CN101232356A - Precoding method, system and device in MIMO system - Google Patents
Precoding method, system and device in MIMO system Download PDFInfo
- Publication number
- CN101232356A CN101232356A CNA2007100730377A CN200710073037A CN101232356A CN 101232356 A CN101232356 A CN 101232356A CN A2007100730377 A CNA2007100730377 A CN A2007100730377A CN 200710073037 A CN200710073037 A CN 200710073037A CN 101232356 A CN101232356 A CN 101232356A
- Authority
- CN
- China
- Prior art keywords
- precoding
- unit
- codebook
- vector
- optimal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Radio Transmission System (AREA)
Abstract
本发明公开了一种MIMO系统中的预编码方法、系统和装置。本发明所涉及的方法、系统和装置可以应用在正交空时编码的情况下。本发明方法采用非酉矩阵进行预编码,该非酉矩阵由判决得到的最优预编码矢量构造得到。本发明系统包括发射机和接收机,其中,发射机包括码本列表、预编码矩阵构造单元和预编码单元;接收机包括信道估计单元、码本列表、判决单元。通过仿真和分析可以知道,与现有技术相比,采用本发明所述的方案可以在信噪比相同的情况下,使误码率更低,同时可以降低译码复杂度。
The invention discloses a precoding method, system and device in a MIMO system. The method, system and device involved in the present invention can be applied in the case of orthogonal space-time coding. The method of the present invention adopts a non-unitary matrix for precoding, and the non-unitary matrix is constructed from the optimal precoding vector obtained by judgment. The system of the present invention includes a transmitter and a receiver, wherein the transmitter includes a codebook list, a precoding matrix construction unit and a precoding unit; the receiver includes a channel estimation unit, a codebook list and a decision unit. Through simulation and analysis, it can be known that, compared with the prior art, the scheme of the present invention can lower the bit error rate and reduce the decoding complexity under the same signal-to-noise ratio.
Description
技术领域 technical field
本发明涉及无线通信技术,特别是涉及一种MIMO系统中的预编码技术。The present invention relates to wireless communication technology, in particular to a precoding technology in MIMO system.
背景技术 Background technique
信息论研究证明采用多天线的通信系统能够获得更高的信道容量,在信道为独立瑞利衰落且接收机知道信道状态信息的假设下,在发射端和接收端均采用多天线的多入多出(Multiple Input MultipleOutput,MIMO)系统的理论信道容量随发射天线数和接收天线数中较小值近似线性增长,MIMO系统提高容量的方式称为空分复用。MIMO系统与正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术相结合的MIMO-OFDM系统,能够有效对抗无线信道的多径衰落,被公认为第四代移动通信最具竞争力的技术。Research on information theory proves that the communication system using multiple antennas can obtain higher channel capacity. Under the assumption that the channel is independent Rayleigh fading and the receiver knows the channel state information, the multiple-input multiple-output of multiple antennas is used at both the transmitting end and the receiving end. (Multiple Input Multiple Output, MIMO) The theoretical channel capacity of the system increases approximately linearly with the smaller value of the number of transmitting antennas and the number of receiving antennas. The way the MIMO system increases capacity is called space division multiplexing. The MIMO-OFDM system that combines the MIMO system with Orthogonal Frequency Division Multiplexing (OFDM) technology can effectively combat the multipath fading of the wireless channel, and is recognized as the most competitive technology in the fourth-generation mobile communication .
MIMO能利用多个独立信道增益对抗无线信道衰落,称之为分集,包括空间分集、时间分集和频率分集三种。其中,垂直分层空时编码(Vertical Bell Laboratory Layer Space-Time Codes,V-BLAST)结构和正交空时分组码(Orthogonal Space-Time Block Codes,OSTBC)结合了空分复用和时间分集,这两种编码方式均属于空时编码方案。MIMO can use multiple independent channel gains to combat wireless channel fading, which is called diversity, including space diversity, time diversity and frequency diversity. Among them, Vertical Bell Laboratory Layer Space-Time Codes (V-BLAST) structure and Orthogonal Space-Time Block Codes (OSTBC) combine space division multiplexing and time diversity, Both of these encoding methods belong to space-time encoding schemes.
通常,MIMO系统的发射端不知道信道状态信息,然而,如果发射端能够获知信道状态信息,则我们在发射端可以对发射信号进行一定处理,降低干扰,提高平均接收信噪比(Signal to Noise Ratio,SNR),从而降低平均误符号率,我们称这种发射端的处理为预编码。发射端所需的信道状态信息可以是瞬时信道估计,也可以是信道估计的一阶或二阶统计信息,这取决于信道的时间衰落特性,例如,对于快衰落系统,我们一般采用信道估计的统计特性来反映信道信息;而对于慢衰落系统,我们一般采用瞬时信道估计。Usually, the transmitter of a MIMO system does not know the channel state information. However, if the transmitter can know the channel state information, we can process the transmitted signal at the transmitter to reduce interference and improve the average received SNR (Signal to Noise Ratio). Ratio, SNR), thereby reducing the average symbol error rate, we call this processing at the transmitter as precoding. The channel state information required by the transmitter can be instantaneous channel estimation, or first-order or second-order statistical information of channel estimation, which depends on the time fading characteristics of the channel. For example, for fast fading systems, we generally use channel estimation Statistical characteristics are used to reflect channel information; and for slow fading systems, we generally use instantaneous channel estimation.
在一个对称时分双工(Time Division Duplex,TDD)系统中,上下行信道的信道信息可以相互共享,在这种情况下,不需要对系统结构做任何改动,基站和移动台都能采用预编码。然而对于非对称时分双工系统或者频分双工(Frequency Division Duplex,FDD)系统,情况则完全不同,以此类系统下行链路预编码为例,由于上下行信道的不对称性,接收端需要通过一个反馈信道将信道信息传递至发射端以使其获知下行信道,我们称这种采用反馈机制的MIMO系统为闭环MIMO(Closed-loop MIMO,CL-MIMO)系统,相对应的,没有反馈的MIMO系统为开环MIMO(Open MIMO,OP-MIMO)系统。闭环MIMO系统能够通过反馈优化系统性能,更好的发挥MIMO的优势,因此成为近来MIMO研究的热点之一。In a symmetrical time division duplex (Time Division Duplex, TDD) system, the channel information of the uplink and downlink channels can be shared with each other. In this case, there is no need to make any changes to the system structure, and both the base station and the mobile station can use precoding . However, for an asymmetric time division duplex system or a frequency division duplex (Frequency Division Duplex, FDD) system, the situation is completely different. Taking the downlink precoding of such systems as an example, due to the asymmetry of the uplink and downlink channels, the receiving end It is necessary to pass the channel information to the transmitter through a feedback channel so that it can know the downlink channel. We call this MIMO system using the feedback mechanism a closed-loop MIMO (Closed-loop MIMO, CL-MIMO) system. Correspondingly, there is no feedback The current MIMO system is an open-loop MIMO (Open MIMO, OP-MIMO) system. The closed-loop MIMO system can optimize the system performance through feedback and make better use of the advantages of MIMO, so it has become one of the hotspots of MIMO research recently.
然而,信道信息随发射天线数、接收天线数和用户数之积增长,对于MIMO信道容量随发射天线数或接收天线数线性增长而言,要反馈完全的信道信息(理想反馈)难以在实际系统中实现。有限反馈预编码方案能够解决上述问题。采用有限反馈预编码的闭环MIMO系统事先将一组预编码矩阵,称之为码本,存储在收发两端。在接收端系统根据信道估计和一定的判决准则,从码本中选择出最优预编码矩阵,将其索引反馈至发送端,发送端再根据该索引得到预编码矩阵。以包含N个预编码矩阵的码本为例,有限反馈预编码方案仅需反馈log2N比特就可以得到预编码矩阵,大大减少了反馈信息量。可以说,有限反馈预编码是对理想预编码矩阵空间的量化。However, the channel information increases with the product of the number of transmit antennas, the number of receive antennas, and the number of users. For MIMO channel capacity, which increases linearly with the number of transmit antennas or the number of receive antennas, it is difficult to feed back complete channel information (ideal feedback) in practical systems. realized in. The limited feedback precoding scheme can solve the above problems. A closed-loop MIMO system using limited feedback precoding stores a set of precoding matrices, called codebooks, at both ends of the transceiver in advance. At the receiving end, the system selects the optimal precoding matrix from the codebook according to channel estimation and a certain decision criterion, and feeds back its index to the sending end, and the sending end obtains the precoding matrix according to the index. Taking a codebook containing N precoding matrices as an example, the limited feedback precoding scheme only needs to feed back log 2 N bits to obtain the precoding matrix, which greatly reduces the amount of feedback information. It can be said that limited feedback precoding is the quantization of the ideal precoding matrix space.
目前绝大部分预编码研究文献和IEEE802.16e协议标准草案都采用上述这种预编码方案,IEEE802.16e物理层将其分别与三种空时编码方案,即波束成型(beamforming,BF)、垂直分层空时编码以及正交空时分组码相结合。At present, most of the precoding research literature and IEEE802.16e protocol standard draft adopt the above precoding scheme. The IEEE802.16e physical layer combines it with three space-time coding schemes, namely beamforming (BF), vertical A combination of layered space-time coding and orthogonal space-time block codes.
一个有限反馈预编码MIMO-OFDM系统的结构和工作流程如图1所示。The structure and working process of a MIMO-OFDM system with limited feedback precoding are shown in Fig. 1 .
在发送端,首先把要发送的数据通过调制产生已调符号,然后对已调符号进行空时映射(即空时编码),对空时映射得到的信号进行预编码,最后经快速傅立叶逆变换,D\A变换,上混频,最后通过天线把信号发射出去。其中,在预编码阶段,发送端收到接收端通过反馈信道发送来的反馈信息,该信息告知发送端应该选择哪个预编码矩阵进行预编码。发送端收到该信息后,在码本集合中选中该预编码矩阵,并采用该矩阵对空时映射得到的信号进行预编码。At the sending end, the data to be sent is first modulated to generate modulated symbols, and then the modulated symbols are subjected to space-time mapping (that is, space-time coding), and the signal obtained by space-time mapping is precoded, and finally undergoes inverse fast Fourier transform. , D\A conversion, up-mixing, and finally transmit the signal through the antenna. Wherein, in the precoding stage, the sending end receives the feedback information sent by the receiving end through the feedback channel, and the information informs the sending end which precoding matrix should be selected for precoding. After receiving the information, the sending end selects the precoding matrix in the codebook set, and uses the matrix to precode the signal obtained by space-time mapping.
在接收端,天线接收到信号后,一方面,对信号进行下混频,A\D变换,快速傅立叶变换,变换后的信号作为译码器的输入信号之一,另一方面接收端根据信道估计以及最优判决准则,从码本中选择最优预编码矩阵,将其序号由反馈信道反馈至发射端,同时,将上一次最优预编码矩阵和信道估计送入译码器用来译码。其具体的判决过程如下:接收端设备根据接收到的信号进行信道估计,利用信道估计得到的信道状况信息,结合码本集合中的各个预编码矩阵进行最优判决,并将判决结果通过反馈信道发送给发送端。At the receiving end, after the antenna receives the signal, on the one hand, the signal is down-mixed, A\D transformed, and fast Fourier transformed. The transformed signal is used as one of the input signals of the decoder. Estimation and optimal decision criteria, select the optimal precoding matrix from the codebook, feed back its serial number to the transmitter through the feedback channel, and at the same time, send the last optimal precoding matrix and channel estimation to the decoder for decoding . The specific decision process is as follows: the receiving end device performs channel estimation according to the received signal, uses the channel condition information obtained by channel estimation, and combines each precoding matrix in the codebook set to make an optimal decision, and passes the decision result through the feedback channel sent to the sender.
有限反馈预编码的关键是码本和最优判决准则,这两者将直接影响系统的误码率性能。设经过判决得到的最优预编码矩阵为F,IEEE802.16e协议草案认为,根据预编码理论,预编码不增大发射总功率,即满足The key of limited feedback precoding is the codebook and the optimal decision criterion, both of which will directly affect the bit error rate performance of the system. Assuming that the optimal precoding matrix obtained through judgment is F, the draft IEEE802.16e protocol believes that according to the precoding theory, precoding does not increase the total transmission power, that is, satisfies
其中,s表示一组发射信号矢量,S表示调制符号集,‖·‖2表示取矢量2范数。由于酉矩阵具有不改变矢量范数的特性,因此,在预编码中常采用酉矩阵(发射天线数等于数据流数时)或仿酉矩阵(发射天线数大于流数时)作为预编码矩阵。Among them, s represents a set of transmitted signal vectors, S represents the modulation symbol set, and ‖·‖ 2 represents the vector 2 norm. Because the unitary matrix has the property of not changing the vector norm, a unitary matrix (when the number of transmitting antennas is equal to the number of data streams) or a quasi-unitary matrix (when the number of transmitting antennas is greater than the number of streams) is often used as the precoding matrix in precoding.
IEEE802.16e协议草案也是采用的酉矩阵预编码。因此,协议草案规定的预编码矩阵F为酉矩阵(发射天线数等于数据流数时)或仿酉矩阵(发射天线数大于流数时)。The IEEE802.16e protocol draft also adopts unitary matrix precoding. Therefore, the precoding matrix F specified in the draft protocol is a unitary matrix (when the number of transmitting antennas is equal to the number of data streams) or a pseudo-unitary matrix (when the number of transmitting antennas is greater than the number of streams).
此外,并根据不同发射天线数、不同数据流数和不同反馈比特数配置将码本进行分类,IEEE802.16e协议草案中还提出了码本的分类办法,定义了根据不同发射天线数、不同数据流数和不同反馈比特数配置下码本,其草案给出的可用码本详见表1,“-”表示在该协议中没有规定该码本。In addition, the codebooks are classified according to different numbers of transmit antennas, different numbers of data streams, and different configurations of feedback bits. The IEEE802.16e protocol draft also proposes a codebook classification method, which defines The number of streams and the number of different feedback bits configure the codebook. The available codebooks given in the draft are shown in Table 1. "-" indicates that the codebook is not specified in the protocol.
表1IEEE802.16e协议码本Table 1 IEEE802.16e protocol codebook
因此,当接收端接收到信号后,根据发射天线数、数据流数和反馈比特数,选择表1所示码本中的其中一类进行最优判决。Therefore, when the receiving end receives the signal, it selects one of the codebooks shown in Table 1 to make an optimal decision according to the number of transmitting antennas, data streams, and feedback bits.
以闭环2发1收的Alamouti正交空时分组编码为例,若其反馈比特数为3bit,则最优预编码矩阵F从表1的(2,2,3)码本集合中选择;若其反馈比特数为6bit,则F从表1的(2,2,6)码本集合中选择。Taking Alamouti orthogonal space-time block coding with 2 transmissions and 1 reception as an example, if the number of feedback bits is 3 bits, the optimal precoding matrix F is selected from the (2, 2, 3) codebook set in Table 1; if The number of feedback bits is 6 bits, then F is selected from the (2, 2, 6) codebook set in Table 1.
最优判决的目的是使得误码率最小化或容量最大化,具体根据译码算法有所不同,误码率最小化最优判决准则其具体表达式是The purpose of the optimal decision is to minimize the bit error rate or maximize the capacity. Specifically, depending on the decoding algorithm, the specific expression of the optimal decision criterion for minimizing the bit error rate is
其中,Ф表示码本集合,‖·‖F表示取矩阵Frobenius范数。判决结果表明F是最优预编码矩阵,则将该最优预编码矩阵在码本中的序号i反馈至发送端。Among them, Ф represents the codebook set, and ‖·‖ F represents the Frobenius norm of the matrix. If the judgment result shows that F is the optimal precoding matrix, then the serial number i of the optimal precoding matrix in the codebook is fed back to the sending end.
发明内容 Contents of the invention
在背景技术部分,上述例子中的正交空时分组编码是正交空时编码的一种,而正交空时编码的正交特性具有不改变信道分布特性的特点。同时,酉矩阵也具有不改变信道分布特性的特点。事实上,若希望在编码时不改变信道分布特性,只需要进行一次不改变信道分布特性的编码即可,而不需要进行两次以上这样的编码。因此,如果我们在MIMO-OFDM系统中采用了正交空时编码,则可以在预编码中采用非酉矩阵。In the background technology part, the orthogonal space-time block coding in the above example is a kind of orthogonal space-time coding, and the orthogonal characteristic of the orthogonal space-time coding has the characteristic of not changing the channel distribution characteristics. At the same time, the unitary matrix also has the characteristic of not changing the channel distribution characteristics. In fact, if it is desired not to change the channel distribution characteristics during encoding, it is only necessary to perform encoding without changing the channel distribution characteristics once, and it is not necessary to perform such encoding more than twice. Therefore, if we have adopted orthogonal space-time coding in MIMO-OFDM system, non-unitary matrix can be used in precoding.
同时,在无线传输中总是希望在同样的信噪比下取得更好的误码率性能,即取得尽可能大的信噪比增益。本发明的具体实施方式的目的是要提供一种在前述系统中利用非酉矩阵进行预编码的方法、系统和装置,以在保证不改变信道分布特性的条件下,取得更好的误码率性能。At the same time, in wireless transmission, it is always desired to achieve better bit error rate performance under the same SNR, that is, to obtain as large a SNR gain as possible. The purpose of the specific embodiment of the present invention is to provide a method, system and device for precoding using a non-unitary matrix in the aforementioned system, so as to obtain a better bit error rate under the condition that the channel distribution characteristics are not changed performance.
本发明的具体实施方式提供了一种MIMO系统中的预编码方法,该方法采用正交空时编码,并采用两个以上数据流数,并且包括:A specific embodiment of the present invention provides a precoding method in a MIMO system, the method adopts orthogonal space-time coding, and adopts more than two data stream numbers, and includes:
在波束成形码本中选取最优预编码矢量;Select the optimal precoding vector in the beamforming codebook;
采用所述最优预编码矢量构造预编码矩阵;Constructing a precoding matrix by using the optimal precoding vector;
采用所述预编码矩阵进行预编码。Precoding is performed using the precoding matrix.
本发明的具体实施方式又提供了一种采用有限反馈预编码的MIMO系统,该系统包括发射机和接收机。该系统采用正交空时编码,并采用两个以上数据流数;并且,The specific embodiment of the present invention further provides a MIMO system using limited feedback precoding, and the system includes a transmitter and a receiver. The system employs orthogonal space-time coding and employs more than two data stream numbers; and,
所述接收机包括:The receiver includes:
信道估计单元,用于进行信道估计,并将信道估计结果提供给判决单元;a channel estimation unit, configured to perform channel estimation, and provide the channel estimation result to the decision unit;
码本列表存储单元,用于向判决单元提供预编码矩阵或预编码矢量;A codebook list storage unit, configured to provide a precoding matrix or a precoding vector to the decision unit;
判决单元,用于依据所述信道估计单元提供的信道估计结果和设定的判决准则,在所述码本列表存储单元的波束成形码本中选取最优预编码矢量,并将该最优预编码矢量的信息反馈给所述发射机;a decision unit, configured to select an optimal precoding vector from the beamforming codebook of the codebook list storage unit according to the channel estimation result provided by the channel estimation unit and the set decision criterion, and store the optimal precoding vector The information of the coding vector is fed back to the transmitter;
所述发射机包括:The transmitter includes:
码本列表存储单元,用于向预编码矩阵构造单元提供预编码矩阵或预编码矢量;A codebook list storage unit, configured to provide a precoding matrix or a precoding vector to a precoding matrix construction unit;
预编码矩阵构造单元,用于根据所述接收机判决单元反馈的最优预编码矢量信息,在所述发射机的码本列表存储单元中选取相应的预编码矢量,构造预编码矩阵;A precoding matrix construction unit, configured to select a corresponding precoding vector in the codebook list storage unit of the transmitter according to the optimal precoding vector information fed back by the receiver decision unit, to construct a precoding matrix;
预编码单元,用于根据所述预编码矩阵构造单元构造的预编码矩阵,进行预编码。The precoding unit is configured to perform precoding according to the precoding matrix constructed by the precoding matrix construction unit.
本发明的具体实施方式又提供了一种运用在MIMO系统中的接收机,所述接收机包括:A specific embodiment of the present invention provides a receiver used in a MIMO system, and the receiver includes:
信道估计单元,用于进行信道估计,并将信道估计结果提供给判决单元;a channel estimation unit, configured to perform channel estimation, and provide the channel estimation result to the decision unit;
码本列表存储单元,用于向判决单元提供预编码矩阵或预编码矢量;A codebook list storage unit, configured to provide a precoding matrix or a precoding vector to the decision unit;
判决单元,用于依据所述信道估计单元提供的信道估计结果和设定的判决准则,在所述码本列表存储单元的波束成形码本中选取最优预编码矢量,并将该最优预编码矢量的信息反馈给所述发射机;a decision unit, configured to select an optimal precoding vector from the beamforming codebook of the codebook list storage unit according to the channel estimation result provided by the channel estimation unit and the set decision criterion, and store the optimal precoding vector The information of the coding vector is fed back to the transmitter;
本发明的具体实施方式又提供了一种运用在MIMO系统中的发射机,其特征在于,所述发射机包括:The specific embodiment of the present invention provides a transmitter used in a MIMO system, wherein the transmitter includes:
码本列表存储单元,用于向预编码矩阵构造单元提供预编码矩阵或预编码矢量;A codebook list storage unit, configured to provide a precoding matrix or a precoding vector to a precoding matrix construction unit;
预编码矩阵构造单元,用于根据所述接收机判决单元反馈的最优预编码矢量信息,在所述发射机的码本列表存储单元中选取相应的预编码矢量,构造预编码矩阵;A precoding matrix construction unit, configured to select a corresponding precoding vector in the codebook list storage unit of the transmitter according to the optimal precoding vector information fed back by the receiver decision unit, to construct a precoding matrix;
预编码单元,用于根据所述预编码矩阵构造单元构造的预编码矩阵,进行预编码。The precoding unit is configured to perform precoding according to the precoding matrix constructed by the precoding matrix construction unit.
本发明具体实施方式提供了一种利用波束成形码本构造预编码矩阵的方法、系统、发射机和接收机。波束成形码本构造的预编码矩阵是一种非酉矩阵。因此,采用本发明具体实施方式所提供的方法、系统、发射机和接收机,可以实现利用非酉矩阵进行预编码。以本发明实施方式所述方法进行预编码后,可以取得比酉矩阵预编码方案更好的误码率性能,且通过分析可以知道其译码复杂度更低。The specific embodiments of the present invention provide a method, system, transmitter and receiver for constructing a precoding matrix by using a beamforming codebook. The precoding matrix constructed by the beamforming codebook is a non-unitary matrix. Therefore, by using the method, system, transmitter and receiver provided in the specific embodiments of the present invention, precoding using a non-unitary matrix can be realized. After precoding with the method described in the embodiment of the present invention, better bit error rate performance can be obtained than that of the unitary matrix precoding scheme, and it can be known through analysis that its decoding complexity is lower.
附图说明 Description of drawings
图1是现有技术中的有限反馈预编码MIMO-OFDM系统示意图;FIG. 1 is a schematic diagram of a limited feedback precoding MIMO-OFDM system in the prior art;
图2是在最大多普勒频移为40的低速移动环境下,I型理想反馈和II型理想反馈下信噪比与误比特率的关系对比图;Figure 2 is a comparison diagram of the relationship between the signal-to-noise ratio and the bit error rate under the type I ideal feedback and the type II ideal feedback in a low-speed mobile environment with a maximum Doppler frequency shift of 40;
图3是在最大多普勒频移为40的低速移动环境下,分别对本发明具体实施方式所提供的(2,1,3)有限反馈,与现有技术中采用的(2,2,3)有限反馈情况下进行仿真,得到的信噪比与误比特率关系对比图;Fig. 3 is under the low-speed mobile environment that the maximum Doppler frequency shift is 40, the (2, 1, 3) limited feedback provided by the embodiment of the present invention respectively, and the (2, 2, 3) used in the prior art ) simulation under the limited feedback situation, the obtained signal-to-noise ratio and bit error rate relationship comparison diagram;
图4是在最大多普勒频移为40的低速移动环境下,分别对本发明具体实施方式所提供的(2,1,6)有限反馈,与现有技术中采用的(2,2,6)有限反馈情况下进行仿真,得到的信噪比与误比特率关系对比图;Fig. 4 is under the low-speed mobile environment that the maximum Doppler frequency shift is 40, the (2, 1, 6) limited feedback provided by the embodiment of the present invention respectively, and the (2, 2, 6) used in the prior art ) simulation under the limited feedback situation, the obtained signal-to-noise ratio and bit error rate relationship comparison diagram;
图5是在独立12径TU信道下,移动速度为3km/h时,分别对本发明具体实施方式所提供的(2,1,3)有限反馈,与现有技术中采用的(2,2,3)有限反馈情况下进行仿真,得到的信噪比与误比特率关系对比图;Fig. 5 shows the (2, 1, 3) limited feedback provided by the specific embodiment of the present invention respectively when the moving speed is 3km/h under the independent 12-path TU channel, which is different from the (2, 2, 3) used in the prior art. 3) Carry out the simulation under the condition of limited feedback, and obtain the comparison diagram of the relationship between the signal-to-noise ratio and the bit error rate;
图6是在独立12径TU信道下,移动速度为3km/h时,分别对本发明具体实施方式所提供的(2,1,6)有限反馈,与现有技术中采用的(2,2,6)有限反馈情况下进行仿真,得到的信噪比与误比特率关系对比图;Fig. 6 shows the (2, 1, 6) limited feedback provided by the specific embodiment of the present invention respectively when the moving speed is 3km/h under the independent 12-path TU channel, which is different from the (2, 2, 6) used in the prior art. 6) Carry out the simulation under the condition of limited feedback, and obtain the comparison diagram of the relationship between the signal-to-noise ratio and the bit error rate;
图7是本发明具体实施方式三所述采用有限反馈预编码的MIMO系统和装置的示意图。FIG. 7 is a schematic diagram of a MIMO system and device using limited feedback precoding according to Embodiment 3 of the present invention.
具体实施方式 Detailed ways
为使本发明的技术方案更加清楚,以下给出本发明的具体实施方式。In order to make the technical solution of the present invention clearer, the specific implementation manners of the present invention are given below.
具体实施方式一:Specific implementation mode one:
具体实施方式一给出了在MIMO-OFDM系统中,当采用正交空时编码时,如何利用非酉矩阵进行预编码。具体如下:The first specific embodiment describes how to use a non-unitary matrix for precoding when orthogonal space-time coding is used in a MIMO-OFDM system. details as follows:
接收端收到信号之后,进行信道估计,得到Mr×Mf的信道矩阵H。H可以通过任何已知的信道估计方法获得,此处不再赘述;根据发射天线数和反馈比特数,对相应的波束成形码本集合中的预编码矩阵进行最优判决,可以得到最优的发射矢量v,判决依据以下公式:After receiving the signal, the receiving end performs channel estimation to obtain the channel matrix H of M r ×M f . H can be obtained by any known channel estimation method, and will not be repeated here; according to the number of transmitting antennas and the number of feedback bits, the optimal decision can be made on the precoding matrix in the corresponding beamforming codebook set, and the optimal Launch vector v, the judgment is based on the following formula:
其中,vi为波束成型码本中预编码矢量,即数据流数等于1的码本。波束成型码本可以是目前任何文献中给出的码本,本发明参考的是IEEE802.16e协议草案中的波束成型码本。Wherein, v i is a precoding vector in a beamforming codebook, that is, a codebook in which the number of data streams is equal to 1. The beamforming codebook may be a codebook given in any current document, and the present invention refers to the beamforming codebook in the IEEE802.16e protocol draft.
得到最优发射矢量之后,就可以构造最优预编码矩阵After obtaining the optimal transmit vector, the optimal precoding matrix can be constructed
F=[v…v](4)F=[v...v](4)
式(4)表示由n个最优预编码矢量v并列构成最优预编码矩阵F,n值与数据流数相同。发送端利用F进行预编码即可。Equation (4) indicates that the optimal precoding matrix F is formed by paralleling n optimal precoding vectors v, and the value of n is the same as the number of data streams. The sending end only needs to use F to perform precoding.
具体实施方式二:Specific implementation mode two:
以下以闭环2发1收的Alamouti正交空时分组编码为例,具体说明本发明所涉及的预编码方法。为了在下文比较本发明的具体实施方式与现有技术的性能,在此先假定:根据现有技术判决产生的最优预编码矩阵为FI,而根据本发明具体实施方式所述方法判决产生的最优预编码矩阵为FII。In the following, the precoding method involved in the present invention will be specifically described by taking the Alamouti orthogonal space-time block coding of closed-loop 2-transmit and 1-receive as an example. In order to compare the performance of the specific implementation of the present invention with the prior art below, it is assumed here that: the optimal precoding matrix determined according to the prior art is F I , and the method determined according to the specific implementation of the present invention produces The optimal precoding matrix for is F II .
在采用闭环2发1收Alamouti正交空时分组编码的MIMO-OFDM系统中,发射天线数为2,由于而本具体实施方式是以波束成形码本中最优预编码矢量为基础构造最优预编码矩阵,因此当反馈比特数为3bit时,在(2,1,3)码本集合中选择一个矢量作为最优预编码矢量v,当反馈比特数为6bit时,在(2,1,6)码本集合中选择一个矢量作为最优预编码矢量v。本发明实施方式中,v的判决准则遵循式(3)。In the MIMO-OFDM system using closed-loop 2-transmit-1-receive Alamouti orthogonal space-time block coding, the number of transmit antennas is 2, because this specific implementation is based on the optimal precoding vector in the beamforming codebook to construct the optimal Precoding matrix, so when the number of feedback bits is 3 bits, select a vector in the (2, 1, 3) codebook set as the optimal precoding vector v, when the number of feedback bits is 6 bits, in (2, 1, 6) Select a vector in the codebook set as the optimal precoding vector v. In the embodiment of the present invention, the judgment criterion of v follows formula (3).
在此对码本做进一步说明。当反馈比特数为3bit时,这表示相应码本中有8个不同的预编码矢量(或矩阵)。例如(2,1,3)码本中有8个不同的预编码矢量。以此类推,(2,1,6)码本中有64个不同的预编码矢量,式(3)中vi的下标i表示该矢量在码本中的序号。The codebook is further explained here. When the number of feedback bits is 3 bits, it means that there are 8 different precoding vectors (or matrices) in the corresponding codebook. For example, there are 8 different precoding vectors in the (2, 1, 3) codebook. By analogy, there are 64 different precoding vectors in the (2, 1, 6) codebook, and the subscript i of vi in formula (3) represents the sequence number of the vector in the codebook.
在判决产生最优发射矢量v后,接收端通过反馈信道将判决结果,即最优发射矢量v的序号,反馈给发送端。After judging and generating the optimal transmission vector v, the receiving end feeds back the decision result, that is, the serial number of the optimal transmitting vector v, to the transmitting end through the feedback channel.
发送端收到接收端反馈的判决结果后,根据式(4)所述原则构造最优预编码矩阵FII,并利用该矩阵进行预编码。After receiving the judgment result fed back by the receiving end, the sending end constructs the optimal precoding matrix F II according to the principle described in formula (4), and uses this matrix for precoding.
以下以具体实施方式二所述的采用闭环2发1收的Alamouti正交空时分组编码的MIMO-OFDM系统为例,说明本发明具体实施方式所述预编码方法的有益效果。The beneficial effect of the precoding method described in the specific embodiment of the present invention will be described below by taking the MIMO-OFDM system using closed-loop 2-transmission-1-reception Alamouti orthogonal space-time block coding described in the second specific embodiment as an example.
由于有限反馈的理论性能分析十分困难,这里给出其误码率下限,也就是理想反馈下的性能分析。我们称现有技术IEEE802.16e协议中的预编码方案为I型闭环理想反馈预编码,其预编码矩阵为FI,根据反馈比特数不同,取自(2,2,3)或者(2,2,6)码本,FI=[v1 v2],v1、v2均为2×1的矢量,且相互正交;称本发明具体实施方式所述预编码方案为II型闭环理想反馈预编码,其预编码矩阵为FII,FII=[v v],v根据反馈比特数不同,取自(2,1,3)或者(2,1,6)码本,为经过最优判决得到的最优发射矢量,也是2×1的矢量。Because the theoretical performance analysis of limited feedback is very difficult, the lower limit of the bit error rate is given here, which is the performance analysis under ideal feedback. We call the precoding scheme in the prior art IEEE802.16e protocol I-type closed-loop ideal feedback precoding, and its precoding matrix is F I , which is taken from (2, 2, 3) or (2, 2,6) Codebook, F I =[v 1 v 2 ], both v 1 and v 2 are 2×1 vectors, and are orthogonal to each other; the precoding scheme described in the specific embodiment of the present invention is called a type II closed loop Ideal feedback precoding, its precoding matrix is F II , F II =[v v], v is taken from (2, 1, 3) or (2, 1, 6) codebook according to the number of feedback bits, and is the most The optimal transmit vector obtained by the optimal decision is also a 2×1 vector.
2发1收的Alamouti正交空时分组编码码字结构为The codeword structure of Alamouti Orthogonal Space-Time Block Coding with 2 transmissions and 1 reception is
其中,第一列矢量为时刻t1从2根发射天线上发射的信号,第二列矢量为时刻t2从2根发射天线上发射的信号,即
其中,H为1×2的实际信道矩阵,H=[h1 h2],h1、h2分别表示发射天线1、2与接收天线之间的信道衰落系数,表示高斯白噪声。本发明的实施方式中,假设衰落系数独立,服从均值为0、方差为1的复高斯分布,即H为瑞利衰落信道。Among them, H is the actual channel matrix of 1×2, H=[h 1 h 2 ], h 1 and h 2 represent the channel fading coefficients between transmitting antenna 1, 2 and receiving antenna respectively, represents white Gaussian noise. In the embodiments of the present invention, it is assumed that the fading coefficients are independent and obey a complex Gaussian distribution with a mean value of 0 and a variance of 1, that is, H is a Rayleigh fading channel.
根据预编码以及Alamouti正交空时分组编码理论,可将(6)式等效为如下形式According to precoding and Alamouti orthogonal space-time block coding theory, equation (6) can be equivalent to the following form
其中,对式(7)中2×2的等效信道矩阵Heff做奇异值(Singular Value Decomposition,SVD)分解,得Heff=U∑VH,其中,U=1,V为2×2酉矩阵,∑=[λ 0],λ为等效信道矩阵Heff的非零奇异值(λ为实数),根据矩阵奇异值分解理论,有
在I型闭环理想反馈预编码情况下,FI=V=[v1 v2],HFI=[λ 0],其译码后结果为In the case of type I closed-loop ideal feedback precoding, F I =V=[v 1 v 2 ], HF I =[λ 0], and the decoded result is
其中,(·)H表示求矩阵转置共轭矩阵,我们称(8)式中的第一行和第二行为译码支路,每支路的信号在译码后送入解调器解调,而误码率性能则取决于解调信噪比。根据(8)式,以及假设发射符号功率归一,即εs=1和噪声功率为1,即
在II型闭环理想反馈预编码情况下,FII=V=[v v],HFII=[λ λ],其译码后结果为In the case of type II closed-loop ideal feedback precoding, F II =V=[v v], HF II =[λ λ], the decoded result is
译码后每支路信噪比为After decoding, the signal-to-noise ratio of each branch is
可见,采用II型闭环理想反馈预编码可以比I型提高一倍的解调信噪比,即系统性能提高3dB。由于传统的预编码方法和本发明具体实施方式所述预编码方法实际分别是I型和II型闭环理想反馈预编码的量化,因此,如果量化误差相同,两种有限反馈预编码性能差异也为3dB。也就是说II型闭环理想反馈预编码比I型具有更好的误码率性能。It can be seen that the use of type II closed-loop ideal feedback precoding can double the demodulation signal-to-noise ratio compared with type I, that is, the system performance can be improved by 3dB. Since the traditional precoding method and the precoding method described in the specific embodiments of the present invention are actually the quantization of Type I and Type II closed-loop ideal feedback precoding respectively, if the quantization error is the same, the performance difference between the two limited feedback precoding is also 3dB. That is to say, type II closed-loop ideal feedback precoding has better bit error rate performance than type I.
图2、图3、图4给出了最大多普勒频移为40的低速移动环境下本发明具体实施方式所述方法和传统预编码方法的误码率性能对比,图2是在理想反馈状态下的性能对比,图3是3bit反馈时,本发明所提供的方案和现有技术的性能对比,图4是6bit反馈时,本发明所提供的方案和现有技术的性能对比。可以看到,本发明具体实施方式所述方法相对于传统预编码方法在独立单径瑞利衰落信道下高信噪比时有3dB左右增益。为了进一步验证本发明方案在独立多径信道下的性能,图5、图6给出了在独立12径TU信道下,移动速度为3km/h时本发明方案和传统方案的误码率性能对比,其中系统载频3.5GHz,带宽10MHz,傅立叶变换和循环前缀的点数分别为1024和128。其中,图5是3bit反馈时,本发明所提供的方案和现有技术的性能对比,图6是6bit反馈时,本发明所提供的方案和现有技术的性能对比。从图5、图6可以看出,在独立多径信道下,本发明方案依然有效,在高信噪比下相对于传统方案仍可以取得约3dB左右增益。Fig. 2, Fig. 3, Fig. 4 have given the bit error rate performance comparison of the method described in the embodiment of the present invention and the traditional precoding method under the low-speed mobile environment that the maximum Doppler frequency shift is 40, and Fig. 2 is ideal feedback The performance comparison under the status, Fig. 3 is the performance comparison of the scheme provided by the present invention and the prior art when 3bit feedback, Fig. 4 is the performance comparison of the scheme provided by the present invention and the prior art when 6bit feedback. It can be seen that, compared with the traditional precoding method, the method described in the specific embodiment of the present invention has a gain of about 3dB when the signal-to-noise ratio is high under an independent single-path Rayleigh fading channel. In order to further verify the performance of the inventive solution under independent multi-path channels, Fig. 5 and Fig. 6 show the bit error rate performance comparison between the inventive solution and the traditional solution when the moving speed is 3km/h under the independent 12-path TU channel , where the system carrier frequency is 3.5GHz, the bandwidth is 10MHz, and the points of Fourier transform and cyclic prefix are 1024 and 128 respectively. Wherein, FIG. 5 is a performance comparison between the solution provided by the present invention and the prior art when 3-bit feedback is used, and FIG. 6 is a performance comparison between the solution provided by the present invention and the prior art when 6-bit feedback is used. It can be seen from FIG. 5 and FIG. 6 that the solution of the present invention is still effective under independent multipath channels, and can still achieve a gain of about 3dB compared with the traditional solution under high signal-to-noise ratio.
与此同时,II型闭环理想反馈预编码对信噪比的提高并不是以提高发射总功率为代价的。根据Alamouti正交空时编码的结构,t1时刻的发射总功率为At the same time, the improvement of SNR by Type II closed-loop ideal feedback precoding is not at the expense of increasing the total transmission power. According to the structure of Alamouti orthogonal space-time coding, the total transmission power at time t 1 is
其中,St表示t1时刻Alamouti正交空时分组编码的发射信号矢量,t2时刻同理可证。由此可知,采用II型闭环理想反馈预编码相对于I型闭环理想反馈预编码并没有提高发射总功率。Among them, S t represents the transmitted signal vector of Alamouti orthogonal space-time block coding at time t1 , and the same reasoning can be proved at time t2 . It can be seen that the use of type II closed-loop ideal feedback precoding does not increase the total transmission power compared with type I closed-loop ideal feedback precoding.
此外,采用本发明具体实施方式所述的预编码方法还能在降低系统误码率的同时降低译码复杂度,这是由于预编码矩阵列向量相同造成。表2给出了两个数据流时,传统预编码方法和本发明具体实施方式所述预编码方法在译码复杂度上的对比。In addition, adopting the precoding method described in the specific embodiments of the present invention can also reduce the decoding complexity while reducing the bit error rate of the system, which is caused by the fact that the column vectors of the precoding matrix are the same. Table 2 shows the comparison in decoding complexity between the traditional precoding method and the precoding method described in the specific embodiment of the present invention when there are two data streams.
表2Aloumouti正交空时分组编码译码复杂度的对比Table 2 Comparison of Aloumouti Orthogonal Space-Time Block Coding and Decoding Complexity
为实现上述方法,下面提供相应的无线通信系统和装置的具体实施方式。In order to implement the above method, specific implementation manners of corresponding wireless communication systems and devices are provided below.
以下结合附图7说明本发明的具体实施方式三:The specific embodiment three of the present invention is described below in conjunction with accompanying drawing 7:
本发明的具体实施方式三提供一种采用有限反馈预编码的MIMO系统,该系统包括发射机710和接收机720。系统采用正交空时编码,并采用两个以上数据流数,并且,所述接收机720包括:Embodiment 3 of the present invention provides a MIMO system using limited feedback precoding, and the system includes a
信道估计单元721,用于进行信道估计,并将信道估计结果提供给判决单元723;除此之外,信道估计单元还将信道估计结果提供给译码器,但信道估计单元在这方面的作用与本发明所涉及的技术方案并不直接相关,因此也不应当视为本具体实施方式所述技术方案的一部分;The
码本列表存储单元722,用于向判决单元723提供预编码矩阵或预编码矢量;所述预编码矢量实际上也是一种预编码矩阵,在本发明实施方式中,预编码矢量可以从波束成形码本中选择,用来构造预编码矩阵;The codebook
判决单元723,用于依据所述信道估计单元721提供的信道估计结果和设定的判决准则,在所述码本列表存储单元722的波束成形码本中选取最优预编码矢量,并将该最优预编码矢量的信息反馈给所述发射机710;选取最优预编码矢量的判决准则,可以遵循式(3)。The judging
一般来说,不同的预编码矢量可以用不同的数值来表示,反馈时只需要反馈与选取的预编码矢量对应的数值就可以了,而不需要把预编码矢量本身反馈给发射机。当然,本实施方式所述的预编码矢量的信息,并不仅限于上面所说的对应数值,只要反馈的内容能够正确的指明所选取的预编码矢量即可。Generally speaking, different precoding vectors can be represented by different values, and only the value corresponding to the selected precoding vector needs to be fed back during feedback, and it is not necessary to feed back the precoding vector itself to the transmitter. Of course, the information of the precoding vector described in this embodiment is not limited to the corresponding value mentioned above, as long as the content of the feedback can correctly indicate the selected precoding vector.
所述发射机710包括:The
码本列表存储单元711,用于向预编码矩阵构造单元712提供预编码矩阵或预编码矢量;A codebook
预编码矩阵构造单元712,用于根据所述接收机720判决单元723反馈的最优预编码矢量信息,在码本列表存储单元711中选取相应的预编码矢量,构造预编码矩阵;根据预编码矢量构造预编码矩阵遵循式(4)的原则。The precoding
预编码单元713,用于根据所述预编码矩阵构造单元712构造的预编码矩阵,进行预编码。The
以上具体实施方式三同时也已经提供了应用于本发明方法的发射机和接收机。The third specific embodiment above also provides a transmitter and a receiver applied to the method of the present invention.
对于本发明具体实施方式所述的方法、系统和装置,凡在本发明具体实施方式的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。For the methods, systems and devices described in the specific embodiments of the present invention, any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the specific embodiments of the present invention shall be included in the protection scope of the present invention Inside.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNA2007100730377A CN101232356A (en) | 2007-01-24 | 2007-01-24 | Precoding method, system and device in MIMO system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNA2007100730377A CN101232356A (en) | 2007-01-24 | 2007-01-24 | Precoding method, system and device in MIMO system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN101232356A true CN101232356A (en) | 2008-07-30 |
Family
ID=39898560
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNA2007100730377A Pending CN101232356A (en) | 2007-01-24 | 2007-01-24 | Precoding method, system and device in MIMO system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101232356A (en) |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010081413A1 (en) * | 2009-01-13 | 2010-07-22 | Huawei Technologies Co., Ltd. | System and Method for Enabling Wireless Communications with Cell Coordination |
| WO2010108427A1 (en) * | 2009-03-23 | 2010-09-30 | Huawei Technologies Co., Ltd. | Adaptive precoding codebooks for wireless communications |
| CN101938336A (en) * | 2010-08-13 | 2011-01-05 | 中兴通讯股份有限公司 | Method and system for indicating and determining uplink transmission mode |
| WO2011035728A1 (en) * | 2009-09-28 | 2011-03-31 | 华为技术有限公司 | Precoding method in cooperative relay system, communication apparatus and relay apparatus |
| CN102142938A (en) * | 2011-03-29 | 2011-08-03 | 东南大学 | Signal-to-leakage-and-noise ratio-based precoding construction method in limited feedback system |
| WO2011123972A1 (en) * | 2010-04-06 | 2011-10-13 | 上海贝尔股份有限公司 | Method and device for performing hierarchy feedback with space information assisted |
| WO2011147379A1 (en) * | 2010-07-20 | 2011-12-01 | 华为技术有限公司 | Method for data modulation, demodulation and method, device and system for frequency spectrum management |
| CN102315912A (en) * | 2010-07-01 | 2012-01-11 | 华为技术有限公司 | Method for providing pre-encoding matrix, method for providing decoding matrix and base station |
| CN102571674A (en) * | 2012-02-02 | 2012-07-11 | 哈尔滨商业大学 | Device and method for self-adoptive code modulating of finite feedback multi-antenna OFDM (Orthogonal Frequency Division Multiplexing) system |
| CN102664706A (en) * | 2012-04-09 | 2012-09-12 | 杭州电子科技大学 | Design method for precoding non-unitary matrix of multi-antenna system with limited feedback channel |
| CN101931504B (en) * | 2009-07-24 | 2013-07-03 | 广州杰赛科技股份有限公司 | Communication method of MIMO-STC (Multiple Input Multiple Output-Space Time Code) wireless communication transmission system |
| US8743988B2 (en) | 2011-07-29 | 2014-06-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Transmission mode adaptation in a wireless network |
| CN101771446B (en) * | 2008-12-29 | 2014-06-04 | 株式会社Ntt都科摩 | Method, device and system for processing multiple-input-multiple-output signal |
| US9124328B2 (en) | 2009-03-12 | 2015-09-01 | Futurewei Technologies, Inc. | System and method for channel information feedback in a wireless communications system |
| CN105846874A (en) * | 2009-07-20 | 2016-08-10 | 英特尔公司 | Techniques for MIMO beamforming for frequency selective channels in wireless communication systems |
| US9462116B2 (en) | 2009-01-30 | 2016-10-04 | Futurewei Technologies, Inc. | Reducing the feedback overhead during crosstalk precoder initialization |
| CN106031068A (en) * | 2014-04-02 | 2016-10-12 | 华为技术有限公司 | Beamforming-based communication method and apparatus |
| CN107408967A (en) * | 2015-03-05 | 2017-11-28 | 株式会社Ntt都科摩 | Wireless communication control method and wireless communication system |
| US9887745B2 (en) | 2013-07-22 | 2018-02-06 | Industrial Technology Research Institute | Communicating method for antenna array communication system, user equipment and base station |
| CN111404559A (en) * | 2020-03-26 | 2020-07-10 | 西安电子科技大学 | Construction method of complete complementary code based on nested unitary-simulated matrix |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1728593A (en) * | 2005-01-11 | 2006-02-01 | 中国人民解放军理工大学 | Orthogonal pre-beamforming transmission method based on transmission-assisted selection user feedback |
| WO2006036052A2 (en) * | 2004-09-30 | 2006-04-06 | Lg Electronics Inc. | A method of processing received signals in a multi-input multi-output (mimo) system |
-
2007
- 2007-01-24 CN CNA2007100730377A patent/CN101232356A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006036052A2 (en) * | 2004-09-30 | 2006-04-06 | Lg Electronics Inc. | A method of processing received signals in a multi-input multi-output (mimo) system |
| CN1728593A (en) * | 2005-01-11 | 2006-02-01 | 中国人民解放军理工大学 | Orthogonal pre-beamforming transmission method based on transmission-assisted selection user feedback |
Non-Patent Citations (3)
| Title |
|---|
| CHEOL MUN等: "Quantized Principal Component Selection Precoding for Limited Feedback Spatial Multiplexing", 《IEEE ICC 2006 PROCCEEDINGS》 * |
| DAVID J.LOVE等: "Limited feedback precoding for orthogonal space-time block codes", 《IEEE COMMUNICATIONS SOCIETY GLOBECOM 2004》 * |
| HUAWEI: "Downlink MIMO for E-UTRA", 《3GPP TSG-RAN WG1 #43 R1-051407》 * |
Cited By (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101771446B (en) * | 2008-12-29 | 2014-06-04 | 株式会社Ntt都科摩 | Method, device and system for processing multiple-input-multiple-output signal |
| CN102282885B (en) * | 2009-01-13 | 2013-11-06 | 华为技术有限公司 | System and method for enabling wireless communications with cell coordination |
| WO2010081413A1 (en) * | 2009-01-13 | 2010-07-22 | Huawei Technologies Co., Ltd. | System and Method for Enabling Wireless Communications with Cell Coordination |
| US10063278B2 (en) | 2009-01-30 | 2018-08-28 | Futurewei Technologies, Inc. | Reducing the feedback overhead during crosstalk precoder initialization |
| CN104253629B (en) * | 2009-01-30 | 2017-11-24 | 华为技术有限公司 | The method and apparatus for reducing feedback overhead |
| US9462116B2 (en) | 2009-01-30 | 2016-10-04 | Futurewei Technologies, Inc. | Reducing the feedback overhead during crosstalk precoder initialization |
| US9124328B2 (en) | 2009-03-12 | 2015-09-01 | Futurewei Technologies, Inc. | System and method for channel information feedback in a wireless communications system |
| CN102308508B (en) * | 2009-03-23 | 2014-01-01 | 华为技术有限公司 | Adaptive precoding codebook for wireless communication |
| CN102308508A (en) * | 2009-03-23 | 2012-01-04 | 华为技术有限公司 | Adaptive precoding codebooks for wireless communications |
| WO2010108427A1 (en) * | 2009-03-23 | 2010-09-30 | Huawei Technologies Co., Ltd. | Adaptive precoding codebooks for wireless communications |
| US8675627B2 (en) | 2009-03-23 | 2014-03-18 | Futurewei Technologies, Inc. | Adaptive precoding codebooks for wireless communications |
| CN105846874A (en) * | 2009-07-20 | 2016-08-10 | 英特尔公司 | Techniques for MIMO beamforming for frequency selective channels in wireless communication systems |
| CN105846874B (en) * | 2009-07-20 | 2020-06-05 | 英特尔公司 | Apparatus, method and system for MIMO beamforming of frequency selective channels in a wireless communication system |
| CN101931504B (en) * | 2009-07-24 | 2013-07-03 | 广州杰赛科技股份有限公司 | Communication method of MIMO-STC (Multiple Input Multiple Output-Space Time Code) wireless communication transmission system |
| WO2011035728A1 (en) * | 2009-09-28 | 2011-03-31 | 华为技术有限公司 | Precoding method in cooperative relay system, communication apparatus and relay apparatus |
| CN102035585A (en) * | 2009-09-28 | 2011-04-27 | 华为技术有限公司 | Pre-coding method, communication device and relay device in cooperative relay system |
| US8861392B2 (en) | 2009-09-28 | 2014-10-14 | Huawei Technologies Co., Ltd. | Pre-coding method in cooperative relay system, communication apparatus, and relay apparatus |
| CN102035585B (en) * | 2009-09-28 | 2015-03-11 | 华为技术有限公司 | Pre-coding method, communication device and relay device in cooperative relay system |
| WO2011123972A1 (en) * | 2010-04-06 | 2011-10-13 | 上海贝尔股份有限公司 | Method and device for performing hierarchy feedback with space information assisted |
| CN102315912A (en) * | 2010-07-01 | 2012-01-11 | 华为技术有限公司 | Method for providing pre-encoding matrix, method for providing decoding matrix and base station |
| US8625705B2 (en) | 2010-07-20 | 2014-01-07 | Huawei Technologies Co., Ltd. | Data modulation and demodulation method, spectrum management method, apparatus and system |
| WO2011147379A1 (en) * | 2010-07-20 | 2011-12-01 | 华为技术有限公司 | Method for data modulation, demodulation and method, device and system for frequency spectrum management |
| WO2012019451A1 (en) * | 2010-08-13 | 2012-02-16 | 中兴通讯股份有限公司 | Method for indicating and determining uplink transmission mode and system thereof |
| CN101938336A (en) * | 2010-08-13 | 2011-01-05 | 中兴通讯股份有限公司 | Method and system for indicating and determining uplink transmission mode |
| CN101938336B (en) * | 2010-08-13 | 2016-05-11 | 中兴通讯股份有限公司 | A kind of instruction of uplink transmission mode, determine method and system |
| CN102142938A (en) * | 2011-03-29 | 2011-08-03 | 东南大学 | Signal-to-leakage-and-noise ratio-based precoding construction method in limited feedback system |
| US8743988B2 (en) | 2011-07-29 | 2014-06-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Transmission mode adaptation in a wireless network |
| CN102571674B (en) * | 2012-02-02 | 2015-08-05 | 哈尔滨商业大学 | Limited Feedback multiple antennas ofdm system adaptive coding and modulating device and method |
| CN102571674A (en) * | 2012-02-02 | 2012-07-11 | 哈尔滨商业大学 | Device and method for self-adoptive code modulating of finite feedback multi-antenna OFDM (Orthogonal Frequency Division Multiplexing) system |
| CN102664706A (en) * | 2012-04-09 | 2012-09-12 | 杭州电子科技大学 | Design method for precoding non-unitary matrix of multi-antenna system with limited feedback channel |
| US9887745B2 (en) | 2013-07-22 | 2018-02-06 | Industrial Technology Research Institute | Communicating method for antenna array communication system, user equipment and base station |
| CN106031068A (en) * | 2014-04-02 | 2016-10-12 | 华为技术有限公司 | Beamforming-based communication method and apparatus |
| CN106031068B (en) * | 2014-04-02 | 2019-05-28 | 华为技术有限公司 | A kind of communication means and device based on beam forming |
| CN107408967A (en) * | 2015-03-05 | 2017-11-28 | 株式会社Ntt都科摩 | Wireless communication control method and wireless communication system |
| CN107408967B (en) * | 2015-03-05 | 2020-10-09 | 株式会社Ntt都科摩 | Wireless communication control method and wireless communication system |
| CN111404559A (en) * | 2020-03-26 | 2020-07-10 | 西安电子科技大学 | Construction method of complete complementary code based on nested unitary-simulated matrix |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101232356A (en) | Precoding method, system and device in MIMO system | |
| JP4883091B2 (en) | MIMO-OFDM communication system and MIMO-OFDM communication method | |
| CN101986587B (en) | Multi-antenna codebook selection modulating method for overcoming weak scattering | |
| US8351544B2 (en) | Method and apparatus for codebook-based feedback in a closed loop wireless communication system | |
| US7949064B2 (en) | Codebook and pre-coder selection for closed-loop mimo | |
| KR100934666B1 (en) | Data Transceiving Method Using Phase-Transition-Based Precoding and Transceivers Supporting It | |
| CN102725967B (en) | For the method and apparatus of information feed back and precoding | |
| US7782573B2 (en) | Trellis-based feedback reduction for multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) with rate-limited feedback | |
| JP5457357B2 (en) | Data transmission / reception method using phase transition based precoding and transmitter / receiver supporting the method | |
| CN101682453B (en) | CDD precoding for open-loop SU MIMO | |
| JP5236753B2 (en) | Signal transmission and reception method in open loop spatial multiplexing mode | |
| CN102754358B (en) | The method of pre-coding matrix is selected in " multiple-input, multiple-output " (" MIMO ") system | |
| TWI406523B (en) | Method and system for codebook design of mimo pre-coders with finite rate channel state information feedback | |
| CN106470064B (en) | Transmit diversity method and device | |
| US20080304464A1 (en) | Low complexity precoding matrix selection | |
| CN101848071A (en) | Nonlinear decoding method for limited feedback precoding in layered space-time system | |
| JP5111524B2 (en) | Data transmission / reception method using phase transition based precoding and transceiver supporting the same | |
| JP2010517463A5 (en) | ||
| Ghaffar et al. | Interference sensitivity for multiuser MIMO in LTE | |
| CN101350648A (en) | Method and system for implementing transmission as well as transmitter | |
| Berardinelli et al. | SVD-based vs. release 8 codebooks for single user MIMO LTE-A uplink | |
| KR101497156B1 (en) | Apparatus and method for transmitting data using precoding scheme in multiple antenna system | |
| Kinjo et al. | A QR Decomposition Algorithm with Partial Greedy Permutation for Zero-Forcing Block Diagonalization | |
| CN102868490B (en) | Low-complexity sphere decoding detection method | |
| Ohwatari et al. | Reduction of the amount of channel state information feedback in MIMO-OFDM eigenbeam-space division multiplexing systems |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20080730 |