CN100576454C - Gate structure and manufacturing method of non-volatile semiconductor memory - Google Patents
Gate structure and manufacturing method of non-volatile semiconductor memory Download PDFInfo
- Publication number
- CN100576454C CN100576454C CN200710046812A CN200710046812A CN100576454C CN 100576454 C CN100576454 C CN 100576454C CN 200710046812 A CN200710046812 A CN 200710046812A CN 200710046812 A CN200710046812 A CN 200710046812A CN 100576454 C CN100576454 C CN 100576454C
- Authority
- CN
- China
- Prior art keywords
- dots
- metal nano
- layer
- angstroms
- gate structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Semiconductor Memories (AREA)
Abstract
一种栅极结构的制作方法,包括:在半导体衬底上形成隧穿氧化层;用化学气相沉积法在隧穿氧化层上形成离散的金属纳米点;在离散的金属纳米点上依次形成栅间介电层和导电层;刻蚀导电层、栅间介电层、离散的金属纳米点和隧穿氧化层至露出半导体衬底,形成栅极结构。本发明还提供一种非挥发性半导体存储器的制作方法。本发明使用化学气相沉积法,使金属纳米点形成简单,且使金属纳米点的尺寸和密度容易控制。
A method for fabricating a gate structure, comprising: forming a tunnel oxide layer on a semiconductor substrate; forming discrete metal nano-dots on the tunnel oxide layer by chemical vapor deposition; sequentially forming gates on the discrete metal nano-dots inter-dielectric layer and conductive layer; etching the conductive layer, inter-gate dielectric layer, discrete metal nano-dots and tunnel oxide layer to expose the semiconductor substrate to form a gate structure. The invention also provides a manufacturing method of the non-volatile semiconductor memory. The invention uses a chemical vapor deposition method to simplify the formation of the metal nano-dots and to easily control the size and density of the metal nano-dots.
Description
技术领域 technical field
本发明涉及半导体器件制造领域,尤其涉及栅极结构及非挥发性半导体存储器的制作方法。The invention relates to the field of semiconductor device manufacturing, in particular to a gate structure and a manufacturing method of a non-volatile semiconductor memory.
背景技术 Background technique
非挥发性半导体存储器在供电电源关闭后仍能保持片内信息;在系统电可擦除和可重复编程,而不需要特殊的高电压;非挥发性半导体存储器具有成本低、密度大的特点。其独特的性能使其广泛地运用于各个领域,包括嵌入式系统,如PC及外设、电信交换机、蜂窝电话、网络互联设备、仪器仪表和汽车器件,同时还包括新兴的语音、图像、数据存储类产品,如数字相机、数字录音机和个人数字助理。Non-volatile semiconductor memory can still maintain on-chip information after the power supply is turned off; it is electrically erasable and reprogrammable in the system without special high voltage; non-volatile semiconductor memory has the characteristics of low cost and high density. Its unique performance makes it widely used in various fields, including embedded systems, such as PCs and peripherals, telecommunication switches, cellular phones, network interconnection equipment, instrumentation and automotive devices, as well as emerging voice, image, data Storage products such as digital cameras, digital voice recorders and personal digital assistants.
非挥发性半导体存储器,一般是被设计成具有堆栈式栅极(Stack-Gate)结构,此结构包括隧穿氧化层、用来储存电荷的浮置栅极或捕获电荷层、氧化硅/氮化硅/氧化硅(Oxide-Nitride-Oxide,ONO)结构的栅间介电层以及用来控制数据存取的控制栅极。Non-volatile semiconductor memory is generally designed to have a stacked gate (Stack-Gate) structure, which includes a tunnel oxide layer, a floating gate for storing charges or a charge trapping layer, silicon oxide/nitride An inter-gate dielectric layer of silicon/silicon oxide (Oxide-Nitride-Oxide, ONO) structure and a control gate for controlling data access.
传统的非挥发性存储器采用多晶硅作为浮置栅极,以快闪存储器为例,在申请号为200410033268的中国专利申请中快闪存储器的制作工艺如图1至图4所示。参考图1,半导体衬底100上用热氧化法形成隧穿氧化层102,隧穿氧化层102的材质是氧化硅或氧化硅-氮化硅-氧化硅(ONO)。在隧穿氧化层102上形成第一导电层104,所述第一导电层104的材质例如是掺杂多晶硅,其形成的方法例如是低压化学气相沉积法(LPCVD);在第一导电层104上形成栅间介电层106,此栅间介电层106的材质例如是氧化硅、氧化硅/氮化硅或氧化硅/氮化硅/氧化硅(ONO);用化学气相沉积法在栅间介电层106之上形成第二导电层108,第二导电层108的材质例如是掺杂复晶硅与金属硅化物;用化学气相沉积法在第二导电层108上形成顶盖层110,所述顶盖层110的材料为氮化硅。如图2所示,在顶盖层110上形成第一光阻层112,经过曝光、显影工艺,定义控制栅极图形;以第一光阻层112为掩膜,蚀刻顶盖层110和第二导电层108至露出栅间介电层106,形成控制栅极108a。如图3所示,继续用干法刻蚀法蚀刻栅间介电层106,定义浮置栅极图形;去除第一光阻层112及顶盖层110;以栅间介电层106为掩膜,蚀刻第一导电层104和隧穿氧化层102至露出半导体衬底100,形成浮置栅极104a;由控制栅极108a、栅间介电层106、浮置栅极104a和隧穿氧化层102构成栅极结构。请参照图4,然后,以栅极结构为掩膜,向半导体衬底100内注入离子,形成源极/漏极101;于栅极结构两侧形成间隙壁114;最后进行后续金属连线过程,形成非挥发性半导体存储器。The traditional non-volatile memory adopts polysilicon as the floating gate. Taking the flash memory as an example, the manufacturing process of the flash memory in the Chinese patent application No. 200410033268 is shown in FIGS. 1 to 4 . Referring to FIG. 1 , a
随着集成电路制作工艺中集成度的不断增加,提升非挥发性半导体存储器的集成密度已成为趋势,为了使存储单元的尺寸不断缩小,采用具有离散的纳米点作为捕获电荷层取代现有技术中以多晶硅为材料的浮置栅极,可以减少非挥发性存储器的横向漏电,降低形成的非挥发性存储器捕获电荷层的厚度,并提高存储器的存储能力。With the continuous increase of integration in integrated circuit manufacturing process, it has become a trend to increase the integration density of non-volatile semiconductor memory. The floating gate made of polysilicon can reduce the lateral leakage of the non-volatile memory, reduce the thickness of the charge-trapping layer of the formed non-volatile memory, and improve the storage capacity of the memory.
美国专利6774061的技术方案由纳米单晶硅作为捕获电荷层以使存储单元的尺寸能够缩小。另外还可以用金属纳米点作为捕获电荷层。形成金属纳米点的工艺为:在半导体衬底上形成氧化硅层;用溅射法在氧化硅层上形成金属层;对带有金属层的半导体衬底进行快速退火处理,使金属层变成有序分布的离散的金属纳米点。但是,对于钛或氮化钛等金属,很难用退火的方法让其团聚形成金属纳米点。The technical scheme of US Patent No. 6774061 uses nano single crystal silicon as the charge trapping layer so that the size of the memory unit can be reduced. In addition, metal nanodots can also be used as a charge-trapping layer. The process of forming metal nano-dots is: forming a silicon oxide layer on the semiconductor substrate; forming a metal layer on the silicon oxide layer by sputtering; performing rapid annealing on the semiconductor substrate with the metal layer to make the metal layer become Orderly distribution of discrete metal nanodots. However, for metals such as titanium or titanium nitride, it is difficult to agglomerate them to form metal nanodots by annealing.
发明内容Contents of the invention
本发明解决的问题是提供一种栅极结构及非挥发性半导体存储器的制作方法,使形成金属纳米点简单。The problem to be solved by the invention is to provide a gate structure and a manufacturing method of a non-volatile semiconductor memory, so that the formation of metal nano-dots is simple.
为解决上述问题,本发明提供一种栅极结构的制作方法,包括:在半导体衬底上形成隧穿氧化层;用化学气相沉积法在隧穿氧化层上形成离散的金属纳米点;在离散的金属纳米点上依次形成栅间介电层和导电层;刻蚀导电层、栅间介电层、离散的金属纳米点和隧穿氧化层至露出半导体衬底,形成栅极结构。In order to solve the above problems, the present invention provides a method for fabricating a gate structure, comprising: forming a tunnel oxide layer on a semiconductor substrate; forming discrete metal nano-dots on the tunnel oxide layer by chemical vapor deposition; The inter-gate dielectric layer and the conductive layer are sequentially formed on the metal nano-dots; the conductive layer, the inter-gate dielectric layer, the discrete metal nano-dots and the tunnel oxide layer are etched to expose the semiconductor substrate to form the gate structure.
可选的,所述化学气相沉积的速率为2埃/秒~4埃/秒,沉积时间3秒~6秒。Optionally, the chemical vapor deposition rate is 2 Å/sec to 4 Å/sec, and the deposition time is 3 seconds to 6 seconds.
可选的,所述金属纳米点的直径为3nm~6nm。所述相邻金属纳米点间的距离为3nm~6nm。所述金属纳米点的材料为可用化学气相沉积法沉积的金属。所述金属纳米点的材料为钛或氮化钛或钨或氮化钨或钽或氮化钽或钯或钼。Optionally, the metal nano-dots have a diameter of 3nm-6nm. The distance between the adjacent metal nano-dots is 3nm-6nm. The material of the metal nano-dots is a metal that can be deposited by chemical vapor deposition. The material of the metal nano-dot is titanium or titanium nitride or tungsten or tungsten nitride or tantalum or tantalum nitride or palladium or molybdenum.
本发明提供一种非挥发性半导体存储器的制作方法,包括:在半导体衬底上形成隧穿氧化层;用化学气相沉积法在隧穿氧化层上形成离散的金属纳米点;在离散的金属纳米点上依次形成栅间介电层和导电层;刻蚀导电层、栅间介电层、离散的金属纳米点和隧穿氧化层至露出半导体衬底,形成栅极结构;于栅极结构两侧的半导体衬底内形成源极/漏极;进行金属连线,形成非挥发性半导体存储器。The invention provides a manufacturing method of a non-volatile semiconductor memory, comprising: forming a tunnel oxide layer on a semiconductor substrate; forming discrete metal nano dots on the tunnel oxide layer by chemical vapor deposition; forming discrete metal nano dots on the discrete metal nano The inter-gate dielectric layer and the conductive layer are sequentially formed on the points; the conductive layer, the inter-gate dielectric layer, the discrete metal nano-dots and the tunnel oxide layer are etched to expose the semiconductor substrate to form the gate structure; Form the source/drain in the semiconductor substrate on the side; perform metal wiring to form a non-volatile semiconductor memory.
可选的,所述化学气相沉积的速率为2埃/秒~4埃/秒,沉积时间3秒~6秒。Optionally, the chemical vapor deposition rate is 2 Å/sec to 4 Å/sec, and the deposition time is 3 seconds to 6 seconds.
可选的,所述金属纳米点的直径为3nm~6nm。所述相邻金属纳米点间的距离为3nm~6nm。所述金属纳米点的材料为可用化学气相沉积法沉积的金属。所述金属纳米点的材料为钛或氮化钛或钨或氮化钨或钽或氮化钽或钯或钼。Optionally, the metal nano-dots have a diameter of 3nm-6nm. The distance between the adjacent metal nano-dots is 3nm-6nm. The material of the metal nano-dots is a metal that can be deposited by chemical vapor deposition. The material of the metal nano-dot is titanium or titanium nitride or tungsten or tungsten nitride or tantalum or tantalum nitride or palladium or molybdenum.
与现有技术相比,本发明具有以下优点:用化学气相沉积法在隧穿氧化层上形成离散的金属纳米点。由于化学气相沉积法在金属纳米点生长的初期阶段有一个不连续生长期,通过控制沉积速率,可以直接得到离散的金属纳米点,使形成金属纳米点简单;另外由于不需要额外的热处理过程,使工艺步骤简化。Compared with the prior art, the invention has the following advantages: discrete metal nano-dots are formed on the tunnel oxide layer by chemical vapor deposition. Since the chemical vapor deposition method has a discontinuous growth period in the initial stage of the growth of metal nano-dots, by controlling the deposition rate, discrete metal nano-dots can be directly obtained, making the formation of metal nano-dots simple; in addition, because no additional heat treatment process is required, Simplify the process steps.
进一步,化学气相沉积的速率为2埃/秒~4埃/秒,沉积时间3秒~6秒。将化学气相沉积的速率控制在2埃/秒~4埃/秒内,使金属纳米点不连续生长时间比较长,为3秒~6秒,不但容易形成金属纳米点,而且使金属纳米点尺寸和密度更好控制。Further, the chemical vapor deposition rate is 2 Å/sec to 4 Å/sec, and the deposition time is 3 seconds to 6 seconds. The rate of chemical vapor deposition is controlled within 2 angstroms/second to 4 angstroms/second, so that the discontinuous growth time of metal nano-dots is relatively long, 3 seconds to 6 seconds, not only easy to form metal nano-dots, but also make the size of metal nano-dots and density better control.
附图说明 Description of drawings
图1至图4是现有工艺制作快闪存储器的示意图;Fig. 1 to Fig. 4 are the schematic diagrams of making flash memory by existing technology;
图5是本发明制作栅极结构的具体实施方式流程图;FIG. 5 is a flow chart of a specific embodiment of making a gate structure in the present invention;
图6至图9是本发明制作栅极结构的实施例示意图;6 to 9 are schematic diagrams of embodiments of the present invention for fabricating gate structures;
图10是本发明制作非挥发性存储器的具体实施方式流程图;Fig. 10 is a flow chart of a specific embodiment of making a non-volatile memory according to the present invention;
图11至图15是本发明制作非挥发性存储器的实施例示意图。11 to 15 are schematic diagrams of embodiments of the present invention for fabricating non-volatile memory.
具体实施方式 Detailed ways
本发明用化学气相沉积法在隧穿氧化层上形成离散的金属纳米点。由于化学气相沉积法在金属纳米点生长的初期阶段有一个不连续生长期,通过控制沉积速率,可以直接得到离散的金属纳米点,使形成金属纳米点简单;另外由于不需要额外的热处理过程,使工艺步骤简化。The invention forms discrete metal nano dots on the tunnel oxide layer by chemical vapor deposition. Since the chemical vapor deposition method has a discontinuous growth period in the initial stage of the growth of metal nano-dots, by controlling the deposition rate, discrete metal nano-dots can be directly obtained, making the formation of metal nano-dots simple; in addition, because no additional heat treatment process is required, Simplify the process steps.
进一步,化学气相沉积的速率为2埃/秒~4埃/秒,沉积时间3秒~6秒。将化学气相沉积的速率控制在2埃/秒~4埃/秒内,使金属纳米点不连续生长时间比较长,为3秒~6秒,不但容易形成金属纳米点,而且使金属纳米点尺寸和密度更好控制。Further, the chemical vapor deposition rate is 2 Å/sec to 4 Å/sec, and the deposition time is 3 seconds to 6 seconds. The rate of chemical vapor deposition is controlled within 2 angstroms/second to 4 angstroms/second, so that the discontinuous growth time of metal nano-dots is relatively long, 3 seconds to 6 seconds, not only easy to form metal nano-dots, but also make the size of metal nano-dots and density better control.
下面结合附图对本发明的具体实施方式做详细的说明。The specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
图5是本发明制作栅极结构的具体实施方式流程图。如图5所示,执行步骤S101,在半导体衬底上形成隧穿氧化层;执行步骤S102,用化学气相沉积法在隧穿氧化层上形成离散的金属纳米点;执行步骤S103,在离散的金属纳米点上依次形成栅间介电层和导电层;执行步骤S104,刻蚀导电层、栅间介电层、离散的金属纳米点和隧穿氧化层至露出半导体衬底,形成栅极结构。FIG. 5 is a flow chart of a specific embodiment of fabricating a gate structure according to the present invention. As shown in Figure 5, execute step S101 to form a tunnel oxide layer on the semiconductor substrate; execute step S102 to form discrete metal nano-dots on the tunnel oxide layer by chemical vapor deposition; execute step S103 to form discrete metal nano-dots on the discrete An inter-gate dielectric layer and a conductive layer are sequentially formed on the metal nano-dots; step S104 is performed to etch the conductive layer, inter-gate dielectric layer, discrete metal nano-dots and tunnel oxide layer to expose the semiconductor substrate to form a gate structure .
图6至图9是本发明制作栅极结构的实施例示意图。如图6所示,在半导体衬底200上形成隧穿氧化层202,隧穿氧化层202的材质是氧化硅、氧化硅/氮化硅/氧化硅(ONO)、富硅氧化物(SRO)或氮氧化硅(SiON)等。传统形成隧穿氧化层202的工艺是热氧化法,在高温环境下,将半导体衬底200暴露在含氧环境中,形成以氧化硅为材料的隧穿氧化层202,所述工艺通常在炉管中实现;隧穿氧化层202的厚度为50埃~70埃。6 to 9 are schematic diagrams of an embodiment of fabricating a gate structure according to the present invention. As shown in FIG. 6, a
用化学气相沉积法在隧穿氧化层202上形成离散的金属纳米点204,所述金属纳米点204的材质为可用化学气相沉积法沉积的金属。具体例如钛或氮化钛或钨或氮化钨或钽或氮化钽或钯或钼等。Discrete metal nano-
1、如果形成的是以钛为材料的金属纳米点204,在温度为640℃~660℃时,反应室的压力为4Torr~6Torr(1Torr=133.32Pa),往反应室通入流量为2800sccm~3200sccm(标准毫升/分)的氢气与流量为40mgm~60mgm(毫克/分)的四氯化钛反应生成钛,其中沉积速率为2埃/秒~4埃/秒,沉积时间为3秒~4秒。1. If the metal nano-
本实施例中,温度具体例如640℃、645℃、650℃、655℃或660℃等,优选650℃;反应室压力具体为4Torr、5Torr或6Torr等,优选5Torr;氢气流量具体例如2800sccm、2900sccm、3000sccm、3100sccm或3200sccm等,优选3000sccm;四氯化钛具体为40mgm、50mgm或60mgm等,优选50mgm;沉积速率具体例如2埃/秒、3埃/秒或4埃/秒等,优选2.5埃/秒;沉积时间具体为3秒、3.5秒或4秒等,优选3秒。In this embodiment, the temperature is specifically 640°C, 645°C, 650°C, 655°C or 660°C, etc., preferably 650°C; the pressure of the reaction chamber is specifically 4 Torr, 5 Torr or 6 Torr, etc., preferably 5 Torr; the specific hydrogen flow rate is 2800 sccm, 2900 sccm , 3000sccm, 3100sccm or 3200sccm, etc., preferably 3000sccm; titanium tetrachloride is specifically 40mgm, 50mgm or 60mgm, etc., preferably 50mgm; the deposition rate is specifically for example 2 angstroms/second, 3 angstroms/second or 4 angstroms/second, etc., preferably 2.5 angstroms /sec; the deposition time is specifically 3 seconds, 3.5 seconds or 4 seconds, etc., preferably 3 seconds.
2、如果形成的是以氮化钛为材料的金属纳米点204,在温度为670℃~690℃时,反应室的压力为3Torr~5Torr,往化学气相沉积炉内通入流量为80sccm~120sccm的氨气与流量为400mgm~500mgm的四氯化钛反应生成氮化钛,其中沉积速率为2埃/秒~4埃/秒,沉积时间为5秒~6秒。2. If the metal nano-
本实施例中,温度具体例如670℃、675℃、680℃、685℃或690℃等,优选680℃;反应室压力具体为3Torr、4Torr或5Torr等,优选4Torr;氢气流量具体例如80sccm、90sccm、100sccm、110sccm或120sccm等,优选100sccm;四氯化钛具体为400mgm、420mgm、440mgm、450mgm、460mgm、480mgm或500mgm等,优选450mgm;沉积速率具体例如2埃/秒、3埃/秒或4埃/秒等,优选3埃/秒;沉积时间具体为5秒、5.5秒或6秒等,优选6秒。In this embodiment, the temperature is specifically 670°C, 675°C, 680°C, 685°C or 690°C, etc., preferably 680°C; the pressure of the reaction chamber is specifically 3 Torr, 4 Torr or 5 Torr, etc., preferably 4 Torr; the hydrogen flow rate is specifically 80 sccm, 90 sccm , 100sccm, 110sccm or 120sccm etc., preferably 100sccm; Titanium tetrachloride is specifically 400mgm, 420mgm, 440mgm, 450mgm, 460mgm, 480mgm or 500mgm etc., preferably 450mgm; The deposition rate is specifically for example 2 angstroms/second, 3 angstroms/second or 4 Angstrom/second, etc., preferably 3 Angstrom/second; the deposition time is specifically 5 seconds, 5.5 seconds, or 6 seconds, etc., preferably 6 seconds.
采用本实施例所述的方法形成的金属纳米点204的密度、尺寸、形状都可以通过控制化学气相沉积法的工艺参数进行调节。The density, size and shape of the metal nano-
本实施例中,所述金属纳米点204的直径为3nm~6nm,具体例如3nm、4nm、5nm或6nm等。所述相邻金属纳米点204间的距离为3nm~6nm,具体例如3nm、4nm、5nm或6nm等。In this embodiment, the metal nano-
本实施例中,所述隧穿氧化层202的厚度具体为50埃、55埃、60埃、65埃或70埃等,优选为60埃。In this embodiment, the thickness of the
如图7所示,在离散的金属纳米点204上形成栅间介电层206,此栅间介电层206的材质例如是氧化硅、氧化硅/氮化硅或氧化硅/氮化硅/氧化硅(ONO)等;因非挥发性半导体存储器要求与金属纳米点204接触的氧化硅层须具备良好的电性,以避免在正常电压下,用来储存电荷的金属纳米点204发生漏电或是过早电崩溃的问题;以栅间介电层206的材质是氧化硅为例,以低压化学气相沉积法(LPCVD)形成一层均匀的氧化硅层,所述氧化硅的厚度为130埃~170埃,具体厚度例如130埃、140埃、150埃、160埃或170埃等。As shown in FIG. 7, an inter-gate
用化学气相沉积法在栅间介电层206上形成导电层208,导电层208的材质例如是掺杂复晶硅或金属硅化物;用化学气相沉积法在导电层208上形成顶盖层210,所述顶盖层210的材料为氮化硅等。A conductive layer 208 is formed on the
如图8所示,用旋涂法在顶盖层210上形成第一光阻层212,经过曝光、显影工艺,定义控制栅极图形;以第一光阻层212为掩膜,用干法刻蚀法蚀刻顶盖层210和导电层208至露出栅间介电层206,形成控制栅极208a。As shown in Figure 8, the
如图9所示,继续用干法刻蚀法蚀刻栅间介电层206,定义捕获电荷层图形;去除第一光阻层212及顶盖层210;以栅间介电层206为掩膜,用干法刻蚀法蚀刻离散的金属纳米点204和隧穿氧化层202至露出半导体衬底200,形成捕获电荷层204a;由控制栅极208a、栅间介电层206、捕获电荷层204a及隧穿氧化层202构成栅极结构。As shown in FIG. 9, continue to etch the inter-gate
本实施例由离散的金属纳米点204作为存储器的捕获电荷层,储存能力较高。In this embodiment, the discrete metal nano-
图10是本发明制作非挥发性存储器的具体实施方式流程图。如图10所示,执行步骤S201,在半导体衬底上形成隧穿氧化层;执行步骤S202,用化学气相沉积法在隧穿氧化层上形成离散的金属纳米点;执行步骤S203,在离散的金属纳米点上依次形成栅间介电层和导电层;执行步骤S204,刻蚀导电层、栅间介电层、离散的金属纳米点和隧穿氧化层至露出半导体衬底,形成栅极结构;执行步骤S205,于栅极结构两侧的半导体衬底内形成源极/漏极;执行步骤S206,进行金属连线,形成非挥发性半导体存储器。FIG. 10 is a flow chart of a specific embodiment of the invention for fabricating a non-volatile memory. As shown in Figure 10, execute step S201 to form a tunnel oxide layer on the semiconductor substrate; execute step S202 to form discrete metal nano-dots on the tunnel oxide layer by chemical vapor deposition; execute step S203 to form discrete metal nano-dots on the discrete An inter-gate dielectric layer and a conductive layer are sequentially formed on the metal nano-dots; step S204 is performed to etch the conductive layer, inter-gate dielectric layer, discrete metal nano-dots and tunnel oxide layer to expose the semiconductor substrate to form a gate structure ; Execute step S205 to form source/drain in the semiconductor substrate on both sides of the gate structure; execute step S206 to perform metal wiring to form a non-volatile semiconductor memory.
图11至图15是本发明制作非挥发性存储器的实施例示意图。如图11所示,在半导体衬底300上形成隧穿氧化层302,隧穿氧化层302的材质是氧化硅、氧化硅/氮化硅/氧化硅(ONO)、富硅氧化物(SRO)或氮氧化硅(SiON)等。传统形成隧穿氧化层302的工艺是热氧化法,在高温环境下,将半导体衬底300暴露在含氧环境中,形成以氧化硅为材料的隧穿氧化层302,所述工艺通常在炉管中实现;隧穿氧化层302的厚度为50埃~70埃。11 to 15 are schematic diagrams of embodiments of the present invention for fabricating non-volatile memory. As shown in FIG. 11, a
用化学气相沉积法在隧穿氧化层302上形成离散的金属纳米点304,所述金属纳米点304的材质为可用化学气相沉积法沉积的金属。具体例如钛或氮化钛或钨或氮化钨或钽或氮化钽或钯或钼等。Discrete metal nano-
1、如果形成的是以钛为材料的金属纳米点304,在温度为640℃~660℃时,反应室的压力为4Torr~6Torr(1Torr=133.32Pa),往反应室通入流量为2800sccm~3200sccm(标准毫升/分)的氢气与流量为40mgm~60mgm(毫克/分)的四氯化钛反应生成钛,其中沉积速率为2埃/秒~4埃/秒,沉积时间为3秒~4秒。1. If the metal nano-
本实施例中,温度具体例如640℃、645℃、650℃、655℃或660℃等,优选650℃;反应室压力具体为4Torr、5Torr或6Torr等,优选5Torr;氢气流量具体例如2800sccm、2900sccm、3000sccm、3100sccm或3200sccm等,优选3000sccm;四氯化钛具体为40mgm、50mgm或60mgm等,优选50mgm;沉积速率具体例如2埃/秒、3埃/秒或4埃/秒等,优选2.5埃/秒;沉积时间具体为3秒、3.5秒或4秒等,优选3秒。In this embodiment, the temperature is specifically 640°C, 645°C, 650°C, 655°C or 660°C, etc., preferably 650°C; the pressure of the reaction chamber is specifically 4 Torr, 5 Torr or 6 Torr, etc., preferably 5 Torr; the specific hydrogen flow rate is 2800 sccm, 2900 sccm , 3000sccm, 3100sccm or 3200sccm, etc., preferably 3000sccm; titanium tetrachloride is specifically 40mgm, 50mgm or 60mgm, etc., preferably 50mgm; the deposition rate is specifically for example 2 angstroms/second, 3 angstroms/second or 4 angstroms/second, etc., preferably 2.5 angstroms /sec; the deposition time is specifically 3 seconds, 3.5 seconds or 4 seconds, etc., preferably 3 seconds.
2、如果形成的是以氮化钛为材料的金属纳米点304,在温度为670℃~690℃时,反应室的压力为3Torr~5Torr,往化学气相沉积炉内通入流量为80sccm~120sccm的氨气与流量为400mgm~500mgm的四氯化钛反应生成氮化钛,其中沉积速率为2埃/秒~4埃/秒,沉积时间为5秒~6秒。2. If the metal nano-
本实施例中,温度具体例如670℃、675℃、680℃、685℃或690℃等,优选680℃;反应室压力具体为3Torr、4Torr或5Torr等,优选4Torr;氢气流量具体例如80sccm、90sccm、100sccm、110sccm或120sccm等,优选100sccm;四氯化钛具体为400mgm、420mgm、440mgm、450mgm、460mgm、480mgm或500mgm等,优选450mgm;沉积速率具体例如2埃/秒、3埃/秒或4埃/秒等,优选3埃/秒;沉积时间具体为5秒、5.5秒或6秒等,优选6秒。In this embodiment, the temperature is specifically 670°C, 675°C, 680°C, 685°C or 690°C, etc., preferably 680°C; the pressure of the reaction chamber is specifically 3 Torr, 4 Torr or 5 Torr, etc., preferably 4 Torr; the hydrogen flow rate is specifically 80 sccm, 90 sccm , 100sccm, 110sccm or 120sccm etc., preferably 100sccm; Titanium tetrachloride is specifically 400mgm, 420mgm, 440mgm, 450mgm, 460mgm, 480mgm or 500mgm etc., preferably 450mgm; The deposition rate is specifically for example 2 angstroms/second, 3 angstroms/second or 4 Angstrom/second, etc., preferably 3 Angstrom/second; the deposition time is specifically 5 seconds, 5.5 seconds, or 6 seconds, etc., preferably 6 seconds.
采用本实施例所述的方法形成的金属纳米点304的密度、尺寸、形状都可以通过控制化学气相沉积法的工艺参数进行调节。The density, size, and shape of the metal nano-
本实施例中,所述金属纳米点304的直径为3nm~6nm,具体例如3nm、4nm、5nm或6nm等。所述相邻金属纳米点304间的距离为3nm~6nm,具体例如3nm、4nm、5nm或6nm等。In this embodiment, the metal nano-
本实施例中,所述隧穿氧化层302的厚度具体为50埃、55埃、60埃、65埃或70埃等,优选为60埃。In this embodiment, the thickness of the
如图12所示,在离散的金属纳米点304上形成栅间介电层306,此栅间介电层306的材质例如是氧化硅、氧化硅/氮化硅或氧化硅/氮化硅/氧化硅(ONO)等;因非挥发性半导体存储器要求与捕获电荷层接触的氧化硅层须具备良好的电性,以避免在正常电压下,用来储存电荷的捕获电荷层发生漏电或是过早电崩溃的问题;以栅间介电层306的材质是氧化硅为例,以低压化学气相沉积法(LPCVD)形成一层均匀的氧化硅层,所述氧化硅的厚度为130埃~170埃,具体厚度例如130埃、140埃、150埃、160埃或170埃等。As shown in FIG. 12, an inter-gate
用化学气相沉积法在栅间介电层306上形成导电层308,导电层308的材质例如是掺杂复晶硅或金属硅化物;用化学气相沉积法在导电层308上形成顶盖层310,所述顶盖层310的材料为氮化硅等。A
如图13所示,用旋涂法在顶盖层310上形成第一光阻层312,经过曝光、显影工艺,定义控制栅极图形;以第一光阻层312为掩膜,用干法刻蚀法蚀刻顶盖层310和导电层308至露出栅间介电层306,形成控制栅极308a。As shown in Figure 13, the first photoresist layer 312 is formed on the
如图14所示,继续用干法刻蚀法蚀刻栅间介电层306,定义捕获电荷层图形;去除第一光阻层312及顶盖层310;以栅间介电层306为掩膜,用干法刻蚀法蚀刻离散的金属纳米点304和隧穿氧化层302至露出半导体衬底300,形成捕获电荷层304a;由控制栅极308a、栅间介电层306、捕获电荷层304a和隧穿氧化层302构成栅极结构。As shown in FIG. 14 , continue to etch the inter-gate
本实施例由离散的金属纳米点304作为存储器的捕获电荷层,储存能力较高。In this embodiment, the discrete metal nano-
如图15所示,以栅极结构为掩膜,向半导体衬底300中注入离子,形成源极311和漏极313,源极311和漏极313的位置应该保证在由控制栅极308a、栅间介电层306、捕获电荷层304a和隧道氧化层302a组成的栅极结构上施加电压时,源极311和漏极313之间能形成导电沟道。一个实施例中,半导体衬底材料选用p型硅,对源极311和漏极313进行N型低掺杂离子注入,注入离子如砷离子、磷离子等。As shown in FIG. 15 , using the gate structure as a mask, ions are implanted into the
在栅极结构的侧壁形成间隙壁314。所述的间隙壁314可以采用氧化硅、氮化硅、氮氧化硅以及它们的组合,间隙壁不仅可以用来环绕栅极结构,防止更大剂量的源极和漏极注入过于接近沟道以致可能发生源漏穿通,防止短沟道效应,而且还可以用来防止栅极结构与源极以及漏极之间的漏电。A
在半导体衬底300上沉积层间介电层316,所述层间介电层316覆盖栅极结构、源极311及漏极313;在层间介电层316中形成贯穿层间介电层露出漏极313的接触孔;在接触孔沉积导电材料,并采用化学机械抛光的方法抛光层间介电层和导电材料。所述的导电材料为金属钨或者多聚硅(poly silicon),在电路中起到导通电路的作用。An
虽然本发明己以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention has been disclosed above with preferred embodiments, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200710046812A CN100576454C (en) | 2007-09-30 | 2007-09-30 | Gate structure and manufacturing method of non-volatile semiconductor memory |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200710046812A CN100576454C (en) | 2007-09-30 | 2007-09-30 | Gate structure and manufacturing method of non-volatile semiconductor memory |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101399193A CN101399193A (en) | 2009-04-01 |
| CN100576454C true CN100576454C (en) | 2009-12-30 |
Family
ID=40517633
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200710046812A Active CN100576454C (en) | 2007-09-30 | 2007-09-30 | Gate structure and manufacturing method of non-volatile semiconductor memory |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100576454C (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102709289A (en) * | 2012-05-21 | 2012-10-03 | 上海华力微电子有限公司 | Physically-isolated silicon nanocrystalline double-bit storage structure and preparation method thereof |
| CN102709314A (en) * | 2012-05-22 | 2012-10-03 | 上海华力微电子有限公司 | Physically-isolated silicon nanocrystalline double-bit storage structure and preparation method thereof |
| CN115274682A (en) * | 2022-07-25 | 2022-11-01 | 上海华力集成电路制造有限公司 | SONOS memory and its manufacturing method |
-
2007
- 2007-09-30 CN CN200710046812A patent/CN100576454C/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN101399193A (en) | 2009-04-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101517714B (en) | SONOS ONO stack shrinks proportionally | |
| US7432546B2 (en) | Apparatus having a memory device with floating gate layer grain boundaries with oxidized portions | |
| US6835621B2 (en) | Method of fabricating non-volatile memory device having a structure of silicon-oxide-nitride-oxide-silicon | |
| US20080318382A1 (en) | Methods for fabricating tunneling oxide layer and flash memory device | |
| JP2004281662A (en) | Semiconductor storage device and method of manufacturing the same | |
| CN103311286A (en) | Semiconductor device and manufacturing method thereof | |
| US20090256186A1 (en) | Split gate non-volatile memory cell | |
| JP4617574B2 (en) | Nonvolatile semiconductor memory device and manufacturing method thereof | |
| JP2015516679A (en) | Integration of non-volatile charge trap memory devices and logic CMOS devices | |
| US6699754B2 (en) | Flash memory cell and method for fabricating the same | |
| US7928493B2 (en) | Nonvolatile memory device with multiple blocking layers and method of fabricating the same | |
| CN101409309A (en) | Flash memory device and method of fabricating the same | |
| CN100561690C (en) | Non-volatile semiconductor memory and manufacturing method thereof | |
| US7488634B2 (en) | Method for fabricating flash memory device | |
| JP4609980B2 (en) | Method for manufacturing flash memory device | |
| CN100576454C (en) | Gate structure and manufacturing method of non-volatile semiconductor memory | |
| US6211016B1 (en) | Method for forming high density nonvolatile memories with high capacitive-coupling ratio | |
| JP2003282748A (en) | Nonvolatile semiconductor memory device and method of manufacturing the same | |
| JP2004214608A (en) | Method for manufacturing semiconductor device | |
| JP2008244108A (en) | Semiconductor device and manufacturing method of semiconductor device | |
| US20040166632A1 (en) | Method of fabricating flash memory | |
| KR100905276B1 (en) | Flash memory device including multylayer tunnel insulator and method of fabricating the same | |
| JP2005197722A (en) | Manufacturing method of flash memory | |
| US20080093657A1 (en) | Nonvolatile memory devices and methods of fabricating the same | |
| US20020145162A1 (en) | Non-volatile semiconductor storage device and method for producing the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| ASS | Succession or assignment of patent right |
Owner name: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING Effective date: 20111124 |
|
| C41 | Transfer of patent application or patent right or utility model | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20111124 Address after: 201203 Shanghai City, Pudong New Area Zhangjiang Road No. 18 Co-patentee after: Semiconductor Manufacturing International (Beijing) Corporation Patentee after: Semiconductor Manufacturing International (Shanghai) Corporation Address before: 201203 Shanghai City, Pudong New Area Zhangjiang Road No. 18 Patentee before: Semiconductor Manufacturing International (Shanghai) Corporation |