[go: up one dir, main page]

CN101222121A - Integrated optoelectronic devices for high-frequency microwave generation using SOA four-wave mixing effect - Google Patents

Integrated optoelectronic devices for high-frequency microwave generation using SOA four-wave mixing effect Download PDF

Info

Publication number
CN101222121A
CN101222121A CNA2007101794253A CN200710179425A CN101222121A CN 101222121 A CN101222121 A CN 101222121A CN A2007101794253 A CNA2007101794253 A CN A2007101794253A CN 200710179425 A CN200710179425 A CN 200710179425A CN 101222121 A CN101222121 A CN 101222121A
Authority
CN
China
Prior art keywords
soa
layer
dfb laser
mixing effect
wave mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101794253A
Other languages
Chinese (zh)
Other versions
CN100570970C (en
Inventor
孙长征
黄缙
熊兵
罗毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB2007101794253A priority Critical patent/CN100570970C/en
Publication of CN101222121A publication Critical patent/CN101222121A/en
Application granted granted Critical
Publication of CN100570970C publication Critical patent/CN100570970C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

本发明属于光电子器件技术领域,特别涉及一种利用SOA四波混频效应产生高频微波的集成光电子器件。该集成光电子器件均采用脊波导结构,脊波导两侧用SiO2绝缘层填平,并集成一个分布反馈DFB激光器和一个半导体光放大器SOA。DFB激光器和SOA的顶面和底面上分别制作了一层P型电极和一层N型电极,DFB激光器和SOA相连的地方有一段电隔离段,且该电隔离段处无P型电极和欧姆接触层;DFB激光器的输出光产生的两个一阶调制边带作为SOA四波混频效应的泵浦光,产生两个频率差更大的光,进行拍差。该器件具有集成度高、成本低、成品率高、制作方法简单而又能提高性能的优点。

Figure 200710179425

The invention belongs to the technical field of optoelectronic devices, and in particular relates to an integrated optoelectronic device for generating high-frequency microwaves by using the SOA four-wave mixing effect. The integrated optoelectronic devices all adopt the ridge waveguide structure, and the two sides of the ridge waveguide are filled with SiO 2 insulating layers, and a distributed feedback DFB laser and a semiconductor optical amplifier SOA are integrated. A layer of P-type electrodes and a layer of N-type electrodes are respectively fabricated on the top and bottom surfaces of the DFB laser and SOA. There is an electrical isolation section where the DFB laser is connected to the SOA, and there is no P-type electrode and ohmic electrode in the electrical isolation section. The contact layer; the two first-order modulation sidebands generated by the output light of the DFB laser are used as the pump light for the four-wave mixing effect of the SOA, and two lights with a larger frequency difference are generated to perform beat difference. The device has the advantages of high integration, low cost, high yield, simple manufacturing method and improved performance.

Figure 200710179425

Description

利用SOA四波混频效应产生高频微波的集成光电子器件 Integrated optoelectronic devices for high-frequency microwave generation using SOA four-wave mixing effect

技术领域technical field

本发明属于光电子器件技术领域,特别涉及一种利用SOA四波混频效应产生高频微波的集成光电子器件。The invention belongs to the technical field of optoelectronic devices, and in particular relates to an integrated optoelectronic device for generating high-frequency microwaves by using the SOA four-wave mixing effect.

背景技术Background technique

本发明是一种基于半导体光放大器(Semiconductor Optical Amplifier,SOA)四波混频效应的单片光子集成器件,通过光外差来产生高频微波,其应用范围十分广泛,包括无线局域网、天线远程控制等。下面首先简要介绍高频微波或者毫米波在无线通信中的重要性,然后介绍光电子技术在毫米波无线通信中的应用。The invention is a monolithic photonic integrated device based on the four-wave mixing effect of a semiconductor optical amplifier (Semiconductor Optical Amplifier, SOA). control etc. The following first briefly introduces the importance of high-frequency microwave or millimeter wave in wireless communication, and then introduces the application of optoelectronic technology in millimeter wave wireless communication.

近年来,随着光纤网络和互联网络(Internet)的不断发展,以Internet为载体的语音、图像、数据、视频、以及多媒体业务大大刺激了人们对于通信速率的需求。以波分复用技术(WDM)为基础的光纤通信技术迅速发展并得到广泛应用,已成为干线系统物理层最为有效的传输手段。但另一方面,连接用户终端与干线光纤网络的接入网的通信速率却还处于较低的水平。目前,处于整个通信链路之中的“first mile”(或称为“last mile”)的接入网成为了高速通信技术的瓶颈,因此下一代高速接入技术成为近年来研究的热点。在各种接入技术之中,高速无线接入技术由于具有终端可移动的灵活性而备受关注。提高传输速率最为行之有效的方法是采用频率更高的电磁波作为通信载波,因此使用比目前移动通信载波(800MHz~1.9GHz)频率更高的毫米波(30GHz~300GHz),可以支持传输速率超过Gb/s的高速无线接入。由于毫米波段的微波在高速无线通信方面展现出的潜力,美国、日本、德国等多个国家目前都在进行毫米波无线接入技术的研究,其中核心的研究内容包括接入网系统结构、毫米波的产生和传输技术。In recent years, with the continuous development of optical fiber networks and the Internet (Internet), voice, image, data, video, and multimedia services based on the Internet have greatly stimulated people's demand for communication speed. Optical fiber communication technology based on wavelength division multiplexing technology (WDM) develops rapidly and has been widely used, and has become the most effective means of transmission in the physical layer of the trunk system. But on the other hand, the communication rate of the access network connecting the user terminal and the trunk optical fiber network is still at a relatively low level. At present, the "first mile" (or "last mile") access network in the entire communication link has become the bottleneck of high-speed communication technology, so the next-generation high-speed access technology has become a research hotspot in recent years. Among various access technologies, high-speed wireless access technology has attracted much attention due to its flexibility of terminal mobility. The most effective way to increase the transmission rate is to use electromagnetic waves with higher frequency as the communication carrier. Therefore, the use of millimeter waves (30GHz-300GHz) with a higher frequency than the current mobile communication carrier (800MHz-1.9GHz) can support transmission rates exceeding Gb/s high-speed wireless access. Due to the potential of millimeter-wave microwave in high-speed wireless communication, many countries such as the United States, Japan, and Germany are currently conducting research on millimeter-wave wireless access technology. The core research content includes access network system structure, mm Wave generation and transmission technology.

由于毫米波具有极高的频率,如果采用传统的同轴电缆进行传输则其损耗十分严重。同时,采用电域的方法产生和处理毫米波信号也存在成本较高的问题。一个有效的解决方案是将毫米波无线接入与光波技术相结合,利用光波作为载波传输毫米波信号,可以有效的降低其传输损耗,即通常所说的RoF(Radio overFiber)技术。同时,可以利用光波技术实现毫米波信号的产生,从而有效地降低无线接入系统的复杂度和成本。Due to the extremely high frequency of millimeter wave, if it is transmitted by traditional coaxial cable, its loss will be very serious. At the same time, the generation and processing of millimeter-wave signals using the electrical domain method also has the problem of high cost. An effective solution is to combine millimeter-wave wireless access with light-wave technology. Using light-wave as a carrier to transmit millimeter-wave signals can effectively reduce its transmission loss, which is commonly referred to as RoF (Radio over Fiber) technology. At the same time, light wave technology can be used to realize the generation of millimeter wave signals, thereby effectively reducing the complexity and cost of the wireless access system.

若要在光波上加载频率为f的毫米波,可以直接利用毫米波振荡器产生频率为f的信号并采用高速光调制器将该信号加载到光波上。但由于目前毫米波振荡器和工作在毫米波频段上的高速光调制器价格仍然十分昂贵,因此限制了接入系统的成本。另一方面,可以采用光外差的方法产生毫米波信号,即利用两个频率差为f的光信号在光电探测器中通过差频产生频率为f信号。由于这种方法不需要毫米波振荡器和高速光调制器,可以极大的降低系统成本。同时,该方法还可以与光波分复用技术相结合,同时调制多个信道,从而进一步降低整个系统的成本和简化系统结构。因此,光差频型毫米波无线接入网结构简单,成本低廉,非常适合于下一代的宽带无线接入网。目前,利用光外差法产生微波或者毫米波的技术主要包括双波长激光器、锁模激光器、光锁相环、边带注入锁定等方案。最近,文献(T.Wang,M.Chen,H.Chen and S.Xie,“Millimetre-wave signalgeneration using FWM effect in SOA”,Electronics Letters,vol.43,No.1,pp.36~38,2007)中报道了一种利用SOA的非线性效应来产生毫米波的方法,其系统如图1所示。在该文献中,先用LiNbO3调制器对一个半导体激光器进行调制,会产生两个一阶调制边带。设激光器输出光的频率为ω0,调制频率为ω,那么两个一阶边带的频率分别为ω0+ω和ω0-ω。这两个一阶调制边带依次通过掺铒光纤放大器(Erbium-Doped Fiber Ampiifer,EDFA)放大,并通过一个带通滤波器滤出EDFA产生的放大的自发辐射,然后进入半导体光放大器。由于半导体光放大器的尺寸较小,通常都在1mm以下,所以很容易满足相位匹配的条件,从而发生四波混频效应(four-wave mixing,FWM)。当发生四波混频效应时,那么两个一阶调制边带可以作为泵浦光,产生两个新频率的光,其频率分别为ω0+3ω和ω0-3ω,同时,这两束新产生的光的相位是相关的,与作为光源的半导体激光器的相位保持恒定,因此,这两束光进行拍差,再利用光电探测器接收,就可以得到频率为6ω而且相位噪声较小的微波。SOA对半导体激光器调制边带四波混频产生毫米波信号是一个新的研究方向。To load a millimeter wave with a frequency f on the light wave, the millimeter wave oscillator can be used directly to generate a signal with a frequency f and a high-speed optical modulator can be used to load the signal onto the light wave. However, the cost of the access system is limited because the millimeter-wave oscillator and the high-speed optical modulator working in the millimeter-wave frequency band are still very expensive. On the other hand, the millimeter-wave signal can be generated by optical heterodyning, that is, two optical signals with a frequency difference of f are used to generate a signal of frequency f in the photodetector through the difference frequency. Since this method does not require millimeter-wave oscillators and high-speed optical modulators, system costs can be greatly reduced. At the same time, the method can also be combined with optical wavelength division multiplexing technology to simultaneously modulate multiple channels, thereby further reducing the cost of the entire system and simplifying the system structure. Therefore, the optical difference frequency millimeter wave wireless access network has a simple structure and low cost, and is very suitable for the next generation broadband wireless access network. At present, technologies for generating microwave or millimeter waves by using optical heterodyne mainly include dual-wavelength lasers, mode-locked lasers, optical phase-locked loops, and sideband injection locking. Recently, literature (T.Wang, M.Chen, H.Chen and S.Xie, "Millimetre-wave signal generation using FWM effect in SOA", Electronics Letters, vol.43, No.1, pp.36~38, 2007 ) reported a method of using the nonlinear effect of SOA to generate millimeter waves, and its system is shown in Figure 1. In this document, a semiconductor laser is first modulated with a LiNbO 3 modulator, which produces two first-order modulation sidebands. Suppose the frequency of the laser output light is ω 0 and the modulation frequency is ω, then the frequencies of the two first-order sidebands are ω 0 +ω and ω 0 -ω respectively. The two first-order modulation sidebands are sequentially amplified by Erbium-Doped Fiber Ampiifer (EDFA), and the amplified spontaneous radiation generated by EDFA is filtered out by a band-pass filter, and then enters the semiconductor optical amplifier. Since the size of the semiconductor optical amplifier is small, generally below 1 mm, it is easy to meet the condition of phase matching, so that four-wave mixing effect (four-wave mixing, FWM) occurs. When the four-wave mixing effect occurs, the two first-order modulation sidebands can be used as pump light to generate two new frequencies of light, the frequencies of which are ω 0 +3ω and ω 0 -3ω respectively. At the same time, the two beams The phase of the newly generated light is correlated and kept constant with the phase of the semiconductor laser as the light source. Therefore, the two beams of light are beat-differenced and then received by a photodetector to obtain a frequency of 6ω and a small phase noise. microwave. SOA is a new research direction for semiconductor laser modulation sideband four-wave mixing to generate millimeter wave signals.

目前报道的光外差法产生微波的文章中,绝大多数都是采用分立器件搭建的系统,而单片集成器件的报道很少。众所周知,分立器件搭建的系统往往庞大复杂,而且稳定性差,成本也比较高。Most of the currently reported articles on microwave generation by optical heterodyne are systems built with discrete devices, while there are few reports on monolithic integrated devices. As we all know, systems built with discrete components are often large and complex, with poor stability and relatively high costs.

发明内容Contents of the invention

本发明为了解决现有技术中的不足,特别提供了一种利用SOA四波混频效应产生高频微波的集成光电子器件。In order to solve the deficiencies in the prior art, the invention particularly provides an integrated optoelectronic device for generating high-frequency microwaves by using the SOA four-wave mixing effect.

本发明的技术方案如下:Technical scheme of the present invention is as follows:

一种利用SOA四波混频效应产生高频微波的集成光电子器件,该器件在N型衬底上依次生长如下外延层:下包层9、下波导层10、多量子阱有源层11、光栅层12、上波导层13、上包层14、欧姆接触层16。在N型衬底9和欧姆接触层16上分别镀有N型电极8和P型电极17。An integrated optoelectronic device that uses SOA four-wave mixing effect to generate high-frequency microwaves. The device grows the following epitaxial layers sequentially on an N-type substrate: lower cladding layer 9, lower waveguide layer 10, multi-quantum well active layer 11, The grating layer 12 , the upper waveguide layer 13 , the upper cladding layer 14 , and the ohmic contact layer 16 . An N-type electrode 8 and a P-type electrode 17 are respectively plated on the N-type substrate 9 and the ohmic contact layer 16 .

器件集成了一个分布反馈(Distributed Feedback,DFB)激光器21和一个SOA 23。采用脊波导20结构,脊波导两侧用SiO2绝缘层17填平。DFB激光器21和SOA 23的顶面和底面上分别制作了一层P型电极17和一层N型电极10。DFB激光器21和SOA 23相连的地方有一段电隔离段22,该段没有P型电极17和欧姆接触层18,用以实现各器件之间的电隔离。The device integrates a distributed feedback (Distributed Feedback, DFB) laser 21 and an SOA 23 . A ridge waveguide 20 structure is adopted, and both sides of the ridge waveguide are filled with SiO 2 insulating layers 17 . A layer of P-type electrode 17 and a layer of N-type electrode 10 are formed on the top and bottom surfaces of DFB laser 21 and SOA 23 respectively. Where the DFB laser 21 is connected to the SOA 23, there is an electrical isolation section 22, which has no P-type electrode 17 and ohmic contact layer 18, so as to realize electrical isolation between devices.

所述DFB激光器的输出光产生的两个一阶调制边带作为SOA四波混频效应的泵浦光,产生两个频率差更大的光,进行拍差。The two first-order modulation sidebands generated by the output light of the DFB laser are used as the pump light for the four-wave mixing effect of the SOA to generate two lights with a larger frequency difference for beating.

其中DFB激光器段的长度为300~500μm,SOA段的长度为200~300μm,电隔离段的长度为30~50μm,所述集成光电子器件的SOA采用端面抗反镀膜或弯曲波导,控制光的反馈率在0.01%~10%之间。The length of the DFB laser section is 300-500 μm, the length of the SOA section is 200-300 μm, and the length of the electrical isolation section is 30-50 μm. The SOA of the integrated optoelectronic device adopts an anti-reflection coating on the end face or a curved waveguide to control the feedback of light The rate is between 0.01% and 10%.

另外集成光电子器件在DFB激光器和SOA之间还可以集成一个电吸收(Electroabsorption,EA)调制器,对DFB激光器进行间接调制。In addition, the integrated optoelectronic device can also integrate an electroabsorption (Electroabsorption, EA) modulator between the DFB laser and the SOA to indirectly modulate the DFB laser.

此时所述EA调制器段的长度为50~150μm。At this time, the length of the EA modulator segment is 50-150 μm.

本发明的有益效果在于:本发明所述的集成光电子器件实现了单片集成,具有集成度高、成本低、成品率高、制作方法简单而又能提高性能的优点。The beneficial effect of the present invention is that: the integrated optoelectronic device of the present invention realizes monolithic integration, has the advantages of high integration, low cost, high yield, simple manufacturing method and improved performance.

附图说明Description of drawings

图1基于SOA四波混频效应的光生微波系统示意图Fig.1 Schematic diagram of optically generated microwave system based on SOA four-wave mixing effect

图2集成了DFB激光器、SOA,基于SOA四波混频效应的光生微波单片集成器件Figure 2 integrates DFB lasers, SOA, and an optically-generated microwave monolithic integrated device based on the four-wave mixing effect of SOA

图3集成了DFB激光器、EA调制器和SOA,基于SOA四波混频效应的光生微波单片集成器件Figure 3 integrates DFB laser, EA modulator and SOA, based on the four-wave mixing effect of SOA, an optically-generated microwave monolithic integrated device

图中的各个数字标号分别为:1.DFB激光器;2.LiNbO3调制器;3.调制器直流偏置;4.调制器交流输入;5.EDFA;6.带通滤波器;7.可变衰减器;8.隔离器;9.SOA;10.N电极;11.衬底和下包层;12.下波导层;13.多量子阱有源层;14.光栅层;15.上波导层;16.上包层;17.SiO2绝缘层;18.欧姆接触层;19.P电极;20.脊波导;21.DFB段;22.电隔离段;23.SOA段;24.EA调制器段。The numbers in the figure are: 1. DFB laser; 2. LiNbO 3 modulator; 3. Modulator DC bias; 4. Modulator AC input; 5. EDFA; 6. Band-pass filter; 7. Can Variable attenuator; 8. Isolator; 9. SOA; 10. N electrode; 11. Substrate and lower cladding layer; 12. Lower waveguide layer; 13. Multiple quantum well active layer; 14. Grating layer; 15. Upper waveguide layer; 16. upper cladding layer; 17. SiO 2 insulating layer; 18. ohmic contact layer; 19. P electrode; 20. ridge waveguide; 21. DFB section; 22. electrical isolation section; 23. SOA section; 24. EA modulator segment.

具体实施方式Detailed ways

下面通过附图和具体实施方式对本发明做进一步详细说明。The present invention will be described in further detail below with reference to the drawings and specific embodiments.

本发明提供了一种基于SOA四波混频效应的光生微波单片光子集成器件。本器件由多个器件集成,其中作为光源的是一个分布反馈(Distributed Feedback,DFB)半导体激光器21。对该激光器进行直接调制,或者集成一个电吸收调制器(Electroabsorption Modulator,EAM)24进行间接调制,从而产生两个一阶调制边带。设激光器的频率为ω0,调制频率为Ω,那么两个一阶边带的频率分别为ω0+Ω和ω0-Ω。然后再在其后集成一个SOA 23,通过SOA 23的四波混频效应可以产生两个新频率的光,其频率分别为ω0+3Ω和ω0-3Ω。这两束新产生的光的相位是相关的,与作为光源的21的相位保持恒定,因此,这两束光进行拍差,再利用光电探测器接收,就可以得到频率为6Ω而且相位噪声较小的微波。The invention provides an optically-generated microwave monolithic photon integrated device based on the SOA four-wave mixing effect. The device is integrated by multiple devices, wherein a distributed feedback (DFB) semiconductor laser 21 is used as the light source. The laser is directly modulated, or an electroabsorption modulator (Electroabsorption Modulator, EAM) 24 is integrated for indirect modulation, thereby generating two first-order modulation sidebands. Suppose the frequency of the laser is ω 0 and the modulation frequency is Ω, then the frequencies of the two first-order sidebands are ω 0 +Ω and ω 0 -Ω respectively. Then an SOA 23 is integrated behind it, through the four-wave mixing effect of the SOA 23, light of two new frequencies can be generated, and the frequencies are ω 0 +3Ω and ω 0 −3Ω respectively. The phases of the two beams of newly generated light are correlated, and keep constant with the phase of 21 as the light source. Therefore, the beat difference between the two beams of light, and then received by the photodetector, can obtain a frequency of 6Ω and a relatively low phase noise. Small microwave.

为了进一步优化器件性能,本发明还提出,在SOA采用端面抗反镀膜或者弯曲波导,这样一方面可以抑制激光器激射时的法布里-珀罗腔(Fabry-Perot,FP)模式,同时还可以减小SOA输出端面反射回DFB激光器的光,从而避免外反射对激光器线宽的不良影响。抗反镀膜后的端面反射率范围在10-4到10%之间。In order to further optimize the device performance, the present invention also proposes that the SOA adopts an anti-reflection coating or a curved waveguide on the end face, so that the Fabry-Perot cavity (Fabry-Perot, FP) mode when the laser is lasing can be suppressed on the one hand, and at the same time The light reflected back to the DFB laser by the SOA output end face can be reduced, thereby avoiding the adverse effect of external reflection on the line width of the laser. The reflectance of the end face after the anti-reflection coating ranges from 10 -4 to 10%.

下面介绍一下本发明装置的两个实施例,分别是在对DFB激光器进行直接调制和间接调制的基础上,利用SOA四波混频效应产生高频微波的单片光子集成器件。Two embodiments of the device of the present invention are introduced below, which are monolithic photonic integrated devices for generating high-frequency microwaves by utilizing SOA four-wave mixing effect on the basis of direct modulation and indirect modulation of DFB lasers.

实施例1Example 1

参照图2所示,工作波长在1550nm波段内,在DFB激光器直接调制的基础上,利用SOA四波混频效应产生高频微波的InGaAsP/InP基单片光子集成器件。Referring to Figure 2, the working wavelength is in the 1550nm band, on the basis of direct modulation of DFB laser, using SOA four-wave mixing effect to generate high-frequency microwave InGaAsP/InP-based monolithic photonic integrated device.

该器件将一个DFB激光器21和一个SOA 23集成在同一个芯片上。The device integrates a DFB laser 21 and a SOA 23 on the same chip.

首先,器件的外延材料如下所述。通过MOCVD法,首先在n型衬底材料上一次外延,依次生长n型InP下包层11(厚度200nm、掺杂浓度约1×1018cm-2)、100nm厚非掺杂晶格匹配InGaAsP波导层12(光荧光波长1.2μm)、应变InGaAsP多量子阱13(光荧光波长1.52μm,7个量子阱:阱宽8nm,0.5%压应变,垒宽10nm,晶格匹配材料,光荧光波长1.2μm)、70nm厚的InGaAsP光栅材料层14。接下来通过全息干涉曝光的方法制作出光栅结构,并通过光刻和湿法腐蚀的方法去除SOA区域内的光栅。然后再利用MOCVD二次外延生长100nm厚p型晶格匹配InGaAsP波导层15(光荧光波长1.2μm,掺杂浓度约1×1017cm-2)、1.7μm厚P型InP上包层16(掺杂浓度从3×1017cm-2逐渐变化为1×1018cm-2)和100nm厚的p型InGaAs欧姆接触层18(掺杂浓度>1×1019cm-2)。First, the epitaxial materials of the device are as follows. Through the MOCVD method, first epitaxially grow on the n-type substrate material, and then grow the n-type InP lower cladding layer 11 (thickness 200nm, doping concentration about 1×10 18 cm -2 ), 100nm thick non-doped lattice matching InGaAsP Waveguide layer 12 (photofluorescence wavelength 1.2 μm), strained InGaAsP multiple quantum wells 13 (photofluorescence wavelength 1.52 μm, 7 quantum wells: well width 8nm, 0.5% compressive strain, barrier width 10nm, lattice matching material, photofluorescence wavelength 1.2 μm), 70 nm thick InGaAsP grating material layer 14 . Next, the grating structure is fabricated by holographic interference exposure, and the grating in the SOA area is removed by photolithography and wet etching. Then, a 100nm-thick p-type lattice-matched InGaAsP waveguide layer 15 (photoluminescent wavelength 1.2μm, doping concentration about 1×10 17 cm -2 ) and a 1.7μm-thick P-type InP upper cladding layer 16 ( The doping concentration gradually changes from 3×10 17 cm -2 to 1×10 18 cm -2 ) and a 100nm thick p-type InGaAs ohmic contact layer 18 (doping concentration>1×10 19 cm -2 ).

整个器件采用脊波导20结构,通过光刻和干法刻蚀的方法制作出脊波导,脊宽均为3μm,高1.5μm。通过等离子增强化学气相淀积(Plasma EnhancedChemical Vapour Deposition,PECVD)的方法在脊波导两侧用SiO2绝缘层17来填平,然后腐蚀掉脊顶上的SiO2。用溅射的方法制作P电极19和N电极10。P电极的材料是Cr/Au合金,N电极的材料是Ti/Au合金。其中,P电极包括两个部分:一部分长400μm,作为DFB激光器21的P电极;另一部分长200μm,作为SOA部分23的P电极。两部分P电极之间有一段40μm长的区域22,该区域的欧姆接触层被腐蚀掉,形成该DFB激光器和SOA的电隔离段。在SOA采用端面抗反镀膜或者弯曲波导,以降低端面反射造成的光反馈,使得光的反馈率在10-4到10%之间。The entire device adopts a ridge waveguide 20 structure, and the ridge waveguide is fabricated by photolithography and dry etching. The ridge width is 3 μm and the height is 1.5 μm. The SiO 2 insulating layer 17 is used to fill up the two sides of the ridge waveguide by plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD), and then the SiO 2 on the top of the ridge is etched away. The P electrode 19 and the N electrode 10 are fabricated by sputtering. The material of the P electrode is Cr/Au alloy, and the material of the N electrode is Ti/Au alloy. Wherein, the P electrode includes two parts: one part is 400 μm long and serves as the P electrode of the DFB laser 21 ; the other part is 200 μm long and is used as the P electrode of the SOA part 23 . There is a 40 μm long region 22 between the two parts of the P electrodes, and the ohmic contact layer in this region is etched away to form an electrical isolation segment between the DFB laser and the SOA. The end face anti-reflection coating or curved waveguide is used in the SOA to reduce the light feedback caused by the end face reflection, so that the light feedback rate is between 10 -4 and 10%.

本实例的特征参数为:制成的集成器件中,DFB激光器的阈值电流典型值为10mA,边模抑制比达到40dB以上。微波信号加载在DFB激光器注入电流上,实现DFB激光器的直接调制。输出光经光电探测器之后,可以得到频率在20~60GHz、100kHz处相位噪声小于-84dBc/Hz的微波。The characteristic parameters of this example are: in the manufactured integrated device, the typical value of the threshold current of the DFB laser is 10mA, and the side mode suppression ratio reaches above 40dB. The microwave signal is loaded on the injection current of the DFB laser to realize the direct modulation of the DFB laser. After the output light passes through the photodetector, microwaves with a frequency of 20-60GHz and a phase noise of less than -84dBc/Hz at 100kHz can be obtained.

实施例2Example 2

参照图3所示,工作波长在1550nm波段内,在DFB激光器间接调制的基础上,利用SOA四波混频效应产生高频微波的InGaAsP/InP基单片光子集成器件。Referring to Figure 3, the working wavelength is in the 1550nm band, on the basis of indirect modulation of DFB lasers, using the SOA four-wave mixing effect to generate high-frequency microwave InGaAsP/InP-based monolithic photonic integrated devices.

该器件将一个DFB激光器21、一个EA调制器24和一个SOA 23集成在同一个芯片上。The device integrates a DFB laser 21, an EA modulator 24 and an SOA 23 on the same chip.

首先,器件的外延材料如下所述。通过MOCVD法,首先在n型衬底材料上一次外延,依次生长n型InP下包层11(厚度200nm、掺杂浓度约1×1018cm-2)、100nm厚非掺杂晶格匹配InGaAsP波导层12(光荧光波长1.2μm)、应变InGaAsP多量子阱13(光荧光波长1.52μm,7个量子阱:阱宽8nm,0.5%压应变,垒宽10nm,晶格匹配材料,光荧光波长1.2μm)、70nm厚的InGaAsP光栅材料层14。接下来通过全息干涉曝光的方法制作出光栅结构,并通过光刻和湿法腐蚀的方法去除EA和SOA区域内的光栅。然后再利用MOCVD二次外延生长100nm厚p型晶格匹配InGaAsP波导层15(光荧光波长1.2μm,掺杂浓度约1×1017cm-2)、1.7μm厚P型InP上包层16(掺杂浓度从3×1017cm-2逐渐变化为1×1018cm-2)和100nm厚的p型InGaAs欧姆接触层18(掺杂浓度>1×1019cm-2)。First, the epitaxial materials of the device are as follows. Through the MOCVD method, first epitaxially grow on the n-type substrate material, and then grow the n-type InP lower cladding layer 11 (thickness 200nm, doping concentration about 1×10 18 cm -2 ), 100nm thick non-doped lattice matching InGaAsP Waveguide layer 12 (photofluorescence wavelength 1.2 μm), strained InGaAsP multiple quantum wells 13 (photofluorescence wavelength 1.52 μm, 7 quantum wells: well width 8nm, 0.5% compressive strain, barrier width 10nm, lattice matching material, photofluorescence wavelength 1.2 μm), 70 nm thick InGaAsP grating material layer 14 . Next, the grating structure is fabricated by holographic interference exposure, and the gratings in the EA and SOA regions are removed by photolithography and wet etching. Then, a 100nm-thick p-type lattice-matched InGaAsP waveguide layer 15 (photoluminescent wavelength 1.2μm, doping concentration about 1×10 17 cm -2 ) and a 1.7μm-thick P-type InP upper cladding layer 16 ( The doping concentration gradually changes from 3×10 17 cm -2 to 1×10 18 cm -2 ) and a 100nm thick p-type InGaAs ohmic contact layer 18 (doping concentration>1×10 19 cm -2 ).

整个器件采用脊波导20结构,通过光刻和干法刻蚀的方法制作出脊波导,脊宽均为3μm,DFB段和SOA段的脊波导高1.5μm,EA段的脊波导高4μm。。通过等离子增强化学气相淀积(Plasma Enhanced Chemical Vapour Deposition,PECVD)的方法在脊波导两侧用SiO2绝缘层17来填平,然后腐蚀掉脊顶上的SiO2。用溅射的方法制作P电极19和N电极10。P电极的材料是Cr/Au合金,N电极的材料是Ti/Au合金。其中,P电极包括三个部分,其长度分别是400μm、100μm和200μm,它们依次是作为DFB激光器21、EA调制器24和SOA 23的P电极。相邻两部分P电极之间有一段40μm长的区域22,该区域的欧姆接触层被腐蚀掉,形成该DFB激光器与EA调制器、EA调制器与SOA的电隔离。在SOA采用端面抗反镀膜或者弯曲波导,以降低端面反射造成的光反馈,使得光的反馈率在10-4到10%之间。The entire device adopts a ridge waveguide 20 structure, and the ridge waveguide is fabricated by photolithography and dry etching. The ridge width is 3 μm, the height of the ridge waveguide in the DFB section and the SOA section is 1.5 μm, and the height of the ridge waveguide in the EA section is 4 μm. . The two sides of the ridge waveguide are filled with SiO 2 insulating layer 17 by means of plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD), and then the SiO 2 on the top of the ridge is etched away. The P electrode 19 and the N electrode 10 are fabricated by sputtering. The material of the P electrode is Cr/Au alloy, and the material of the N electrode is Ti/Au alloy. Wherein, the P electrode includes three parts whose lengths are 400 μm, 100 μm and 200 μm respectively, and they are the P electrodes serving as the DFB laser 21 , the EA modulator 24 and the SOA 23 in turn. There is a 40 μm long region 22 between two adjacent P electrodes, and the ohmic contact layer in this region is etched away to form electrical isolation between the DFB laser and the EA modulator, and between the EA modulator and the SOA. The end face anti-reflection coating or curved waveguide is used in the SOA to reduce the light feedback caused by the end face reflection, so that the light feedback rate is between 10 -4 and 10%.

本实例的特征参数为:制成的集成器件中,DFB激光器的阈值电流典型值为10mA,边模抑制比达到40dB以上。微波信号加载在EA调制器的反向电场上,实现DFB激光器的间接调制。输出光经光电探测器之后,可以得到频率在20~60GHz、100kHz处相位噪声小于-84dBc/Hz的微波。The characteristic parameters of this example are: in the manufactured integrated device, the typical value of the threshold current of the DFB laser is 10mA, and the side mode suppression ratio reaches above 40dB. The microwave signal is loaded on the reverse electric field of the EA modulator to realize the indirect modulation of the DFB laser. After the output light passes through the photodetector, microwaves with a frequency of 20-60GHz and a phase noise of less than -84dBc/Hz at 100kHz can be obtained.

Claims (5)

1.一种利用SOA四波混频效应产生高频微波的集成光电子器件,该器件在N型衬底上依次生长如下外延层:下包层、下波导层、多量子阱有源层、光栅层、上波导层、上包层、欧姆接触层,在N型衬底和欧姆接触层上分别镀有N型电极和P型电极,其特征在于:1. An integrated optoelectronic device that uses SOA four-wave mixing effect to generate high-frequency microwaves. The device grows the following epitaxial layers sequentially on an N-type substrate: lower cladding layer, lower waveguide layer, multi-quantum well active layer, grating Layer, upper waveguide layer, upper cladding layer, ohmic contact layer, N-type electrode and P-type electrode are respectively plated on N-type substrate and ohmic contact layer, it is characterized in that: 所述集成光电子器件均采用脊波导结构,脊波导两侧用SiO2绝缘层填平,并集成一个分布反馈DFB激光器和一个半导体光放大器SOA;The integrated optoelectronic devices all adopt a ridge waveguide structure, and both sides of the ridge waveguide are filled with SiO2 insulating layers, and a distributed feedback DFB laser and a semiconductor optical amplifier SOA are integrated; DFB激光器和SOA的顶面和底面上分别制作了一层P型电极和一层N型电极,DFB激光器和SOA相连的地方有一段电隔离段,且该电隔离段处无P型电极和欧姆接触层;A layer of P-type electrodes and a layer of N-type electrodes are respectively fabricated on the top and bottom surfaces of the DFB laser and SOA. There is an electrical isolation section where the DFB laser is connected to the SOA, and there is no P-type electrode and ohmic electrode in the electrical isolation section. contact layer; DFB激光器的输出光产生的两个一阶调制边带作为SOA四波混频效应的泵浦光,产生两个频率差更大的光,进行拍差。The two first-order modulation sidebands generated by the output light of the DFB laser are used as the pump light for the four-wave mixing effect of the SOA, and two lights with a larger frequency difference are generated for beat difference. 2.根据权利要求1所述的一种利用SOA四波混频效应产生高频微波的集成光电子器件,其特征在于:所述DFB激光器段的长度为300~500μm,SOA段的长度为200~300μm,电隔离段的长度为30~50μm。2. A kind of integrated optoelectronic device utilizing SOA four-wave mixing effect to produce high-frequency microwaves according to claim 1, characterized in that: the length of the DFB laser section is 300-500 μm, and the length of the SOA section is 200-500 μm. 300 μm, the length of the electrical isolation section is 30-50 μm. 3.根据权利要求1所述的一种利用SOA四波混频效应产生高频微波的集成光电子器件,其特征在于:所述集成光电子器件在DFB激光器和SOA之间集成一个EA调制器,对DFB激光器进行间接调制。3. A kind of integrated optoelectronic device utilizing SOA four-wave mixing effect to produce high-frequency microwave according to claim 1, it is characterized in that: described integrated optoelectronic device integrates an EA modulator between DFB laser and SOA, to The DFB laser is indirectly modulated. 4.根据权利要求3所述的一种利用SOA四波混频效应产生高频微波的集成光电子器件,其特征在于:所述EA调制器段的长度为50~150μm。4. An integrated optoelectronic device for generating high-frequency microwaves by using SOA four-wave mixing effect according to claim 3, characterized in that: the length of the EA modulator section is 50-150 μm. 5.根据权利要求1或3所述的一种利用SOA四波混频效应产生高频微波的集成光电子器件,其特征在于:所述集成光电子器件的SOA采用端面抗反镀膜或弯曲波导,控制光的反馈率在0.01%~10%之间。5. A kind of integrated optoelectronic device utilizing SOA four-wave mixing effect to generate high-frequency microwaves according to claim 1 or 3, characterized in that: the SOA of the integrated optoelectronic device adopts an anti-reflection coating on an end face or a curved waveguide, and the control The light feedback rate is between 0.01% and 10%.
CNB2007101794253A 2007-12-13 2007-12-13 Integrated optoelectronic devices for high-frequency microwave generation using SOA four-wave mixing effect Expired - Fee Related CN100570970C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007101794253A CN100570970C (en) 2007-12-13 2007-12-13 Integrated optoelectronic devices for high-frequency microwave generation using SOA four-wave mixing effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007101794253A CN100570970C (en) 2007-12-13 2007-12-13 Integrated optoelectronic devices for high-frequency microwave generation using SOA four-wave mixing effect

Publications (2)

Publication Number Publication Date
CN101222121A true CN101222121A (en) 2008-07-16
CN100570970C CN100570970C (en) 2009-12-16

Family

ID=39631771

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007101794253A Expired - Fee Related CN100570970C (en) 2007-12-13 2007-12-13 Integrated optoelectronic devices for high-frequency microwave generation using SOA four-wave mixing effect

Country Status (1)

Country Link
CN (1) CN100570970C (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674132B (en) * 2009-09-23 2012-01-25 中国人民解放军理工大学 Multipoint high-frequency microwave signal generating method
CN102684071A (en) * 2012-05-18 2012-09-19 中国科学院半导体研究所 Bi-module masing semiconductor laser capable of achieving mode distance of 100GHz
CN103248426A (en) * 2013-04-28 2013-08-14 华为技术有限公司 Optical module and preparation method thereof
CN104377544A (en) * 2014-11-28 2015-02-25 中国科学院半导体研究所 Monolithic integrated laser chip based on amplification feedback to realize straight-strip bandwidth expansion
CN104966991A (en) * 2015-06-29 2015-10-07 武汉电信器件有限公司 Manufacturing method for novel high speed semiconductor laser
WO2016015303A1 (en) * 2014-07-31 2016-02-04 华为技术有限公司 Germanium-silicon electroabsorption modulator
CN105680320A (en) * 2016-03-16 2016-06-15 中国科学院长春光学精密机械与物理研究所 High-power, tunable and narrow linewidth external cavity semiconductor laser
CN107706701A (en) * 2017-09-08 2018-02-16 北京大学 A kind of low phase noise optical frequency comb generation method and system, microwave generation method and system
US10109762B2 (en) 2012-09-28 2018-10-23 Canon Kabushiki Kaisha Light source and optical coherence tomography apparatus including the light source
CN109560464A (en) * 2017-09-26 2019-04-02 北京万集科技股份有限公司 A kind of 1xN type single-chip integration formula semiconductor main oscillations amplifier
JP2019057541A (en) * 2017-09-19 2019-04-11 日本電信電話株式会社 Semiconductor optical integrated element
JP2019057539A (en) * 2017-09-19 2019-04-11 日本電信電話株式会社 Semiconductor optical integrated element
WO2020087328A1 (en) * 2018-10-31 2020-05-07 华为技术有限公司 Photodetector chip, optical receiving and transceiver assembly, optical module and communication equipment
CN111244750A (en) * 2020-01-19 2020-06-05 全球能源互联网研究院有限公司 Diode of integrated backlight detector and preparation method thereof
JP2020129643A (en) * 2019-02-12 2020-08-27 日本電信電話株式会社 High power direct modulation laser
CN111755948A (en) * 2019-03-28 2020-10-09 上海新微技术研发中心有限公司 GePb laser with ridge waveguide structure and forming method thereof
CN111819743A (en) * 2018-03-07 2020-10-23 日本电信电话株式会社 Semiconductor optical integrated device and method of manufacturing the same
JP2021118345A (en) * 2020-01-28 2021-08-10 日本ルメンタム株式会社 Semiconductor optical amplifier integrated laser
CN113253539A (en) * 2021-05-31 2021-08-13 南京邮电大学 All-optical packet switch based on integrated SOA series tunable laser
JP2023059201A (en) * 2021-10-14 2023-04-26 日本ルメンタム株式会社 Lamination type semiconductor light element
CN116316058A (en) * 2021-12-21 2023-06-23 深圳市速腾聚创科技有限公司 Laser, integrated chip, laser radar and preparation method of laser
JP2024075678A (en) * 2020-01-28 2024-06-04 日本ルメンタム株式会社 Semiconductor Optical Amplifier Integrated Laser
CN119481946A (en) * 2025-01-17 2025-02-18 泉州师范学院 A tunable optoelectronic oscillator based on DML-SOA laser chip

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674132B (en) * 2009-09-23 2012-01-25 中国人民解放军理工大学 Multipoint high-frequency microwave signal generating method
CN102684071A (en) * 2012-05-18 2012-09-19 中国科学院半导体研究所 Bi-module masing semiconductor laser capable of achieving mode distance of 100GHz
US10109762B2 (en) 2012-09-28 2018-10-23 Canon Kabushiki Kaisha Light source and optical coherence tomography apparatus including the light source
CN103248426A (en) * 2013-04-28 2013-08-14 华为技术有限公司 Optical module and preparation method thereof
WO2014176865A1 (en) * 2013-04-28 2014-11-06 华为技术有限公司 Optical module and preparation method therefor
US9438345B2 (en) 2013-04-28 2016-09-06 Huawei Technologies Co., Ltd. Optical module and fabrication method thereof
WO2016015303A1 (en) * 2014-07-31 2016-02-04 华为技术有限公司 Germanium-silicon electroabsorption modulator
US9804426B2 (en) 2014-07-31 2017-10-31 Huawei Technologies Co., Ltd. Silicon-germanium electro-absorption modulator
CN104377544A (en) * 2014-11-28 2015-02-25 中国科学院半导体研究所 Monolithic integrated laser chip based on amplification feedback to realize straight-strip bandwidth expansion
CN104966991A (en) * 2015-06-29 2015-10-07 武汉电信器件有限公司 Manufacturing method for novel high speed semiconductor laser
CN104966991B (en) * 2015-06-29 2018-07-10 武汉电信器件有限公司 A kind of production method of novel high speed semiconductor laser
CN105680320A (en) * 2016-03-16 2016-06-15 中国科学院长春光学精密机械与物理研究所 High-power, tunable and narrow linewidth external cavity semiconductor laser
CN107706701B (en) * 2017-09-08 2019-12-03 北京大学 A kind of low phase noise optical frequency comb generation method and system, microwave generation method and system
CN107706701A (en) * 2017-09-08 2018-02-16 北京大学 A kind of low phase noise optical frequency comb generation method and system, microwave generation method and system
JP2019057541A (en) * 2017-09-19 2019-04-11 日本電信電話株式会社 Semiconductor optical integrated element
JP2019057539A (en) * 2017-09-19 2019-04-11 日本電信電話株式会社 Semiconductor optical integrated element
CN109560464A (en) * 2017-09-26 2019-04-02 北京万集科技股份有限公司 A kind of 1xN type single-chip integration formula semiconductor main oscillations amplifier
CN111819743A (en) * 2018-03-07 2020-10-23 日本电信电话株式会社 Semiconductor optical integrated device and method of manufacturing the same
CN111819743B (en) * 2018-03-07 2023-09-26 日本电信电话株式会社 Semiconductor optical integrated element and manufacturing method thereof
WO2020087328A1 (en) * 2018-10-31 2020-05-07 华为技术有限公司 Photodetector chip, optical receiving and transceiver assembly, optical module and communication equipment
US12100926B2 (en) 2018-10-31 2024-09-24 Huawei Technologies Co., Ltd. Photodetector chip, optical receiving and transceiver components, optical module, and communications device
JP7147611B2 (en) 2019-02-12 2022-10-05 日本電信電話株式会社 High power directly modulated laser
JP2020129643A (en) * 2019-02-12 2020-08-27 日本電信電話株式会社 High power direct modulation laser
CN111755948A (en) * 2019-03-28 2020-10-09 上海新微技术研发中心有限公司 GePb laser with ridge waveguide structure and forming method thereof
CN111244750A (en) * 2020-01-19 2020-06-05 全球能源互联网研究院有限公司 Diode of integrated backlight detector and preparation method thereof
CN111244750B (en) * 2020-01-19 2021-12-21 全球能源互联网研究院有限公司 Diode of integrated backlight detector and preparation method thereof
JP7458885B2 (en) 2020-01-28 2024-04-01 日本ルメンタム株式会社 Semiconductor Optical Amplifier Integrated Laser
JP2024075678A (en) * 2020-01-28 2024-06-04 日本ルメンタム株式会社 Semiconductor Optical Amplifier Integrated Laser
JP2021118345A (en) * 2020-01-28 2021-08-10 日本ルメンタム株式会社 Semiconductor optical amplifier integrated laser
JP7621537B2 (en) 2020-01-28 2025-01-24 日本ルメンタム株式会社 Semiconductor Optical Amplifier Integrated Laser
US12218480B2 (en) 2020-01-28 2025-02-04 Lumentum Japan, Inc. Semiconductor optical amplifier integrated laser
CN113253539A (en) * 2021-05-31 2021-08-13 南京邮电大学 All-optical packet switch based on integrated SOA series tunable laser
JP2023059201A (en) * 2021-10-14 2023-04-26 日本ルメンタム株式会社 Lamination type semiconductor light element
CN116316058A (en) * 2021-12-21 2023-06-23 深圳市速腾聚创科技有限公司 Laser, integrated chip, laser radar and preparation method of laser
CN119481946A (en) * 2025-01-17 2025-02-18 泉州师范学院 A tunable optoelectronic oscillator based on DML-SOA laser chip

Also Published As

Publication number Publication date
CN100570970C (en) 2009-12-16

Similar Documents

Publication Publication Date Title
CN100570970C (en) Integrated optoelectronic devices for high-frequency microwave generation using SOA four-wave mixing effect
CN101222118B (en) An integrated optoelectronic device for generating high-frequency microwaves using optical heterodyning
CN101566777A (en) Integrated optoelectronic device based on sideband injection locking and used for generating high-frequency microwaves
Ristic et al. An optical phase-locked loop photonic integrated circuit
JP3579057B2 (en) Generation of radio frequency modulated light radiation
Dagli Wide-bandwidth lasers and modulators for RF photonics
US20200358244A1 (en) Integrated fourier domain mode-locked optoelectronic oscillator, application and communication system
JPH02241133A (en) Tunable narrow band receiver using dispersed bragg reflection laser structure
CN100570969C (en) Optically generated microwave monolithic photonic integrated device based on injection locking of FP laser
WO2020140286A1 (en) Semiconductor laser, optical emission component, optical line terminal and optical network unit
CN101826699B (en) Manufacturing method for monolithic integrated device of electrical absorption modulator and self-pulsation laser
EP3017514A1 (en) High-coherence semiconductor light sources
CN104377544A (en) Monolithic integrated laser chip based on amplification feedback to realize straight-strip bandwidth expansion
Liu et al. Latest advances in high-performance light sources and optical amplifiers on silicon
Degli-Eredi et al. Millimeter-wave generation using hybrid silicon photonics
Lee Recent advances in long-wavelength semiconductor lasers for optical fiber communication
Cheng et al. Passively mode-locked III-V/silicon laser with continuous-wave optical injection
CN102237637B (en) Reconstruction equivalent chirp (REC) double-wavelength laser for all-optical clock recovery
JP2015095513A (en) Wavelength variable light source
CN108988124B (en) A Monolithically Integrated Tunnel Junction Laser for Microwave Oscillation Sources
Van Dijk et al. Quantum dash mode-locked lasers for millimeter wave signal generation and transmission
CN110299589A (en) Frequency division and frequency multiplication generation method and device
CN101719630A (en) Bend waveguide dual-wavelength laser device used for all-optical clock recovery
CN202127399U (en) Double ring-based direct modulation light source system
Pan et al. Widely tunable amplified feedback laser with beating-frequency covering 60-GHz band

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091216

Termination date: 20141213

EXPY Termination of patent right or utility model