[go: up one dir, main page]

CN101051083B - Secondary wave arrival direction estimation sonar signal processing method - Google Patents

Secondary wave arrival direction estimation sonar signal processing method Download PDF

Info

Publication number
CN101051083B
CN101051083B CN2006100727187A CN200610072718A CN101051083B CN 101051083 B CN101051083 B CN 101051083B CN 2006100727187 A CN2006100727187 A CN 2006100727187A CN 200610072718 A CN200610072718 A CN 200610072718A CN 101051083 B CN101051083 B CN 101051083B
Authority
CN
China
Prior art keywords
centerdot
sonar
battle array
estimated value
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006100727187A
Other languages
Chinese (zh)
Other versions
CN101051083A (en
Inventor
朱维庆
刘晓东
张方生
陈强
刘光军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Acoustics CAS
Original Assignee
Institute of Acoustics CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Acoustics CAS filed Critical Institute of Acoustics CAS
Priority to CN2006100727187A priority Critical patent/CN101051083B/en
Publication of CN101051083A publication Critical patent/CN101051083A/en
Application granted granted Critical
Publication of CN101051083B publication Critical patent/CN101051083B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种二维波达方向估计声纳信号处理方法,包括:1)修正基元输出信号的相位;2)求声纳阵相关函数估计值;3)对声纳阵相关函数估计值进行特征值分解;4)第一求子阵运算;5)求所有子阵对的相关函数估计值;6)对所有子阵对的相关函数估计值进行特征值分解;7)求所有子阵对的特征向量估计值;8)求目标对于声纳阵两个方向的张角的估计值,挑选与最小方差对应的两个张角估计值;9)求目标数估计;10)第二求子阵运算;11)求所有二维声纳阵对应的特征向量估计值;12)求各目标对于声纳阵两个方向的张角的估计值,挑选与最小方差对应的两个张角估计值。本发明能正确判定目标数、获得更高分辨率的目标三维声像。

Figure 200610072718

The invention discloses a two-dimensional direction of arrival estimation sonar signal processing method, comprising: 1) correcting the phase of the output signal of the primitive; 2) calculating the estimated value of the correlation function of the sonar array; 3) estimating the correlation function of the sonar array 4) Finding the first sub-array operation; 5) Finding the estimated value of the correlation function of all sub-array pairs; 6) Decomposing the eigenvalue of the estimated value of the correlation function of all sub-array pairs; 7) Finding all sub-array pairs The eigenvector estimated value of the array pair; 8) seek the estimated value of the opening angle of the target for the two directions of the sonar array, and select two estimated values of the opening angle corresponding to the minimum variance; 9) seek the estimated number of targets; 10) the second Find the sub-array operation; 11) Find the estimated value of the eigenvectors corresponding to all two-dimensional sonar arrays; 12) Find the estimated values of the opening angles of each target for the two directions of the sonar array, and select the two opening angles corresponding to the minimum variance estimated value. The invention can correctly determine the number of targets and obtain a higher-resolution target three-dimensional sound image.

Figure 200610072718

Description

一种二维波达方向估计声纳信号处理方法 A Two-dimensional Direction of Arrival Estimation Sonar Signal Processing Method

技术领域technical field

本发明涉及一种二维高分辨率声纳信号处理方法,特别涉及一种利用二维波达方向(Direction of Arrival,以下简称DOA)估计获得水下目标方位信息的声纳信号处理方法。The invention relates to a two-dimensional high-resolution sonar signal processing method, in particular to a sonar signal processing method for obtaining underwater target azimuth information by using two-dimensional direction of arrival (Direction of Arrival, hereinafter referred to as DOA) estimation.

背景技术Background technique

在现有技术中,一般采用常规的波束形成技术在二维平面上形成波束,获得目标的三维声像。常规波束形成技术以付氐变换为基础,它的波束角宽为Δθ=λ/d,其中λ是波长,d是声纳阵的最大尺寸。如果要使波束角宽Δθ减小,获得高的分辨率,通常有两种方法,一种方法是减小波长λ,频率增大,但是缩短了作用距离;另一种方法是增大声纳阵的尺寸d,但是这样会使得声纳阵造价上升,安装不便。In the prior art, conventional beamforming techniques are generally used to form beams on a two-dimensional plane to obtain a three-dimensional sound image of a target. Conventional beamforming techniques are based on the Fudi transform, and its beam angular width is Δθ=λ/d, where λ is the wavelength and d is the maximum size of the sonar array. If you want to reduce the beam angle width Δθ and obtain high resolution, there are usually two methods. One method is to reduce the wavelength λ and increase the frequency, but shorten the operating distance; the other method is to increase the sonar The size d of the array, but this will increase the cost of the sonar array and make installation inconvenient.

近年来,现代阵信号处理发展很快,利用阵的时空相关函数构成矩阵,由此矩阵提取声波的信息,包括声波入射角和振幅等,这种方法被称为波达方向(DOA)估计方法。声纳阵接收的信号中除了目标信号外,还有噪声信号,因此阵时空相关函数矩阵在泛函空间里分解成信号子空间和噪声子空间,两个子空间相互垂直。波达方向估计方法一般分两大类:一类是谱基方法,它包括噪声子空间法,又称零空间法,但在小样本、低信噪比和高信号相干性时,此类方法的性能明显下降;另一类是参量法,它包括信号子空间法,参量法的性能明显优于谱基方法。In recent years, modern array signal processing has developed rapidly. The matrix is formed by using the space-time correlation function of the array, and the information of the sound wave is extracted from the matrix, including the incident angle and amplitude of the sound wave. This method is called the direction of arrival (DOA) estimation method. . In addition to the target signal, the signal received by the sonar array also has noise signals, so the array space-time correlation function matrix is decomposed into a signal subspace and a noise subspace in the functional space, and the two subspaces are perpendicular to each other. Direction of arrival estimation methods are generally divided into two categories: one is the spectrum-based method, which includes the noise subspace method, also known as the null space method, but in the case of small samples, low signal-to-noise ratio and high signal coherence The other is the parametric method, which includes the signal subspace method, and the performance of the parametric method is obviously better than that of the spectrum-based method.

P.Kraeutner等人的专利,专利号US6130641,专利名称“Imaging methods andapparatus using model-based array signal processing”中采用现代阵信号处理中的零空间法,即噪声子空间,对换能器阵时空相关函数矩阵进行处理,获得了一维波达方向(DOA)估计的声纳阵信号处理方法,该方法比常规波束形成技术的分辨率高。The patent of P.Kraeutner et al., patent No. US6130641, the patent name "Imaging methods and apparatus using model-based array signal processing" adopts the null space method in the modern array signal processing, that is, the noise subspace, which is related to the time and space of the transducer array. The function matrix is processed to obtain a sonar array signal processing method for one-dimensional direction of arrival (DOA) estimation, which has a higher resolution than conventional beamforming techniques.

朱维庆等人的中国专利ZL01142136.3,专利名称“用于测量海底微地貌的高分辨率测深侧扫声纳系统和测量方法”和朱维庆等人的美国专利US6873570B2,专利名称“High resolution bathymetric sonar system and measuring method for measuring thephysiognomy of the seabed”采用现代阵信号处理中的信号子空间法,对换能器时空相关函数矩阵进行处理,获得了一维波达方向(DOA)估计的声纳阵信号处理方法,该方法比常规波束形成技术的分辨率高。The Chinese patent ZL01142136.3 of Zhu Weiqing et al., the patent name is "High-resolution bathymetric side-scan sonar system and measurement method for measuring seabed microtopography" and the US patent US6873570B2 of Zhu Weiqing et al., the patent name is "High resolution bathymetric sonar The system and measuring method for measuring the physiognomy of the seabed" uses the signal subspace method in the modern array signal processing to process the transducer space-time correlation function matrix to obtain the one-dimensional direction of arrival (DOA) estimated sonar array signal processing method that provides higher resolution than conventional beamforming techniques.

但是,上述已有技术中存在的不足在于:已有的声纳信号处理方法中,只用了一维波达方向估计进行声信号处理,另一维是采用常规波束形成技术,从而使得声纳阵探测水下目标的分辨率很低;事实上,在利用声纳阵探测水下目标时,需要二维波达方向(DOA)估计的声信号处理,加上距离轴,才能获得水下目标的高分辨率三维声像。However, the disadvantages of the above-mentioned existing technologies are: in the existing sonar signal processing methods, only one-dimensional direction of arrival estimation is used for acoustic signal processing, and the other dimension is to use conventional beamforming technology, so that the sonar The resolution of detecting underwater targets with a sonar array is very low; in fact, when using a sonar array to detect underwater targets, acoustic signal processing for two-dimensional direction of arrival (DOA) estimation, plus the distance axis, is required to obtain the underwater target high-resolution three-dimensional sound image.

针对现有技术的不足,人们希望有一种二维波达方向估计的声纳信号处理方法。Aiming at the deficiencies of the existing technology, people hope to have a sonar signal processing method for two-dimensional direction of arrival estimation.

发明内容Contents of the invention

本发明的目的在于克服已有技术的不足,提供一种更高分辨率的、实际应用中具有良好性能的二维波达方向估计的声信号处理方法。The purpose of the present invention is to overcome the deficiencies of the prior art, and provide a higher-resolution acoustic signal processing method for two-dimensional direction-of-arrival estimation with good performance in practical applications.

为了达到上述目的,本发明采取如下技术方案:In order to achieve the above object, the present invention takes the following technical solutions:

一种二维波达方向估计声纳信号处理方法,包括如下步骤:A two-dimensional DOA estimation sonar signal processing method, comprising the steps of:

1)对声纳阵基元输出信号的相位进行修正,所述声纳阵为中心对称二维声纳阵;1) Correcting the phase of the output signal of the sonar array primitive, the sonar array being a centrosymmetric two-dimensional sonar array;

2)计算声纳阵相关函数估计值;2) Calculating the estimated value of the correlation function of the sonar array;

3)对上述声纳阵相关函数估计值进行特征值分解;3) Carry out eigenvalue decomposition to above-mentioned sonar array correlation function estimated value;

4)第一求子阵运算:将中心对称的二维声纳阵分成分别沿相互垂直的x和y方向的一维声纳阵,每个一维声纳阵分成多个子阵对,每个子阵对的子阵包含相同数量的基元,执行求子阵运算;4) The first sub-array operation: divide the centrosymmetric two-dimensional sonar array into one-dimensional sonar arrays along the mutually perpendicular x and y directions, each one-dimensional sonar array is divided into multiple sub-array pairs, and each sub-array The sub-arrays of the array pair contain the same number of primitives, and the sub-array operation is performed;

5)计算所有子阵对的相关函数估计值;5) Calculate the estimated value of the correlation function of all sub-array pairs;

6)对所有子阵对的相关函数估计值进行特征值分解;6) Carry out eigenvalue decomposition to the estimated value of the correlation function of all sub-array pairs;

7)计算所有子阵对的特征向量估计值;7) Calculate the estimated value of the eigenvectors of all subarray pairs;

8)计算目标对于x方向和y方向声纳阵的两个张角的估计值,挑选与最小方差对应的两个张角估计值;8) Calculate the estimated values of the target for the two opening angles of the sonar array in the x direction and the y direction, and select two estimated values of the opening angles corresponding to the minimum variance;

9)计算目标数估计,由步骤6)分别求对应x方向和y方向的目标数,如果两方向的目标数不等,则停止运算,否则继续运算;9) Calculating the target number estimate, by step 6) seeking the target numbers corresponding to the x direction and the y direction respectively, if the target numbers in the two directions are not equal, then stop the calculation, otherwise continue the calculation;

10)第二求子阵运算,将二维声纳阵展成一维,按一维声纳阵的方式选择矩阵;10) The second sub-array operation is to expand the two-dimensional sonar array into one dimension, and select the matrix in the mode of one-dimensional sonar array;

11)求所有二维声纳阵对应的特征向量估计值;11) Find the eigenvector estimates corresponding to all two-dimensional sonar arrays;

12)计算各目标对于x方向和y方向声纳阵的两个张角的估计值,挑选与最小方差对应的两个张角估计值。12) Calculate the estimated values of the two opening angles of each target for the sonar array in the x direction and the y direction, and select the two estimated values of the opening angles corresponding to the minimum variance.

在上述技术方案中,所述步骤1)具体包括:In the above technical solution, said step 1) specifically includes:

(1)由多个不相关的信号源,得到声纳阵的输出;(1) Obtain the output of the sonar array from multiple unrelated signal sources;

(2)计算等效基元间距误差;(2) Calculating the equivalent primitive spacing error;

(3)由等效基元间距误差对声纳阵基元输出信号的相位进行修正。(3) The phase of the output signal of the sonar array primitive is corrected by the error of the equivalent primitive spacing.

在上述技术方案中,步骤1)中所述中心对称二维声纳阵的形式是矩形、方框形、十字形或圆形等形状,如图1(a)-(d)所示,声纳阵的基元数在二维对称的情形下可以增减。In the above technical solution, the center-symmetrical two-dimensional sonar array in step 1) is in the form of a rectangle, a box, a cross or a circle, as shown in Figure 1(a)-(d), the acoustic The number of primitives in the nanoarray can increase or decrease in the case of two-dimensional symmetry.

与现有技术相比,本发明的优点在于:Compared with the prior art, the present invention has the advantages of:

1)可以正确判定目标数;1) The number of targets can be correctly determined;

2)利用等效基元间距误差对声纳阵基元输出信号的相位进行修正;2) Correct the phase of the output signal of the sonar array primitives by using the equivalent primitive spacing error;

3)本发明采用多子阵的处理方法,提高目标方位估计精度;3) The present invention adopts the processing method of multiple sub-arrays to improve the target orientation estimation accuracy;

4)获得水下目标的三维声像分辨率更高。4) The resolution of the three-dimensional audio image of the underwater target is higher.

附图说明Description of drawings

图1(a)表示本发明的矩形声纳阵示意图;Fig. 1 (a) represents the rectangular sonar array schematic diagram of the present invention;

图1(b)表示本发明的方框形声纳阵示意图;Fig. 1 (b) represents the block shape sonar array schematic diagram of the present invention;

图1(c)表示本发明的十字形声纳阵示意图;Fig. 1 (c) shows the cross-shaped sonar array schematic diagram of the present invention;

图1(d)表示本发明的圆形声纳阵示意图;Fig. 1 (d) represents the circular sonar array schematic diagram of the present invention;

图2表示本发明实施例示意图;Fig. 2 shows the schematic diagram of the embodiment of the present invention;

图3表示本发明实施例示意图;Fig. 3 shows the schematic diagram of the embodiment of the present invention;

图4本发明一实施例将十字形声纳阵展开后的子阵选择示意图。Fig. 4 is a schematic diagram of sub-array selection after the cross-shaped sonar array is deployed according to an embodiment of the present invention.

具体实施方式Detailed ways

下面结合附图和具体实施方式对本发明作进一步详细描述:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:

能够再现本发明的中心对称的二维声纳阵形式有很多种,而且声纳阵元的数目不应该受到限制,以二维中心对称的方式可以增减声纳阵元数目。There are many forms of centrosymmetric two-dimensional sonar arrays that can reproduce the present invention, and the number of sonar array elements should not be limited, and the number of sonar array elements can be increased or decreased in a two-dimensional centrosymmetric manner.

本实施例以图2中的十字阵为例,来详细说明本发明的二维波达方向估计声纳信号处理方法。本发明对所有二维中心对称的二维声纳阵均适用,本领域技术人员根据实施例的描述,将本方法应用到其他形式的二维中心对称的声纳阵,是可以胜任的。In this embodiment, the cross array in FIG. 2 is taken as an example to describe the two-dimensional DOA estimation sonar signal processing method of the present invention in detail. The present invention is applicable to all two-dimensional centrosymmetric two-dimensional sonar arrays, and those skilled in the art can apply the method to other forms of two-dimensional centrosymmetric sonar arrays according to the description of the embodiments.

如图1(a)-(d)所示的四种声纳阵:矩形、方框形、十字形和圆形声纳阵,四种声纳阵在x方向和y方向的基元数最多为5个,可分辨4个相干目标。并且,在两个方向最多基元数相等的情形下,十字形状的二维声纳阵的基元数是最少的。如图2所示,本实施例的十字形二维声纳阵在xy平面内,共有9个基元,5号基元为基准点,3、4、5、6、7号基元顺序排在x轴上,构成x方向的一维声纳阵;1、2、5、8、9号基元顺序排在y轴上,构成y方向的一维声纳阵。图2中声纳阵前方有目标A,它的波矢量为K=k(sinφcosθ sinφsinθ cosφ)T,φ称为俯仰角,θ称为方位角,k为波数,同时也得到:Four sonar arrays as shown in Figure 1(a)-(d): rectangular, box-shaped, cross-shaped and circular sonar arrays, the four sonar arrays have the largest number of primitives in the x and y directions There are 5, and 4 coherent targets can be distinguished. Moreover, under the condition that the maximum number of primitives in the two directions is equal, the number of primitives of the cross-shaped two-dimensional sonar array is the least. As shown in Figure 2, the cross-shaped two-dimensional sonar array of this embodiment has 9 primitives in the xy plane, the 5th primitive is the reference point, and the 3rd, 4th, 5th, 6th, and 7th primitives are arranged in sequence On the x-axis, a one-dimensional sonar array in the x-direction is formed; primitives 1, 2, 5, 8, and 9 are sequentially arranged on the y-axis, forming a one-dimensional sonar array in the y-direction. In Figure 2, there is a target A in front of the sonar array, and its wave vector is K=k(sinφcosθ sinφsinθ cosφ) T , φ is called the pitch angle, θ is called the azimuth angle, k is the wave number, and at the same time:

                   sinφcosθ=sinα                           (1a)sinφcosθ=sinα (1a)

                   sinφsinθ=sinβ                           (1b)sinφsinθ=sinβ (1b)

称α为x轴声纳阵的张角,以顺时针为正方向;称β为y轴声纳阵的张角,以逆时针为正方向,则K=k(sinαcosθ sinβ cosθ)TCall α the opening angle of the x-axis sonar array, with clockwise as the positive direction; call β the opening angle of the y-axis sonar array, and take the counterclockwise as the positive direction, then K=k(sinαcosθ sinβ cosθ) T .

本发明波达方向估计方法解决的技术问题之一是目标数的正确判定。如图3所示,当存在多目标,并且它们之间的连线与x轴或者y轴平行时,会存在目标数的不正确的判定。在图3中,十字形声纳阵布设与图2相同,存在目标1和目标2两个目标,它们的连线与y轴平行,在xy平面的投影关于x轴对称,角α1和α2分别是两个目标对x轴的张角,角β1和β2分别是两个目标对y轴的张角。由图3可见,α1和α2相等,β1和β2大小相等,方向相反,由此得出的结果是对x轴的声纳阵只存在一个目标,对y轴的声纳阵存在两个目标。对于上述情况,如果用直接二维波达方向估计方法,则对x轴和y轴声纳阵的张角均为不等的二个值,也即对x轴的声纳阵多出了一个不存在的α3。这显然是错误的。本发明的解决方法是,首先,将x轴和y轴的均匀线阵分别用一维波达方向估计方法估计张角α和β,如果发现α和β的个数不相等,则此计算即为最终结果。否则,采用二维波达方向估计方法,获得α和β精度较高的估计。One of the technical problems solved by the direction of arrival estimation method of the present invention is the correct determination of the number of targets. As shown in FIG. 3 , when there are multiple targets and the lines between them are parallel to the x-axis or the y-axis, there will be an incorrect determination of the number of targets. In Figure 3, the layout of the cross-shaped sonar array is the same as that in Figure 2. There are two targets, Target 1 and Target 2, and their connection lines are parallel to the y-axis. The projection on the xy plane is symmetrical about the x-axis, and the angles α 1 and α 2 are the opening angles of the two targets to the x-axis, and angles β 1 and β 2 are the opening angles of the two targets to the y-axis. It can be seen from Figure 3 that α 1 and α 2 are equal, β 1 and β 2 are equal in size and opposite in direction, and the result obtained from this is that there is only one target for the sonar array on the x-axis, and there is a target for the sonar array on the y-axis. two goals. For the above situation, if the direct two-dimensional direction of arrival estimation method is used, the opening angles of the x-axis and y-axis sonar arrays are both unequal two values, that is, there is one more for the x-axis sonar array α 3 does not exist. This is clearly wrong. The solution of the present invention is, at first, use the one-dimensional DOA estimation method to estimate the opening angles α and β for the uniform line arrays of the x-axis and y-axis respectively, if it is found that the numbers of α and β are not equal, then this calculation is for the final result. Otherwise, the two-dimensional direction of arrival estimation method is used to obtain estimates of α and β with higher accuracy.

波达方向估计是非线性估计,对硬件有较高的要求,主要是对接收通道的一致性有较高的要求。影响通道一致性的主要因素有几个方面:(1)声纳阵基元相位和幅度的误差,其中主要是相位误差。(2)基元间距的不一致性,它产生基元接收信号的相位误差。(3)入射波阵面的相位起伏。上述三种因素均可形式上等效为基元间距dl产生了误差Δdl,在本实施例中,dl是第l个阵元与第5个阵元即中心阵元的间距。本发明波达方向估计方法解决的技术问题之二是如何由等效基元间距误差对声纳阵基元输出信号的相位进行修正。在本实施例中,构造目标函数:Direction of Arrival estimation is a nonlinear estimation, which has high requirements on hardware, mainly on the consistency of the receiving channel. There are several main factors affecting channel consistency: (1) Phase and amplitude errors of sonar array elements, mainly phase errors. (2) The inconsistency of the cell spacing, which produces the phase error of the cell received signal. (3) The phase fluctuation of the incident wavefront. The above three factors can be formally equivalent to an error Δd l generated by the distance d l of the elements. In this embodiment, d l is the distance between the lth array element and the fifth array element, that is, the central array element. The second technical problem solved by the DOA estimation method of the present invention is how to correct the phase of the output signal of the sonar array element by the error of the equivalent element spacing. In this example, construct the objective function:

Ff (( ΔΔ dd ll ,, ΔθΔθ )) == minmin || || θθ -- θθ AA || || Ff 22 -- -- -- (( 22 ))

此处,对于图3中的十字阵,l=1……8,θA=[θA1……θAh],它是理论入射角,h是测量次数,Δθ是θ的误差角,||·||F是Frobenius范数。找到满足上式的Δdl和Δθ,则基元的相位误差为:Here, for the cross matrix in Figure 3, l=1...8, θ A =[θ A1 ...θ Ah ], it is the theoretical incident angle, h is the number of measurements, Δθ is the error angle of θ, || ·||F is the Frobenius norm. Find Δd l and Δθ that satisfy the above formula, then the phase error of the primitive is:

             Δφl=kΔdlsinθ    m=1,……8    (3)此Δφl加在相应通道信号的相位上,进行补偿。Δφ l = kΔd l sinθ m = 1, ... 8 (3) This Δφ l is added to the phase of the corresponding channel signal for compensation.

下面的步骤详细说明了如图3所示的十字形声纳阵的二维波达方向估计声纳信号处理方法。当然,本领域技术人员根据下述步骤对其他形式二维中心对阵的声纳阵采用二维波达方向估计声纳信号处理,是可以胜任的。步骤包括:The following steps detail the sonar signal processing method for the two-dimensional DOA estimation of the cross-shaped sonar array shown in FIG. 3 . Of course, those skilled in the art are competent to use the two-dimensional direction of arrival estimation sonar signal processing for other forms of two-dimensional centrally arrayed sonar arrays according to the following steps. Steps include:

1).设有M个不相关的信号源s,得声纳阵输出x,由下式表示1). There are M uncorrelated signal sources s, and the output x of the sonar array is obtained, which is expressed by the following formula

       x=A(α,β)s+n                      (4)其中x=A(α, β)s+n (4) where

x=[x1 x2 ……xL]T                          (5a)x=[x 1 x 2 ... x L ] T (5a)

A=(α,β)=[a(α1,β1)……a(αM,βM)]    (5b)A=(α,β)=[a(α 11 )...a(α MM )] (5b)

α=[α1……αM]T                           (5c)α=[α 1 ... α M ] T (5c)

β=[β1……βM]T                       (5d)β=[β 1 ... β M ] T (5d)

aa (( αα ii ,, ββ ii )) == gg (( αα ii ,, ββ ii )) [[ ee -- jj (( LL 22 -- 11 )) kdkd sinsin ββ ii // 22 .. .. .. 11 ,, ee -- jkdjkd sinsin ββ ii ,, ee jj (( LL 11 -- 11 )) kdkd sinsin αα ii // 22 ,, .. .. .. ee jkdjkd sinsin αα ii ,,

11 ,, ee -- jkdjkd sinsin αα ii ,, .. .. .. ,, ee -- jj (( LL 11 -- 11 )) kdkd sinsin αα ii // 22 ,, ee jkdjkd sinsin ββ ii ,, .. .. .. ,, ee jj (( LL 22 -- 11 )) kdkd sinsin ββ ii // 22 ]] TT -- -- -- (( 55 ee ))

       s=[s1……sM]T                   (5f)s=[s 1 ...s M ] T (5f)

       n=[n1……nL]T                   (5g)n=[n 1 ... n L ] T (5g)

其中n是零均值的空间白噪声,g(αi,βi)是基元的指向性系数,L是基元数,L1和L2分别是x方向和y方向的基元数,k是波数,d为基元间距。where n is the spatial white noise with zero mean value, g(α i , β i ) is the directivity coefficient of the primitive, L is the number of primitives, L 1 and L 2 are the number of primitives in the x direction and y direction respectively, k is the wave number, and d is the element spacing.

2).求等效基元间距误差Δdm。目标函数为:2). Calculate the equivalent element spacing error Δd m . The objective function is:

Ff (( ΔdΔd mm ,, ΔθΔθ )) == minmin || || θθ -- θθ AA || || Ff 22 ,, mm == 11 .. .. .. LL -- 11 -- -- -- (( 66 ))

其中θA=[θA1……θAh],它是理论声波入射角,h是测量次数,θ是测得的声波入射角,Δθ是θ的误差角,L是声纳阵基元数,||·||F是Frobenius范数。求得满足上式的Δdm和Δθ。Where θ A = [θ A1 ... θ Ah ], it is the theoretical sound wave incidence angle, h is the number of measurements, θ is the measured sound wave incidence angle, Δθ is the error angle of θ, L is the number of sonar array primitives, ||·|| F is the Frobenius norm. Find Δd m and Δθ that satisfy the above formula.

3).求声纳阵基元输出信号xl的相位修正Δφl3). Find the phase correction Δφ l of the output signal x l of the sonar array element;

Δφl=kΔdlsinθ    l=1……L-1                  (7)Δφ l = kΔd l sinθ l = 1...L-1 (7)

将Δφl加在xl的相位上。Add Δφ l to the phase of x l .

4).求声纳阵相关函数估计值4). Find the estimated value of the correlation function of the sonar array Right now

RR ^^ == 11 NN ΣΣ nno == 11 NN xx nno xx nno Hh -- -- -- (( 88 ))

5).对声纳阵相关函数估计值进行特征值分解:5). Estimated value of sonar array correlation function Perform an eigenvalue decomposition:

RR ^^ == AA RR ^^ sthe s AA Hh ++ σσ 22 II == Uu ^^ sthe s ΣΣ ^^ sthe s Uu ^^ sthe s Hh ++ Uu ^^ nno ΣΣ ^^ nno Uu ^^ nno Hh -- -- -- (( 99 ))

其中

Figure A20061007271800128
是信号相关函数的估计值,σ2是噪声方差的估计值,
Figure A20061007271800129
Figure A200610072718001210
分别是信号的特征向量和特征值的估计值,
Figure A200610072718001212
分别是噪声的特征向量和特征值的估计值;上标H表示共轭转置运算;in
Figure A20061007271800128
is the estimated value of the signal correlation function, σ2 is the estimated value of the noise variance,
Figure A20061007271800129
and
Figure A200610072718001210
are the estimated eigenvectors and eigenvalues of the signal, respectively, and
Figure A200610072718001212
are the estimated values of the eigenvectors and eigenvalues of the noise, respectively; the superscript H represents the conjugate transpose operation;

6).第一求子阵运算。将二维十字声纳阵分成x和y方向的一维声纳阵,相应的基元数分别为L1和L2,相应的输出为w和v。执行下列求子称运算,得到子阵对:x方向 y方向

Figure A20061007271800133
Figure A20061007271800134
输出w由下式表示6). The first sub-array operation. Divide the two-dimensional cross sonar array into one-dimensional sonar arrays in x and y directions, the corresponding numbers of primitives are L 1 and L 2 , and the corresponding outputs are w and v. Execute the following sub-scale operations to obtain the sub-array pair: x direction y direction
Figure A20061007271800133
Figure A20061007271800134
The output w is represented by

w=A(α)s+n                                (12)w=A(α)s+n (12)

其中in

ww == [[ ww 11 ww 22 .. .. .. .. .. .. ww LL 11 ]] TT -- -- -- (( 1313 aa ))

A(α)=[a(α1)……a(αM)]                  (13b)A(α)=[a(α 1 )...a(α M )] (13b)

α=[α1……αM]T                          (13c)α=[α 1 ... α M ] T (13c)

aa (( αα ii )) == gg (( αα ii )) [[ ee -- (( LL 11 -- 11 )) kdkd sinsin αα 11 // 22 ,, .. .. .. ,, ee jkdjkd sinsin αα ii ,, 11 ,, ee -- jkjk sinsin αα ii ,, .. .. .. ,, ee -- jj (( LL 11 -- 11 )) kdkd sinsin αα ii // 22 ]] TT -- -- -- (( 1313 dd ))

s=[s1……sM]T                             (13e)s=[s 1 ...s M ] T (13e)

nno == [[ nno 11 .. .. .. .. .. .. nno LL 11 ]] TT -- -- -- (( 1313 ff ))

输出v由下式表示The output v is represented by

v=A(β)s+n                                 (14)v=A(β)s+n (14)

其中in

vv == [[ vv 11 vv 22 .. .. .. .. .. .. vv LL 22 ]] TT -- -- -- (( 1515 aa ))

A(β)=[a(β1)……a(βM)]                   (15b)A(β)=[a(β 1 )...a(β M )] (15b)

β=[β1……βM]T                           (15c)β=[β 1 ... β M ] T (15c)

aa (( ββ ii )) == gg (( ββ ii )) [[ ee -- jj (( LL 22 -- 11 )) kdkd sinsin ββ ii // 22 ,, .. .. .. ,, ee -- jkdjkd sinsin ββ ii ,, 11 ,, ee jkdjkd sinsin ββ ii ,, .. .. .. ,, ee -- jj (( LL 22 -- 11 )) kdkd sinsin ββ ii // 22 ]] TT -- -- -- (( 1515 dd ))

s=[s1……sM]T                              (15e)s=[s 1 ... s M ] T (15e)

nno == [[ nno 11 .. .. .. .. .. .. nno LL 22 ]] TT -- -- -- (( 1515 ff ))

由图2可见L1和L2可分别为4、3、2,得到多个子阵对。以x方向为例,子阵对包含的基元的形式可为:L=4,2子阵,由基元3#到6#和4#到7#构成;L=3,3子阵,由基元3#到5#,4#到6#和5#到7#构成;L=2,4子阵,由基元3#4#、4#5#、5#6#和6#7#构成。更为详细的技术内容已记载在本申请人的在先申请中,申请号为200510085511.9,名称为“一种高分辨率测深侧扫声纳系统和信号处理方法”。对于y方向采取类似计算。It can be seen from Figure 2 that L 1 and L 2 can be 4, 3, and 2 respectively, and multiple sub-array pairs can be obtained. Taking the x direction as an example, the form of the primitives contained in the sub-array pair can be: L=4, 2 sub-arrays, composed of primitives 3 # to 6 # and 4 # to 7 # ; L=3, 3 sub-arrays, Consists of primitives 3 # to 5 # , 4 # to 6 # and 5 # to 7 # ; L=2, 4 subarrays, consisting of primitives 3 # 4 #, 4 # 5 # , 5 # 6 # and 6 # 7 # composition. More detailed technical content has been recorded in the applicant's previous application, the application number is 200510085511.9, and the title is "a high-resolution depth-sounding side-scan sonar system and signal processing method". Similar calculations are taken for the y direction.

7).求所有子阵对相关函数估计值,即7). Find the estimated value of the correlation function of all subarray pairs, namely

RR ^^ WW == 11 NN ΣΣ nno == 11 NN wwww Hh -- -- -- (( 1616 ))

RR ^^ VV == 11 NN ΣΣ nno == 11 NN vv nno vv nno Hh -- -- -- (( 1717 ))

8).对所有子阵对的

Figure DEST_PATH_GA20191100200610072718701D00013
Figure DEST_PATH_GA20191100200610072718701D00014
进行特征值分解8). For all sub-array pairs
Figure DEST_PATH_GA20191100200610072718701D00013
and
Figure DEST_PATH_GA20191100200610072718701D00014
Do eigenvalue decomposition

RR ^^ 11 == AA (( αα )) RR ^^ sthe s 11 AA (( αα )) Hh ++ σσ 22 II == Uu ^^ sthe s 11 ΣΣ ^^ sthe s 11 Uu sthe s 11 Hh ++ Uu ^^ nno ΣΣ ^^ nno Uu ^^ nno -- -- -- (( 1818 ))

RR ^^ 22 == AA (( ββ )) RR ^^ sthe s 22 AA (( ββ )) Hh ++ σσ 22 II == Uu ^^ sthe s 22 ΣΣ ^^ sthe s 22 Uu ^^ sthe s 22 ++ Uu ^^ nno ΣΣ ^^ nno Uu ^^ nno -- -- -- (( 1919 ))

其中各量同公式(8),只是下标s1和s2分别表示x和y方向的子阵。The quantities are the same as formula (8), except that the subscripts s1 and s2 represent the sub-arrays in the x and y directions respectively.

9).计算所有子阵对的特征向量估计值:9). Calculate the estimated value of the eigenvectors of all subarray pairs:

Uu ^^ sthe s 1111 == JJ 11 Uu ^^ sthe s 11 Uu ^^ sthe s 1212 == JJ 22 Uu ^^ sthe s 11 -- -- -- (( 2020 ))

Uu ^^ sthe s 21twenty one == JJ 33 Uu ^^ sthe s 22 Uu ^^ sthe s 22twenty two == JJ 44 Uu ^^ sthe s 22 -- -- -- (( 21twenty one ))

10).求所有张角的估计值

Figure DEST_PATH_GA20191100200610072718701D000111
Figure DEST_PATH_GA20191100200610072718701D000112
10). Find the estimated value of all opening angles
Figure DEST_PATH_GA20191100200610072718701D000111
and
Figure DEST_PATH_GA20191100200610072718701D000112

在约束条件 ( U ^ s 12 + Δ U ^ s 12 ) ∈ range ( U ^ s 11 + Δ U ^ s 11 ) 下:in constraints ( u ^ the s 12 + Δ u ^ the s 12 ) ∈ range ( u ^ the s 11 + Δ u ^ the s 11 ) Down:

Figure DEST_PATH_GA20191100200610072718701D000114
Figure DEST_PATH_GA20191100200610072718701D000114

在约束条件 ( U ^ s 21 + Δ U ^ s 21 ) ∈ range ( U ^ s 22 + Δ U ^ s 22 ) 下:in constraints ( u ^ the s twenty one + Δ u ^ the s twenty one ) ∈ range ( u ^ the s twenty two + Δ u ^ the s twenty two ) Down:

Figure DEST_PATH_GA20191100200610072718701D000116
Figure DEST_PATH_GA20191100200610072718701D000116

其中

Figure DEST_PATH_GA20191100200610072718701D000118
分别是
Figure DEST_PATH_GA20191100200610072718701D000119
Figure DEST_PATH_GA20191100200610072718701D000120
的误差。in and
Figure DEST_PATH_GA20191100200610072718701D000118
respectively
Figure DEST_PATH_GA20191100200610072718701D000119
and
Figure DEST_PATH_GA20191100200610072718701D000120
error.

11)比较所有子阵对的

Figure DEST_PATH_GA20191100200610072718701D000121
Figure DEST_PATH_GA20191100200610072718701D000122
挑选与最小方差对应的
Figure DEST_PATH_GA20191100200610072718701D000123
Figure DEST_PATH_GA20191100200610072718701D000124
11) Compare all subarray pairs
Figure DEST_PATH_GA20191100200610072718701D000121
and
Figure DEST_PATH_GA20191100200610072718701D000122
Pick the one that corresponds to the smallest variance
Figure DEST_PATH_GA20191100200610072718701D000123
and
Figure DEST_PATH_GA20191100200610072718701D000124

12)目标数估计,由步骤8)分别求目标的个数

Figure DEST_PATH_GA20191100200610072718701D000125
i=1…I,
Figure DEST_PATH_GA20191100200610072718701D000126
i=1…J,如果I≠J,则停止运算,否则继续运算;12) estimate the number of targets, by step 8) ask the number of targets respectively
Figure DEST_PATH_GA20191100200610072718701D000125
i=1...I,
Figure DEST_PATH_GA20191100200610072718701D000126
i=1...J, if I≠J, stop the operation, otherwise continue the operation;

13)第二求子阵运算,将图2中的十字声纳阵展开成一维,按一维声纳阵类似的方式得选择矩阵,获得子阵对;13) the second seeks the sub-array operation, expands the cross sonar array in Fig. 2 into one-dimensional, obtains the sub-array pair by selecting the matrix in a similar manner to the one-dimensional sonar array;

本实施例中,x方向选择矩阵:In this embodiment, the x-direction selection matrix:

JJ DXDX 11 == 00 00 11 00 00 00 00 00 00 00 00 00 11 00 00 00 00 00 00 00 00 00 11 00 00 00 00 00 00 00 00 00 11 00 00 00 -- -- -- (( 24twenty four ))

JJ DXDX 22 == 00 00 00 11 00 00 00 00 00 00 00 00 00 11 00 00 00 00 00 00 00 00 00 11 00 00 00 00 00 00 00 00 00 11 00 00 -- -- -- (( 2525 ))

本实施例中,y方向选择矩阵:In this embodiment, the y direction selection matrix:

JJ DYDy 11 == 11 00 00 00 00 00 00 00 00 00 11 00 00 00 00 00 00 00 00 00 00 00 11 00 00 00 00 00 00 00 00 00 00 00 11 00 -- -- -- (( 2626 ))

JJ DYDy 22 == 00 11 00 00 00 00 00 00 00 00 00 00 00 11 00 00 00 00 00 00 00 00 00 00 00 11 00 00 00 00 00 00 00 00 00 11 -- -- -- (( 2727 ))

与公式(24)、(25)、(26)和(27)对应的子阵选择示意图见图4。See Figure 4 for a schematic diagram of sub-array selection corresponding to formulas (24), (25), (26) and (27).

本领域技术人员清楚,由图4可知,与一维情况一样有多种子阵对选择方式,例如x方向,2子阵,由基元3#到6#和4#到7#构成;3子阵,由基元3#到5#,4#到6#和5#到7#构成;4子阵,由基元3#4#、4#5#、5#6#和6#7#构成;y方向类似计算;得出与公式(25)、(26)、(27)和(28)对应的选择矩阵。It is clear to those skilled in the art that, as can be seen from Fig. 4, there are multiple sub-array pair selection modes as in the one-dimensional case, such as the x direction, 2 sub-arrays, consisting of primitives 3 # to 6 # and 4 # to 7 # ; 3 sub-arrays Array, composed of primitives 3 # to 5 # , 4 # to 6 # and 5 # to 7 # ; 4 sub-arrays, composed of primitives 3 # 4 # , 4 # 5 # , 5 # 6 # and 6 # 7 # Composition; similar calculation in the y direction; obtain the selection matrix corresponding to the formulas (25), (26), (27) and (28).

14)计算所有二维十字声纳阵对应的特征向量估计值:14) Calculate the eigenvector estimates corresponding to all two-dimensional cross sonar arrays:

Uu ^^ DXDX 11 == JJ DXDX 11 Uu ^^ sthe s Uu ^^ DXDX 22 == JJ DXDX 22 Uu ^^ sthe s -- -- -- (( 2828 ))

Uu ^^ DYDy 11 == JJ DYDy 11 Uu ^^ sthe s Uu ^^ DYDy 22 == JJ DYDy 22 Uu ^^ sthe s -- -- -- (( 2929 ))

15)求所有张角的估计值

Figure DEST_PATH_GA20191100200610072718701D00029
15) Find the estimated value of all opening angles
Figure DEST_PATH_GA20191100200610072718701D00029
and

在约束条件 ( U ^ DX 2 + Δ U ^ DX 2 ) ∈ range ( U ^ DX 1 + Δ U ^ DX 1 ) in constraints ( u ^ DX 2 + Δ u ^ DX 2 ) ∈ range ( u ^ DX 1 + Δ u ^ DX 1 ) Down

Figure A20061007271800161
Figure A20061007271800161

在约束条件 ( U ^ DY 2 + Δ U ^ DY 2 ) ∈ range ( U ^ DY 1 + Δ U ^ DY 1 ) in constraints ( u ^ Dy 2 + Δ u ^ Dy 2 ) ∈ range ( u ^ Dy 1 + Δ u ^ Dy 1 ) Down

Figure A20061007271800163
Figure A20061007271800163

16)比较所有子阵对的

Figure A20061007271800164
Figure A20061007271800165
选择与最小方差对应的
Figure A20061007271800166
Figure A20061007271800167
16) Compare all subarray pairs
Figure A20061007271800164
and
Figure A20061007271800165
Choose the one that corresponds to the minimum variance
Figure A20061007271800166
and
Figure A20061007271800167

本领域人员熟知,对于不同形式和不同数目的声纳阵采用本发明的实际应用来说,具体公式会有不同的形式,但实质是相同的。It is well known to those skilled in the art that for the practical application of the present invention for different forms and different numbers of sonar arrays, the specific formulas may have different forms, but the essence is the same.

最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than limit them. Although the present invention has been described in detail with reference to the embodiments, those skilled in the art should understand that modifications or equivalent replacements to the technical solutions of the present invention do not depart from the spirit and scope of the technical solutions of the present invention, and all of them should be included in the scope of the present invention. within the scope of the claims.

Claims (6)

1. a secondary wave arrival direction estimution sonar signal processing method comprises the steps:
1) phase place of sonar battle array primitive output signal is revised, described sonar battle array is a center Symmetrical Two-dimentional sonar battle array;
2) calculate sonar battle array related function estimated value;
3) above-mentioned sonar battle array related function estimated value is carried out characteristic value decomposition;
4) first ask the submatrix computing;
5) calculate the right related function estimated value of all submatrixs;
6) the right related function estimated value of all submatrixs is carried out characteristic value decomposition;
7) calculate the right proper vector estimated value of all submatrixs;
8) calculate the estimated value of target, select two the subtended angle estimated values corresponding with minimum variance for two subtended angles of x direction and y direction sonar battle array;
9) calculate number of targets and estimate, ask the number of targets of corresponding orthogonal two coordinate axis x directions and y direction respectively, if the number of targets of two directions does not wait, then stop computing, otherwise continue computing by step 6);
10) second ask the submatrix computing;
11) ask all two-dimentional sonar battle array characteristic of correspondence vector estimated values;
12) calculate the estimated value of each target, select two the subtended angle estimated values corresponding with minimum variance for two subtended angles of x direction and y direction sonar battle array.
2. according to the described secondary wave arrival direction estimution sonar signal processing method of claim 1, it is characterized in that described step 1) is revised the phase place of sonar battle array primitive output signal, specifically comprises the steps:
(1) by a plurality of incoherent signal sources, obtains the output of sonar battle array;
(2) calculate equivalent primitive interval error;
(3) by equivalent primitive interval error the phase place of sonar battle array primitive output signal is revised.
3. according to claim 1 or 2 described secondary wave arrival direction estimution sonar signal processing methods, it is characterized in that, in described step 4), centrosymmetric two-dimentional sonar battle array is divided into respectively one dimension sonar battle array along orthogonal x and y direction, it is right that each one dimension sonar battle array is divided into a plurality of submatrixs, the submatrix that each submatrix is right comprises the primitive of equal number, carries out and asks the submatrix computing.
4. according to the described secondary wave arrival direction estimution sonar signal processing method of claim 3, it is characterized in that, in described step 10),, press the mode selection matrix of one dimension sonar battle array two-dimentional sonar battle array generate one dimension.
5. according to the described secondary wave arrival direction estimution sonar signal processing method of claim 1, it is characterized in that, the form of the Symmetrical Two-dimentional sonar battle array of center described in the step 1) is rectangle, square frame shape, cruciform or circle, and the primitive number of sonar battle array can increase or reduce under the situation of two-dimensional symmetric.
6. secondary wave arrival direction estimution sonar signal processing method, for the centrosymmetric cruciform sonar of two dimension battle array, step comprises:
1). for M incoherent signal source s arranged, get sonar battle array output x, be expressed from the next:
x=A(α,β)s+n
X=[x wherein 1x 2X L] T
A=(α,β)=[a(α 1,β 1)……a(α M,β M)]
α=[α 1……α M] T
β=[β 1……β M] T
a ( α i , β i ) = g ( α i , β i ) [ e - j ( L 2 - 1 ) kd sin β i / 2 · · · 1 , e - jkd sin β i , e j ( L 1 - 1 ) kd sin α i / 2 , · · · e jkd sin α i ,
1 , e - j kd sin α i , · · · , e - j ( L 1 - 1 ) kd sin α i / 2 , e j kd sin β i , · · · , e j ( L 2 - 1 ) kd sin β i / 2 ] T
s=[s 1……s M] T
n=[n 1……n L] T
Wherein n is the space white noise of zero-mean, g (α i, β i) be the directive property coefficient of primitive, L is the primitive number, L 1And L 2Be respectively the primitive number of x direction and y direction, k is a wave number, and d is the primitive spacing;
Wherein, α iAnd β iBe respectively the subtended angle of i target to x axle and y axle;
2). calculate equivalent primitive interval error Δ d m, objective function is:
F ( Δ d m , Δθ ) = min | | θ - θ A | | F 2 m=1……L-1
θ wherein A=[θ A1θ Ah], θ ABe theoretical sound wave incident angle, h measures number of times, and θ is the sound wave incident angle that records, and Δ θ is the error angle of θ, and L is a sonar battle array primitive number, || || FBe the Frobenius norm, calculate the Δ d that satisfies following formula mWith Δ θ;
3). calculate sonar battle array primitive output signal x lPhase place correction Δ φ l
Δφ l=kΔd lsinθ l=1……L-1
With Δ φ lBe added in x lPhase place on;
4). calculate sonar battle array related function estimated value
Figure FSB00000006418100031
, promptly
R ^ = 1 N Σ n = 1 N x n x n H
5). to sonar battle array related function estimated value
Figure FSB00000006418100033
Carry out characteristic value decomposition:
R ^ = A R ^ s A H + σ 2 I = U ^ s Σ ^ s U ^ s H + U ^ n Σ ^ n U ^ n H
Wherein
Figure FSB00000006418100035
Be the estimated value of signal correction function, σ 2Be the estimated value of noise variance,
Figure FSB00000006418100036
With
Figure FSB00000006418100037
Be respectively the proper vector of signal and the estimated value of eigenwert,
Figure FSB00000006418100038
With It is respectively the estimated value of characteristics of noise vector sum eigenwert; Subscript H represents the conjugate transpose computing;
6). first asks the submatrix computing; Two-dimentional cross sonar battle array is divided into the one dimension sonar battle array of x and y direction, and corresponding primitive number is respectively L 1And L 2, be output as w and v accordingly, carry out the following son of asking and claim computing, it is right to obtain submatrix:
The x direction J 1 = I L 1 - 1 0 ( L 1 - 1 ) × L 1 , J 2 = 0 I L 1 - 1 ( L 1 - 1 ) × L 1
The y direction J 3 = I L 2 - 1 0 ( L 2 - 1 ) × L 2 , J 4 = 0 I L 2 - 1 ( L 2 - 1 ) × L 2
Output w is expressed from the next:
w=A(α)s+n
Wherein: w = w 1 w 2 · · · · · · w L 1 T
A(α)=[α(α 1)……α(α M)]
α=[α 1……α M] T
a ( α i ) = g ( α i ) [ e j ( L 1 - 1 ) kd sin α i / 2 , · · · , e jkd sin α i , 1 , e - jk sin α i , · · · , e - j ( L 1 - 1 ) kd sin α i / 2 ] T
s=[s 1......s M] T
n = [ n 1 · · · · · · n L 1 ] T
Output v is expressed from the next:
v=A(β)s+n
Wherein v = v 1 v 2 · · · · · · v L 2 T
A(β)=[a(β 1)……a(β M)]
β=[β 1……β M] T
a ( β i ) = g ( β i ) [ e - j ( L 2 - 1 ) kd sin β i / 2 , · · · , e - jkd sin β i , 1 , e jkd sin β i , · · · , e - j ( L 2 - 1 ) kd sin β i / 2 ] T
s=[s 1……s M] T
n = [ n 1 · · · · · · n L 2 ] T
7). calculate all submatrix pair correlation function estimated values, formula is as follows:
R ^ W = 1 N Σ n = 1 N w w H
R ^ V = 1 N Σ n = 1 N v n v n H
8). right to all submatrixs
Figure FSB00000006418100045
With
Figure FSB00000006418100046
Carry out characteristic value decomposition
R ^ 1 = A ( α ) R ^ s 1 A ( α ) H + σ 2 I = U ^ s 1 Σ ^ s 1 U s 1 H + U ^ n Σ ^ n U ^ n
R ^ 2 = A ( β ) R ^ s 2 A ( β ) H + σ 2 I = U ^ s 2 Σ ^ s 2 U ^ s 2 + U ^ n Σ ^ n U ^ n
Wherein subscript s1 and s2 represent the submatrix of x and y direction respectively;
9). calculate the right proper vector estimated value of all submatrixs:
U ^ s 11 = J 1 U ^ s 1 U ^ s 12 = J 2 U ^ s 1
U ^ s 21 = J 3 U ^ s 2 U ^ s 22 = J 4 U ^ s 2
10). calculate the estimated value of all subtended angles
Figure FSB000000064181000413
With
In constraint condition ( U ^ s 12 + Δ U ^ s 12 ) ∈ range ( U ^ s 11 + Δ U ^ s 11 ) Down:
Figure FSB000000064181000416
In constraint condition ( U ^ s 21 + Δ U ^ s 21 ) ∈ range ( U ^ s 22 + Δ U ^ s 22 ) Down:
Figure FSB000000064181000418
Wherein
Figure FSB000000064181000419
With
Figure FSB000000064181000420
Be respectively
Figure FSB000000064181000421
With Error;
11) relatively all submatrixs are right
Figure FSB000000064181000423
With , select corresponding with minimum variance
Figure FSB000000064181000425
With
12) number of targets is estimated; Ask the number of target respectively by step 8) , i=1 ... I,
Figure FSB00000006418100052
, i=1 ... J if I ≠ J then stops computing, otherwise continues computing;
13) second ask the submatrix computing, cross sonar battle array is launched into one dimension, get selection matrix by the mode of one dimension sonar battle array, it is right to obtain submatrix;
14) calculate all two-dimentional cross sonar battle array characteristic of correspondence vector estimated values:
U ^ DX 1 = J DX 1 U ^ s U ^ DX 2 = J DX 2 U ^ s
U ^ DY 1 = J DY 1 U ^ s U ^ DY 2 = J DY 2 U ^ s
15) ask the estimated value of all subtended angles
Figure FSB00000006418100057
With
Figure FSB00000006418100058
In constraint condition ( U ^ DX 2 + Δ U ^ DX 2 ) ∈ range ( U ^ DX 1 + Δ U ^ DX 1 ) Down
Figure FSB000000064181000510
In constraint condition ( U ^ DY 2 + Δ U ^ DY 2 ) ∈ range ( U ^ DY 1 + Δ U ^ DY 1 ) Down
Figure FSB000000064181000512
16) relatively all submatrixs are right
Figure FSB000000064181000513
With
Figure FSB000000064181000514
, select corresponding with minimum variance
Figure FSB000000064181000515
With
Figure FSB000000064181000516
CN2006100727187A 2006-04-07 2006-04-07 Secondary wave arrival direction estimation sonar signal processing method Expired - Fee Related CN101051083B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006100727187A CN101051083B (en) 2006-04-07 2006-04-07 Secondary wave arrival direction estimation sonar signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2006100727187A CN101051083B (en) 2006-04-07 2006-04-07 Secondary wave arrival direction estimation sonar signal processing method

Publications (2)

Publication Number Publication Date
CN101051083A CN101051083A (en) 2007-10-10
CN101051083B true CN101051083B (en) 2010-11-03

Family

ID=38782592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100727187A Expired - Fee Related CN101051083B (en) 2006-04-07 2006-04-07 Secondary wave arrival direction estimation sonar signal processing method

Country Status (1)

Country Link
CN (1) CN101051083B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713824B (en) * 2009-11-02 2012-03-21 杭州瑞声海洋仪器有限公司 Array processing method for phased array three-dimensional acoustics image pickup sonar

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101149434B (en) * 2007-11-06 2013-11-20 哈尔滨工程大学 Multiple linear array combined acoustic array with super broad cover directivity
CN101470187B (en) * 2007-12-26 2011-12-28 中国科学院声学研究所 High-precision direction finding method used for linear array
CN103135091A (en) * 2011-11-25 2013-06-05 上海无线电设备研究所 Adaptive impulsive noise elimination method of DOA (direction of arrival) estimation system
CN109597021B (en) * 2018-11-05 2021-02-05 北京航天控制仪器研究所 Direction-of-arrival estimation method and device
CN112213602A (en) * 2020-09-29 2021-01-12 上海电机学院 Improved beam forming multi-far cross array positioning method
CN112488048B (en) * 2020-12-16 2024-03-22 浙江工业大学 Acoustic signal differential feature fusion method based on deep learning and random array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130641A (en) * 1998-09-04 2000-10-10 Simon Fraser University Imaging methods and apparatus using model-based array signal processing
CN1402018A (en) * 2001-09-13 2003-03-12 中国科学院声学研究所 High resolution submarine microgeomorphy-measuring sounding side scan sonar system and measuring method
US6804167B2 (en) * 2003-02-25 2004-10-12 Lockheed Martin Corporation Bi-directional temporal correlation SONAR
CN1746697A (en) * 2005-10-18 2006-03-15 电子科技大学 A Multi-Signal Classification Algorithm Implemented by Chip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130641A (en) * 1998-09-04 2000-10-10 Simon Fraser University Imaging methods and apparatus using model-based array signal processing
CN1402018A (en) * 2001-09-13 2003-03-12 中国科学院声学研究所 High resolution submarine microgeomorphy-measuring sounding side scan sonar system and measuring method
US6804167B2 (en) * 2003-02-25 2004-10-12 Lockheed Martin Corporation Bi-directional temporal correlation SONAR
CN1746697A (en) * 2005-10-18 2006-03-15 电子科技大学 A Multi-Signal Classification Algorithm Implemented by Chip

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
刘云,李志舜.宽带波达方向估计的克拉美-罗界研究.声学学报31 2.2006,31(2),126-131.
刘云,李志舜.宽带波达方向估计的克拉美-罗界研究.声学学报31 2.2006,31(2),126-131. *
朱维庆,刘晓东,张东升,廖诤,张方生.多子阵子空间拟合波达方向估计.声学学报31 2.2006,31(2),120-125.
朱维庆,刘晓东,张东升,廖诤,张方生.多子阵子空间拟合波达方向估计.声学学报31 2.2006,31(2),120-125. *
朱维庆,朱敏,刘晓东,潘锋,张向军,汪玉玲.海底微地貌测量系统.海洋测绘23 3.2003,23(3),27-31.
朱维庆,朱敏,刘晓东,潘锋,张向军,汪玉玲.海底微地貌测量系统.海洋测绘23 3.2003,23(3),27-31. *
罗深荣.侧扫声纳和多波束测深系统在海洋调查中的综合应用.海洋测绘23 1.2003,23(1),22-24.
罗深荣.侧扫声纳和多波束测深系统在海洋调查中的综合应用.海洋测绘23 1.2003,23(1),22-24. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713824B (en) * 2009-11-02 2012-03-21 杭州瑞声海洋仪器有限公司 Array processing method for phased array three-dimensional acoustics image pickup sonar

Also Published As

Publication number Publication date
CN101051083A (en) 2007-10-10

Similar Documents

Publication Publication Date Title
CN101051083B (en) Secondary wave arrival direction estimation sonar signal processing method
CN108845325B (en) Towed line array sonar subarray error mismatch estimation method
CN107315162B (en) Far-field coherent signal DOA estimation method based on interpolation and beamforming
CN110161452B (en) Direction-of-arrival estimation method based on cross-prime L-shaped electromagnetic vector sensor array
CN104408278A (en) A method for forming steady beam based on interfering noise covariance matrix estimation
CN106646376A (en) P-norm noise source positioning identification method based on weight correction parameter
CN108828502B (en) Coherent source direction estimation method based on central symmetry of uniform circular array
CN108828522A (en) A kind of method of underwater vessel radiated noise measurement method using vertical array LCMV Wave beam forming
CN113050075B (en) A matching field localization method for underwater sound sources based on diffusion mapping
CN110596692B (en) Self-adaptive monopulse direction finding method based on joint constraint
CN106443587A (en) High-resolution rapid deconvolution sound source imaging algorithm
CN109696657B (en) A coherent sound source localization method based on vector hydrophone
CN101581785B (en) Three-dimensional looking forward sound imaging sonar system for underwater vehicle and using method thereof
CN107390197A (en) The radar self-adaption and difference beam angle-measuring method in feature based space
CN109765521A (en) A beam domain imaging method based on subarray division
CN103353587B (en) Interference angle-measuring method based on improved self-adaptive DBF (digital beam forming)
CN112285647B (en) Signal azimuth high-resolution estimation method based on sparse representation and reconstruction
CN105158741A (en) Adaptive anti-interference multipath multi-beam forming method based on matrix reconstruction
CN105301580A (en) Passive detection method based on split array cross-spectrum phase difference variance weighing
CN107576951A (en) Wave arrival direction estimating method based on nested type Electromagnetic Vector Sensor Array
CN108680894A (en) A kind of mixing field signal source locating method based on reconstruct cumulant matrices
CN102662158A (en) Quick processing method for sensor antenna array received signals
CN116299150A (en) A Two-Dimensional DOA Estimation Method of Dimensionality Reduction Propagation Operator in Uniform Array
CN112596022A (en) Method for estimating angle of arrival of low-orbit satellite-borne multi-beam regular hexagon phased array antenna
CN114779236A (en) Improved meter-wave radar low-elevation height measurement method based on spatial smoothing MUSIC

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101103

Termination date: 20140407