[go: up one dir, main page]

CN101254299B - Treatment of endothelial dysfunction in diabetic patients - Google Patents

Treatment of endothelial dysfunction in diabetic patients Download PDF

Info

Publication number
CN101254299B
CN101254299B CN2007101821922A CN200710182192A CN101254299B CN 101254299 B CN101254299 B CN 101254299B CN 2007101821922 A CN2007101821922 A CN 2007101821922A CN 200710182192 A CN200710182192 A CN 200710182192A CN 101254299 B CN101254299 B CN 101254299B
Authority
CN
China
Prior art keywords
hdl
treatment
use according
diabetes
infusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007101821922A
Other languages
Chinese (zh)
Other versions
CN101254299A (en
Inventor
E·S·G·斯托斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ztel Co Ltd
Original Assignee
CSL Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSL Ltd filed Critical CSL Ltd
Priority to CN2007101821922A priority Critical patent/CN101254299B/en
Publication of CN101254299A publication Critical patent/CN101254299A/en
Application granted granted Critical
Publication of CN101254299B publication Critical patent/CN101254299B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention relates to a method for treating endothelial dysfunction in a diabetic patient, including diabetes-induced macrovascular disorders and diabetes-induced microvascular disorders, comprising administering to the patient an effective amount of High Density Lipoprotein (HDL), preferably parenterally.

Description

糖尿病患者内皮机能不良的治疗Treatment of endothelial dysfunction in diabetic patients

技术领域 technical field

本发明涉及一种糖尿病患者内皮机能不良的治疗方法。具体地说,本发明涉及一种在治疗糖尿病患者的涉及内皮机能不良的病症(巨型血管和微型血管)时用于改善内皮机能的方法。  The invention relates to a treatment method for diabetic endothelial dysfunction. In particular, the present invention relates to a method for improving endothelial function in the treatment of conditions involving endothelial dysfunction (macrovessels and microvessels) in diabetic patients. the

背景技术 Background technique

在慢性疾病糖尿病中,身体丧失适当产生或响应激素胰岛素的能力,因此外周组织细胞无法从血液中主动摄取葡萄糖,以便使用或贮存。在糖尿病个体中,外周血中的葡萄糖水平能够升高(高血糖症)并且一般保持在升高水平,除非采用一些介入形式(例如,外源性胰岛素的施用),以便使血液中的葡萄糖返回到正常水平。如果没有检查出来的话,糖尿病个体的高血糖症能够导致休克、器官退化或衰竭(例如肾衰竭、失明、神经病、心血管疾病)、组织坏死(例如需要实施截足)、甚至死亡。  In diabetes, the chronic disease, the body loses the ability to properly produce or respond to the hormone insulin, so peripheral tissue cells are unable to actively take up glucose from the blood for use or storage. In diabetic individuals, glucose levels in the peripheral blood can be elevated (hyperglycemia) and generally remain elevated unless some form of intervention (eg, administration of exogenous insulin) is employed to return glucose to the blood to normal levels. If left undetected, hyperglycemia in diabetic individuals can lead to shock, organ degeneration or failure (eg, renal failure, blindness, neuropathy, cardiovascular disease), tissue necrosis (eg, requiring amputation), and even death. the

两种主要的糖尿病形式是I型糖尿病和II型糖尿病。I型糖尿病,以前被称作胰岛素依赖型糖尿病(IDDM)或幼年发作的糖尿病,是一种自身免疫疾病,其中身体损坏了胰腺的胰岛素生成β细胞(胰岛细胞),从而导致绝对需要每日施用外源胰岛素,以维持正常的血糖水平。I型糖尿病经常在儿童和年轻人中诊断出来,但是能够出现在任何年龄段。I型糖尿病在诊断出的糖尿病病例中占5-10%。  The two main forms of diabetes are type I diabetes and type II diabetes. Type 1 diabetes, formerly known as insulin-dependent diabetes mellitus (IDDM) or juvenile-onset diabetes, is an autoimmune disease in which the body damages the insulin-producing beta cells (islet cells) of the pancreas, resulting in the absolute need for daily administration of Exogenous insulin to maintain normal blood sugar levels. Type 1 diabetes is often diagnosed in children and young adults, but can appear at any age. Type I diabetes accounts for 5-10% of diagnosed diabetes cases. the

迄今为止,更流行的糖尿病形式是II型糖尿病,这种病以前被称作非胰岛素依赖型糖尿病(NIDDM)。II型糖尿病以前也被称作成人发作的糖尿病,然而,这种糖尿病形式在日益增加的超重和临床肥胖的儿童和年轻人人群中正在变得更加流行。II型糖尿病在所有诊断出的糖尿病病例中占90-95%。II型糖尿病一般首先表现为胰岛素耐受性,即身体细胞没有适当响应胰岛素、随后胰腺部分逐渐丧失产生和分泌胰岛素的能力。II型糖尿病与各种因素有关,这些因素包括增长的年龄、肥胖、糖尿病家族史、妊娠糖尿病史、葡萄糖代谢损伤、身体不活动以及多人种和种族。患有II型糖尿病的个体必须尝试通过精心节食、锻炼 和减肥以及辅助药物来控制其血糖水平。  By far the more prevalent form of diabetes is type 2 diabetes, formerly known as non-insulin-dependent diabetes mellitus (NIDDM). Type 2 diabetes was also formerly known as adult-onset diabetes, however, this form of diabetes is becoming more prevalent in the growing population of overweight and clinically obese children and young adults. Type II diabetes accounts for 90-95% of all diagnosed diabetes cases. Type 2 diabetes typically begins with insulin resistance, the failure of the body's cells to respond appropriately to insulin, followed by a gradual loss of the ability of the pancreas to produce and secrete insulin. Type II diabetes is associated with various factors including increasing age, obesity, family history of diabetes, history of gestational diabetes, impairment of glucose metabolism, physical inactivity, and multiple races and ethnicities. Individuals with type 2 diabetes must attempt to control their blood sugar levels through careful diet, exercise and weight loss, and complementary medicines. the

导致糖尿病(尤其是II型糖尿病(DM2))时前致动脉粥样化状态的主要因素包括:血脂质异常、高血糖症、高血压、内脏肥胖和胰岛素耐受性(1,2)。观察研究已经清楚地证实,糖尿病性血脂质异常对导致糖尿病动脉粥样硬化形成的重要性,表现出的事实是,低密度脂蛋白(LDL)以及高密度脂蛋白(HDL)与心血管事件之间的相关性超过空腹血浆葡萄糖(3)。抑制素(statin)介入研究已经揭示,抑制素治疗对减少DM2中的心血管事件明显有益(4,5);然而,尽管取得了这样惊人的进展,大部分DM2患者甚至在使用抑制素时仍然遭受心血管事件(6)。  Major factors contributing to the preatherogenic state of diabetes, especially type II diabetes (DM2), include dyslipidemia, hyperglycemia, hypertension, visceral obesity, and insulin resistance (1, 2). Observational studies have clearly demonstrated the importance of diabetic dyslipidemia in the development of diabetic atherosclerosis, demonstrated by the fact that low-density lipoprotein (LDL) and high-density lipoprotein (HDL) are associated with cardiovascular events The correlation between the two exceeds fasting plasma glucose (3). Statin intervention studies have revealed a clear benefit of statin therapy in reducing cardiovascular events in DM2 (4, 5); however, despite this impressive progress, the majority of DM2 patients remain suffer a cardiovascular event (6). the

在最近二十年中,内皮机能不良已经暴露出为动脉粥样化形成的早期阶段之一。内皮机能不良,是所有糖尿病患者(即I型和II型)的特点,已经表现出对未来心血管事件具有预测价值(7-9)。与糖尿病诱发的血管疾病的多因素发病机理相符的是(10,11),许多治疗介入已经被评估出具有改善DM2患者的内皮机能的潜能(9,12)。令人惊奇的是,尽管通过对血脂质异常患者进行抑制素治疗而使内皮机能可能得到完全恢复(13),但是几项研究已经证实,甚至强烈的抑制素介入治疗也不能使DM2的血管机能不良恢复正常(14,15)。后者强调在此高危群体中采取额外治疗形式的可能性。  In the last two decades, endothelial dysfunction has been exposed as one of the early stages of atherogenesis. Endothelial dysfunction, which is characteristic of all diabetic patients (ie type I and type II), has been shown to have predictive value for future cardiovascular events (7-9). Consistent with the multifactorial pathogenesis of diabetes-induced vascular disease (10, 11), a number of therapeutic interventions have been evaluated for their potential to improve endothelial function in DM2 patients (9, 12). Surprisingly, although complete restoration of endothelial function may be possible by statin therapy in patients with dyslipidemia (13), several studies have demonstrated that even intense statin intervention does not restore vascular function in DM2 Bad returns to normal (14, 15). The latter emphasizes the possibility of additional forms of treatment in this high-risk group. the

高密度脂蛋白(HDL)代表一大组主要为类似球形的血浆脂蛋白,其大小、载脂蛋白(apo)和脂质的组合表现出相当大的差异性。HDL粒子具有1.063-1.21g/ml的密度范围(16),并且由于比其它脂蛋白小,因此HDL能够在内皮细胞之间渗透,从而更容易以相当高的浓度聚积在组织流体中(17)。几乎所有血浆HDL的主要载脂蛋白都是apo A-I,其与磷脂和胆固醇相联,围绕一个胆固醇酯核(16)。由肝和肠分泌的初生(即新合成的)HDL不含有胆固醇酯,并且形状是盘状的(16)。血浆HDL浓度与冠状动脉疾病的负相关在流行病学研究中已经得到良好的证明(18)。虽然动物实验已经证实HDL的抗动脉粥样化活性(19),但是还不知道这种防护作用是与脂蛋白的反向胆固醇转运作用有关,还是与不同的机理有关。HDL提供的这些心脏防护作用的机理/多重机理还不清楚,但是可能包括HDL将胆固醇从外周组织反向转运到肝脏的作用、低密度脂蛋白的氧化抑制、或通过环前列腺素生成中的变化而介导的血管舒张和血小板活化的调节(20)。HDL在与清除剂受体-B1(SR-B1)相互作用之后还能够激活内皮 一氧化氮(NO)合酶。  High-density lipoproteins (HDL) represent a large group of primarily spherical-like plasma lipoproteins that exhibit considerable variability in size, apolipoprotein (apo) and lipid composition. HDL particles have a density range of 1.063-1.21 g/ml (16), and because they are smaller than other lipoproteins, HDL is able to permeate between endothelial cells, thereby accumulating more easily in tissue fluids in relatively high concentrations (17) . The major apolipoprotein of almost all plasma HDL is apo A-I, which is associated with phospholipids and cholesterol surrounding a cholesteryl ester core (16). Nascent (ie, newly synthesized) HDL secreted by the liver and intestine does not contain cholesteryl esters and is discoid in shape (16). The inverse association of plasma HDL concentration with coronary artery disease has been well documented in epidemiological studies (18). Although animal experiments have demonstrated the antiatherogenic activity of HDL (19), it is not known whether this protective effect is related to the reverse cholesterol transport function of lipoproteins or is related to a different mechanism. The mechanism/multiple mechanisms by which HDL confers these cardioprotective effects is unclear, but may include the role of HDL in reverse transport of cholesterol from peripheral tissues to the liver, inhibition of LDL oxidation, or through changes in cycloprostaglandin production and mediate regulation of vasodilation and platelet activation (20). HDL is also able to activate endothelial nitric oxide (NO) synthase following interaction with scavenger receptor-B1 (SR-B1). the

考虑到有关HDL的NO启动效应的显现数据,具有HDL增加能力的化合物尤其令人感兴趣(21-24)。的确,在DM2患者中,HDL与内皮依赖性血管舒缩药反应正相关(8)。在导致本发明的工作中,发明人已经评估出,外源重组HDL(rHDL)输注后HDL的增长是否轻变成血管机能的改善以及改善程度。考察了在对DM2以及相匹配的对照组进行rHDL输注后急性期(输注后4小时)以及输注后7天的ApoA-I水平和内皮机能。  Compounds with HDL increasing capacity are of particular interest in view of the emerging data on the NO priming effect of HDL (21-24). Indeed, in DM2 patients, HDL was positively associated with endothelium-dependent vasomotor response (8). In work leading up to the present invention, the inventors have assessed whether and to what extent increases in HDL after infusion of exogenous recombinant HDL (rHDL) translate into improvements in vascular function. ApoA-I levels and endothelial function were examined in the acute phase (4 hours post infusion) and 7 days post infusion of rHDL in DM2 and matched controls. the

在本说明书中提到的出版物的著录项细节列在说明书的结尾。说明书中任何已有技术文献的引用都不是并且也不应该认为是承认或暗示该文献构成公知常识部分。  Bibliographic details of publications mentioned in this specification are listed at the end of the specification. Citation of any prior art document in the specification is not and should not be considered as an acknowledgment or implication that the document forms part of the common general knowledge. the

发明内容 Contents of the invention

在本说明书和所附的权利要求书中,除非上下文另外要求,否则词汇“包括(comprise)”和/或诸如“包括(comprises)”或“包括(comprising)”这些变型将被理解成,意味着包括所规定的整数或步骤或者整数组或步骤组,但是不排除任何其它整数或步骤或者整数组或步骤组。  In this specification and the appended claims, unless the context requires otherwise, the word "comprise" and/or variations such as "comprises" or "comprising" will be understood to mean It is meant to include the stated integer or step or group of integers or steps but not to exclude any other integer or step or group of integers or steps. the

一方面,本发明提供一种糖尿病患者内皮机能不良的治疗方法,其包括给患者施用(优选肠胃外给药)有效量的高密度脂蛋白(HDL)。  In one aspect, the present invention provides a method for treating endothelial dysfunction in diabetic patients, comprising administering (preferably parenterally) an effective amount of high density lipoprotein (HDL) to the patient. the

另一方面,本发明提供高密度脂蛋白(HDL)在制备施用(优选肠胃外给药)给糖尿病患者以治疗患者的内皮机能不良的药物中的用途。  In another aspect, the present invention provides the use of high density lipoprotein (HDL) in the manufacture of a medicament for administration, preferably parenterally, to a diabetic patient for the treatment of endothelial dysfunction in the patient. the

又一方面,本发明提供一种在糖尿病患者内皮机能不良治疗中的用于施用(优选肠胃外给药)的制剂,其包括高密度脂蛋白(HDL)。  In a further aspect, the present invention provides a formulation for administration, preferably parenteral administration, in the treatment of endothelial dysfunction in diabetic patients comprising high density lipoprotein (HDL). the

附图说明 Description of drawings

图1表示出在健康志愿者和DM2患者中以剂量依赖性方式动脉内输注的内皮依赖性血管舒张剂5-羟色胺增大的前臂血流(FBF)。在基线,FBF对5-羟色胺的反应相比于对照组在DM2中得以削弱(p<0.001)。在输注rHDL之后,FBF对5-羟色胺的反应显著增大,但是没有达到可与对照组相比的水平(p<0.01)。在输注rHDL后内皮依赖性血管舒张性的改善持续7天(p<0.01)。rHDL输注不影响对照组的5-羟色胺反应。  Figure 1 shows that intra-arterial infusion of the endothelium-dependent vasodilator serotonin increases forearm blood flow (FBF) in healthy volunteers and DM2 patients in a dose-dependent manner. At baseline, the FBF response to serotonin was attenuated in DM2 compared to controls (p<0.001). After rHDL infusion, the FBF response to serotonin increased significantly, but not to a level comparable to that of the control group (p<0.01). The improvement in endothelium-dependent vasodilation persisted for 7 days after rHDL infusion (p<0.01). rHDL infusion did not affect the serotonin response in the control group. the

图2表示出,在基线血管收缩药对L-NMMA的反应(反映了基础一氧化氮(NO)的活性),相比于对照组在DM2患者中是钝化的(p<0.001)。在输注rHDL之后, L-NMMA收缩剂的反应得以改善,并且在输注后7天仍然显现(p<0.01)。相应于5-羟色胺数据,rHDL输注不影响对照组对象的L-NMMA反应。  Figure 2 shows that at baseline the vasoconstrictor response to L-NMMA (reflecting basal nitric oxide (NO) activity) was blunted in DM2 patients compared to controls (p<0.001). Responses to L-NMMA inotropes improved after rHDL infusion and were still present 7 days post-infusion (p<0.01). Corresponding to the serotonin data, rHDL infusion did not affect L-NMMA responses in control subjects. the

图3表示出响应硝普钠的不依赖内皮的血管舒张性,与对照组相比,在DM2中更低(p<0.01),并且rHDL输注在患者和对照组中都没有显示出对SNP血管舒张剂的响应有影响。  Figure 3 shows that endothelium-independent vasodilation in response to sodium nitroprusside was lower in DM2 compared to controls (p<0.01), and rHDL infusion showed no effect on SNP in both patients and controls Response to vasodilators affects. the

具体实施方式 Detailed ways

患有糖尿病的患者、尤其是患有II型糖尿病(DM2)的患者,其特征是心血管的危险显著增大。系统性内皮机能不良,是DM2的一个标志,预示将来具有发生心血管事件的危险。考虑到HDL与NO途径之间的关系,本发明人已经评估了rHDL输注对DM2的内皮机能的影响。具体地说,在7个DM2患者和7个血脂正常(normalipidemic)的对照者中,利用静脉闭塞体积扫描法(venousocclusion plethysmography)评估内皮机能。前臂血流(FBF)分别响应内皮依赖性和不依赖内皮的血管舒张剂5-羟色胺(5HT)及硝普钠的动脉内输注,并且在rHDL(以蛋白质计,为80mg/kg)输注之前、之后4小时以及之后1个星期测定一氧化氮合酶NG-单甲基-1-精氨酸(L-NMMA)的抑制剂。  Patients with diabetes, especially type 2 diabetes (DM2), are characterized by a markedly increased cardiovascular risk. Systemic endothelial dysfunction, a hallmark of DM2, indicates the risk of future cardiovascular events. Considering the relationship between HDL and the NO pathway, the present inventors have evaluated the effect of rHDL infusion on the endothelial function of DM2. Specifically, endothelial function was assessed using venous occlusion plethysmography in seven DM2 patients and seven normallipidemic controls. Forearm blood flow (FBF) responds to intraarterial infusions of the endothelium-dependent and endothelium-independent vasodilators 5-hydroxytryptamine (5HT) and sodium nitroprusside, respectively, and infusions of rHDL (80 mg/kg protein) An inhibitor of nitric oxide synthase NG-monomethyl-1-arginine (L-NMMA) was assayed before, 4 hours after and 1 week after. the

在基线,HDL在DM2和对照组中是一样的(1.1±0.2 vs.1.2±0.3mmol/L,ns)。5-HT诱发的血管舒张性(max 17±10%)和L-NMMA诱发的血管收缩性(max-17±15%)相比于对照组在DM2中是下降的(5-HT 114±22和L-NMMA-48±5%,二者都是p<0.05)。rHDL输注分别提高了DM2和对照组的apoA-I水平(1.2±0.2至2.8±0.4vs.1.2±0.2至2.7±0.4g/L,p<0.01),并且在DM2中恢复了FBF对5HT(86±22%,p<0.05)和L-NMMA(-45±9%,p<0.01)的反应。此效果在输注后持续7天(5HT;80±25%,p<0.05以及L-NMMA-37±7%,p<0.01,相比于基线)。rHDL输注在对照组中没有影响。因此,此工作证实,HDL的急剧增大改善了DM2的内皮机能,并且这种改善至少持续7天,尽管HDL浓度返回到基线。  At baseline, HDL was the same in DM2 and controls (1.1±0.2 vs. 1.2±0.3 mmol/L, ns). 5-HT-induced vasodilation (max 17±10%) and L-NMMA-induced vasoconstriction (max-17±15%) were decreased in DM2 compared to controls (5-HT 114±22 and L-NMMA-48±5%, both p<0.05). rHDL infusion increased apoA-I levels in DM2 and controls, respectively (1.2±0.2 to 2.8±0.4 vs. 1.2±0.2 to 2.7±0.4 g/L, p<0.01), and restored the effect of FBF on 5HT in DM2 (86±22%, p<0.05) and L-NMMA (-45±9%, p<0.01) responses. This effect persisted for 7 days after infusion (5HT; 80±25%, p<0.05 and L-NMMA-37±7%, p<0.01 compared to baseline). rHDL infusion had no effect in the control group. Thus, this work demonstrates that a dramatic increase in HDL improves endothelial function in DM2 and that this improvement persists for at least 7 days, despite the return of HDL concentrations to baseline. the

一方面,本发明提供一种糖尿病患者内皮机能不良的治疗方法,其包括给患者施用有效量的高密度脂蛋白(HDL)。  In one aspect, the present invention provides a method for treating endothelial dysfunction in diabetic patients, comprising administering to the patient an effective amount of high-density lipoprotein (HDL). the

优选的是,给药方式是肠胃外给药。  Preferably, the mode of administration is parenteral. the

本文提到的“治疗”,被认为是具有其最广泛含义。术语“治疗”不一定是指,受体接收治疗直到完全康复为止。因此,治疗包括特定状况或病症症状的改 善以及特定状况或病症严重程度的减轻,或者消除了特定状况或病症。  "Treatment", as used herein, is considered to have its broadest meaning. The term "treatment" does not necessarily mean that the subject receives treatment until full recovery. Thus, treatment includes amelioration of the symptoms of a particular condition or disorder as well as lessening of the severity of a particular condition or disorder, or elimination of a particular condition or disorder. the

正如本文所用的,所提到的“内皮机能不良的治疗”应被认为是指在有关内皮机能不良的病症的治疗中内皮机能的改善。这样的病症包括巨型血管病症(有关大血管的)诸如短暂性缺血发作(transient ischemic attack)、中风(stroke)、绞痛、心肌梗塞、心脏衰竭和外周血管疾病,以及微型血管病症(有关小血管的)诸如糖尿病导致的视网膜病(非增生的、增生的、黄斑水肿)、微白蛋白尿、巨白蛋白尿(macroalbuminuria)、肾终末期疾病、勃起机能障碍、自主性神经病、外周神经病、骨髓炎和下肢缺血。  As used herein, references to "treatment of endothelial dysfunction" shall be taken to mean the improvement of endothelial function in the treatment of disorders related to endothelial dysfunction. Such conditions include macrovascular disorders (pertaining to large vessels) such as transient ischemic attack, stroke, angina, myocardial infarction, heart failure, and peripheral vascular disease, and microvascular disorders (pertaining to small vessels) Vascular) such as diabetic retinopathy (non-proliferative, proliferative, macular edema), microalbuminuria, macroalbuminuria, end-stage renal disease, erectile dysfunction, autonomic neuropathy, peripheral neuropathy, Osteomyelitis and lower extremity ischemia. the

本文提到的“糖尿病”患者应理解成是指I型糖尿病(DM1)或II型糖尿病(DM2)患者。  "Diabetes" patients mentioned herein should be understood as referring to type I diabetes (DM1) or type II diabetes (DM2) patients. the

按照本发明,给糖尿病患者施用HDL。在此所用的术语“HDL”,是指所有形式的高密度脂蛋白,并包括成熟HDL、初生HDL或重组HDL(rHDL)或它们的任何混合物、以及由重组载脂蛋白或重组载脂蛋白功能肽或其其它类似物制成的rHDL。这样的类似物包括由载脂蛋白(Apo)结构衍生的功能肽,诸如国际专利申请WO99/16459和WO99/16408中描述的那些,这两篇文献的内容作为参考在此并入本文。  According to the present invention, HDL is administered to diabetic patients. The term "HDL", as used herein, refers to all forms of high-density lipoproteins and includes mature HDL, nascent HDL or recombinant HDL (rHDL) or any mixture thereof, as well as recombinant apolipoproteins or recombinant apolipoproteins. rHDL made from peptides or other analogues. Such analogs include functional peptides derived from the structure of apolipoprotein (Apo), such as those described in International Patent Applications WO99/16459 and WO99/16408, the contents of which are hereby incorporated by reference. the

高密度脂蛋白包括蛋白质成分和脂质。蛋白质优选是人载脂蛋白例如载脂蛋白如载脂蛋白A-I(apoA-I)、载脂蛋白A-II(apoA-II)或载脂蛋白A-IV(apoA-IV)或重组载脂蛋白、或具有类似性质的功能性同源肽。合适的脂质有磷脂,优选磷脂酰胆碱,其任选地与其它脂质(胆固醇、胆固醇酯、甘油三酯、鞘脂或其它脂质)混合。脂质可以是合成脂质、天然出现的脂质或者它们的组合。  HDL includes protein components and lipids. The protein is preferably a human apolipoprotein such as an apolipoprotein such as apolipoprotein A-I (apoA-I), apolipoprotein A-II (apoA-II) or apolipoprotein A-IV (apoA-IV) or a recombinant apolipoprotein , or a functional homologous peptide with similar properties. Suitable lipids are phospholipids, preferably phosphatidylcholines, optionally mixed with other lipids (cholesterol, cholesteryl esters, triglycerides, sphingolipids or other lipids). Lipids can be synthetic lipids, naturally occurring lipids, or combinations thereof. the

优选地,HDL是重组HDL。  Preferably, HDL is recombinant HDL. the

重组HDL的生成例如在US 5652339中和由Matz和Jonas(25)以及Lerch等人(26)进行了描述。带有重组载脂蛋白的rHDL的生成例如在EP469017(在酵母中)、US 6559284(在E.coli中)和国际专利公开WO87/02062(在E.coli、酵母和Cho细胞中)以及WO88/03166(在E.coli中)中进行了描述。这些文献每一篇的内容都作为参考在此并入本文。  The generation of recombinant HDL is described eg in US 5652339 and by Matz and Jonas (25) and Lerch et al. (26). Generation of rHDL with recombinant apolipoproteins is eg described in EP469017 (in yeast), US 6559284 (in E.coli) and International Patent Publication WO87/02062 (in E.coli, yeast and Cho cells) and WO88/ 03166 (in E. coli) is described. The contents of each of these documents are hereby incorporated by reference. the

HDL以有效量来施用。“有效量”是指达到以下效果所必需的量:至少部分获得所需的反应,或者延迟所治疗的特定状况或病症的发作或抑制其发展或完全中止。此量随着以下因素的不同而不同:待治疗个体的健康和生理状况、待治疗 个体的种族背景、所需的防护程度、组合物的配方、医疗状况的评估以及其它相关因素。期望此量在通过常规试验能够确定的相当宽的范围内。  HDL is administered in an effective amount. "Effective amount" means that amount necessary to achieve at least in part the desired response, or to delay the onset or inhibit the development or abort altogether of the particular condition or disorder being treated. This amount will vary depending on the health and physical condition of the individual to be treated, the ethnic background of the individual to be treated, the degree of protection desired, the formulation of the composition, the evaluation of the medical condition, and other relevant factors. This amount is expected to be within a fairly broad range that can be determined by routine experimentation. the

优选HDL的剂量范围是0.1-200mg、更优选10-80mg HDL(基于载脂蛋白的重量)/每千克体重/每次治疗。例如,所施用的HDL剂量可以是约0.2-100mgHDL/每千克体重(基于载脂蛋白的重量),是在临床上必要的时间段(例如几分钟至几小时,诸如高达24小时)以介入注射和/或输注的方式给药的。如果必要,HDL给药可以重复一次或几次。所施用的实际量将由所治疗的状况或病症性质和HDL的给药速率来决定。  Preferably the dosage range of HDL is 0.1-200 mg, more preferably 10-80 mg HDL (based on the weight of apolipoprotein)/kg body weight/per treatment. For example, the dose of HDL administered may be about 0.2-100 mg HDL/kg body weight (based on apolipoprotein weight) for a clinically necessary period of time (e.g., minutes to hours, such as up to 24 hours) for interventional injection and/or administered by infusion. HDL administration can be repeated once or several times if necessary. The actual amount administered will be determined by the nature of the condition or disorder being treated and the rate of administration of HDL. the

优选地,患者是人类,然而,本发明可以扩展到其它哺乳动物患者的治疗和/或预防,包括灵长类、牲畜动物(例如羊、猪、牛、马、驴)、实验室的实验动物(例如小鼠、兔、大鼠、豚鼠)、伴侣动物(例如狗、猫)和被捕获的野生动物。  Preferably, the patient is a human, however, the invention extends to the treatment and/or prophylaxis of other mammalian patients, including primates, livestock animals (e.g. sheep, pigs, cows, horses, donkeys), laboratory experimental animals (e.g. mice, rabbits, rats, guinea pigs), companion animals (e.g. dogs, cats) and captive wild animals. the

按照本发明,HDL优选通过胃肠外给药途径施用给患者。胃肠外给药包括不通过消化道(即非肠的)的任何给药途径,诸如包括注射、输注等给药方式。注射给药方式例如包括在静脉(静脉内)、在动脉内(动脉内)、在肌肉内(肌肉内)和在皮肤下面(皮下)注射。HDL也可用足以获得所需药理效果的剂量、以储存或缓释配方的方式、通过皮下、皮内或肌肉内注射来施用。  According to the present invention, HDL is preferably administered to a patient by the parenteral route of administration. Parenteral administration includes any route of administration that does not pass through the digestive tract (ie, parenteral), such as including injection, infusion, and the like. Administration by injection includes, for example, intravenous (intravenous), intraarterial (intraarterial), intramuscular (intramuscular) and under the skin (subcutaneous) injections. HDL may also be administered by subcutaneous, intradermal or intramuscular injection in a depot or sustained release formulation in doses sufficient to achieve the desired pharmacological effect. the

适合便利地肠胃外给药的组合物包括与受体的血液优选等渗的活性组分的无菌水性制剂。此水性制剂可以是按照公知方法使用合适的分散或润湿剂以及混悬剂调配的。无菌注射制剂也可以是在无毒、肠胃外可接受的稀释剂或溶剂中的无菌注射液或混悬液,稀释剂或溶剂例如聚乙二醇以及乳酸溶液。可采用的能够接受的载体和溶剂包括水、林格氏溶液、合适的碳水化合物(例如蔗糖、麦芽糖、海藻糖、葡萄糖)以及等渗氯化钠溶液。此外,无菌不挥发性油(fixed oil)可便利地用作溶剂或混悬介质。出于此目的,可采用任何刺激性少的不挥发性油,包括合成的单-或二-甘油酯。此外,发现脂肪酸(例如油酸)可用于注射剂。  Compositions suitable for convenient parenteral administration include sterile aqueous formulations of the active ingredient which are preferably isotonic with the blood of the recipient. This aqueous preparation may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic, parenterally acceptable diluent or solvent, such as polyethylene glycol and lactic acid solution. Acceptable vehicles and solvents that may be employed include water, Ringer's solution, suitable carbohydrates (eg, sucrose, maltose, trehalose, glucose) and isotonic sodium chloride solution. In addition, sterile fixed oils are conveniently employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in injectables. the

这些治疗组合物的配方是本领域内的技术人员众所周知的。合适的药物可接受的载体和/或稀释剂包括任何以及所有的常规溶剂、分散介质、填充剂、固体载体、水性溶液、包衣、抗菌剂和抗真菌剂、等渗和吸收延迟剂等。药物活性物质的这些介质和试剂的使用,在本领域内是众所周知的,并且借助实例在以下文献中有所描述:Remington’s Pharmaceutical Sciences,第18版,Mack Publishing Company,Pennsylvania,USA。除非任何常规介质或试剂与活性组分不相容,否则应该认为其可用于本发明的药物组合物。辅助活性组分也可并入组合物中。  The formulation of these therapeutic compositions is well known to those skilled in the art. Suitable pharmaceutically acceptable carriers and/or diluents include any and all conventional solvents, dispersion media, fillers, solid carriers, aqueous solutions, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutically active substances is well known in the art and is described by way of example in: Remington's Pharmaceutical Sciences, 18th Edition, Mack Publishing Company, Pennsylvania, USA. Unless any conventional media or agents are incompatible with the active ingredients, they should be considered usable in the pharmaceutical compositions of the present invention. Supplementary active ingredients can also be incorporated into the compositions. the

其它传送系统可包括缓释传送系统。优选的缓释传送系统是那些用于缓释微丸或胶囊剂型的本发明活性组分的释放的系统。许多类型的缓释传送系统都可使用。这些系统包括(但不限于):(a)活性组分包含在基质内的腐蚀系统,以及(b)活性组分以受控的速率透过聚合物的分散系统。  Other delivery systems may include sustained release delivery systems. Preferred sustained release delivery systems are those used for the release of the active ingredient of the invention in the form of sustained release pellets or capsules. Many types of sustained release delivery systems are available. These systems include, but are not limited to: (a) corrosion systems where the active ingredient is contained within a matrix, and (b) dispersed systems where the active ingredient permeates the polymer at a controlled rate. the

本发明还提供了高密度脂蛋白(HDL)在制备施用(优选肠胃外给药)给糖尿病患者以治疗患者的内皮机能不良的药物中的用途。  The present invention also provides the use of high density lipoprotein (HDL) in the manufacture of a medicament for administration, preferably parenterally, to a diabetic patient for the treatment of endothelial dysfunction in the patient. the

又一方面,本发明提供一种在糖尿病患者内皮机能不良治疗中用于施用(优选肠胃外给药)的药剂,其包括高密度脂蛋白(HDL)。  In a further aspect, the present invention provides a medicament for administration, preferably parenterally, in the treatment of endothelial dysfunction in diabetic patients comprising high density lipoprotein (HDL). the

通过以下非限定性实施例进一步阐述本发明。  The invention is further illustrated by the following non-limiting examples. the

实施例  Example

I.方法  I. Method

招收7名不吸烟的无并发症的DM2患者(4男,3女)和7名不吸烟的年龄及性别相匹配的血脂质正常的对照对象(4男,3女)。DM2患者的包含标准如下:(1)空腹血糖>7.0mmol/L,(2)在节食和二甲双胍的治疗下;(3)不用外源胰岛素;(4)分别具有小于2.0和3.5mmol/L的血浆甘油三酯和LDL胆固醇水平的轻度血脂质异常。大血管疾病的存在其定义为ECG异常、异常踝臂指数或外周血管事件的心脏、脑史、以及自主神经病的存在是患者或对照对象的排除标准。所有女性患者是绝经后的并且未进行激素替代治疗。糖尿病的中值持续期间是5.2±1.2[平均值±SD]年。在血管活性药物(例如ACE抑制剂、血管紧张肽受体阻断剂、钙通道阻断剂、阿司匹林、NSAID和维生素补剂)停用后至少4个星期进行评估。没有一个病人采用抑制素治疗。酒精、咖啡因和二甲双胍在研究前的12小时之内停用。所有对象给出书面的知情同意书,并且获得位于荷兰阿姆斯特丹的阿姆斯特丹大学的Academic医学中心(AMC)内部审查委员会的批准。按照赫尔辛基声明的原理来完成研究。  Seven non-smoking uncomplicated DM2 patients (4 males, 3 females) and 7 non-smoking age- and sex-matched normal blood lipid controls (4 males, 3 females) were recruited. The inclusion criteria for DM2 patients are as follows: (1) fasting blood glucose > 7.0mmol/L, (2) under diet and metformin treatment; (3) without exogenous insulin; (4) with blood glucose less than 2.0 and 3.5mmol/L, respectively Mild dyslipidemia in plasma triglyceride and LDL cholesterol levels. The presence of macrovascular disease, defined as ECG abnormalities, abnormal ankle-brachial index or cardiac, cerebral history of peripheral vascular events, and the presence of autonomic neuropathy were exclusion criteria for patients or control subjects. All female patients were postmenopausal and not on hormone replacement therapy. The median duration of diabetes was 5.2±1.2 [mean±SD] years. Evaluate at least 4 weeks after discontinuation of vasoactive drugs (eg, ACE inhibitors, angiotensin receptor blockers, calcium channel blockers, aspirin, NSAIDs, and vitamin supplements). None of the patients were treated with statins. Alcohol, caffeine, and metformin were discontinued within 12 hours of the study. Written informed consent was given by all subjects and approved by the internal review board of the Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands. The research was done in accordance with the principles of the Statement of Helsinki. the

研究方案  research proposal

利用静脉闭塞拉紧计体积扫描法(如以前出版的(EC-4;Hokanson Inc,Bellevue,USA))评估基线处以及rHDL输注后的血管机能。测定是在恒温(22 ℃-24℃)的安静室内进行的,并且在早晨8:00开始。对象在整个研究中保持仰卧位置。将20规格的柔性聚氨酯导管(Arrow Inc,Reading,USA)插入非优势臂的肱动脉。插入后进行30分钟的盐水输注,以重新建立基线条件。其后,以毫升/分钟/100mL前臂组织体积(FAV)表达的前臂血流(FBF),在双臂上同时进行测量。利用基于微型计算机的R波触发系统进行在线监测。在每次测量过程中,利用快速套充气机给上臂周围的血压套袖充气(40mm Hg)。同时,将两边手腕套充气到以上心脏收缩的血压,以排除手循环(200mm Hg)。连续监测动脉内血压和心率。其次,测定FBF对累积剂量的内皮依赖性血管扩张剂5-羟色胺(5HT,Sigma;0.6,1.8,和6ng·100mL FAV-1·min-1)、不依赖内皮的血管扩张剂硝普钠(SNP,Spruyt Hillen;6,60,180和600ng·100mL FAV-1·min-1)和内皮NO合酶(eNOS)的竞争性抑制剂NG-单甲基-L-精氨酸(L-NMMA,Kordia;50,100,200和400μg·100mL FAV-1·min-1)的反应。以随机顺序施用5-羟色胺和硝普钠输注,然后是L-NMMA输注。所有输注物是按照药品生产质量管理规范(GMP)指导方针在AMC的药房中制备的。利用恒速输注泵,药剂按每个剂量分别动脉内给药6、4和8分钟。将在每个输注最后2分钟内获得的6个测定值平均化,以确定平均FBF。在15分钟的休息期后或者直到FBF返回到基线为止,进行这3个不同的输注。随后,将静脉导管插入对侧臂中,以便在4个小时以每千克体重80mg的剂量施用rHDL(CSL,Behring,Bern,Switzerland)(26,27)。其后,重复输注过程。然后请求病人不要重新开始施用药物(除了二甲双胍之外),并且在rHDL输注后7天得返回,以便重复内皮机能的测定。  Vascular function was assessed at baseline and after rHDL infusion using venous occlusive tensioner plethysmography as previously published (EC-4; Hokanson Inc, Bellevue, USA). Measurements were performed in a quiet room at a constant temperature (22°C-24°C), and started at 8:00 in the morning. Subjects remained in a supine position throughout the study. A 20 gauge flexible polyurethane catheter (Arrow Inc, Reading, USA) was inserted into the brachial artery of the nondominant arm. A 30-minute saline infusion was performed after insertion to re-establish baseline conditions. Thereafter, forearm blood flow (FBF), expressed in ml/min/100 mL forearm tissue volume (FAV), was measured simultaneously on both arms. On-line monitoring is performed using a microcomputer-based R-wave trigger system. During each measurement, a blood pressure cuff around the upper arm was inflated (40 mm Hg) using a quick cuff inflator. Simultaneously, both wrist cuffs were inflated to above systolic blood pressure to exclude hand circulation (200 mm Hg). Continuous monitoring of intra-arterial blood pressure and heart rate. Second, the effect of FBF on cumulative doses of the endothelium-dependent vasodilator serotonin (5HT, Sigma; 0.6, 1.8, and 6 ng·100mL FAV -1 ·min -1 ), the endothelium-independent vasodilator sodium nitroprusside ( SNP, Spruyt Hillen; 6, 60, 180 and 600ng·100mL FAV -1 ·min -1 ) and a competitive inhibitor of endothelial NO synthase (eNOS) NG -monomethyl-L-arginine (L- NMMA, Kordia; 50, 100, 200 and 400 μg·100 mL FAV −1 ·min −1 ). Serotonin and nitroprusside infusions were administered in random order, followed by L-NMMA infusions. All infusions were prepared in AMC's pharmacy following Good Manufacturing Practice (GMP) guidelines. Each dose was administered intraarterially over 6, 4 and 8 minutes using a constant rate infusion pump. The 6 measurements obtained during the last 2 minutes of each infusion were averaged to determine the mean FBF. These 3 different infusions were given after a 15 min rest period or until FBF returned to baseline. Subsequently, an intravenous catheter was inserted into the contralateral arm for administration of rHDL (CSL, Behring, Bern, Switzerland) at a dose of 80 mg/kg body weight over 4 hours (26, 27). Thereafter, the infusion procedure was repeated. Patients were then asked not to restart medications (except metformin) and to return 7 days after rHDL infusion to repeat endothelial function measurements.

实验室评估  Laboratory Evaluation

在12小时过夜禁食之后rHDL输注后,4小时后和7天后立刻从对象抽取血样。在采血后的1小时内进行离心之后,将各个等份扣紧冷冻在液氮中,并在-80℃下贮存,直到实施测定为止。所有测定是在阿姆斯特丹大学医院,Academic医学中心,血管与临床实验室实施的。利用吡哆醛磷酸酯活化测定法(罗式诊断,巴塞尔,瑞士)测定ALAT和ASAT。利用HPLC(Reagens Bio-Rad LaboratoriesB.V.,荷兰)测定变种II(Bio-Rad Laboratories)的HbA1c。利用己糖激酶法(Gluco-quant,于日立917;日立)双次评估血糖。利用标准酶促方法(罗式诊断,巴塞尔,瑞士)确定血浆甘油三酯、总胆固醇、LDL和HDL水平。利用速率浊度法评估贮存血浆的apoA-I和apoB的血浆水平。  Blood samples were drawn from subjects immediately after rHDL infusion, 4 hours later and 7 days after a 12 hour overnight fast. After centrifugation within 1 hour of blood collection, aliquots were snap frozen in liquid nitrogen and stored at -80°C until assayed. All assays were performed at the University Hospital of Amsterdam, Academic Medical Centre, Vascular and Clinical Laboratory. ALAT and ASAT were determined using the pyridoxal phosphate activation assay (Rose Diagnostics, Basel, Switzerland). HbA1c of variant II (Bio-Rad Laboratories) was determined by HPLC (Reagens Bio-Rad Laboratories B.V., The Netherlands). Blood glucose was assessed twice using the hexokinase method (Gluco-quant, in Hitachi 917; Hitachi). Plasma triglycerides, total cholesterol, LDL and HDL levels were determined using standard enzymatic methods (Rose Diagnostics, Basel, Switzerland). Plasma levels of apoA-I and apoB in stored plasma were assessed by rate nephelometric method. the

统计分析  Statistical Analysis

所有临床参数结果,包括体积扫描数据,都表达成平均值±SD。借助双去尾(2-tailed)独立Studentt检验,比较两个组之间的描述统计。在每个输注步骤的最后2分钟内将6个连续记录的FBF平均化。在手腕套充气后的第一个30秒内进行的FBF记录不用于分析。利用2路(2-way)ANOVA实施两个组之间的各个对象的FBF测定、HDL质量和炎症标志物的统计分析,以便重复测定。概率值P<0.05被认为是显著的,P<0.01被认为是非常显著的。  All clinical parameter results, including volume scan data, are expressed as mean ± SD. Descriptive statistics were compared between two groups by means of a 2-tailed independent Student's t test. Six consecutive recordings of FBF were averaged over the last 2 min of each infusion step. FBF recordings made during the first 30 s after cuff inflation were not used for analysis. Statistical analysis of FBF measurements, HDL mass, and inflammatory markers for each subject between the two groups was performed using 2-way ANOVA for replicate measurements. A probability value of P<0.05 was considered significant, and P<0.01 was considered highly significant. the

II.结果  II. Results

对象特征在表1中列出。患者与对照对象之间的基线FBF没有显著差异(表1)。正如所预料的,DM2患者的空腹血糖的血浆水平(P<0.01)、血红蛋白A1c的血浆水平(P<0.01)、甘油三酯的血浆水平(P<0.01)和apoB的血浆水平(P<0.05)更高些。DM2患者与对照者之间的HDL-C和apoA-I水平相当。rHDL输注之后,4个小时之后DM2和对照组的血浆apoA-I增加(分别为,1.2±0.2至2.8±0.4vs.1.2±0.2至2.7±0.4g/L,p<0.01),而输注之后7天在DM2患者中保持稍稍增大(为1.5±0.3g/L,相比于基线,p<0.05)。与对照组相比,DM2患者中的血浆apoB水平更高些,并且不受rHDL输注的影响(分别为,1.0±0.3至0.9±0.3vs.0.7±0.2至0.7±0.2g/L,ns)。  Object characteristics are listed in Table 1. Baseline FBF was not significantly different between patients and control subjects (Table 1). As expected, plasma levels of fasting glucose (P<0.01), hemoglobin A 1c (P<0.01), triglycerides (P<0.01) and apoB (P<0.01) were observed in DM2 patients. 0.05) is higher. HDL-C and apoA-I levels were comparable between DM2 patients and controls. After rHDL infusion, plasma apoA-I increased in DM2 and control group after 4 hours (1.2±0.2 to 2.8±0.4vs.1.2±0.2 to 2.7±0.4g/L, p<0.01), A slight increase remained in DM2 patients 7 days after injection (1.5±0.3 g/L, p<0.05 compared to baseline). Plasma apoB levels were higher in DM2 patients compared with controls and were not affected by rHDL infusion (1.0±0.3 to 0.9±0.3 vs. 0.7±0.2 to 0.7±0.2 g/L, ns ).

rHDL输注对NO生物利用度的急性和长期影响  Acute and long-term effects of rHDL infusion on NO bioavailability

内皮依赖性血管舒张剂5-羟色胺的动脉内输注在两个组中均以剂量依赖性方式使FBF增加。在基线处,FBF对5-羟色胺的响应相比于对照组在DM2中得以削弱(p<0.001,图1)。rHDL输注之后,FBF对5-羟色胺的响应明显增强,但是未达到与对照组相当的水平(p<0.01,图1)。令人感兴趣的是,内皮依赖性血管舒张性的改善在rHDL输注之后维持了7天(p<0.01,图1)。rHDL输注不影响对照组中的5-羟色胺反应(图1)。  Intraarterial infusion of the endothelium-dependent vasodilator serotonin increased FBF in a dose-dependent manner in both groups. At baseline, the FBF response to serotonin was attenuated in DM2 compared to controls (p<0.001, Figure 1 ). After rHDL infusion, the response of FBF to serotonin was significantly enhanced, but did not reach the level comparable to that of the control group (p<0.01, Figure 1). Interestingly, the improvement in endothelium-dependent vasodilation was maintained for 7 days after rHDL infusion (p<0.01, Figure 1 ). rHDL infusion did not affect the serotonin response in the control group (Figure 1). the

在基线处,血管收缩剂对L-NMMA的反应(反映基础NO的活性),与对照组相比在DM2患者中被削弱(p<0.001,图2)。rHDL输注之后,L-NMMA收缩剂的反应得以改善,在输注后仍然持续7天(p<0.01,图2)。与5-羟色胺数据相符,rHDL输注不影响对照组对象中的L-NMMA反应(图2)。  At baseline, the vasoconstrictor response to L-NMMA (reflecting basal NO activity) was impaired in DM2 patients compared to controls (p<0.001, Figure 2). Following rHDL infusion, the L-NMMA inotropic response was improved and persisted for 7 days after infusion (p<0.01, Figure 2). Consistent with the serotonin data, rHDL infusion did not affect the L-NMMA response in control subjects (Figure 2). the

最后,响应SNP的不依赖于内皮的血管舒张性,与对照组相比在DM2患者中更低(p<0.01,图3),并且rHDL输注在患者和对照组中都没有显示出对SNP 血管舒张剂反应有影响。  Finally, endothelium-independent vasodilation in response to SNP was lower in DM2 patients compared with controls (p<0.01, Figure 3), and rHDL infusion showed no effect on SNP in either patients or controls. Vasodilator response is affected. the

III.讨论  III. Discussion

本研究表明,与年龄和性别相匹配的对照组相比,基础及受激NO活性在DM2患者中受到严重威胁。令人感兴趣的是,尽管DM2患者的HDL接近正常,rHDL输注仍然明显改善内皮机能。此改善在rHDL输注之后持续高达7天,在此期间,HDL水平已经返回至基线值。这些数据暗示,HDL增加的策略在DM2中可提供疗效,即使这些患者的HDL-C水平没有明显降低。  The present study demonstrates that basal and stimulated NO activity is severely compromised in DM2 patients compared with age- and sex-matched controls. Interestingly, rHDL infusion significantly improved endothelial function despite near-normal HDL in DM2 patients. This improvement persisted up to 7 days after rHDL infusion, during which time HDL levels had returned to baseline values. These data suggest that HDL-increasing strategies may provide efficacy in DM2, even though HDL-C levels were not significantly reduced in these patients. the

基线处的血管机能  Vascular function at baseline

与前面的研究相符(8,9,12),在受体介导的刺激之后在DM2中基础NO的活性受损以及NO的释放削弱得到证实。有关糖尿病内皮机能不良,已经显示出几种机理。必需的辅因子四氢生物喋呤(BH4)的生物有效性的减小,与内皮NO合酶的解偶联相关,因为这可导致由eNOS直接生成氧自由基,而不生成NO(28-30)。其它根源也可以使自由基生成增加,包括NADPH氧化酶以及线粒体解偶联(10)。若干项介入研究已经强调了ROS在糖尿病血管机能不良中的主要作用,报告内皮机能在动脉内输注高浓度的抗氧化剂之后得以完全恢复(9,12)。  Consistent with previous studies (8, 9, 12), impaired basal NO activity and impaired NO release were demonstrated in DM2 following receptor-mediated stimulation. Several mechanisms have been suggested for diabetic endothelial dysfunction. The reduction in the bioavailability of the essential cofactor tetrahydrobiopterin (BH4) is associated with the uncoupling of endothelial NO synthase, as this leads to the direct generation of oxygen radicals from eNOS instead of NO (28- 30). Other sources of increased free radical production include NADPH oxidase and mitochondrial uncoupling (10). Several interventional studies have highlighted the major role of ROS in diabetic vascular dysfunction, reporting complete restoration of endothelial function after intra-arterial infusion of high concentrations of antioxidants (9, 12). the

rHDL输注对血管机能的影响  Effect of rHDL infusion on vascular function

rHDL输注与基础NO活性以及受体刺激的NO活性在输注后数小时之内的快速改善相关。第一种解释是,rHDL增加了NO的生成。一氧化氮(NO)是由eNOS通过将L-精氨酸转化成L-瓜氨酸而合成的。其活性由复杂的信号转导路径来调节,包括改变eNOS磷酸化的激酶的活化,即MAP激酶和akt-激酶的信号化,或者增加胞内Ca2+的含量,然后是eNOS的钙-钙调蛋白依赖性活化(33)。Yuhanna表明,apoA-I与内皮清除剂受体B-1的结合,伴随着主动脉中内皮依赖性释放反应的增强(24),这主要是由于akt和MAP-激酶的活化(32)。此外,HDL还具有通过保存eNOS蛋白的稳定性以及通过阻止eNOS从细胞膜到胞内细胞器的转运而正调节内皮细胞中的eNOS膜含量的能力(23)。所有这些作用都是由于rHDL输注后基础NO有效性增大导致的,被评估成血管收缩剂对竞争性NO抑制剂L-NMMA的反应增大。相反,前述机理不能完全解释5-羟色胺依赖性、受体刺激的NO有效性增大的原因,后者取决于eNOS的钙-钙调蛋白的活化(31)。由于与内皮5HT-2A受体(33)结合的5-羟色胺不可能在rHDL输注后发生改变,而氧自由基导致的NO降解的减小提供了能够使NO生物有效性增大的第二条主要路径。 的确,HDL具有有效的抗氧化性,丝毫不是由于诸如二乙基对硝基苯磷酸酯酶(paraoxonase)和血小板激活因子水解酶之类的酶在HDL颗粒上的存在而产生的(23)。  rHDL infusion was associated with a rapid improvement in basal NO activity as well as receptor-stimulated NO activity within hours of infusion. The first explanation is that rHDL increases NO production. Nitric oxide (NO) is synthesized by eNOS by converting L-arginine to L-citrulline. Its activity is regulated by complex signal transduction pathways, including the activation of kinases that alter the phosphorylation of eNOS, i.e., the signaling of MAP kinase and akt-kinase, or the increase in intracellular Ca2 + levels, followed by eNOS Ca-Ca Heregulin-dependent activation (33). Yuhanna showed that binding of apoA-I to the endothelial scavenger receptor B-1 was accompanied by an enhanced endothelium-dependent release response in the aorta (24), mainly due to the activation of akt and MAP-kinase (32). In addition, HDL also has the ability to positively regulate eNOS membrane content in endothelial cells by preserving the stability of eNOS protein and by preventing the transport of eNOS from the cell membrane to intracellular organelles (23). All of these effects were due to increased basal NO availability after rHDL infusion, assessed as increased vasoconstrictor response to the competitive NO inhibitor L-NMMA. In contrast, the aforementioned mechanisms do not fully explain the serotonin-dependent, receptor-stimulated increase in NO availability, which is dependent on calcium-calmodulin activation of eNOS (31). Since serotonin binding to endothelial 5HT -2A receptors (33) is unlikely to be altered after rHDL infusion, the reduction in NO degradation by oxygen free radicals provides a second mechanism that would enable increased NO bioavailability. main path. Indeed, the potent antioxidant properties of HDL are in no way due to the presence of enzymes such as diethyl-p-nitrophenyl phosphatase (paraoxonase) and platelet-activating factor hydrolase on HDL particles (23).

rHDL对血管机能的长期影响  Long-term effects of rHDL on vascular function

令人醒目的是,内皮依赖性血管舒张性在rHDL输注后1周仍然明显改善。相反,apoAI以及HDL水平已经几乎返回到输注前的水平。引人注意的是,在基线处,DM2的HDL水平与对照组对象也没有明显区别。相反,rHDL输注无论如何对对照组的血管机能都没有影响。这些数据暗示,不管正常的HDL浓度,DM2中的HDL质量可被削弱。事实上,在DM2中HDL防护作用的丧失,部分是由于HDL中的主要亮氨酸链非酶糖化导致的。ApoAI-HDL的糖化由于其中通过PON-1活性的丧失而危及HDL避免LDL遭受氧化损失的能力(34)。此外,糖化的HDL使内皮中的eNOS表达降低,导致NO生成能力的降低(35)。的确,DM2患者的HDL抗氧化活性水平与氧化应激水平以及糖化控制密切相联(36)。  Strikingly, endothelium-dependent vasodilation remained significantly improved 1 week after rHDL infusion. In contrast, apoAI and HDL levels had almost returned to pre-infusion levels. Strikingly, HDL levels in DM2 were also not significantly different from control subjects at baseline. In contrast, rHDL infusion had no effect whatsoever on vascular function in the control group. These data suggest that, regardless of normal HDL concentrations, HDL mass in DM2 can be impaired. In fact, the loss of HDL protection in DM2 is partly due to non-enzymatic glycation of the major leucine chains in HDL. Glycation of ApoAI-HDL compromises the ability of HDL to protect LDL from oxidative loss through the loss of PON-1 activity therein (34). Furthermore, glycated HDL reduces eNOS expression in the endothelium, resulting in reduced NO production capacity (35). Indeed, levels of HDL antioxidant activity in DM2 patients are closely linked to levels of oxidative stress and glycation control (36). the

研究的局限性  Study Limitations

由于在对照组中rHDL在输注后4个小时其效果还没有显现出来,因此血管机能研究在对照组中于7天之后没有重复。据此,DM2患者第7天的血管机能数据与基线以及对照组第1天的观察数据进行比较。然而,由于对血管机能的主要结论涉及相比于基线处的DM2患者具有持续改善,因此在对照组中第7天研究的缺乏不影响在本研究中得出的结论。其次,虽然仅仅研究了相当小一组的DM2患者,但是在有限组患者中已经发现具有明显改善并且这种改善在4小时以及1周后仍然重现的事实,有力支持了HDL对DM2患者的血管机能有效果这一明显结论,尽管样本量小。  Vascular function studies were not repeated after 7 days in the control group since the effect of rHDL was not apparent 4 hours after infusion in the control group. Accordingly, the vascular function data of DM2 patients on day 7 were compared with the observation data of baseline and control group on day 1. However, since the main conclusions on vascular function relate to sustained improvement in DM2 patients compared to baseline, the absence of a Day 7 study in the control group does not affect the conclusions drawn in this study. Second, although only a relatively small group of DM2 patients has been studied, the fact that significant improvements have been found in a limited group of patients and that this improvement is reproduced after 4 hours and 1 week strongly supports the role of HDL in DM2 patients. There is an obvious conclusion that vasculature has an effect, despite the small sample size. the

DM2患者的临床含意  Clinical implications for patients with DM2

抑制素是心血管防护策略的中心范例。然而,鉴于在抑制素治疗期间没有避免的大量事件,对最佳组合治疗的搜索是一个全面进步。HDL增加策略的认可正在被迅速扩展。HDL-C与心血管事件之间的强烈反比关系在非糖尿病和糖尿病患者中得到的结果是一致的。不幸的是,提供在HDL增加介入之后心血管危险减小的证据的可靠数据不足,这主要是由于缺乏选择性的和有效的增加HDL的化合物(37)。  Inhibins are a central paradigm of cardiovascular protective strategies. However, given the large number of events that were not avoided during statin therapy, the search for optimal combination therapy is an overall advance. The recognition of HDL augmentation strategies is rapidly expanding. The strong inverse relationship between HDL-C and cardiovascular events was consistent in non-diabetic and diabetic patients. Unfortunately, there are insufficient reliable data providing evidence of reduced cardiovascular risk following HDL increasing interventions, mainly due to the lack of selective and potent HDL increasing compounds (37). the

最近的数据已经表明,用变种载脂蛋白(apoA-I Milano)生成的rHDL输 注5周,能够减缓近期发生心肌梗塞的患者的冠状动脉粥样化体积的发展进程,甚至诱导其退化(38)。与这种快速作用相符,实验室以及体内研究都已经表明,HDL的抗致动脉粥样化能力不仅仅局限于其在反胆固醇转运中的作用。对DM2的内皮机能不良的急性和持续恢复的观察,进一步支持了HDL在其反胆固醇转运作用之上的效果。这支持了DM2中HDL增强的作用,即使HDL水平没有明显降低。  Recent data have shown that a 5-week infusion of rHDL derived from a variant apolipoprotein (apoA-I Milano) slows the progression of, and even induces regression of, coronary atherosclerotic volumes in patients with recent myocardial infarction (38 ). Consistent with this rapid action, both laboratory and in vivo studies have shown that the anti-atherogenic potential of HDL is not limited to its role in anti-cholesterol transport. The observation of acute and sustained recovery of endothelial dysfunction in DM2 further supports the role of HDL over its role in anti-cholesterol transport. This supports a role for HDL enhancement in DM2, even though HDL levels were not significantly reduced. the

表1  Table 1

Figure DEST_PATH_G200710182192220080110D000011
Figure DEST_PATH_G200710182192220080110D000011

*p<0.05,#p<0.01  * p<0.05, #p<0.01

参考文献  references

1.Haffner SM.“Coronary heart disease in patients with diabetes”.N Engl J Med(2000);342(14):1040-2.  1. Haffner SM. "Coronary heart disease in patients with diabetes". N Engl J Med(2000); 342(14): 1040-2.

2.Rohrer L,Hersberger M,von Eckardstein A.“High densitylipoproteins in the intersection of diabetes mellitus,inflammation andcardiovascular disease.”Curr Opin Lipidol.(2004);15(3):269-78.  2. Rohrer L, Hersberger M, von Eckardstein A. "High density lipoproteins in the intersection of diabetes mellitus, inflammation and cardiovascular disease." Curr Opin Lipidol. (2004); 15(3): 269-78.

3.Turner RC,Millns H,Neil HA et al.“Riskfactors for coronaryartery disease in non-insulin dependent diabetes mellitus:UnitedKingdom Prospective Diabetes Study(UKPDS:23)”.BMJ(1998);316:823-828.  3. Turner RC, Millns H, Neil HA et al. "Riskfactors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23)". BMJ (1998); 316: 823-828.

4.Pyorala K,Pedersen TR,Kjekshus J,Faergeman O,Olsson AG,Thorgeirsson G.“Cholesterol lowering with simvastatin improvesprognosis of diabetic patients with coronary heart disease.A subgroupanalysis of the Scandinavian Simvastatin Survival Study(4S)”.DiabetesCare(1997);20(4):614-20.  4.Pyorala K,Pedersen TR,Kjekshus J,Faergeman O,Olsson AG,Thorgeirsson G.“Cholesterol lowering with simvastatin improvesprognosis of diabetic patients with coronary heart disease.A subgroupanalysis of the Scandinavian Simvastatin Survival Study(4S)”.DiabetesCare(1997 ); 20(4): 614-20.

5.Colhoun HM,Betteridge DJ,Durrington PN,Hitman GA,Neil HA,Livingstone SJ,Thomason MJ,Mackness MI,Charlton-Menys V,Fuller JH;CARDS investigators.Primary prevention of cardiovascular disease withatorvastatin in type 2 diabetes n the Collaborative Atorvastatin DiabetesStudy(CARDS):multicentre randomised placebo-controlled trial.Lancet(2004);364(9435):685-96.  5. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, Thomason MJ, Mackness MI, Charlton-Menys V, Fuller JH; Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet (2004); 364 (9435): 685-96.

6.Cheung BM,Lauder IJ,Lau CP,Kumana CR.“Meta-analysis of largerandomized controlled trials to evaluate the impact of statins oncardiovascular outcomes.”Br J Clin Pharmacol.(2004);57(5):640-51.  6. Cheung BM, Lauder IJ, Lau CP, Kumana CR. "Meta-analysis of largerandomized controlled trials to evaluate the impact of statins oncardiovascular outcomes." Br J Clin Pharmacol. (2004); 57(5): 640-51.

7.Schachinger V,Britten MB,Zeiher AM.“Prognostic impact ofcoronary vasodilator dysfunction on adverse long-term outcome ofcoronary heart disease.”Circulation(2000);101:1899-1906.  7. Schachinger V, Britten MB, Zeiher AM. "Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease." Circulation (2000); 101: 1899-1906.

8.Woodman RJ,Playford DA,Watts GF.“Basal production of nitricoxide(NO)and non-NO vasodilators in the forearm microcirculation inType 2 diabetes:associations with blood pressure and HDL cholesterol.”Diabetes Res Clin Pract.(2006);71(1):59-67.  8.Woodman RJ, Playford DA, Watts GF. "Basal production of nitricoxide(NO) and non-NO vasodilators in the forearm microcirculation in Type 2 diabetes: associations with blood pressure and HDL cholesterol." Diabetes Res Clin Pract. (2006) 71(1):59-67.

9.van Etten RW,de Koning EJ,Verhaar MC,Gaillard CA,RabelinkTJ.“Impaired NO-dependent vasodilation in patients with Type II(non-insulin-dependent)diabetes mellitus is restored by acuteadministration of folate.”Diabetologia(2002);45(7):1004-10.  9. van Etten RW, de Koning EJ, Verhaar MC, Gaillard CA, RabelinkTJ. "Impaired NO-dependent vasodilation in patients with Type II(non-insulin-dependent) diabetes mellitus is restored by acute administration of folate." Diabetologia(2002) ;45(7):1004-10.

10.Brownlee M.“Biochemistry and molecular cell biology of diabeticcomplications.”Nature(2001);414(6865):813-20.  10. Brownlee M. "Biochemistry and molecular cell biology of diabetic complications." Nature (2001); 414 (6865): 813-20.

11.Du X,Edelstein D,Obici S,Higham N,Zou MH,Brownlee M.“Insulinresistance reduces arterial prostacyclin synthase and eNOS activitiesby increasing endothelial fatty acid oxidation.”J Clin Invest.(2006);116(4):1071-80.  11. Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. "Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation." J Clin Invest. (2006); 116(14): 1 -80.

12.Ting HH,Timimi FK,Boles KS,Creager SJ,Ganz P,Creager MA.“Vitamin C improves endothelium-dependent vasodilation in patients withnon-insulin-dependent diabetes mellitus.”J Clin Invest.(1996);97(1):22-8.  12. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. "Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus." J Clin Invest. (1996); 97 (1 ): 22-8.

13.Stroes ES,Koomans HA,de Bruin TW,Rabelink TJ.“Vascularfunction in the forearm of hypercholesterolaemic patients off and onlipid-lowering medication.”Lancet(1995);346(8973):467-71.  13. Stroes ES, Koomans HA, de Bruin TW, Rabelink TJ. "Vascular function in the forearm of hypercholesterolaemic patients off and onlipid-lowering medication." Lancet (1995); 346(8973): 467-71.

14.van Etten RW,de Koning EJ,Honing ML,Stroes ES,Gaillard CA,Rabelink TJ.“Intensive lipid lowering by statin therapy does not improvevasoreactivity in patients with type 2 diabetes.”Arterioscler ThrombVasc Biol.(2002);22(5):799-804.  14. van Etten RW, de Koning EJ, Honing ML, Stroes ES, Gaillard CA, Rabelink TJ. "Intensive lipid lowering by statin therapy does not improve vasoreactivity in patients with type 2 diabetes." Arterioscler ThrombVasc Biol. (2002); 22( 5): 799-804.

15.Balletshofer BM,Goebbel S,Rittig K,Enderle M,Schmolzer I,Wascher TC et al.“Intense cholesterol lowering therapy with a HMG-CoAreductase inhibitor does not improve nitric oxide dependent endothelialfunction in type-2-diabetes-a multicenter,randomised,double-blind,three-arm placebo-controlled clinical trial.”Exp Clin EndocrinolDiabetes(2005);113(6):324-30.  15. Balletshofer BM, Goebbel S, Rittig K, Enderle M, Schmolzer I, Wascher TC et al. "Intense cholesterol lowering therapy with a HMG-CoAreductase inhibitor does not improve nitric oxide dependent endothelial function in a type-2-diabetics randomised, double-blind, three-arm placebo-controlled clinical trial." Exp Clin Endocrinol Diabetes (2005); 113(6): 324-30.

16.Cockerill GW,Reed S:High-density lipoprotein:Multipotenteffects on cells of the vasculature.Int.Rev.Cytol.(1999);188:257-297.  16. Cockerill GW, Reed S: High-density lipoprotein: Multipotent effects on cells of the vasculature. Int. Rev. Cytol. (1999); 188: 257-297.

17.Nanjee MN,Doran JE,Lerch PG,Miller NE:Acute effects ofintravenous infusion of apolipoprotein A-I/phosphatidylcholine discs onplasma lipoproteins in human.Arterioscler.Thromb.Vasc.Biol.(1999);19:979-989.  17. Nanjee MN, Doran JE, Lerch PG, Miller NE: Acute effects ofintravenous infusion of apolipoprotein A-I/phosphatidylcholine discs onplasma lipoproteins in human.Arterioscler.Thromb.Vasc.Biol.(1999); 19:979-989.

18.Gordon DJ,Probsfield JL,Garrison RJ:High-density lipoproteincholesterol and cardiovascular disease:four prospective Americanstudies.Circulation(1989);79:8-15.  18. Gordon DJ, Probsfield JL, Garrison RJ: High-density lipoprotein cholesterol and cardiovascular disease: four prospective American studies. Circulation (1989); 79: 8-15.

19.Paszty C,Maeda N,Verstuyft J:Apolipoprotein AI transgenecorrects apolipoprotein E-deficiency-induced atherosclerosis in mice.J.Clin.Invest.(1998);94:899-903.  19. Paszty C, Maeda N, Verstuyft J: Apolipoprotein AI transgene corrects apolipoprotein E-deficiency-induced atherosclerosis in mice. J. Clin. Invest. (1998); 94: 899-903.

20.Tangirala RK,Tsukamoto K,Chun SH,Usher D,Pure E,Rader DJ:Regression of atherosclerosis induced by liver-directed gene transferof apolipoprotein A-1 in mice.Circulation(1999);100:1816-1822.  20. Tangirala RK, Tsukamoto K, Chun SH, Usher D, Pure E, Rader DJ: Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-1 in mice. Circulation (1999); 100: 1816-1822.

21.Bisoendial RJ,Hovingh GK,E1 Harchaoui K,Levels JH,TsimikasS,Pu K,Zwinderman AE,Kuivenhoven JA,Kastelein JJ,Stroes ES.“Consequences of cholesteryl ester transfer protein inhibition inpatients with familial hypoalphalipoproteinemia.”Aterioscler ThrombVasc Biol.(2005);25(9);e133-34.  21.Bisoendial RJ,Hovingh GK,E1 Harchaoui K,Levels JH,TsimikasS,Pu K,Zwinderman AE,Kuivenhoven JA,Kastelein JJ,Stroes ES.“Consequences of cholesteryl ester transfer protein inhibition inpatients with familial hypoalphalipoproteinemia.”Aterioscler ThrombVasc Biol. (2005); 25(9); e133-34.

22.Brousseau ME,Schaefer EJ,Wolfe ML,Bloedon LT,Digenio AG,Clark RW,Mancuso JP,Rader DJ.“Effects of an inhibitor of cholesterylester transfer protein on HDL cholesterol.”N Engl J Med.(2004);350(15):1505-1515.  22. Brousseau ME, Schaefer EJ, Wolfe ML, Bloedon LT, Digenio AG, Clark RW, Mancuso JP, Rader DJ. "Effects of an inhibitor of cholesterol transfer protein on HDL cholesterol." N Engl J Med. (2004); 350 (15): 1505-1515.

23.Mineo C,Deguchi H,Griffin JH,Shaul PW.“Endothelial andantithrombotic actions of HDL.”Circ Res.(2006);98(11):1352-64.  23. Mineo C, Deguchi H, Griffin JH, Shaul PW. "Endothelial and antithrombotic actions of HDL." Circ Res. (2006); 98(11): 1352-64.

24.Yuhanna IS,Zhu Y,Cox BE,Hahner LD,Osborne-Lawrence S,Lu P,Marcel YL,Anderson RG,Mendelsohn ME,Hobbs HH,Shaul PW.“High-densitylipoprotein binding to scavenger receptor-B1 activates endothelialnitric oxide synthase.”Nat Med(2001);7(7):853-7.  24. Yuhanna IS, Zhu Y, Cox BE, Hahner LD, Osborne-Lawrence S, Lu P, Marcel YL, Anderson RG, Mendelsohn ME, Hobbs HH, Shaul PW."High-density lipoprotein binding to scavenger receptor-B1 activates endothelial nitric oxide synthase." Nat Med (2001); 7(7): 853-7.

25.Matz CE,Jonas A.“Micellar complexes of hujman apolipoproteinA-1 with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersion.”J.Biol.Chem.(1982);257:4535-4540.  25. Matz CE, Jonas A. "Micellar complexes of hujman apolipoprotein A-1 with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersion." J. Biol. Chem. (1982); 257: 4535-4540.

26.Lerch PG,Fortsch V,Hodler G,Bolli R.“Production andcharacterization of a reconstituted high density lipoprotein fortherapeutic applications.”Vox Sang.(1996);71(3):155-64.  26. Lerch PG, Fortsch V, Hodler G, Bolli R. "Production and characterization of a reconstituted high density lipoprotein for therapeutic applications." Vox Sang. (1996); 71(3): 155-64.

27.Bisoendial RJ,Hovingh GK,Levels JH,Lerch PG,Andresen I,Hayden MR,Kastelein JJ,Stroes ES.“Restoration of endothelial functionby increasing high-density lipoprotein in subjects with isolated lowhigh-density lipoprotein.”Circulation(2003);107(23):2944-8.  27. Bisoendial RJ, Hovingh GK, Levels JH, Lerch PG, Andresen I, Hayden MR, Kastelein JJ, Stroes ES. "Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated lowhigh-density lipoprotein)3(" ;107(23):2944-8.

28.Stroes E,Kastelein J,Cosentino F,Erkelens W,Wever R,KoomansH,Luscher T,Rabelink T.“Tetrahydrobiopterin restores endothelialfunction in hypercholesterolemia.”J Clin Invest.1997;99(1):41-6.  28. Stroes E, Kastelein J, Cosentino F, Erkelens W, Wever R, Koomans H, Luscher T, Rabelink T. "Tetrahydrobiopterin restores endothelia function in hypercholesterolemia." J Clin Invest.1997; 99(1): 41-6.

29.Alp NJ,Mussa S,Khoo J,Cai S,Guzik T,Jefferson A,Goh N,Rockett KA,Channon KM.“Tetrahydrobiopterin-dependent preservation ofnitric oxide-mediated endothelial function in diabetes by targetedtransgenic GTP-cyclohydrolase Ioverexpression.”J.Clin Invest.(2003);112(5):725-235.  29. Alp NJ, Mussa S, Khoo J, Cai S, Guzik T, Jefferson A, Goh N, Rockett KA, Channon KM. "Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic expression over GTP-cyclohydrase" J. Clin Invest. (2003); 112(5): 725-235.

30.Heitzer T,Krohn K,Alvers S,Meinertz T.“Tetrahydrobiopterinimproves endothelium-dependent vasodilation by increasing nitric oxideactivity in patients with type II diabetes mellitus.”Diabetologia(2000);43(11):1435-8.  30. Heitzer T, Krohn K, Alvers S, Meinertz T. "Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with type II diabetes mellitus." Diabetologia(2000); 43(51-8.143)

31.Govers R,Rabelink TJ.“Cellular regulation of endothelialnitric oxide synthase.”Am J Physiol Renal Physiol.(2001);280(2):F193-206.  31. Govers R, Rabelink TJ. "Cellular regulation of endothelial nitric oxide synthase." Am J Physiol Renal Physiol. (2001); 280(2): F193-206.

32.Mineo C,Yuhanna IS,Quon MJ,Shaul PW.“High densityliporotein-induced endothelial nitric-oxide synthase activation ismediated by Akt and MAP kinases.”J Biol Chem.(2003);278(11):9142-9.  32. Mineo C, Yuhanna IS, Quon MJ, Shaul PW. "High density liporotein-induced endothelial nitric-oxide synthase activation ismediated by Akt and MAP kinases." J Biol Chem. (2003); 278(11): 9142-9.

33.Takano S,Hoshino Y,Li L,Matsuoka I,Ono T,Kimura J.“Dualroles of 5-hydroxytryptamine in ischemia-reperfusion injury in isolatedrat hearts.”J Cardiovasc Pharmacol Ther.(2004);9(1):43-50.  33. Takano S, Hoshino Y, Li L, Matsuoka I, Ono T, Kimura J. "Dual roles of 5-hydroxytryptamine in ischemia-reperfusion injury in isolated rat hearts." J Cardiovasc Pharmacol Ther. (2004); 9(1): 43-50.

34.Hedrick CC,Thorpe SR,Fu MX,Harper CM,Yoo J,Kim SM,Wong H, Peters AL.“Glycation impairs high-density lipoprotein function.”Diabetologia.(2000);43(3):312-20.  34. Hedrick CC, Thorpe SR, Fu MX, Harper CM, Yoo J, Kim SM, Wong H, Peters AL. "Glycation impairments high-density lipoprotein function." Diabetologia. (2000); 43(3): 312-20 .

35.Matsunaga T,Nakajima T,Miyazaki T,Koyama I,Hokari S,InoueI,Kawai S,Shimomura H,Katayama S,Hara A,Komoda T.“Glycatedhigh-density lipoprotein regulates reactive oxygen species and reactivenitrogen species in endothelial cells.”Metabolism(2003);52(1):42-9.  35. Matsunaga T, Nakajima T, Miyazaki T, Koyama I, Hokari S, Inoue I, Kawai S, Shimomura H, Katayama S, Hara A, Komoda T." Glycated high-density lipoprotein regulates reactive oxygen species and reactive nitrogen species in cendothelial "Metabolism (2003); 52(1): 42-9.

36.Nobecourt E,Jacqueminet S,Hansel B,Chantepie S,Grimaldi A,Chapman MJ,Kontush A.“Defective antioxidative activity of small denseHDL3 particles in type 2 diabetes:relationship to elevated oxidativestress and hyperglycaemia.”Diabetologia.(2005);48(3):529-38.  36. Nobecourt E, Jacqueminet S, Hansel B, Chantepie S, Grimaldi A, Chapman MJ, Kontush A. "Defective antioxidant activity of small denseHDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia." (2Diabeto0log) 48(3):529-38.

37.Keech A,Simes RJ,Barter P,Best J,Scott R,Taskinen MR et al;FIELD study investigators.“Effects of long-term fenofibrate therapyon cardiovascular events in 9795 people with type 2 diabetes mellitus(the FIELD study):randomised controlled trial.”Lancet(2005);366(9500):1849-61.  37. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR et al; FIELD study investigators. "Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomized controlled trial." Lancet (2005); 366 (9500): 1849-61.

38.Nissen Se,Tsunoda T,Tuzcu EM,Schoenhagen P,Cooper CJ,YasinM,Eaton GM,Lauer MA,Sheldon WS,Grines CL,Halpern S,Crowe T,Blankenship JC,Kerensky R.“Effect of recombinant ApoA-I Milano oncoronary atherosclerosis in patients with acute coronary syndromes:arandomized controlled trial.”JAMA(2003):290(17):2292-300.  38. Nissen Se, Tsunoda T, Tuzcu EM, Schoenhagen P, Cooper CJ, YasinM, Eaton GM, Lauer MA, Sheldon WS, Grines CL, Halpern S, Crowe T, Blankenship JC, Kerensky R."Effect of recombinant ApoA-I Milano oncoronary atherosclerosis in patients with acute coronary syndromes: arandomized controlled trial." JAMA (2003): 290 (17): 2292-300.

Claims (12)

1.高密度脂蛋白HDL在制备用于施用给糖尿病患者以治疗该患者的内皮机能不良的药物中的用途。CLAIMS 1. Use of high density lipoprotein HDL in the manufacture of a medicament for administration to a diabetic patient for the treatment of endothelial dysfunction in the patient. 2.如权利要求1所述的用途,其中,所述患者是II型糖尿病患者。2. The use according to claim 1, wherein the patient is a type II diabetic patient. 3.如权利要求1所述的用途,其中,所述治疗是对糖尿病诱发的巨型血管病症的治疗,所述巨型血管病症选自短暂性缺血发作、中风、绞痛、心肌梗塞、心脏衰竭和外周血管疾病。3. The use according to claim 1, wherein the treatment is a treatment of diabetes-induced macrovascular disorders selected from the group consisting of transient ischemic attack, stroke, angina, myocardial infarction, heart failure and peripheral vascular disease. 4.如权利要求1所述的用途,其中,所述治疗是对糖尿病诱发的微型血管病症的治疗,所述微型血管病症选自糖尿病导致的视网膜病、微白蛋白尿、巨白蛋白尿、肾终末期疾病、勃起机能障碍、自主性神经病、外周神经病、骨髓炎和下肢局部缺血。4. purposes as claimed in claim 1, wherein, described treatment is to the treatment of the microvascular disorder that diabetes induces, and described microvascular disorder is selected from the retinopathy that diabetes causes, microalbuminuria, macroalbuminuria, End-stage renal disease, erectile dysfunction, autonomic neuropathy, peripheral neuropathy, osteomyelitis, and lower extremity ischemia. 5.如权利要求1所述的用途,其中,所述HDL选自:成熟HDL、初生HDL、重组HDL、由重组载脂蛋白或重组载脂蛋白功能肽或其其它类似物制成的rHDL。5. The use according to claim 1, wherein the HDL is selected from: mature HDL, nascent HDL, recombinant HDL, rHDL made from recombinant apolipoprotein or recombinant apolipoprotein functional peptide or other analogues thereof. 6.如权利要求5所述的用途,其中,所述HDL是重组HDL。6. The use according to claim 5, wherein said HDL is recombinant HDL. 7.如权利要求1所述的用途,其中,所述HDL的给药剂量范围是每次治疗0.1-200mg/kg患者体重,优选每次治疗10-80mg/kg体重。7. The use according to claim 1, wherein the dosage range of said HDL is 0.1-200 mg/kg body weight of the patient per treatment, preferably 10-80 mg/kg body weight per treatment. 8.如权利要求1所述的用途,其中,所述施用是肠胃外给药。8. The use according to claim 1, wherein said administration is parenteral administration. 9.如权利要求8所述的用途,其中,所述肠胃外给药选自:静脉内、动脉内、肌内和皮下注射或输注。9. The use according to claim 8, wherein said parenteral administration is selected from the group consisting of intravenous, intraarterial, intramuscular and subcutaneous injection or infusion. 10.如权利要求8所述的用途,其中,所述肠胃外给药是静脉内注射或输注。10. The use according to claim 8, wherein said parenteral administration is intravenous injection or infusion. 11.如权利要求4所述的用途,其中,所述糖尿病导致的视网膜病为非增生的、增生的或黄斑水肿。11. The use according to claim 4, wherein said diabetic retinopathy is non-proliferative, proliferative or macular edema. 12.一种在糖尿病患者内皮机能不良治疗中施用的制剂,其包括rHDL。12. A formulation for administration in the treatment of endothelial dysfunction in diabetic patients comprising rHDL.
CN2007101821922A 2007-03-01 2007-03-01 Treatment of endothelial dysfunction in diabetic patients Active CN101254299B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101821922A CN101254299B (en) 2007-03-01 2007-03-01 Treatment of endothelial dysfunction in diabetic patients

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101821922A CN101254299B (en) 2007-03-01 2007-03-01 Treatment of endothelial dysfunction in diabetic patients

Publications (2)

Publication Number Publication Date
CN101254299A CN101254299A (en) 2008-09-03
CN101254299B true CN101254299B (en) 2012-04-04

Family

ID=39889622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101821922A Active CN101254299B (en) 2007-03-01 2007-03-01 Treatment of endothelial dysfunction in diabetic patients

Country Status (1)

Country Link
CN (1) CN101254299B (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Max Nieuwdorp, et al..Abstract 1344: Restoration of Endothelial Function After Infusion of Reconstituted High-Density Lipoprotein in Subjects with Type 2 Diabetes Mellitus.《Circulation》.2006, *

Also Published As

Publication number Publication date
CN101254299A (en) 2008-09-03

Similar Documents

Publication Publication Date Title
US8557962B2 (en) Treatment of endothelial dysfunction in diabetic patients
US20040038891A1 (en) Methods and compositions for the treatment of ischemic reperfusion
KR20100098693A (en) Recombinant vwf formulations
US20250082715A1 (en) Compositions and methods for treatment of acute lung injury
KR20190075968A (en) New PEGylated liposomal preparations of apelin for the treatment of cardiovascular-related disorders
CN101254299B (en) Treatment of endothelial dysfunction in diabetic patients
CA2580100C (en) Treatment of endothelial dysfunction in diabetic patients
EP1964571B1 (en) Treatment of endothelial dysfunction in diabetic patients
AU2007200908B2 (en) Treatment of endothelial dysfunction in diabetic patients
HK1171656B (en) Treatment of endothelial dysfunction in diabetic patients
HK1121938B (en) Treatment of endothelial dysfunction in diabetic patients
WO2011140429A1 (en) Delivery of cholesteryl ester to steroidogenic tissues
JP5601750B2 (en) Treatment of abnormal endothelial function in diabetic patients
CN1668322A (en) Cardioprotective therapy based on elimination of lipid peroxidase with allene oxygenase
Ting et al. The Progression of Cardiomyopathy in the Mitochondrial Disease, Friedreich’s Ataxia
Lerch Reconstituted, Plasma‐Derived High‐Density Lipoprotein
HK1115823B (en) Charged lipoprotein complexes and their uses
HK1115823A1 (en) Charged lipoprotein complexes and their uses

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: JETT LTD.

Free format text: FORMER NAME: CSL LIMITED

CP01 Change in the name or title of a patent holder

Address after: Vitoria Australia

Patentee after: Ztel company limited

Address before: Vitoria Australia

Patentee before: CSL Limited