CN101062608A - Trace forming method, droplet ejection apparatus, and circuit module - Google Patents
Trace forming method, droplet ejection apparatus, and circuit module Download PDFInfo
- Publication number
- CN101062608A CN101062608A CN 200710100896 CN200710100896A CN101062608A CN 101062608 A CN101062608 A CN 101062608A CN 200710100896 CN200710100896 CN 200710100896 CN 200710100896 A CN200710100896 A CN 200710100896A CN 101062608 A CN101062608 A CN 101062608A
- Authority
- CN
- China
- Prior art keywords
- substrate
- droplet ejection
- droplets
- laser light
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000007788 liquid Substances 0.000 claims abstract description 81
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 12
- 239000004065 semiconductor Substances 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 238000001035 drying Methods 0.000 claims description 14
- 230000003287 optical effect Effects 0.000 claims description 12
- 230000010287 polarization Effects 0.000 claims description 10
- 239000000919 ceramic Substances 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 239000002923 metal particle Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000002585 base Substances 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000006112 glass ceramic composition Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Ink Jet (AREA)
Abstract
本发明提供一种轨迹形成方法,在该方法中,向衬底喷出轨迹形成材料的液滴,通过激光照射喷落在所述衬底上的液滴(单个)来干燥该液滴,形成由所述液滴构成的轨迹,使用P偏振光成分为80%~100%的偏振光来作为激光。
The present invention provides a track forming method in which liquid droplets of a track forming material are ejected to a substrate, and the liquid droplets (single) sprayed and landed on the substrate are dried by laser irradiation to form For the trajectory formed by the liquid droplets, polarized light having a P polarized light component of 80% to 100% is used as laser light.
Description
技术领域technical field
本发明涉及轨迹形成方法、液滴喷出装置以及电路模块。The invention relates to a track forming method, a droplet ejection device and a circuit module.
背景技术Background technique
近年来,作为安装半导体元件等电子部件的电路模块,公知有具有由玻璃陶瓷构成的低温烧成陶瓷多层衬底(Low Temperature Co-firedCeramics:LTCC多层衬底)的电路模块。在LTCC多层衬底中,可以以900℃以下的低温对其所积层的生片(green sheet)进行烧成。因此,可以在内部配线中使用银或金等低熔点金属,从而可以实现内部配线的低电阻化。In recent years, a circuit module having a low temperature fired ceramic multilayer substrate (Low Temperature Co-fired Ceramics: LTCC multilayer substrate) made of glass ceramics has been known as a circuit module on which electronic components such as semiconductor elements are mounted. In the LTCC multilayer substrate, the laminated green sheet (green sheet) can be fired at a low temperature below 900°C. Therefore, low-melting-point metals such as silver and gold can be used for the internal wiring, and the resistance of the internal wiring can be reduced.
在所述LTCC多层衬底的制造工序中,用金属糊剂或金属墨水在积层前的各生片上绘制配线图形。作为该绘图方法,日本专利文献特开2005-57139号公报提出了以微小液滴喷出金属墨水的所谓喷墨法。由于喷墨法中包括接合微小液滴、即接合墨点来绘制配线图形的步骤,因此,能够迅速应对内部配线的设计变更,例如内部配线的高密度化或者配线宽度以及配线间隔的狭小化。In the manufacturing process of the LTCC multilayer substrate, a wiring pattern is drawn on each green sheet before lamination with metal paste or metal ink. As this drawing method, Japanese Patent Application Laid-Open No. 2005-57139 proposes a so-called inkjet method in which metallic ink is ejected as minute droplets. Since the inkjet method includes the step of drawing wiring patterns by joining tiny liquid droplets, that is, joining ink dots, it is possible to quickly respond to changes in the design of internal wiring, such as high-density internal wiring or wiring width and wiring. Narrowing of intervals.
但是,喷落在生片上的液滴或者墨点根据生片的表面状态或者液滴的表面张力,其尺寸和形状会随时间的经过而有所变动。尺寸和形状有所改变的液滴根据干燥定时而决定配线整体的尺寸。例如,由外径为30μm的金属墨水构成的液滴在喷落到亲液性的生片上之后,如果经过100毫秒,则外径扩张为70μm,如果经过200毫秒,则外径扩张为100μm。因此,干燥液滴的定时如果在100毫秒后~200毫秒后的范围内有所波动,则墨点的尺寸也会有所波动。即,对应轨迹的线宽在大约70μm~100μm的范围内波动。However, the size and shape of liquid droplets or ink dots landed on the green sheet change over time depending on the surface state of the green sheet or the surface tension of the liquid droplets. Droplets whose size and shape change determine the size of the entire wiring according to the drying timing. For example, a droplet made of metallic ink with an outer diameter of 30 μm expands to 70 μm in 100 milliseconds after landing on a lyophilic green sheet, and expands to 100 μm in 200 milliseconds. Therefore, if the timing of drying the liquid droplets fluctuates in the range of 100 milliseconds to 200 milliseconds later, the size of the ink dots also fluctuates. That is, the line width of the corresponding track fluctuates in the range of about 70 μm˜100 μm.
因此,在该液滴的干燥方法中,为了抑制墨点尺寸的波动,提出了向喷落在生片上的液滴照射激光的激光干燥方案。在激光干燥中,只在激光的照射区域干燥液滴。因此,可以以高精度控制喷落液滴的干燥定时,从而可以抑制墨点尺寸的波动。Therefore, in this liquid droplet drying method, in order to suppress fluctuations in the dot size, laser drying has been proposed in which the liquid droplets landed on the green sheet are irradiated with laser light. In laser drying, droplets are dried only in the irradiated area of the laser. Therefore, the drying timing of the landed liquid droplets can be controlled with high precision, so that fluctuations in the ink dot size can be suppressed.
但是,在喷墨法中使用的液滴喷出装置中,通常为了确保液滴的喷落精度,而使液滴喷出头和对象物之间的间隙为狭窄的数百μm。因此,当在干燥喷落后的液滴、即位于液滴喷出头正下方的液滴时,必须在液滴喷出头和对象物之间的狭小间隙中沿对象物的大致切线方向照射激光。其结果是,在对象物上形成的激光的光截面(即光束点)扩大,无法确保干燥液滴所必须的激光强度。因此,有导致液滴干燥不足,由墨点构成的轨迹形成不良之虞。However, in a droplet ejection device used in the inkjet method, the gap between the droplet ejection head and the object is usually narrowed to several hundred μm in order to ensure droplet landing accuracy. Therefore, when drying the discharged liquid droplets, that is, the liquid droplets located directly under the liquid droplet discharge head, it is necessary to irradiate the laser light in a direction substantially tangential to the object in the narrow gap between the liquid droplet discharge head and the object. . As a result, the optical cross-section (that is, the beam spot) of the laser beam formed on the object is enlarged, and the laser intensity necessary for drying liquid droplets cannot be ensured. Therefore, there is a possibility that the drying of the liquid droplets will be insufficient, resulting in poor formation of trajectories composed of ink dots.
发明内容Contents of the invention
本发明的目的在于提供一种提高液滴干燥效率,并降低墨点构成的轨迹的形成不良的轨迹形成方法、液滴喷出装置以及电路模块。An object of the present invention is to provide a track forming method, a droplet ejection device, and a circuit module that improve droplet drying efficiency and reduce poor formation of tracks formed by ink dots.
为了达到所述目的,本发明的一方式提供一种轨迹形成方法。在该方法中,向衬底喷出轨迹形成材料的液滴,通过激光照射喷落在所述衬底上的液滴(单个)来干燥该液滴,形成由所述液滴构成的轨迹,使用P偏振光成分为80%~100%的偏振光来作为激光。In order to achieve the object, one aspect of the present invention provides a track forming method. In this method, droplets of a track-forming material are ejected to a substrate, the droplets (individually) dropped on the substrate are dried by irradiating laser light to form tracks composed of the droplets, Polarized light with a P polarized light component of 80% to 100% is used as laser light.
本发明的另一方式提供一种液滴喷出装置。该液滴喷出装置包括:向衬底喷出轨迹形成材料的液滴的液滴喷出头;向喷落在所述衬底上的所述液滴照射激光的激光照射装置。激光是P偏振光成分为80%~100%的偏振光。Another aspect of the present invention provides a droplet discharge device. This droplet discharge device includes: a droplet discharge head that discharges droplets of a track-forming material onto a substrate; and a laser irradiation device that irradiates laser light to the droplets landed on the substrate. The laser light is polarized light with a P polarized light component of 80% to 100%.
另外,本发明的又一方式提供一种电路模块,其包括:衬底;形成在衬底上的电路元件;由所述液滴喷出装置形成的金属配线,该金属配线形成在所述衬底上,并与所述电路元件电连接。In addition, still another aspect of the present invention provides a circuit module including: a substrate; circuit elements formed on the substrate; metal wiring formed by the droplet ejection device, the metal wiring formed on the on the substrate and electrically connected to the circuit elements.
附图说明Description of drawings
图1是示出本发明的电路模块的立体图;1 is a perspective view showing a circuit module of the present invention;
图2是说明图1的电路模块的制造方法的说明图;FIG. 2 is an explanatory diagram illustrating a method of manufacturing the circuit module of FIG. 1;
图3是示出液滴喷出装置的立体图;3 is a perspective view showing a droplet ejection device;
图4是示出液滴喷出头的立体图;4 is a perspective view showing a droplet ejection head;
图5是图4的A-A线的液滴喷出头的剖面图;5 is a cross-sectional view of the droplet ejection head on line A-A of FIG. 4;
图6是用于说明半导体激光器的简图;Fig. 6 is a schematic diagram for explaining a semiconductor laser;
图7是说明液滴喷出装置的电气结构的电气模块电路图。FIG. 7 is an electrical module circuit diagram illustrating the electrical configuration of the droplet ejection device.
具体实施方式Detailed ways
下面,参照图1~图7说明具体化了本发明的实施方式。首先,说明本发明的电路模块1。Next, an embodiment embodying the present invention will be described with reference to FIGS. 1 to 7 . First, the
在本说明书中,+X、+Y、+Z方向是指附图中用箭头表示的方向,-X、-Y、-Z方向是指与+X、+Y、+Z方向相反的方向。没有指定符号的X、Y、Z方向与±X、Y、Z同义。In this specification, +X, +Y, +Z directions refer to directions indicated by arrows in the drawings, and -X, -Y, -Z directions refer to directions opposite to +X, +Y, +Z directions. The X, Y, and Z directions without a specified sign are synonymous with ±X, Y, and Z.
图1中,电路模块1包括:板状的LTCC多层衬底2;以及该LTCC多层衬底2的上侧的被引线接合连接或倒装片连接的多个半导体芯片3。In FIG. 1 , a
LTCC多层衬底2具备呈片状、并被积层的多个低温烧成陶瓷衬底(以下简称为绝缘层4)。各绝缘层4分别是由玻璃陶瓷系材料构成的烧结体,有数百μm的厚度。玻璃陶瓷系材料例如是硼硅酸碱氧化物等玻璃成分和氧化铝等陶瓷成分的混合物。The
在绝缘层4的层间形成有电阻元件、电容元件、或者绕组元件等各种电路元件5、以及作为将各电路元件5电连接的金属配线的多条内部配线6。电路元件5和内部配线6分别是银或银合金等金属微粒的烧结体,通过使用本发明的液滴喷出装置10而形成。在各绝缘层4的层内形成具有堆栈孔结构或热孔结构的孔轨迹7,用于在层间电连接电路元件5和内部配线6。孔轨迹7和电路元件5或者内部配线6相同,是银或银合金等金属微粒的烧结体。
下面,参照图2说明所述LTCC多层衬底2的制造方法。Next, a method of manufacturing the
在图2中,首先,生片4S是切出而形成绝缘层4的基板,对其实施冲压加工或激光加工以形成通孔7H。接着,对生片4S多次实施使用了金属糊剂的网板印刷,在通孔7H中填充金属糊剂,形成由金属糊剂构成的孔轨迹7F。接着,使用金属墨水F对生片4S的上表面、即轨迹形成面4Sa实施喷墨印刷。金属墨水F是将金属纳米微粒分散在水系溶剂中,并用于形成墨滴,从而形成轨迹的材料,在本实施方式中为水系银墨水。In FIG. 2 , first, a
具体而言,向轨迹形成面4Sa的需要形成电路元件5以及内部配线6的区域(以下简称为轨迹形成区域)喷出金属墨水F的液滴Fb,并对喷落在轨迹形成区域上的液滴Fb进行干燥。然后,反复进行该喷出动作和干燥动作,从而在轨迹形成区域绘制对应的元件轨迹5F以及导电轨迹6F。通过向存在喷落并接合的液滴Fb的区域照射入射光Le(参照图6)来进行喷落在轨迹形成区域上的液滴Fb的干燥。Specifically, the droplet Fb of metal ink F is ejected to the area of the track forming surface 4Sa where the
在生片4S上形成元件轨迹5F、导电轨迹6F以及孔轨迹7F之后,一并积层多个生片4S,并将与LTCC多层衬底2对应的区域切成积层体4B进行烧成。即,一并积层生片4S、元件轨迹5F、导电轨迹6F以及孔轨迹7F,并同时烧成。由此形成具有绝缘层4、电路元件5、内部配线6以及孔轨迹7的LTCC多层衬底2。After forming element traces 5F,
下面,参照图3对用于绘制所述元件轨迹5F以及导电轨迹6F的液滴喷出装置10进行说明。图3是示出液滴喷出装置10的整体立体图。Next, the
图3中,液滴喷出装置10具有形成为长方体形状的基台11。在基台11的上表面形成有一对引导槽12,该引导槽12沿基台11的长度方向(±Y方向)延伸。在引导槽12的上方具有台13,该台13沿引导槽12在±Y方向上移动。在台13的上表面形成有载置部14,在载置部14上载置有以轨迹形成面4Sa为上侧的生片4S。载置部14将处于被载置状态的生片4S相对于台13固定,并在±Y方向上输送生片4S。在本实施方式中,+Y方向被定义为扫描方向。In FIG. 3 , a
在基台11的与该扫描方向垂直的X方向的两侧,以横跨基台11的方式设有形成为门形的引导部件16。在引导部件16的上侧配置有沿X方向延伸的墨水罐17。墨水罐17储存金属墨水F,并分别以规定压力向配置在其下方的液滴喷出头21供给金属墨水F。On both sides of the base 11 in the X direction perpendicular to the scanning direction, guide
在引导部件16的-Y方向侧,在该X方向大致整个宽度形成有在X方向上延伸的上下一对导轨18。滑架20安装在一对导轨18上,并沿导轨18在±X方向上移动。在滑架20的底面20a上搭载有喷出头21。图4是从下侧(生片4S侧)观察喷出头21时的立体图,图5是图4A-A线的液滴喷出头的剖面图。图6是滑架20的简要侧视图。On the −Y direction side of the
图4中,喷出头21形成为沿X方向延伸的长方体形状。在喷出头21的下部(生片4S:图4的上部)具有喷嘴板22。喷嘴板22形成为沿X方向延伸的板状,并在其下表面(图4的上表面)形成有喷嘴形成面22a。喷嘴形成面22a与生片4S的轨迹形成面4Sa大致平行地形成。当生片4S位于喷出头21的正下方时,喷嘴形成面22a和轨迹形成面4Sa之间的距离(压板间隙)保持为规定距离,在本实施方式中为300μm。在喷嘴形成面22a上沿X方向排列有多个喷嘴N,该多个喷嘴N在喷嘴形成面22a的法线方向上贯通喷嘴形成面22a而延伸。In FIG. 4 , the
图5中,在各喷嘴N的上侧分别形成有与墨水罐17连通的腔室23。腔室23将来自墨水罐17的金属墨水F向对应的喷嘴N供给。在各腔室23的上侧粘贴有振动板24。振动板24可在上下方向上振动,扩大以及缩小腔室23内的容积。在振动板24的上侧配置有与喷嘴N对应的多个压电元件PZ。各压电元件PZ使振动板24在上下方向上振动,从而从对应的喷嘴N以规定容量(本实施方式中为10p1)的液滴Fb喷出金属墨水F。从喷嘴N喷出的液滴Fb在-Z方向上飞行,并喷落在轨迹形成面4Sa上的与喷嘴N相对的位置。在扫描方向上进行扫描期间,喷落的液滴Fb在轨迹形成面4Sa上浸润扩散,与之前喷落的液滴Fb接合。当在扫描方向上扫描生片4S时,接合了的各液滴Fb形成沿扫描方向延伸的液状膜FL。液状膜FL遍及生片4S的整个顶部表面,形成与轨迹形成面4Sa平行的液面FLa。In FIG. 5 ,
在本实施方式中,将轨迹形成面4Sa上的位置中的与各喷嘴N在-Z方向上对应的位置、即液滴Fb的喷落位置定义为各喷落位置P。另外,将液面FLa的与扫描方向相反的方向、即-Y方向的端部定义为入射位置Pe。并将喷落位置P和入射位置Pe之间的距离定位为待机距离WF。In the present embodiment, each landing position P is defined as a position corresponding to each nozzle N in the −Z direction, that is, a landing position of the droplet Fb, among positions on the trajectory forming surface 4Sa. In addition, an end portion in the direction opposite to the scanning direction of the liquid surface FLa, that is, in the −Y direction is defined as an incident position Pe. The distance between the landing position P and the incident position Pe is defined as the standby distance WF.
图6中,在滑架20的底面20a上,沿喷出头21的扫描方向、即+Y方向形成有出射孔H,该出射孔H贯通至腔室20的内部。出射孔H在X方向上的宽度与喷嘴21在X方向上的宽度大致相同。在腔室20内的出射孔H的上侧配置有构成激光照射装置的半导体激光器模块LDM。In FIG. 6 , on the
半导体激光器模块LDM具有半导体激光器LD、以及构成照射光学系统的光学元件PS。半导体激光器LD向下射出扩展到出射孔H在X方向上的大致整个宽度的带状的被校准的激光。半导体激光器LD射出的激光的波长设定在金属墨水F的吸收波长的范围(在本实施方式中为808nm)。光学元件PS包括相位差板,将来自半导体激光器LD的激光的偏振光状态转换成规定的直线偏振光,并向下方射出,在本实施方式中,所述规定的直线偏振光是P偏振光成分为100%的偏振光。The semiconductor laser module LDM has a semiconductor laser LD and an optical element PS constituting an irradiation optical system. The semiconductor laser LD emits collimated laser light in a band shape extending substantially over the entire width of the exit hole H in the X direction downward. The wavelength of the laser light emitted from the semiconductor laser LD is set within the range of the absorption wavelength of the metallic ink F (808 nm in this embodiment). The optical element PS includes a retardation plate, converts the polarization state of the laser light from the semiconductor laser LD into predetermined linearly polarized light, and emits it downward. In this embodiment, the predetermined linearly polarized light is a P-polarized light component for 100% polarized light.
在出射孔H的内部配置有构成照射光学系统的柱面透镜25。透镜25仅在Y方向上具有曲率,透镜25在X方向上的宽度与喷出头21在X方向上的宽度相同。当透镜25接收来自半导体激光器模块LDM的激光时,仅汇聚激光在+Y方向(或者-Y方向)上的成分,并作为入射光Le向下方射出。Inside the exit hole H, a
在出射孔H的下侧配置有从腔室20向下方延伸的镜台(mirror stage)26、以及被镜台26支承并可转动的反射镜27。反射镜27构成照射光学系统。镜台26以沿X方向的转动轴为中心可转动地支承反射镜27。反射镜27是在与柱面透镜25相对的一侧具有反射面27m的电流镜(galvanomirror),反射镜27在X方向上的宽度和喷出头21在X方向上的宽度相同。反射镜27在反射面27m接收来自透镜25的入射光Le,并沿轨迹形成面4Sa的大致切线方向反射入射光Le。在本实施方式中,将液面FLa(轨迹形成面4Sa)的法线和所反射的入射光Le所成的角定义为入射角θe,并将其设定为88°。A
被反射镜27反射的入射光Le被导入喷出头21和生片4S之间的间隙中,与光束腰(beam waste)对应的区域入射到液面FLa上的入射位置Pe上。入射到入射位置Pe上的入射光Le的一部分透过液状膜FL而被吸收。即,当在扫描方向、即+Y方向上扫描生片4S时,经反射镜27反射的入射光Le的一部分依次干燥入射位置Pe附近的液状膜FL,形成沿扫描方向延伸的层轨迹FP。The incident light Le reflected by the
另一方面,入射到入射位置Pe上的入射光Le中的没有透过液状膜FL的部分作为反射光Lr而向与扫描方向相反的方向被反射。在本实施方式中,被反射的入射光Le和与该入射光Le对应的反射光Lr所确定的平面(YZ平面)被定义为入射面。On the other hand, a portion of the incident light Le incident on the incident position Pe that has not passed through the liquid film FL is reflected in a direction opposite to the scanning direction as reflected light Lr. In the present embodiment, a plane (YZ plane) defined by the reflected incident light Le and the reflected light Lr corresponding to the incident light Le is defined as the incident plane.
入射光Le相对于液状膜FL的反射率根据入射光Le的偏振光状态而有所变动。具体而言,分别设空气的折射率为N1,液状膜FL的折射率为N2,根据下式推导使电场向量E的方向与入射面平行的偏振光(P偏振光)的反射率Rp和使电场向量E的方向与入射面垂直的偏振光(S偏振光)的反射率Rs。在入射角θe任意的情况下,P偏振光的反射率Rp比S偏振光的反射率Rs低。The reflectance of the incident light Le with respect to the liquid film FL varies depending on the polarization state of the incident light Le. Specifically, assuming that the refractive index of air is N1 and the refractive index of the liquid film FL is N2, the reflectance Rp of polarized light (P polarized light) with the direction of the electric field vector E parallel to the incident plane is derived from the following formula The reflectance Rs of polarized light (S polarized light) whose direction of the electric field vector E is perpendicular to the incident plane. When the incident angle θe is arbitrary, the reflectance Rp of P-polarized light is lower than the reflectance Rs of S-polarized light.
这里,φ=sin-1{(N1/N2)cos(π/2-θe)}Here, φ=sin -1 {(N1/N2)cos(π/2-θe)}
例如,如果空气的折射率为1,液状膜FL的折射率为1.3,入射角θe为88°,则P偏振光的反射率Rp、S偏振光的反射率Rs分别为75.2%和84.5%。即,入射到入射位置Pe上的P偏振光的入射光Le与S偏振光的入射光Le相比,多出约10%透过液状膜FL而被吸收。For example, if the refractive index of air is 1, the refractive index of liquid film FL is 1.3, and the incident angle θe is 88°, then the reflectance Rp of P-polarized light and the reflectance Rs of S-polarized light are 75.2% and 84.5%, respectively. That is, about 10% more of the P-polarized incident light Le incident on the incident position Pe than the S-polarized incident light Le passes through the liquid film FL and is absorbed.
在本发明的液滴喷出装置10中,半导体激光器模块LDM的光学元件PS将半导体激光器LD射出的激光转换成P偏振光,并射出P偏振光的入射光Le。这里,在本实施方式中,所谓P偏振光是指电场向量与入射面平行振动的光,也就是除此之外实质上不含其它成分的直线偏振光、即P偏振光成分为100%的偏振光。In the
由此,入射光Le中的偏振光状态被转换成P偏振光的部分大多透过液状膜FL而被吸收。其结果是,提高了入射光Le的吸收率,正因如此,能够可靠地干燥液状膜FL,从而形成无干燥不足的层轨迹FP。通过依次积层该层轨迹FP,可以形成导电轨迹6F(参照图2),并能够降低其形成不良。As a result, most of the incident light Le whose polarization state has been converted to P-polarized light passes through the liquid film FL and is absorbed. As a result, the absorptivity of the incident light Le is increased, and because of this, the liquid film FL can be reliably dried to form the layer track FP without insufficient drying. By sequentially laminating the layer traces FP, the conductive traces 6F (see FIG. 2 ) can be formed, and formation defects thereof can be reduced.
下面,参照图7说明如上所述构成的液滴喷出装置10的电气结构。Next, the electrical configuration of the
图7中,控制装置40包括CPU、ROM、RAM,并按照所存储的各种数据以及各种控制程序使台13和滑架20移动,并且控制半导体激光器模块LDM以及各压电元件PZ的动作。In FIG. 7, the
控制装置40连接有具有起动开关、停止开关等操作开关的输入装置41。将与轨迹形成区域(层轨迹FP)相对于绘图平面(轨迹形成面4Sa)的位置坐标相关的信息作为既定形式的绘图信息Ia从输入装置41输入到控制装置40中。控制装置40接收来自输入装置41的绘图信息Ia,并生成位图数据BMD。An
位图数据BMD是根据各位的值(0或1)来规定各压电元件PZ的导通或断开的数据。位图数据BMD是规定是否将液滴Fb喷出到喷出头21所通过的绘图平面(轨迹形成面4Sa)上的各位置处的数据。即,位图数据BMD用于使液滴Fb喷出到轨迹形成区域所规定的对应的各个目标位置上。The bitmap data BMD is data specifying whether each piezoelectric element PZ is turned on or off according to the value (0 or 1) of each bit. The bitmap data BMD is data specifying whether or not to discharge the liquid droplet Fb to each position on the drawing plane (track forming surface 4Sa) through which the
控制装置40与X轴电动机驱动电路42连接,并向X轴电动机驱动电路42输出对应的驱动控制信号。X轴电动机驱动电路42响应来自控制装置40的驱动控制信号,使移动滑架20的X轴电动机MX正转或反转。X轴电动机驱动电路42与X轴编码器XE连接,并输入来自X轴编码器XE的检测信号。X轴电动机驱动电路42根据来自X轴编码器XE的检测信号,生成与滑架20(各喷落位置P)相对于轨迹形成面4Sa的移动方向以及移动量相关的信号,并输出给控制装置40。The
控制装置40与Y轴电动机驱动电路43连接,并向Y轴电动机驱动电路43输出对应的驱动控制信号。Y轴电动机驱动电路43响应来自控制装置40的驱动控制信号,使移动台13的Y轴电动机MY正转或反转。Y轴电动机驱动电路43与Y轴编码器YE连接,并输入来自Y轴编码器YE的检测信号。Y轴电动机驱动电路43根据来自Y轴编码器YE的检测信号,生成与台13(轨迹形成面4Sa)的移动方向以及移动量相关的信号,并输出给控制装置40。控制装置40根据来自Y轴电动机驱动电路43的信号,计算喷落位置P相对于轨迹形成面4Sa的相对位置,每当喷落位置P位于对应的目标位置时,输出喷出定时信号LP。The
控制装置40与半导体激光器驱动电路44连接,当开始绘图动作时,向半导体激光器驱动电路44输出绘图开始信号S1,当绘图动作结束时,向半导体激光器驱动电路44输出绘图结束信号S2。半导体激光器驱动电路44在输入绘图开始信号S1时,使半导体激光器模块LDM射出P偏振光的入射光Le,在输入绘图结束信号S2时,使半导体激光器模块LDM停止射出入射光Le。即,控制装置40经由半导体激光器驱动电路44,在绘图动作期间控制半导体激光器模块LDM的动作,照射P偏振光的入射光Le。The
控制装置40与喷出头驱动电路45连接,向喷出头驱动电路45同步输出用于驱动各压电元件PZ的压电元件驱动电压COM和所述喷出定时信号LP。另外,控制装置40根据位图数据BMD,生成与规定的时钟信号同步的喷出控制信号SI,将喷出控制信号SI串行传送给喷出头驱动电路45。喷出头驱动电路45与各个压电元件PZ对应地对来自控制装置40的喷出控制信号SI依次进行串行/并行转换。每当喷出头驱动电路45接收来自控制装置40的喷出定时信号LP时,锁定被串行/并行转换后的喷出控制信号SI,并将压电元件驱动电压COM分别向根据信号SI所选择的各压电元件PZ供给。The
下面,说明使用液滴喷出装置10来对元件轨迹5F以及导电轨迹6F进行绘图的方法。Next, a method of drawing the
首先,如图3所示,以轨迹形成面4Sa位于上侧的方式将生片4S载置到台13上。此时,台13将生片4S配置在基于滑架20的扫描方向的相反侧。First, as shown in FIG. 3 , the
从该状态开始,从输入装置41将绘图信息Ia输入控制装置40,控制装置40根据绘图信息生成位图数据BMD,并存储之。接着,当扫描生片4S时,控制装置40经由X轴电动机驱动电路42使滑架20(喷出头31)移动到规定位置,使得目标位置通过对应的喷落位置P。当滑架20被配置在定位置时,控制装置40经由Y轴电动机驱动电路43开始扫描生片4S。From this state, the drawing information Ia is input to the
当开始扫描生片4S时,控制装置40将绘图开始信号S1输出给半导体激光器驱动电路44,半导体激光器模块LDM射出P偏振光的入射光Le。由半导体激光器模块LDM射出的入射光Le被反射镜27向生片4S的大致切线方向反射,并以入射角θe入射到轨迹形成面4Sa。When the
另外,当开始扫描生片4S时,控制装置40将根据位图数据BMD生成的喷出控制信号SI输出给喷出头驱动电路45。In addition, when the scanning of the
另外,当开始扫描生片4S时,每当目标位置位于对应的喷落位置P时,控制装置40将喷出定时信号LP输出给喷出头驱动电路45。即,控制装置40根据喷出控制信号SI来选择用于喷出液滴Fb的喷嘴N,每当与所选择的喷嘴N对应的喷落位置P位于目标位置时,使该喷嘴N向该目标位置喷出液滴Fb。In addition, when the scanning of the
所喷出的各液滴Fb喷落于在轨迹形成面4Sa上规定的对应的目标位置上。如果喷落在各目标位置上的液滴Fb分别在扫描方向上扫描待机距离WF,则与之前喷落的液滴Fb接合,从而形成在轨迹形成区域扩散的液状膜FL。P偏振光的入射光Le入射到液状膜FL上的入射位置Pe上。Each ejected liquid droplet Fb lands on a predetermined corresponding target position on the trajectory forming surface 4Sa. When the droplet Fb landed on each target position scans the standby distance WF in the scanning direction, it joins with the previously landed droplet Fb to form a liquid film FL spreading in the track formation region. P-polarized incident light Le is incident on the incident position Pe on the liquid film FL.
入射到入射位置Pe上的入射光Le的偏振光状态被形成为P偏振光的部分大多透过液状膜FL并被吸收,从而形成无干燥不足的层轨迹FP。之后相同地,通过依次积层该层轨迹FP,可以形成元件轨迹5F和导电轨迹6F,并能够降低其形成不良。Most of the P-polarized light of the incident light Le incident on the incident position Pe passes through the liquid film FL and is absorbed, thereby forming a layer track FP without insufficient drying. Thereafter, by sequentially laminating the layer traces FP, the element traces 5F and the
下面记载了如上所述构成的本实施方式的效果。Effects of the present embodiment configured as described above are described below.
在搭载有喷出头21的滑架20上搭载有具有半导体激光器LD和光学元件PS的半导体激光器模块LDM。通过喷出头21喷出到生片4S上的液滴Fb的接合来形成液状膜FL。半导体激光器模块LDM向液状膜FL的液面FLa入射P偏振光的入射光Le。A semiconductor laser module LDM having a semiconductor laser LD and an optical element PS is mounted on the
由此,入射光Le中的偏振光状态被转换成P偏振光的部分减少来自液面FLa的反射量,增加向液状膜FL内的透过量。其结果是,能够提高入射光Le相对于液状膜FL的吸收率,从而能够提高液状膜FL的干燥效率。因此,能够降低元件轨迹5F和导电轨迹6F、即电路元件5以及内部配线6的形成不良。As a result, the portion of the incident light Le whose polarization state is converted to P-polarized light reduces the amount of reflection from the liquid surface FLa and increases the amount of transmission into the liquid film FL. As a result, the absorptivity of incident light Le with respect to the liquid film FL can be increased, and the drying efficiency of the liquid film FL can be improved. Therefore, formation defects of the
滑架20具备喷出头21、半导体激光器模块LDM、以及反射镜27。由此,能够维持入射光Le相对于所喷落的液滴Fb的相对位置。其结果是,能够以较高的再现性将P偏振光的入射光Le入射到液面FLa的入射位置Pe上。因此,能够使元件轨迹5F和导电轨迹6F的干燥状态稳定,从而能够进一步降低电路元件5和内部配线6的形成不良。The
另外,由于由半导体激光器LD构成入射光Le的光源,因此,能够实现液滴喷出装置10的小型化和轻量化。In addition, since the light source of the incident light Le is constituted by the semiconductor laser LD, it is possible to reduce the size and weight of the
反射镜27沿生片4S的大致切线方向反射来自半导体激光器模块LDM的入射光Le,并使其入射到与喷出头21相对的液面FLa上。由此,能够立即对喷落后的液滴Fb和接合后的液滴Fb进行干燥。其结果是,能够扩大元件轨迹5F和导电轨迹6F的形状以及尺寸的自由度。The
光学元件PS对从半导体激光器LD射出的激光的偏振光状态进行转换,并射出P偏振光的入射光Le。由此,不论来自半导体激光器LD的激光的偏振光状态如可,P偏振光的激光总是入射到液面FLa上。其结果是,能够更可靠地降低图形的形成不良。The optical element PS converts the polarization state of the laser light emitted from the semiconductor laser LD, and emits P-polarized incident light Le. Accordingly, regardless of the polarization state of the laser light from the semiconductor laser LD, the P-polarized laser light is always incident on the liquid surface FLa. As a result, pattern formation defects can be more reliably reduced.
所述实施方式可以进行下述变更。The above-described embodiment can be modified as follows.
可以构成为将P偏振光的入射光Le入射到孤立的液滴Fb上,以代替入射到接合液滴Fb而成的液状膜FL上。即,本发明不受作为激光照射对象物的液滴Fb的形状限定,只要入射到液滴Fb上的激光的偏振光状态为P偏振光即可。The incident light Le of P-polarized light may be configured to be incident on the isolated liquid droplet Fb instead of being incident on the liquid film FL formed by joining the liquid droplets Fb. That is, the present invention is not limited by the shape of the liquid droplet Fb which is the object to be irradiated with laser light, as long as the polarization state of the laser light incident on the liquid droplet Fb is P-polarized light.
也可以使P偏振光的入射光Le以其它方向入射,以代替以沿生片4S的大致切线方向的入射角θe入射。例如,可以以沿生片4S的大致法线方向的入射角θe来入射P偏振光的入射光Le。The incident light Le of P-polarized light may be made to enter in another direction instead of the incident angle θe along the substantially tangential direction of the
半导体激光器LD射出的激光即入射光Le不限定为偏振光成分为100%的P偏振光,也可以是偏振光成分至少在80%~100%的范围内的偏振光。The incident light Le, which is the laser light emitted from the semiconductor laser LD, is not limited to P-polarized light having a polarization component of 100%, but may be polarized light having a polarization component of at least 80% to 100%.
例如也可以对应各喷嘴N来分隔来自半导体激光器模块LDM的入射光Le,入射光Le的被分隔的入射光Le的各部分分别照射对应的液状膜FL,由此代替用共用的入射光Le对液状膜FL进行干燥。或者,也可以配置与喷嘴N相同数目的半导体激光器模块LDM,来自各半导体激光器模块LDM的入射光Le照射对应的液状膜FL。For example, the incident light Le from the semiconductor laser module LDM may be divided corresponding to each nozzle N, and each part of the divided incident light Le of the incident light Le irradiates the corresponding liquid film FL, thereby instead of using a common incident light Le to The liquid film FL is dried. Alternatively, the same number of semiconductor laser modules LDM as the number of nozzles N may be arranged, and the incident light Le from each semiconductor laser module LDM may irradiate the corresponding liquid film FL.
此时,优选可以根据用于选择喷嘴N的喷出控制信号SI来选择各入射光Le的照射和不照射。即,优选仅射出与喷出液滴Fb的喷嘴N对应的入射光Le。由此,入射光Le仅入射到液状膜FL的区域,从而可以提高入射光Le的利用效率。At this time, it is preferable to select whether to irradiate or not to irradiate each incident light Le according to the ejection control signal SI for selecting the nozzle N. That is, it is preferable to emit only the incident light Le corresponding to the nozzle N that ejects the liquid droplet Fb. Accordingly, the incident light Le enters only the region of the liquid film FL, and the utilization efficiency of the incident light Le can be improved.
通过P偏振光的入射光Le,不仅可以干燥液滴Fb或者液状膜FL,还可以进一步对所干燥的液滴Fb或者液状膜FL进行烧成。由此,通过局部照射的入射光Le,可以降低元件轨迹5F和导电轨迹6F的烧成不良。The incident light Le of the P-polarized light not only dries the liquid droplets Fb or the liquid film FL, but also burns the dried liquid droplets Fb or the liquid film FL. Thereby, by the locally irradiated incident light Le, the firing failure of the
也可以从输入装置41向控制装置40发送预先在外部装置生成的位图数据BMD,以代替控制装置40根据绘图信息Ia来生成位图数据BMD。Instead of the
反射镜27也可以不是电流镜而是棱镜。或者,可以省略反射镜27,将来自柱面透镜25的入射光Le直接照射到液滴Fb上。The
液滴喷出头不限于压电元件驱动方式的液滴喷出头21,也可以是电阻加热方式或者静电驱动方式的喷出头。The droplet ejection head is not limited to the liquid
也可以不用喷墨法来形成所有的电路元件5和内部配线6。也可以用喷墨法只形成比较微细的电路元件5或者内部配线6。All the
轨迹形成材料不限于金属墨水,也可以是分散有绝缘膜材料或有机材料的液状体。即,轨迹形成材料可以是接受激光而干燥、并形成固相轨迹的任意材料。The track forming material is not limited to metallic ink, and may be a liquid in which an insulating film material or an organic material is dispersed. That is, the track-forming material may be any material that is dried by receiving a laser beam and forms solid-phase tracks.
轨迹不限于元件轨迹5F和导电轨迹6F。轨迹也可具体化为液晶显示装置、有机场致发光显示装置、具有平面状的电子发射元件的电场效应型显示装置(FED或SED等)等所具备的各种金属配线。所谓的轨迹,包括形成图形的多个线状堆积物、或形成识别码的点。即,轨迹只要是由干燥液滴形成的固相轨迹即可。The traces are not limited to the
Claims (10)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006119563 | 2006-04-24 | ||
| JP2006119563 | 2006-04-24 | ||
| JP2007023389 | 2007-02-01 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN101062608A true CN101062608A (en) | 2007-10-31 |
Family
ID=38963989
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 200710100896 Pending CN101062608A (en) | 2006-04-24 | 2007-04-24 | Trace forming method, droplet ejection apparatus, and circuit module |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101062608A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104764796A (en) * | 2015-04-01 | 2015-07-08 | 复旦大学 | Method for detecting content of glycosylated hemoglobin in blood based on MALDI-ToF MS |
-
2007
- 2007-04-24 CN CN 200710100896 patent/CN101062608A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104764796A (en) * | 2015-04-01 | 2015-07-08 | 复旦大学 | Method for detecting content of glycosylated hemoglobin in blood based on MALDI-ToF MS |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100870451B1 (en) | Droplet ejection apparatus and identification code | |
| TWI308112B (en) | Method for forming a pattern and liquid ejection apparatus | |
| CN1833872A (en) | droplet ejection device | |
| JP2012190889A (en) | Printer | |
| CN1836791A (en) | droplet ejection device | |
| CN1830579A (en) | Droplet ejection device and droplet discharge head | |
| JP2007125876A (en) | Pattern forming method and droplet discharge apparatus | |
| CN101062608A (en) | Trace forming method, droplet ejection apparatus, and circuit module | |
| KR100876348B1 (en) | Pattern Forming Method, Droplet Discharge Device and Circuit Module | |
| CN101244650B (en) | Pattern forming method, pattern forming device and liquid drying device | |
| JP5776235B2 (en) | Printing device | |
| JP4172521B2 (en) | Pattern forming method and droplet discharge apparatus | |
| JP2008060509A (en) | Wiring forming method, droplet discharge device and circuit module | |
| JP2007296425A (en) | Pattern forming method, droplet discharge device, and circuit module | |
| CN1944050A (en) | Method for forming a pattern and liquid ejection apparatus | |
| CN101062625A (en) | Pattern forming method, droplet discharging device and circuit module | |
| JP2007296426A (en) | Pattern forming method, droplet discharge device, and circuit module | |
| KR100779644B1 (en) | Method for forming a pattern and liquid ejection apparatus | |
| JP2008066526A (en) | Pattern forming method, circuit module manufacturing method, droplet discharge apparatus, circuit module, and circuit module manufacturing apparatus | |
| JP2007289836A (en) | Pattern forming method, droplet discharge device, and circuit module | |
| JP2007160252A (en) | Pattern forming method and droplet discharge apparatus | |
| JP2013123654A (en) | Pattern forming method and pattern forming device | |
| JP2012189358A (en) | Printing apparatus | |
| JP2006247569A (en) | Droplet discharge device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |