CN101116267B - Optical input interruption detection device - Google Patents
Optical input interruption detection device Download PDFInfo
- Publication number
- CN101116267B CN101116267B CN200580047915.7A CN200580047915A CN101116267B CN 101116267 B CN101116267 B CN 101116267B CN 200580047915 A CN200580047915 A CN 200580047915A CN 101116267 B CN101116267 B CN 101116267B
- Authority
- CN
- China
- Prior art keywords
- light input
- alarm
- optical power
- mentioned
- received optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07955—Monitoring or measuring power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/03—Arrangements for fault recovery
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
- Time-Division Multiplex Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及光传输装置,特别涉及在SDH(Synchronous DigitalHierarchy,同步数字体系)和SONET(Synchronous Optical Network,同步光纤网)等同步光通信网络中,用于检测终端站和中继站等接收的光信号的输入中断(loss-of-signal)的光输入中断检测装置。The present invention relates to an optical transmission device, in particular to a device for detecting optical signals received by terminal stations and relay stations in synchronous optical communication networks such as SDH (Synchronous Digital Hierarchy) and SONET (Synchronous Optical Network, synchronous optical network) Optical input loss detection means for loss-of-signal.
背景技术Background technique
同步光通信网络内的终端站和中继站具有一种装置,该装置进行从对向站接收的光信号的输入电平监控或接收数据的错误率的计算等,来检测光输入中断等异常。当检测出光输入中断(LOS:Loss of Signal,信号丢失)等异常时,终端站和中继站为了维持正常的通信状态而将通信路径从工作系统切换到保护系统,并且向站内的操作员终端以及下一级终端站等输出表示该光输入中断的告警。Terminal stations and relay stations in a synchronous optical communication network have a device that monitors the input level of an optical signal received from an opposing station, calculates an error rate of received data, etc., and detects abnormalities such as interruption of optical input. When abnormalities such as optical input interruption (LOS: Loss of Signal, loss of signal) are detected, the terminal station and the relay station switch the communication path from the working system to the protection system in order to maintain the normal communication state, and send information to the operator terminal in the station and the downlink The first-level terminal station, etc. outputs an alarm indicating that the optical input is interrupted.
图1示出光传输装置的以往的光输入中断检测装置的一个结构例。FIG. 1 shows a configuration example of a conventional optical input interruption detection device of an optical transmission device.
在图1中,由对向站发送出的光信号输入到本站的光收发器1中,经过光电(O/E:Optical/Electrical)转换后的数据输入到时钟/数据恢复部(CDR:Clock & Data Recovery)2中。In Fig. 1, the optical signal sent by the opposite station is input into the
光收发器1包含未图示的光输出恒定控制部等,当使用光AGC控制信号等检测出预定的光输入电平以下的信号时,向数据处理部3输出相当于严重故障(SF:Signal Failure)的光输入中断(LOS)告警。The
在时钟/数据恢复部2中,提取包含在输入数据信号中的时钟成分,恢复接收时钟,利用该提取出的时钟对输入数据进行采样,由此,恢复来自对向站的接收数据。向数据处理部3输出由时钟/数据恢复部2所恢复的数据以及时钟。The clock/
数据处理部3进行接收数据的解码处理而复原发送源数据。此时,计算接收数据的位误码率(BER:Bit Error Rate),判定通信线路的劣化程度,如果BER在预定值以上,则判定为相当于相比于SF的轻度故障的信号劣化(SD:Signal Degrade),并记录该信息。The
另外,当检测出LOS告警时,数据处理部3为了执行由工作系统向保护系统的系统间切换以及执行线路异常的告警处理,而向下一级输出连续的数据值为“0”的数据。In addition, when an LOS alarm is detected, the
图2中示出了以往的光输入中断检测装置的另一结构示例。Another configuration example of a conventional light input interruption detection device is shown in FIG. 2 .
在本例中,代替图1的来自光收发器1的LOS告警,使表示存在于时钟/数据恢复部2内部的PLL(Phase Locked loop,锁相环)电路等输出的异步(自走)状态的失步(LOL:Loss of Lock)告警对应于严重故障(SF),而输出给数据处理部3。其他和图1的结构相同。另外,这里,在时钟/数据恢复部2中使用了市场上销售的CDR设备,该CDR设备满足SDH关联民间团体的MSA(Multi Source Agreement,多源协议)的通用规格。In this example, instead of the LOS alarm from the
在本例中,如果检测到LOL告警,为了进行由工作系统向保护系统的系统间切换以及进行线路异常的报警处理,数据处理部3向下一级输出连续的数据值为“0”的数据(参照专利文献2)。In this example, if a LOL alarm is detected, in order to switch from the working system to the protection system between systems and to perform alarm processing for line abnormalities, the
专利文献1:日本特开2001-339347号公报Patent Document 1: Japanese Patent Laid-Open No. 2001-339347
专利文献2:日本特开平7-95156号公报Patent Document 2: Japanese Patent Application Laid-Open No. 7-95156
在图1的以往结构中,与数据处理部3计算出的信号错误(BER)无关地,在光收发器1中基于接收光电平输出LOS告警,因此会发生不能按轻度故障SD、重度故障SF的顺序检测故障的情况。通常,图1的LOS被设定为和SF同等的故障级别,例如,设定SD为BER IE-6(10-6)、而且LOS(SF)设定为BER IE-4(10-4)左右。In the conventional configuration shown in FIG. 1 , the
其结果,可能产生本来应该检测为可以在以往系统中继续使用的级别SD的线路故障被检测为严重线路故障SF的情况。另外,虽然站的维护员以及销售方为了查明故障原因而进行到故障发生之前的或者在故障发生时的BER分析,但是在上述情况下无法进行该分析,因此存在使用BER的故障监控不能有效地发挥作用的问题。As a result, a line fault of the class SD that should have been detected as a continuation of use in the conventional system may be detected as a serious line fault SF. In addition, although station maintenance personnel and sales parties perform BER analysis before or at the time of failure to find out the cause of the failure, this analysis cannot be performed in the above case, so there is a possibility that failure monitoring using BER is not effective. problem of functioning.
另外,在图2的以往结构中,存在如下的问题:虽然利用了市场上销售的CDR设备在作为严重故障(SF)的BER IE-4左右输出失步的LOL告警的特性,但由于PLL等电路结构上的限制,该LOL检测速度即从光输入中断到检测出失步的时间不满足标准GR-253规定的100μS以内的SF检测时间。In addition, in the conventional structure of FIG. 2, there is the following problem: Although the characteristics of the CDR equipment sold on the market are used to output the LOL alarm of out-of-synchronization around BER IE-4, which is a serious failure (SF), the PLL, etc. Due to the limitations of the circuit structure, the LOL detection speed, that is, the time from the interruption of the optical input to the detection of out-of-synchronization does not meet the SF detection time within 100 μS stipulated in the standard GR-253.
为此,除了上述的LOL的检测功能外,还使用下面的方法:利用当光输入电平降低到预定电平以下时,以往的光收发器1输出数据值为“0”的连续信号的特性,当时钟/数据恢复部2检测到该连续数据值“0”时,立即输出LOL告警。For this reason, in addition to the detection function of the above-mentioned LOL, the following method is also used: when the optical input level drops below a predetermined level, the characteristic of the conventional
但是,近年的光收发器1具有以下结构:为了提高接收灵敏度以及扩大接收范围,内置了与光输出恒定控制相关联的放大器,即使光信号为噪声电平较小的信号也输出包含噪声的放大后的数据。因此,在下一级的时钟/数据恢复部2中已经不能使用上述的以往方法(检测连续的0)。However, the
发明内容Contents of the invention
因此,本发明的目的在于,鉴于上述问题,提供一种光输入中断检测装置,其监控接收到的光信号的输入电平,当光输入电平在预定电平以上则立即检测出严重故障(SF),相反,当光输入电平在预定电平以下则使轻度故障(SD)检测优先,在该检测后,通过允许严重故障(SF)的检测,从而使得同时实现基于光输入电平的早期的SF检测和确保从SD到SF的检测顺序。Therefore, the object of the present invention is to, in view of the above-mentioned problems, provide a kind of optical input interruption detecting device, it monitors the input level of the optical signal received, when the optical input level is above a predetermined level, then detects a serious failure immediately ( SF), on the contrary, when the optical input level is below the predetermined level, the detection of slight fault (SD) is prioritized, and after the detection, by allowing the detection of severe fault (SF), so that the simultaneous realization of the optical input level based Early detection of SF and ensure detection sequence from SD to SF.
根据本发明,提供一种光输入中断检测装置,该光输入中断检测装置包括:光输入部,其根据光输入信号的接收光功率的计测,该光输入部对光输入信号的接收光功率进行计测,当该接收光功率在接收光功率下降阈值以下时输出接收光功率下降信息,当在光输入中断告警阈值以下时输出光输入中断告警,其中,该光输入中断告警阈值小于该接收光功率下降阈值;同步部,其提取包含于上述光输入信号中的同步时钟,在失步时输出LOL告警;光输入中断检测部,其判定有无上述接收光功率下降信息,在存在上述接收光功率下降信息的情况下,根据上述LOL告警的输出使上述LOS告警有效,在没有上述接收光功率下降信息的情况下,立即使上述LOS告警有效,通过该有效的LOS告警来检测光输入中断;位误码率计测部,该位误码率计测部对使用上述同步时钟而恢复的接收数据的位误码率进行计测,当该计测出的位误码率在预定的位误码率值以上时,判定为轻度故障级别的故障状态。According to the present invention, there is provided an optical input interruption detection device, the optical input interruption detection device includes: an optical input part, which is based on the measurement of the received optical power of the optical input signal, and the optical input part measures the received optical power of the optical input signal Perform measurement, output received optical power drop information when the received optical power is below the received optical power drop threshold, and output an optical input interrupt alarm when the received optical power is below the optical input interrupt alarm threshold, wherein the optical input interrupt alarm threshold is less than the received optical power drop threshold Optical power drop threshold; synchronization section, which extracts the synchronous clock included in the above-mentioned optical input signal, and outputs LOL alarm when out of sync; optical input interruption detection section, which determines whether there is any above-mentioned received optical power drop information, In the case of optical power drop information, the above-mentioned LOS alarm is validated according to the output of the above-mentioned LOL alarm, and in the case of the absence of the above-mentioned received optical power drop information, the above-mentioned LOS alarm is immediately validated, and the optical input interruption is detected by the valid LOS alarm ; A bit error rate measurement unit, the bit error rate measurement unit measures the bit error rate of the received data recovered using the above-mentioned synchronous clock, and when the measured bit error rate is within a predetermined bit When the bit error rate exceeds the value, it is judged as a fault state of the minor fault level.
上述光输入中断检测部在上述存在接收光功率下降信息的情况下,替代根据上述LOL告警输出使上述LOS告警有效,而将上述LOL告警输出视为有效的LOS告警。The optical input interruption detection unit considers the LOL alarm output as an active LOS alarm instead of enabling the LOS alarm based on the LOL alarm output when the received optical power drop information is present.
上述SD级别的故障状态的BER值比LOS级别或LOL级别的故障状态的BER值还小。另外,上述LOS级别或上述LOL级别的故障状态的BER值实质上等于SF级别故障状态的BER值。而且,按每个预定周期输出上述接收光功率下降信息,或从取得该信息的时刻开始经过预定的延迟时间后输出上述接收光功率下降信息。The BER value of the SD-level fault state is smaller than the BER value of the LOS-level or LOL-level fault state. In addition, the BER value of the failure state of the above-mentioned LOS level or the above-mentioned LOL level is substantially equal to the BER value of the failure state of the SF level. Furthermore, the received optical power drop information is output every predetermined cycle, or the received optical power drop information is output after a predetermined delay time has elapsed from the time when the information was acquired.
根据本发明,在光输入电平足够大的接收状态(没有接收光功率下降信息)下,之所以检测出光输入中断(LOS),仅因为装置故障和线路断开等严重故障(SF)而产生,所以,此时立即检测LOS而使得满足标准GR-253的100μS以内的SF检测时间。According to the present invention, in the receiving state with a sufficiently large optical input level (there is no received optical power drop information), the reason why the optical input interruption (LOS) is detected is only due to serious faults (SF) such as device failure and line disconnection. , Therefore, at this time, LOS is detected immediately so as to satisfy the SF detection time within 100 μS of the standard GR-253.
另一方面,在光输入电平低至最小接收电平以下的状态(存在接收光功率下降信息)下,通常,来自对向站的接收光电平与接收站的最小接收电平相比足够大,所以可以假设为由于站内装置、站间传输线路的经时劣化和周围温度的变化等而逐渐产生信号中断。因此,在光输入信号电平下降的状态下,在系统的继续使用中对BER进行计测,检测可继续在系统中使用的轻度故障(SD;BER IE-6),以该SD检测为条件(SD检测后),进一步检测故障加重后的严重故障(LOL;BER IE-4)。On the other hand, in a state where the optical input level is lower than the minimum receiving level (received optical power drop information exists), usually, the received light level from the opposite station is sufficiently higher than the minimum received level of the receiving station , it can be assumed that signal interruptions are gradually occurring due to time-dependent deterioration of in-station devices and inter-station transmission lines, changes in ambient temperature, and the like. Therefore, in the state where the optical input signal level drops, the BER is measured during the continuous use of the system to detect a slight failure (SD; BER IE-6) that can continue to be used in the system, and this SD detection is regarded as condition (after SD detection), further detection of severe faults after fault aggravation (LOL; BER IE-4).
因此,使用基于BER的故障检控功能可以进行直到严重故障为止的具体的故障分析,站以及整个系统的维护操作也变得格外容易。另外,由于上述原因,在本发明中,不需要上述以往方法(检测连续的0),而可以实现利用市场上销售的CDR设备的、成本较低且高效的装置设计。Therefore, using the BER-based fault detection function, detailed fault analysis up to serious faults can be carried out, and the maintenance operation of the station and the entire system becomes extremely easy. In addition, for the above reasons, in the present invention, the above-mentioned conventional method (detection of consecutive 0s) is unnecessary, and a low-cost and efficient device design using a commercially available CDR device can be realized.
附图说明Description of drawings
图1是表示以往的光输入中断检测装置的一个结构例的图。FIG. 1 is a diagram showing a configuration example of a conventional light input interruption detection device.
图2是表示以往的光输入中断检测装置的另一结构例的图。FIG. 2 is a diagram showing another configuration example of a conventional light input interruption detection device.
图3是表示本发明的光输入中断检测装置的第1实施例的图。Fig. 3 is a diagram showing a first embodiment of an optical input interruption detection device of the present invention.
图4是表示LOS控制部的控制流程的一个例子的图。FIG. 4 is a diagram showing an example of a control flow of a LOS control unit.
图5是表示LOS控制部的具体电路结构的一个例子的图。FIG. 5 is a diagram showing an example of a specific circuit configuration of an LOS control unit.
图6是表示图3的动作时序图的一例(1)的图。FIG. 6 is a diagram showing an example (1) of the operation timing chart in FIG. 3 .
图7是表示图3的动作时序图的一例(2)的图。FIG. 7 is a diagram showing an example (2) of the operation timing chart in FIG. 3 .
图8是表示本发明的光输入中断检测装置的第2实施例的图。Fig. 8 is a diagram showing a second embodiment of the light input interruption detecting device of the present invention.
图9是表示图8的动作时序图的一例(1)的图。FIG. 9 is a diagram showing an example (1) of the operation timing chart in FIG. 8 .
图10是表示图8的动作时序图的一例(2)的图。FIG. 10 is a diagram showing an example (2) of the operation timing chart in FIG. 8 .
具体实施方式Detailed ways
图3是表示本发明的光输入中断检测装置的第1实施例的图。Fig. 3 is a diagram showing a first embodiment of an optical input interruption detection device of the present invention.
在图3中,光收发器1、时钟/时间恢复部(CDR)2、以及数据处理部3和以往例相同。因此,这里不再进行说明。另外,由于光收发器的MSA化,近年的光收发器1已经具有光输出功率、内部温度、电源电压等的多种监控功能以及/或检测功能。在本发明中,为了LOS检测而使用其中的接收光功率的监控功能或接收光功率的告警功能。In FIG. 3, the
另外,在本例中新增加的LOS控制部4接收来自光收发器1的接收光功率下降信息和LOS告警、以及来自时钟/数据恢复部2的LOL告警,根据其中的接收光功率下降信息以及LOL告警,控制从光收发器1向数据处理部3的LOS告警的通过。当被赋予LOS告警时,数据处理部3执行和图1的以往例相同的处理。In addition, in this example, the newly added
另外,LOS控制部4也可以根据来自光收发器1的接收光功率下降信息输出表示严重故障(BER IE-4)的来自光收发器1的LOS告警或来自时钟/数据恢复部2的LOL告警的双方中的任意一方(参照后述的图5)。当被赋予LOL告警时,数据处理部3执行和图2的以往例相同的处理。In addition, the
在图4中示出了LOS控制部4的控制流程的一个例子。An example of the control flow of the
在本例中,LOS控制部4监控来自光收发器1的接收光功率下降信息(在本例中为接收光功率下降告警),判定其有无(S01)。当例如在按每个预定周期所计测的接收光功率值或其平均值变为最小接收光功率保证值以下时,输出接收光功率下降告警。In this example, the
在未检测出接收光功率下降告警的情况下(OFF),监控来自光收发器1的LOS告警,判定其有无(S03)。当检测到LOS告警时(ON),将其输出给数据处理部3(S04)。另一方面,在未检测出LOS告警时(OFF),返回到接收光功率下降告警的监控(S01)。When the receiving optical power drop warning is not detected (OFF), the LOS warning from the
这样,在未检测到接收光功率下降告警的状态(接收光功率在最小接收光功率值以上)下,LOS控制部4将所输入的LOS告警原样输出给信息处理部3,由此能满足100μS的规定值。In this way, in the state where the received optical power drop warning is not detected (the received optical power is above the minimum received optical power value), the
另一方面,在检测到接收光功率下降告警的情况下(ON),监控来自时钟/数据恢复部2的LOL告警,判定其有无(S02)。当检测到LOL告警(ON)时,使从光收发器1输入的LOS告警通过,而向信息处理部3输出(S04)。在未检测到LOL告警时(OFF),返回接收光功率下降告警的监控(S01)。On the other hand, when the received optical power drop warning is detected (ON), the LOL warning from the clock/
这样,在检测到接收光功率下降告警的状态(接收光功率在最小接收光功率值以下)下,LOS控制部4将来自时钟/数据恢复部2的LOL告警检测作为条件(LOL检测后)向信息处理部3输出所输入的LOS告警。由此,遵守了SD、LOS的发生顺序。In this way, in the state in which the received optical power drop alarm is detected (the received optical power is below the minimum received optical power value), the
图5是示出LOS控制部的具体电路结构的一个例子的图。FIG. 5 is a diagram showing an example of a specific circuit configuration of an LOS control unit.
在图5中,在LOS控制部4的倒相器41中,输入来自光收发器1的接收光功率下降告警,对下一级的“与”(AND)电路42中输入倒相器41的输出和来自光收发器1的LOS告警。因此,在未检测出接收光功率下降告警时(值为“0”),“与”电路42使来自光收发器1的LOS告警原样通过。相反,在检测到接收光功率下降告警时(值为“1”),禁止来自光收发器1的LOS告警通过。In FIG. 5, in the
另外,对“与”电路43的一方的输入,输入来自光收发器1的接收光功率下降告警,对另一方的输入,输入来自时钟/数据恢复部2的LOL告警。因此,在未检测到接收光功率下降告警时(值为“0”),“与”电路43禁止来自时钟/数据恢复部2的LOL告警通过。相反,在检测到接收光功率下降告警时(值为“1”),使来自时钟/数据恢复部2的LOL告警原样通过。In addition, the received optical power drop warning from the
其结果,根据接收光功率下降告警的有无,从输出级的“或”(OR)电路44输出来自光收发器1的LOS告警或来自时钟/数据恢复部2的LOL告警中的任意一方。再有,在本例中,因为LOS以及LOL的各故障级别都等于SF的故障级别(BER IE-4),所以图中的输出告警以LOS告警来显示示出。As a result, either the LOS alarm from the
在本例中,通过来自光收发器1的接收光功率下降告警(也可以是接收光电平的监控信号)监控接收光功率,当该接收光功率大于等于光传输装置保证的接收光功率的最小值时,使基于光收发器1的接收光功率的LOS监控有效,当该接收光功率小于等于接收光功率的最小值时,使基于接收光功率的LOS告警无效,而监控来自时钟/数据恢复部2的LOL告警。In this example, the received optical power is monitored through the received optical power drop alarm (or the monitoring signal of the received optical level) from the
其结果,在光传输装置所保证的接收光功率的范围内,可从光输入中断开始在100μS以内检测LOS。另外,当接收光功率变为保证值以下时,可视为通过在使用了BER的SD检测后所输出的LOL告警进行LOS检测,由此,能遵守从SD到LOS的故障发生顺序。As a result, within the range of received optical power guaranteed by the optical transmission device, LOS can be detected within 100 μs from the interruption of the optical input. In addition, when the received optical power falls below the guaranteed value, it can be considered that LOS detection is performed by the LOL alarm output after SD detection using BER, so that the failure sequence from SD to LOS can be followed.
图6及图7示出了本发明的光输入中断检测装置的动作时序图的一个例子。这里,图6示出了接收光功率大于光输入中断装置所保证的最小接收光功率值的情况的一个例子,图7示出了接收光功率小于光输入中断检测装置所保证的最小值接收光功率值的情况的一个例子。6 and 7 show an example of an operation timing chart of the optical input interruption detection device of the present invention. Here, FIG. 6 shows an example of a situation where the received optical power is greater than the minimum received optical power value guaranteed by the optical input interruption device, and FIG. 7 shows that the received optical power is less than the minimum received optical power value guaranteed by the optical input interruption detection device. An example of the case of power values.
图6示出了在输入了相比于图6(a)所示的最小接收光功率足够大的接收光功率的光信号的状态下,发生突然光缆中断等的严重故障(SF),光输入功率变为0的情况下的一个动作例。此时,通过按几mS~几十mS的周期所计测的接收光功率值或它们的平均值与最小接收光功率值(参照图7的(a)的接收光功率告警阈值)之间的比较,而输出光收发器1输出的接收光功率下降告警,因此,该输出从光输入中断开始基于上述预定周期按mS级延迟(图6(b))。直到输出该接收光功率下降告警为止,LOS控制部4将该状态判定为输入了大于最小接收光功率的接收光功率的光信号的状态。此外,也可以在接收光功率下降告警的输出线路(图5的41的输入)上,通过附加例如电容元件来使其输出延迟1ms左右,其间,可以检测图6(a)所示的接收光功率的瞬时变动,而可靠地输出LOS告警(参照图5的42)。Fig. 6 shows that in the state where an optical signal with received optical power sufficiently large compared to the minimum received optical power shown in Fig. An example of operation when the power becomes 0. At this time, the difference between the received optical power value measured in a period of several mS to tens of mS or their average value and the minimum received optical power value (refer to the received optical power alarm threshold in (a) of FIG. 7 ) In comparison, the received optical power output from the
另一方面,通过光输入功率和接收光功率的LOS阈值(参照图7(a))的简单的比较,而检测光收发器1输出的LOS告警。因此,如图6(c)所示LOS告警和光输入中断几乎同时被检测。此外,在本例中,忽略图6(d)所示的来自时钟/数据恢复部2的LOL告警。On the other hand, the LOS alarm output by the
在接收光功率大于最小接收光功率的本例中,如图6(e)所示,来自光收发器1的LOS告警原样通过LOS控制部4而被输出给数据处理部3,数据处理部3接收它并立即开始告警处理。因此,如图所示,如果使用LOS告警,则能够充分满足作为SF检测时间(T)的规定的100μS。In this example where the received optical power is greater than the minimum received optical power, as shown in FIG. Receive it and start alert processing immediately. Therefore, as shown in the figure, if the LOS alarm is used, the prescribed SF detection time (T) of 100 μS can be fully satisfied.
图7示出由于站间装置和传输线路的经年劣化和周围温度的变化等,光输入功率逐渐下降(图7(a))、该光输入功率比接收光功率告警阈值和接收光功率的LOS阈值更低的情况下的一个动作例。这里,可无差错地接收大于接收光功率告警阈值的接收光功率的光输入信号,而不能接收小于接收光功率的LOS阈值的接收光功率的光输入信号,并且具有接收光功率告警阈值和接收光功率的LOS阈值之间的接收光功率的光输入信号可以按照在现用系统中可继续使用的BER级别(SD)进行接收。Figure 7 shows that the optical input power gradually decreases due to the deterioration of inter-station devices and transmission lines over the years and changes in ambient temperature (Figure 7(a)), and the ratio of the optical input power to the received optical power alarm threshold and the received optical power An example of an action in the case of a lower LOS threshold. Here, the optical input signal with the received optical power greater than the received optical power alarm threshold can be received without error, but the optical input signal with the received optical power less than the LOS threshold of the received optical power cannot be received, and there is a received optical power alarm threshold and receiving The optical input signal with received optical power between the LOS threshold of optical power can be received at a BER level (SD) that can continue to be used in the existing system.
本示例在动作开始时将具有接收光功率告警阈值和接收光功率的LOS阈值之间的中间接收光功率的光信号作为对象。因此,如图6的情况那样,由于线路中断等而本来不必考虑中间接收光功率的严重故障(SF)从本示例的对象中排除。This example takes as an object an optical signal having an intermediate received optical power between the received optical power warning threshold and the received optical power LOS threshold at the start of the action. Therefore, as in the case of FIG. 6 , a severe fault (SF) which does not have to take intermediate received optical power into consideration due to line interruption or the like is excluded from the object of this example.
如图7(b)所示那样,在光输入信号的接收光功率低于接收光功率告警阈值的时刻输出接收光功率下降告警。在从该接收光功率下降告警的检测时刻开始到至少检测出来自时钟/数据恢复部2的LOL告警的期间,LOS控制部4忽略来自光收发器1的LOS告警(参照图7(b)~图7(d))。As shown in FIG. 7( b ), when the received optical power of the optical input signal is lower than the received optical power alarm threshold, a received optical power drop alarm is output. During the period from the detection time of the received optical power drop warning to at least detecting the LOL warning from the clock/
在该期间内,光收发器1在光输入信号的接收光功率低于接收光功率的LOS阈值的时刻输出LOS告警(图7(c))。另外,数据处理部3反复进行BER的计算,在BER变为IE-6的时刻将接收状态判定为SD级别,并记录该信息。而且,LOS控制部4在BER为IE-4的附近检测来自时钟/数据恢复部2的LOL告警(图7(d))。During this period, the
因此,在检测到LOL告警的时刻,LOS控制部4将当前存在的来自光收发器1的LOS告警或检测出的LOL告警作为LOS告警输出给数据处理部3(图7(e))。数据处理部3接收该告警而开始严重故障处理(SF)。这样,根据本示例,在已输出接收光功率下降告警的状态下,可靠地保证SD、SF的发生顺序。Therefore, when the LOS alarm is detected, the
图8~10是表示本发明的光输入中断检测装置的第2实施例的图。8 to 10 are diagrams showing a second embodiment of the light input interruption detecting device of the present invention.
图3的第1实施例和图8的不同点在于,在图3中向LOS控制部4输出从时钟/数据恢复部2的PLL电路等输出的LOL告警,与此相对,在本示例中,数据处理部3与SD同样地通过软件计算而求得与图3的LOL告警相当的BER级别IE-4,将其替代LOL告警而作为位误码告警(bit error alarm)输出给LOS控制部4。除此之外与第1实施例相同。The difference between the first embodiment of FIG. 3 and FIG. 8 is that in FIG. 3 , the LOL alarm output from the PLL circuit of the clock/
因此,在示出第2实施例的动作例的图9以及图10中,图9(d)变更为数据处理部的位误码告警,而且图10(d)也变更为数据处理部的位误码告警。除此之外与第1实施例的图6以及图7相同。因此,对于本发明的第2实施例,为了避免和第1实施例重复的说明,就不再进一步说明。Therefore, in Fig. 9 and Fig. 10 showing the operation example of the second embodiment, Fig. 9(d) is changed to the bit error alarm of the data processing part, and Fig. 10(d) is also changed to the bit error alarm of the data processing part. Bit error warning. Other than that, it is the same as FIG. 6 and FIG. 7 of the first embodiment. Therefore, for the second embodiment of the present invention, in order to avoid repeated description with the first embodiment, no further description will be given.
以上,根据本发明,当在光输入功率大于等于最小接收电平时可立即产生光输入中断(LOS),当小于等于最小接收电平时,可按从SD到LOS的顺序产生光输入中断(LOS)。As above, according to the present invention, when the optical input power is greater than or equal to the minimum receiving level, the optical input interruption (LOS) can be generated immediately, and when the optical input power is less than or equal to the minimum receiving level, the optical input interruption (LOS) can be generated in the order from SD to LOS .
Claims (7)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2005/001850 WO2006085356A1 (en) | 2005-02-08 | 2005-02-08 | Light input break detection device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101116267A CN101116267A (en) | 2008-01-30 |
| CN101116267B true CN101116267B (en) | 2010-09-08 |
Family
ID=36792931
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200580047915.7A Expired - Fee Related CN101116267B (en) | 2005-02-08 | 2005-02-08 | Optical input interruption detection device |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US7684700B2 (en) |
| JP (1) | JP4528827B2 (en) |
| CN (1) | CN101116267B (en) |
| WO (1) | WO2006085356A1 (en) |
Families Citing this family (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4899098B2 (en) * | 2007-03-19 | 2012-03-21 | 富士通株式会社 | Optical loss detection device |
| CN101291176B (en) * | 2007-04-18 | 2012-07-04 | 华为技术有限公司 | Fault detection method, system and apparatus for optical distributed network |
| JP4621756B2 (en) * | 2008-06-04 | 2011-01-26 | 日本オプネクスト株式会社 | Optical receiver and optical signal break detection method for optical receiver |
| CN101340692B (en) * | 2008-08-21 | 2011-02-16 | 中国移动通信集团河北有限公司 | Cutover alarm filtering method for mobile communication engineering |
| JP5471099B2 (en) * | 2009-07-13 | 2014-04-16 | 沖電気工業株式会社 | Subscriber terminal, optical communication network, and optical signal intensity adjustment method in optical communication network |
| CN102064880A (en) * | 2009-11-13 | 2011-05-18 | 中兴通讯股份有限公司 | Radio frequency remote module and power amplifier protection method thereof |
| JP6019704B2 (en) * | 2012-04-24 | 2016-11-02 | 住友電気工業株式会社 | Optical transceiver |
| US9219543B2 (en) * | 2012-07-11 | 2015-12-22 | Commscope Technologies Llc | Monitoring optical decay in fiber connectivity systems |
| US9270368B2 (en) * | 2013-03-14 | 2016-02-23 | Hubbell Incorporated | Methods and apparatuses for improved Ethernet path selection using optical levels |
| CN104218987B (en) * | 2013-05-31 | 2017-04-12 | 中国电信股份有限公司 | Optical link detecting method, system and detector in passive optical network |
| US9819436B2 (en) | 2013-08-26 | 2017-11-14 | Coriant Operations, Inc. | Intranodal ROADM fiber management apparatuses, systems, and methods |
| US9723385B2 (en) * | 2013-11-06 | 2017-08-01 | Coriant Operations, LLC | Procedures, apparatuses, systems, and computer programs for providing optical network channel protection |
| KR101552490B1 (en) * | 2014-06-09 | 2015-09-21 | (주)유비쿼스 | The dualized link port Optical Line Termination device, Passive Optical Network system for detecting received signal of standby line using standby port, and method of estimating stability of standby line |
| CN104093156B (en) * | 2014-07-24 | 2017-11-14 | 京信通信系统(中国)有限公司 | The slave station equipment address distribution method and system of distributed base station system |
| CN105515715A (en) * | 2015-11-24 | 2016-04-20 | 上海欣诺通信技术有限公司 | Wavelength-division-multiplexing-based ethernet passive optical network transmission system and method |
| CN105763250B (en) * | 2016-02-23 | 2018-01-02 | 烽火通信科技股份有限公司 | A kind of method and system for preventing wrong overhead byte transmission |
| CN106253977B (en) * | 2016-08-22 | 2019-05-21 | 青岛海信宽带多媒体技术有限公司 | The method of adjustment and optical module of LOS alarm decision threshold |
| US10771151B2 (en) * | 2017-07-31 | 2020-09-08 | Level 3 Communications, Llc | Outside plant fiber health monitoring system |
| US10432301B2 (en) * | 2017-11-08 | 2019-10-01 | Facebook, Inc. | High-speed optical transceiver field reader |
| WO2019167361A1 (en) * | 2018-02-27 | 2019-09-06 | 日本電気株式会社 | Optical signal reception device, optical signal reception method, and non-transitory computer-readable medium |
| US10951342B2 (en) | 2019-04-18 | 2021-03-16 | Microsoft Technology Licensing, Llc | Throughput increases for optical communications |
| US10892847B2 (en) | 2019-04-18 | 2021-01-12 | Microsoft Technology Licensing, Llc | Blind detection model optimization |
| US10998982B2 (en) | 2019-04-18 | 2021-05-04 | Microsoft Technology Licensing, Llc | Transmitter for throughput increases for optical communications |
| US10873393B2 (en) | 2019-04-18 | 2020-12-22 | Microsoft Technology Licensing, Llc | Receiver training for throughput increases in optical communications |
| US10862591B1 (en) | 2019-04-18 | 2020-12-08 | Microsoft Technology Licensing, Llc | Unequal decision regions for throughput increases for optical communications |
| US10756817B1 (en) | 2019-04-18 | 2020-08-25 | Microsoft Technology Licensing, Llc | Power switching for systems implementing throughput improvements for optical communications |
| US11018776B2 (en) | 2019-04-18 | 2021-05-25 | Microsoft Technology Licensing, Llc | Power-based decoding of data received over an optical communication path |
| US10897315B2 (en) * | 2019-04-18 | 2021-01-19 | Microsoft Technology Licensing, Llc | Power-based decoding of data received over an optical communication path |
| US10742326B1 (en) | 2019-04-18 | 2020-08-11 | Microsoft Technology Licensing, Llc | Power-based encoding of data to be transmitted over an optical communication path |
| US10911152B2 (en) * | 2019-04-18 | 2021-02-02 | Microsoft Technology Licensing, Llc | Power-based decoding of data received over an optical communication path |
| US10873392B2 (en) | 2019-04-18 | 2020-12-22 | Microsoft Technology Licensing, Llc | Throughput increases for optical communications |
| US10938485B2 (en) | 2019-04-18 | 2021-03-02 | Microsoft Technology Licensing, Llc | Error control coding with dynamic ranges |
| US10742325B1 (en) | 2019-04-18 | 2020-08-11 | Microsoft Technology Licensing, Llc | Power-based encoding of data to be transmitted over an optical communication path |
| US10911155B2 (en) | 2019-04-18 | 2021-02-02 | Microsoft Technology Licensing, Llc | System for throughput increases for optical communications |
| US10911141B1 (en) | 2019-07-30 | 2021-02-02 | Microsoft Technology Licensing, Llc | Dynamically selecting a channel model for optical communications |
| CN110971990B (en) * | 2019-11-18 | 2022-05-10 | 武汉光谷信息光电子创新中心有限公司 | Method and device for detecting SD/LOS (secure digital/optical line segment) of OLT (optical line terminal) optical module |
| CN111049576B (en) * | 2019-12-27 | 2022-03-11 | 深圳市光为光通信科技有限公司 | LOS (LOSs of line) alarm method for optical module |
| EP4102742B1 (en) * | 2020-02-07 | 2025-09-03 | Fuji Corporation | Optical communication equipment and component mounting machine |
| US12355563B2 (en) * | 2022-01-24 | 2025-07-08 | Cisco Technology, Inc. | Correlating transceiver parameters for insight into transceiver health |
| WO2024124490A1 (en) * | 2022-12-15 | 2024-06-20 | 华为技术有限公司 | Communication method and related device |
| CN118100915B (en) * | 2024-04-28 | 2024-07-02 | 成都电科星拓科技有限公司 | CDR circuit |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5517519A (en) * | 1993-06-14 | 1996-05-14 | International Business Machines Corporation | Apparatus for repowering and monitoring serial links |
| JP3363133B2 (en) * | 2000-07-21 | 2003-01-08 | 住友電気工業株式会社 | Wavelength division multiplexing transmission method and system |
| JP2002141874A (en) * | 2000-11-01 | 2002-05-17 | Nec Corp | Signal interruption detector |
| AU2002237132A1 (en) * | 2001-03-02 | 2002-09-19 | Meriton Networks Inc. | Data path architecture for a light layer 1 oeo switch |
| JP2003060736A (en) * | 2001-08-21 | 2003-02-28 | Fujitsu Ltd | Transmitting device |
| US20040052520A1 (en) * | 2002-02-07 | 2004-03-18 | Ross Halgren | Path protection in WDM network |
| US7664401B2 (en) * | 2002-06-25 | 2010-02-16 | Finisar Corporation | Apparatus, system and methods for modifying operating characteristics of optoelectronic devices |
| US7486894B2 (en) * | 2002-06-25 | 2009-02-03 | Finisar Corporation | Transceiver module and integrated circuit with dual eye openers |
| US7349450B2 (en) * | 2002-08-12 | 2008-03-25 | Broadcom Corporation | Multi-stage high speed bit stream demultiplexer chip set having switchable master/slave relationship |
-
2005
- 2005-02-08 CN CN200580047915.7A patent/CN101116267B/en not_active Expired - Fee Related
- 2005-02-08 JP JP2007502499A patent/JP4528827B2/en not_active Expired - Fee Related
- 2005-02-08 WO PCT/JP2005/001850 patent/WO2006085356A1/en not_active Ceased
-
2007
- 2007-08-08 US US11/889,051 patent/US7684700B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP4528827B2 (en) | 2010-08-25 |
| JPWO2006085356A1 (en) | 2008-06-26 |
| US7684700B2 (en) | 2010-03-23 |
| CN101116267A (en) | 2008-01-30 |
| WO2006085356A1 (en) | 2006-08-17 |
| US20070280684A1 (en) | 2007-12-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101116267B (en) | Optical input interruption detection device | |
| CN101667864B (en) | Method, system and device for diagnosing downlink physical link fault | |
| US20070230364A1 (en) | Signal degrade detecting method, signal restoration detecting method, devices for those methods, and traffic transmission system | |
| JP4413358B2 (en) | Fault monitoring system and fault notification method | |
| WO2002079988A1 (en) | Methods and apparatus for burst toleran excessive bit error rate alarm detection and clearing | |
| US5619532A (en) | Digital communication system | |
| JP2005210719A (en) | How to find outage time in packet-switched networks | |
| JP2017228934A (en) | Fault detection device and fault detection method | |
| EP1187372B1 (en) | Apparatus and method for bit rate control of optical receiver | |
| US7356076B2 (en) | System and method supporting auto-recovery in a transceiver system | |
| US20040205444A1 (en) | Transport systems and method of monitoring burst error | |
| CN1394025A (en) | Loopback protector for light monitor channel | |
| US7099579B2 (en) | Bridge terminal output unit | |
| JP3730950B2 (en) | Digital radio equipment | |
| KR100248426B1 (en) | Reset signal generation device for error detection and automatic recovery of synchronous transmission module timer with automatic initialization in asynchronous transmission method based on synchronous digital hierarchy | |
| JP3285009B2 (en) | Route switching control system, switching control method, and recording medium | |
| JP2602738B2 (en) | Output disconnection detection circuit | |
| US20180212723A1 (en) | Error monitoring apparatus, method, and recording medium | |
| JPH05344104A (en) | Transmission path switching device | |
| JP2001308814A (en) | Frame configuration automatic identification communication device | |
| JP2000092030A (en) | Optical transmitter | |
| JP3331461B2 (en) | AIS detection circuit | |
| US20050111373A1 (en) | Node device | |
| JPH088979A (en) | Digital transmission system | |
| KR100801138B1 (en) | Apparatus and method for detecting faults with or without protection switching in S & T / SD |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100908 Termination date: 20130208 |