next step by the dominant color extracted from the previous frame (or a single previous frame). , to help prepare the selection of DC4 (Prepare DC4 using the simplified procedure).
一般地,环境光源88可以包含不同的扩散器效应来产生光混合,还有半透明或者其它现象,例如通过利用具有磨砂的或者光滑表面的灯结构;有棱纹的玻璃或者塑料;或者孔径结构,例如通过利用环绕独立光源的金属结构。为提供这些感兴趣的结果,可以利用任何数量的已知的扩散和散射材料或者现象,包括通过从小的悬浮颗粒利用散射获得;有暗影的塑料或者树脂,准备利用胶体、乳胶或者水珠1-5∶m或者更少,例如少于1∶m,其中包括长期的有机混合物;凝胶;和溶胶,本领域技术人员知道其的生产和制造。散射现象可以包括可视波长的瑞利散射,例如为提高环境光的蓝色进行蓝色的产生。产生的颜色可以区域定义,例如在某些区域整个带蓝色的色调或者区域色调,例如作为蓝色光产生的上端部分(环境光L1或L2)。In general, ambient
环境灯还可以与测角光度元件配合,例如圆柱形棱镜或者透镜,其可以形成、集成、或者插入在灯结构的内部。这可以在产生的光特征作为观看者位置的函数变化时允许特殊的效果。可以利用其它光形状和形式,包括矩形的、三角形的或者不规则形状的棱镜或者形状,它们可以放置在环境照明单元上面或者组成环境照明单元。结果是不是产生了各向同性的输出,获得的效果可以无限地改变,例如投射到环境光源周围的周围墙上、物体上和表面上的感兴趣的光频带,当场景元素、颜色和强度在视频显示单元上变化,在黑暗的房间里产生一种光显示。这种效果可以是剧院环境光元素,其作为观看者位置的函数-当观看家庭剧场时,观看者从椅子上站起来或者移动观看位置时-易感知地变化光特征,例如观看带蓝色的火花,然后是红光。测角光度元件的数目和类型几乎可以无限制的利用,包括成片的塑料、玻璃和由擦伤和适度破坏性的制造技术产生的光学效果。可以制造独特的环境灯,即使对不同的剧场效果,可以是可互换的。这些效果可以是可调制的,例如通过改变允许通过测角光度元件的光量,或者通过改变环境照明单元的不同点亮部分(例如,利用子灯或者成组的LED)。Ambient lights can also be fitted with goniophotometric elements, such as cylindrical prisms or lenses, which can be formed, integrated, or inserted inside the light structure. This can allow special effects when the resulting light characteristics vary as a function of the viewer's position. Other light shapes and forms may be utilized, including rectangular, triangular, or irregularly shaped prisms or shapes, which may be placed over or make up an ambient lighting unit. Is the result an isotropic output, the effect obtained can be varied infinitely, such as bands of light of interest projected onto surrounding walls, objects and surfaces around ambient light sources, when scene elements, colors and intensities are in The video display changes on the unit, creating a light display in a dark room. Such an effect could be a theater ambient light element that perceptibly changes the light signature as a function of the viewer's position - when viewing a home theater, when the viewer stands up from a chair or moves the viewing position - such as watching a bluish Sparks, then red light. The number and type of goniophotometric elements can be utilized virtually unlimited, including sheets of plastic, glass, and optical effects resulting from scratches and moderately destructive manufacturing techniques. Unique ambient lights can be made, even interchangeable for different theatrical effects. These effects may be modulatable, for example by varying the amount of light allowed to pass through the goniophotometric element, or by varying different lit portions of the ambient lighting unit (eg, with sub-lamps or groups of LEDs).
这样,图1所示的在L3中产生的环境光来模拟提取区域R3可以具有一个色度,其提供在那个区域的现象的感知延伸,例如所示的运动的鱼。这可以增加视觉经验并提供合适的并且不刺眼或者正常匹配的色调。Thus, the ambient light generated in L3 shown in FIG. 1 to simulate extracted region R3 may have a chromaticity that provides a perceptual extension of phenomena in that region, such as the moving fish shown. This can increase the visual experience and provide a suitable and not harsh or normal matching color tone.
视频信号AVS当然可以是数字数据流和包含同步比特和级联比特;奇偶校验位;错误代码;交织;特殊调制;数据串报头,和希望的元数据例如环境光效果的描述(例如“发光风暴”;“日出”等等)以及本领域技术人员将能实现的功能步骤,为了清楚,这里给出的仅仅是说明性的并不包括常规的步骤和数据。The video signal AVS may of course be a digital data stream and contain synchronization bits and concatenation bits; parity bits; error codes; "Storm"; "Sunrise" etc.) and functional steps that would be implemented by those skilled in the art, for the sake of clarity, are given here for illustrative purposes only and do not include routine steps and data.
如图3和12所示的图形用户界面&偏好存储器可以用来变化环境照明系统行为,例如给希望的视频显示D的视频内容变化颜色逼真度的程度;变化华丽,包括任何荧光颜色或者色域之外的颜色被发射到环境空间的程度,或者根据视频内容的变化,环境光的变化有多快和多大,例如通过在光脚本命令内容中增大变化的亮度或者其它性质。这可以包括高级内容分析,其可以为电影或者特定特征的内容制作平缓的色调。在内容中包括很多黑暗场景的视频内容,能够影响环境光源88的行为,引起环境光的暗淡发射,而华丽的或者明亮的色调可以用于某些其它的内容,象许多肉色或者明亮场景(阳光照耀的沙滩,大草原上的一只老虎,等等)。GUI & preference memory as shown in Figures 3 and 12 can be used to vary ambient lighting system behavior, e.g. vary the degree of color fidelity of the video content for the desired video display D; vary gorgeously, including any fluorescent color or color gamut The extent to which additional colors are emitted into the ambient space, or how quickly and how much the ambient light changes based on changes in the video content, such as by increasing the varying brightness or other properties in the light script command content. This can include advanced content analysis, which can create a flat tone for a movie or specific characteristics of content. Video content that includes many dark scenes in the content can affect the behavior of the ambient
这里给出的叙述能够使本领域技术人员利用本发明。利用本即时教导,很多配置是可能的,这些给出的配置和排列仅仅是说明性的。在这里并非所有的寻找的目标都需要演示,例如,在没有脱离本发明的情况下,第二着色色空间的特殊的转换可以从这里给出的教导中排除,特别是当着色色空间RGB和R’G’B’是类似的或者相同的时候。在实践中,教导或者权利要求的方法可以作为较大系统的一部分显示,较大系统可以是娱乐中心或者家庭剧院中心。The description given here will enable any person skilled in the art to utilize the present invention. Many configurations are possible using the present teachings, these configurations and arrangements given are illustrative only. Not all of the objects sought here need to be demonstrated, for example, without departing from the present invention, special transformations of the second rendering color space can be excluded from the teachings given here, especially when the rendering color spaces RGB and R'G'B' is similar or same when. In practice, the methods taught or claimed may be displayed as part of a larger system, be it an entertainment center or a home theater center.
众所周知,这里说明性地教导的函数和计算可以利用软件或者机器码功能性地再现和模拟,本领域技术人员能够利用这些教导而不管这里教导的编码和解码的方式的控制。当为了执行像素等级统计而考虑不是严格必须将解码视频信息变成帧的时候,这尤其是真的。It is well known that the functions and calculations illustratively taught herein can be functionally reproduced and simulated using software or machine code, and those skilled in the art will be able to utilize these teachings regardless of the control of the manner of encoding and decoding taught herein. This is especially true when considering that it is not strictly necessary to frame the decoded video information in order to perform pixel-level statistics.
本领域技术人员基于这些教导,能够更改这里教导和要求的装置和方法,例如,重新排列步骤或者数据结构以适合特殊的应用,创造可以很少的包括相似的选择说明性目的的系统。Based on these teachings, those skilled in the art can modify the apparatus and methods taught and claimed herein, for example, rearrange steps or data structures to suit a particular application, creating a system that may include few similar options for illustrative purposes.
利用上述例子公开的本发明可以利用上面一些叙述的特征来实现。同样,这里没有教导或者要求的东西将不排除其它结构或者功能元件的增加。The invention disclosed using the above examples can be implemented using some of the features recited above. Likewise, nothing that is not taught or required herein shall not preclude the addition of other structural or functional elements.
明显地,按照上面的教导,本发明的改变和变化是可能的。因此可以理解,本发明可以在附加的权利要求的范围内利用,而不是在这里特别的描述或者建议。Obviously, modifications and variations of the present invention are possible in light of the above teaching. It is therefore to be understood that within the scope of the appended claims, the invention may be utilized rather than as specifically described or suggested herein.
Claims (19)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US58419704P | 2004-06-30 | 2004-06-30 | |
| US60/584,197 | 2004-06-30 | ||
| US60/652,836 | 2005-02-14 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1977529A CN1977529A (en) | 2007-06-06 |
| CN100559850C true CN100559850C (en) | 2009-11-11 |
Family
ID=38126383
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2005800220072A Expired - Fee Related CN100559850C (en) | 2004-06-30 | 2005-06-27 | Method used for dominant color extraction |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100559850C (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106406504A (en) * | 2015-07-27 | 2017-02-15 | 常州市武进区半导体照明应用技术研究院 | Atmosphere rendering system and method of man-machine interaction interface |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101388205B (en) * | 2007-09-10 | 2011-08-24 | 联想(北京)有限公司 | Display device control method and system |
| CN105427271B (en) * | 2014-09-17 | 2018-10-16 | 清华大学 | A kind of image color adjusting method and system |
| CN108933961B (en) * | 2018-06-26 | 2021-03-23 | 深圳市韵阳科技有限公司 | Method and system for controlling LED color development according to image edge data |
| JP7080399B2 (en) * | 2018-11-01 | 2022-06-03 | シグニファイ ホールディング ビー ヴィ | Determining light effects based on video and audio information depending on video and audio weights |
| CN112185317A (en) * | 2020-08-17 | 2021-01-05 | 深圳市广和通无线股份有限公司 | Color calibration method, device, computer equipment and storage medium |
| WO2022121114A1 (en) * | 2020-12-11 | 2022-06-16 | 萤火虫(深圳)灯光科技有限公司 | Lighting module control method, lighting module, electronic device, and storage medium |
| CN118741823B (en) * | 2024-09-02 | 2025-01-14 | 深圳市智岩科技有限公司 | Lamp effect display method and device, equipment and medium thereof |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1039694A (en) * | 1988-07-16 | 1990-02-14 | 杨耀鑫 | Used as television illuminating lamp automatic light modulating method and device thereof |
| JPH02253503A (en) | 1989-03-28 | 1990-10-12 | Matsushita Electric Works Ltd | Image staging lighting device |
| JPH06267664A (en) | 1993-03-10 | 1994-09-22 | Toshiba Lighting & Technol Corp | Lighting system for television set |
| US6611297B1 (en) * | 1998-04-13 | 2003-08-26 | Matsushita Electric Industrial Co., Ltd. | Illumination control method and illumination device |
| WO2003101098A1 (en) * | 2002-05-23 | 2003-12-04 | Koninklijke Philips Electronics N.V. | Controlling ambient light |
-
2005
- 2005-06-27 CN CNB2005800220072A patent/CN100559850C/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1039694A (en) * | 1988-07-16 | 1990-02-14 | 杨耀鑫 | Used as television illuminating lamp automatic light modulating method and device thereof |
| JPH02253503A (en) | 1989-03-28 | 1990-10-12 | Matsushita Electric Works Ltd | Image staging lighting device |
| JPH06267664A (en) | 1993-03-10 | 1994-09-22 | Toshiba Lighting & Technol Corp | Lighting system for television set |
| US6611297B1 (en) * | 1998-04-13 | 2003-08-26 | Matsushita Electric Industrial Co., Ltd. | Illumination control method and illumination device |
| WO2003101098A1 (en) * | 2002-05-23 | 2003-12-04 | Koninklijke Philips Electronics N.V. | Controlling ambient light |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106406504A (en) * | 2015-07-27 | 2017-02-15 | 常州市武进区半导体照明应用技术研究院 | Atmosphere rendering system and method of man-machine interaction interface |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1977529A (en) | 2007-06-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8063992B2 (en) | Dominant color extraction for ambient light derived from video content mapped through unrendered color space | |
| KR101044709B1 (en) | Method for Extracting and Processing Encoded Video Content in Rendered Color Space to Be Mimicked by Ambient Light Sources | |
| US7894000B2 (en) | Dominant color extraction using perceptual rules to produce ambient light derived from video content | |
| KR101117591B1 (en) | Flicker-free adaptive thresholding for ambient light derived from video content mapped through unrendered color space | |
| US20070091111A1 (en) | Ambient light derived by subsampling video content and mapped through unrendered color space | |
| EP1763974A1 (en) | Ambient lighting derived from video content and with broadcast influenced by perceptual rules and user preferences | |
| WO2007026283A2 (en) | Ambient lighting derived from video content using adaptive extraction regions | |
| CN100559850C (en) | Method used for dominant color extraction |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| ASS | Succession or assignment of patent right |
Owner name: TP VISION HOLDING B.V. Free format text: FORMER OWNER: ROYAL PHILIPS ELECTRONICS N.V. Effective date: 20120822 |
|
| C41 | Transfer of patent application or patent right or utility model | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20120822 Address after: Holland Ian Deho Finn Patentee after: Tp Vision Holding B. V. Address before: Holland Ian Deho Finn Patentee before: Koninklijke Philips Electronics N.V. |
|
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091111 Termination date: 20140627 |
|
| EXPY | Termination of patent right or utility model |