CN101273143A - Multiplex polymerase chain reaction for genetic sequence analysis - Google Patents
Multiplex polymerase chain reaction for genetic sequence analysis Download PDFInfo
- Publication number
- CN101273143A CN101273143A CNA2006800295834A CN200680029583A CN101273143A CN 101273143 A CN101273143 A CN 101273143A CN A2006800295834 A CNA2006800295834 A CN A2006800295834A CN 200680029583 A CN200680029583 A CN 200680029583A CN 101273143 A CN101273143 A CN 101273143A
- Authority
- CN
- China
- Prior art keywords
- dna
- primers
- artificial
- pcr
- nucleic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007403 mPCR Methods 0.000 title description 16
- 108091028043 Nucleic acid sequence Proteins 0.000 title description 3
- 238000012300 Sequence Analysis Methods 0.000 title description 2
- 244000052769 pathogen Species 0.000 claims abstract description 103
- 238000003752 polymerase chain reaction Methods 0.000 claims abstract description 77
- 238000000034 method Methods 0.000 claims abstract description 76
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 51
- 239000000523 sample Substances 0.000 claims abstract description 50
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 49
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 49
- 230000001717 pathogenic effect Effects 0.000 claims abstract description 48
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 23
- 239000012472 biological sample Substances 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims description 28
- 238000002493 microarray Methods 0.000 claims description 28
- 230000000241 respiratory effect Effects 0.000 claims description 20
- 230000000295 complement effect Effects 0.000 claims description 13
- 241000894007 species Species 0.000 claims description 11
- 239000002773 nucleotide Substances 0.000 claims description 9
- 125000003729 nucleotide group Chemical group 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 239000000539 dimer Substances 0.000 claims description 5
- 238000012163 sequencing technique Methods 0.000 claims description 4
- 206010036790 Productive cough Diseases 0.000 claims description 2
- 239000008280 blood Substances 0.000 claims description 2
- 210000004369 blood Anatomy 0.000 claims description 2
- 244000000021 enteric pathogen Species 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 claims description 2
- 238000003909 pattern recognition Methods 0.000 claims description 2
- 208000024794 sputum Diseases 0.000 claims description 2
- 210000003802 sputum Anatomy 0.000 claims description 2
- 108020004414 DNA Proteins 0.000 description 172
- 238000001514 detection method Methods 0.000 description 58
- 238000003556 assay Methods 0.000 description 34
- 239000000203 mixture Substances 0.000 description 32
- 230000035945 sensitivity Effects 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 238000009396 hybridization Methods 0.000 description 22
- 230000003321 amplification Effects 0.000 description 19
- 238000003199 nucleic acid amplification method Methods 0.000 description 19
- 239000000872 buffer Substances 0.000 description 18
- 238000003757 reverse transcription PCR Methods 0.000 description 18
- 238000003753 real-time PCR Methods 0.000 description 17
- 239000000047 product Substances 0.000 description 15
- 241000712461 unidentified influenza virus Species 0.000 description 13
- 241001500351 Influenzavirus A Species 0.000 description 11
- 241000202934 Mycoplasma pneumoniae Species 0.000 description 11
- 241000700605 Viruses Species 0.000 description 11
- 238000013467 fragmentation Methods 0.000 description 11
- 238000006062 fragmentation reaction Methods 0.000 description 11
- 206010022000 influenza Diseases 0.000 description 11
- 241000598171 Human adenovirus sp. Species 0.000 description 10
- 208000037797 influenza A Diseases 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 238000010839 reverse transcription Methods 0.000 description 10
- 208000003322 Coinfection Diseases 0.000 description 8
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 8
- 241000588650 Neisseria meningitidis Species 0.000 description 8
- 108091034117 Oligonucleotide Proteins 0.000 description 8
- 230000004069 differentiation Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 7
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- 238000000018 DNA microarray Methods 0.000 description 6
- 101000958664 Homo sapiens Nucleus accumbens-associated protein 1 Proteins 0.000 description 6
- 108010006232 Neuraminidase Proteins 0.000 description 6
- 229920001213 Polysorbate 20 Polymers 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 230000001332 colony forming effect Effects 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 6
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 6
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 6
- 210000002345 respiratory system Anatomy 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000011550 stock solution Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 241000701161 unidentified adenovirus Species 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 241000588832 Bordetella pertussis Species 0.000 description 5
- 241001647372 Chlamydia pneumoniae Species 0.000 description 5
- 101000631760 Homo sapiens Sodium channel protein type 1 subunit alpha Proteins 0.000 description 5
- 241000712431 Influenza A virus Species 0.000 description 5
- 102000005348 Neuraminidase Human genes 0.000 description 5
- 238000002944 PCR assay Methods 0.000 description 5
- 206010057190 Respiratory tract infections Diseases 0.000 description 5
- 102100028910 Sodium channel protein type 1 subunit alpha Human genes 0.000 description 5
- 241000193998 Streptococcus pneumoniae Species 0.000 description 5
- 241000607479 Yersinia pestis Species 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 238000003205 genotyping method Methods 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 241000193738 Bacillus anthracis Species 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 101710154606 Hemagglutinin Proteins 0.000 description 4
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 4
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 4
- 101710176177 Protein A56 Proteins 0.000 description 4
- 238000011529 RT qPCR Methods 0.000 description 4
- 241000193996 Streptococcus pyogenes Species 0.000 description 4
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 4
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 4
- 108010006785 Taq Polymerase Proteins 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 230000000890 antigenic effect Effects 0.000 description 4
- 229940065181 bacillus anthracis Drugs 0.000 description 4
- 238000007821 culture assay Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000000185 hemagglutinin Substances 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 102000054765 polymorphisms of proteins Human genes 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000013207 serial dilution Methods 0.000 description 4
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- 241000252870 H3N2 subtype Species 0.000 description 3
- 241000606768 Haemophilus influenzae Species 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 241000589242 Legionella pneumophila Species 0.000 description 3
- 201000009906 Meningitis Diseases 0.000 description 3
- 241000725643 Respiratory syncytial virus Species 0.000 description 3
- 206010040047 Sepsis Diseases 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000012136 culture method Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 229940047650 haemophilus influenzae Drugs 0.000 description 3
- 229940115932 legionella pneumophila Drugs 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 239000011535 reaction buffer Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000012192 staining solution Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 2
- 108091093088 Amplicon Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 101150039660 HA gene Proteins 0.000 description 2
- 241000711467 Human coronavirus 229E Species 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- 238000009004 PCR Kit Methods 0.000 description 2
- 101150093941 PORA gene Proteins 0.000 description 2
- 241000845082 Panama Species 0.000 description 2
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 239000007984 Tris EDTA buffer Substances 0.000 description 2
- 101710163493 Uracil-DNA glycosylase 1 Proteins 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 2
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 2
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 2
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 2
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 241001493065 dsRNA viruses Species 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011536 extraction buffer Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000007614 genetic variation Effects 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000003771 laboratory diagnosis Methods 0.000 description 2
- 238000013345 light-cycler PCR Methods 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000010208 microarray analysis Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000002966 oligonucleotide array Methods 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 208000023504 respiratory system disease Diseases 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- 208000013223 septicemia Diseases 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 239000006163 transport media Substances 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 244000052613 viral pathogen Species 0.000 description 2
- 239000000304 virulence factor Substances 0.000 description 2
- 230000007923 virulence factor Effects 0.000 description 2
- 101150078635 18 gene Proteins 0.000 description 1
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 1
- 101150084399 37 gene Proteins 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000588780 Bordetella parapertussis Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 206010069767 H1N1 influenza Diseases 0.000 description 1
- 101000595467 Homo sapiens T-complex protein 1 subunit gamma Proteins 0.000 description 1
- 241000134304 Influenza A virus H3N2 Species 0.000 description 1
- 206010022004 Influenza like illness Diseases 0.000 description 1
- 241001500350 Influenzavirus B Species 0.000 description 1
- 241000272168 Laridae Species 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- PKVZBNCYEICAQP-UHFFFAOYSA-N Mecamylamine hydrochloride Chemical compound Cl.C1CC2C(C)(C)C(NC)(C)C1C2 PKVZBNCYEICAQP-UHFFFAOYSA-N 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 206010061603 Respiratory syncytial virus infection Diseases 0.000 description 1
- 108020001027 Ribosomal DNA Proteins 0.000 description 1
- 241000702670 Rotavirus Species 0.000 description 1
- CGNLCCVKSWNSDG-UHFFFAOYSA-N SYBR Green I Chemical compound CN(C)CCCN(CCC)C1=CC(C=C2N(C3=CC=CC=C3S2)C)=C2C=CC=CC2=[N+]1C1=CC=CC=C1 CGNLCCVKSWNSDG-UHFFFAOYSA-N 0.000 description 1
- 101800002927 Small subunit Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 241001505901 Streptococcus sp. 'group A' Species 0.000 description 1
- 206010042566 Superinfection Diseases 0.000 description 1
- 102100036049 T-complex protein 1 subunit gamma Human genes 0.000 description 1
- 206010046306 Upper respiratory tract infection Diseases 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 241000710886 West Nile virus Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 108010068991 arginyl-threonyl-prolyl-prolyl-prolyl-seryl-glycine Proteins 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 208000035850 clinical syndrome Diseases 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011847 diagnostic investigation Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000012631 diagnostic technique Methods 0.000 description 1
- 238000003748 differential diagnosis Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000011841 epidemiological investigation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229940094991 herring sperm dna Drugs 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012775 microarray technology Methods 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- UPIXZLGONUBZLK-UHFFFAOYSA-N platinum Chemical compound [Pt].[Pt] UPIXZLGONUBZLK-UHFFFAOYSA-N 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 208000030925 respiratory syncytial virus infectious disease Diseases 0.000 description 1
- 208000020029 respiratory tract infectious disease Diseases 0.000 description 1
- 238000004370 retrospective diagnosis Methods 0.000 description 1
- 238000012340 reverse transcriptase PCR Methods 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 201000010740 swine influenza Diseases 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及PCR方法,其包括:提供怀疑含有一种或多种病原体核酸的生物样品;添加多种与病原体内找得到的基因相对应的PCR引物;以及在样品上进行聚合酶链式反应以扩增与基因相对应的核酸的亚群。所述引物包括用于每种病原体的至少一种引物对,并且引物含有与任何病原体DNA或与样品内任何背景DNA不同源的尾随序列。聚合酶链式反应内至少一种引物的浓度不大于约100nM。The present invention relates to a PCR method comprising: providing a biological sample suspected of containing one or more pathogenic nucleic acids; adding a plurality of PCR primers corresponding to genes found in the pathogen; and performing a polymerase chain reaction on the sample to A subpopulation of nucleic acid corresponding to the gene is amplified. The primers include at least one primer pair for each pathogen, and the primers contain a trailer sequence that is not homologous to any pathogen DNA or to any background DNA within the sample. The concentration of at least one primer within the polymerase chain reaction is no greater than about 100 nM.
Description
本申请对2005年6月16日提交的美国临时专利申请号60/691,768;2005年11月14日提交的美国临时专利申请号60/735,876;2005年11月14日提交的美国临时专利申请号60/735,824和2006年3月22日提交的美国临时专利申请号60/743,639,以及2006年6月06日提交的美国专利申请号11/422,425和2006年6月06日提交的美国专利申请号11/422,431要求优先权。本申请是2005年7月02日提交的美国专利申请号11/177,647;2005年7月02日提交的11/177,646和2005年11月07日提交的11/268,373的部分继续申请。这些非临时申请对2004年7月02日提交的美国临时专利申请号60/590,931;2004年9月15日提交的美国临时专利申请号60/609,918;2004年11月05日提交的美国临时专利申请号60/626,500;2004年11月29日提交的美国临时专利申请号60/631,437和2004年11月29日提交的美国临时专利申请号60/631,460要求优先权。This application is a reference to U.S. Provisional Patent Application No. 60/691,768 filed June 16, 2005; U.S. Provisional Patent Application No. 60/735,876 filed November 14, 2005; U.S. Provisional Patent Application No. filed November 14, 2005 60/735,824 and U.S. Provisional Patent Application No. 60/743,639, filed March 22, 2006, and U.S. Patent Application No. 11/422,425, filed June 06, 2006, and U.S. Patent Application No. 11/422,425, filed June 06, 2006 11/422,431 claims priority. This application is a continuation-in-part of US Patent Application Nos. 11/177,647, filed July 02, 2005; 11/177,646, filed July 02, 2005; and 11/268,373, filed November 07, 2005. These non-provisional applications are complementary to U.S. Provisional Patent Application No. 60/590,931, filed July 02, 2004; U.S. Provisional Patent Application No. 60/609,918, filed September 15, 2004; U.S. Provisional Patent Application No. 60/609,918, filed November 05, 2004 Application No. 60/626,500; US Provisional Patent Application No. 60/631,437, filed November 29, 2004, and US Provisional Patent Application No. 60/631,460, filed November 29, 2004 claim priority.
技术领域 technical field
概括而言,本发明涉及多重遗传靶的扩增方法和使用微阵列对扩增产物的分析。In general, the present invention relates to methods for the amplification of multiple genetic targets and the analysis of the amplification products using microarrays.
背景技术 Background technique
精确而快速地鉴定在人类中引起急性呼吸道感染(ARI)的感染性病原体可在成功治疗呼吸系统疾病、应用合适的爆发控制措施以及有效使用珍贵抗生素和抗病毒药物中是关键因素。然而,ARI的临床区别诊断因不同病原体所致症状的相似性及这些病原(agent)的种数以及生物多样性而是有挑战性的。目前,最广泛使用的鉴定呼吸道病原体的方法是培养法、免疫测定法和RT-PCR/PCR测定法。培养法和免疫测定技术通常对特定病原体是特异性的,并且因此限于在物种水平及有时在血清型水平上检测单种可疑病原(agent)。相反,基于核酸的技术如RT-PCR/PCR则是通用的,提供在所有病原体的检测中的高敏感性,所述病原体包括培养条件苛刻或难以培养的生物体。因PCR的通用性质,该技术可以对多种媒介同时应用,增加建立特定病因学的机会(McDonough等,“用于检测临床样本中的肺炎支原体、肺炎衣原体、嗜肺性军团病杆菌和百日咳博代氏杆菌的多重PCR(A mu1tiplex PCR for detection ofMycoplasma pneumoniae,Chlamydophila pneumoniae,Legionella pneumophila,and Bordetella pertussis in clinical specimens)”Mol.Cell Probes,19,314-322(2005))并允许精确地检测涉及多于一种病原体的同时感染(Grondahl等,“通过单管多重反转录PCR快速鉴别引起急性呼吸道感染的九种生物体:可行性研究(Rapid identification of nine microorganisms causing acute respiratorytract infections by single-tube multiplex reverse transcription-PCR:feasibilitystudy)”J.Clin.Microbiol.,37,1-7(1999))。Accurate and rapid identification of infectious pathogens causing acute respiratory infections (ARIs) in humans can be a key factor in the successful treatment of respiratory diseases, application of appropriate outbreak control measures, and effective use of precious antibiotics and antivirals. However, the clinical differential diagnosis of ARI is challenging due to the similarity of symptoms caused by different pathogens and the number and biodiversity of these agents. Currently, the most widely used methods for identifying respiratory pathogens are culture methods, immunoassays, and RT-PCR/PCR assays. Culture and immunoassay techniques are often specific for a particular pathogen and are thus limited to the detection of a single suspected agent at the species level and sometimes at the serotype level. In contrast, nucleic acid-based techniques such as RT-PCR/PCR are general, offering high sensitivity in the detection of all pathogens, including harsh or difficult-to-cultivate organisms. Due to the general nature of PCR, the technique can be applied to multiple agents simultaneously, increasing the chances of establishing a specific etiology (McDonough et al., "For the detection of Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila and Bordetella pertussis in clinical samples Multiplex PCR for Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, and Bordetella pertussis in clinical specimens (A mu1tiplex PCR for detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Bordetella pertussis in clinical specimens)" Mol. Cell Probes, 19, 314-322 (2005)) and allows accurate detection Co-infection with one pathogen (Grondahl et al., "Rapid identification of nine organisms causing acute respiratory tract infections by single-tube multiplex reverse transcription PCR: a feasibility study (Rapid identification of nine microorganisms causing acute respiratory tract infections by single-tube multiplex reverse transcription-PCR: feasibility study)" J. Clin. Microbiol., 37, 1-7 (1999)).
在一个反应内通过多重方法检测数种生物体是需要的,因为ARI病原可能在症状学上是非特异性的。因此,一次检定一种病原体是效率低下的并且没有产生关于可能同时感染的信息。已经开发数种多重RT-PCR/PCR检测法以解决这个问题(McDonough;Grondahl;Puppe等,“用于检测九种呼吸道病原体的多重反转录酶PCR ELISA的评估(Evaluation of a multiplex reversetranscriptase PCR ELISA for the detection of nine respiratory tract pathogens)”J.Clin.Virol.,30,165-174(2004);Bellau-Pujol等,“用于检测12种呼吸RNA病毒的三重RT-PCR测定的开发(Development of three multiplex RT-PCR assays forthe detection of 12 respiratory RNA viruses)”J.Virol.Methods,126,53-63(2005);Miyashita等,“用于后天免疫性群体肺炎中肺炎衣原体、肺炎支原体和肺炎军团杆菌的同时检测的多重PCR(Multiplex PCR for the simultaneous detection ofChlamydia pneumoniae,Mycoplasma pneumoniae and Legionella pneumophila incommunity-acquired pneumonia)”Respir.Med.,98,542-550(2004);Osiowy,“通过多重反转录PCR测定法直接检测临床呼吸样本中呼吸道合胞体病毒、副流感病毒和腺病毒(Direct detection of respiratory syncytial virus,parainfluenzavirus,and adenovirus in clinical respiratory specimens by a multiplex reversetranscription-PCR assay)”J.Clin.Microbiol.,36,3149-3154(1998);Verstrepen等,“使用新型单管实时反转录PCR测定法快速检测脑脊液样本中的肠道病毒RNA(Rapid detection of enterovirus RNA in cerebrospinal fluid specimens with anovel single-tube real-time reverse transcription-PCR assay)”J.Clin.Microbiol.,39,4093-4096(2001);Coiras等,“通过双重反转录巢式-PCR测定法同时检测临床样品中的十四种呼吸病毒(Simultaneous detection of fourteen respiratoryviruses in clinical specimens by two multiplex reverse transcription nested-PCRassays)”J.Med.Virol.,72,484-495(2004);Coiras等,“使用反向线点杂交测定法的用于同时检测呼吸病毒的寡聚核苷酸阵列(Oligonucleotide array forsimultaneous detection of respiratory viruses using a reverse-line blot hybridizationassay)”J.Med.Virol.,76,256-264(2005);Gruteke等,“用于儿童中急性呼吸道感染的多重PCR的实际执行(Practical implementation of a multiplex PCR foracute respiratory tract infections in children)”J.Clin.Microbiol.,42,5596-5603(2004)),但是该方法受目前扩增子检测方法的区分能力限制。基于凝胶的分析方法总是限于其产物可以仅由大小而得到区分的有限种类的病原体,而如实时PCR的荧光报告系统受到可以确定无疑进行解析的荧光峰数目的限制——不多于3个或4个。因此,需要允许快速区分并鉴定与具有众多潜在病因的疾病综合症有关的病原体如ARI的诊断性鉴定法。Detection of several organisms by multiplexing within one reaction is required because ARI pathogens may be symptomatologically nonspecific. Therefore, assaying one pathogen at a time is inefficient and yields no information about possible co-infections. Several multiplex RT-PCR/PCR assays have been developed to address this issue (McDonough; Grondahl; Puppe et al., "Evaluation of a multiplex reverse transcriptase PCR ELISA for the detection of nine respiratory pathogens for the detection of nine respiratory tract pathogens)" J.Clin.Virol., 30, 165-174 (2004); Bellau-Pujol et al., "Development of a triplex RT-PCR assay for the detection of 12 respiratory RNA viruses (Development of three multiplex RT-PCR assays for the detection of 12 respiratory RNA viruses)” J.Virol.Methods, 126, 53-63 (2005); Miyashita et al., “For Chlamydia pneumoniae, Mycoplasma pneumoniae and Multiplex PCR for the simultaneous detection of Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella pneumophila incommunity-acquired pneumonia" Respir. Med., 98, 542-550 (2004); Osiowy, "By multiple inversion Direct detection of respiratory syncytial virus, parainfluenzavirus, and adenovirus in clinical respiratory specimens by a multiplex reversetranscription-PCR assay"J.Clin. Microbiol., 36, 3149-3154 (1998); Verstrepen et al., "Rapid detection of enterovirus RNA in cerebrospinal fluid specimens with novel single -tube real-time reverse transcription-PCR assay)" J.Clin.Microbiol., 39, 4093-4096 (2001); Coiras et al., "Simultaneous detection of ten Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested-PCRassays" J. Med. Virol., 72, 484-495 (2004); Coiras et al., "Using reverse line dot blot assay Oligonucleotide array for simultaneous detection of respiratory viruses using a reverse-line blot hybridization assay" J.Med.Virol., 76, 256-264 (2005); Gruteke et al. , "Practical implementation of a multiplex PCR for acute respiratory tract infections in children" J.Clin.Microbiol., 42, 5596-5603 (2004)), but the method Limited by the discriminatory power of current amplicon detection methods. Gel-based analytical methods are always limited to a limited class of pathogens whose products can be distinguished by size alone, while fluorescent reporter systems such as real-time PCR are limited by the number of fluorescent peaks that can be resolved with certainty—no more than 3 or 4. Therefore, there is a need for diagnostic assays that allow rapid differentiation and identification of pathogens such as ARI associated with disease syndromes with numerous potential etiologies.
已经开发允许通过RT-PCR/PCR方法同时检测更多病原体的数种技术。至多达22种呼吸道病原体的多重鉴定已经通过MASSCODETM多重RT-PCR系统(Briese等,“用于快速灵敏差异检测病原体的诊断系统(Diagnostic system forrapid and sensitive differential detection of pathogens)”Emerg.Infect.Dis.,11,310-313(2005))实现。点样(Spotted)(尤其长寡核苷酸)微阵列也已经一定程度地成功用作多重PCR分析工具(Roth等,“用于与急性上呼吸道感染有关细菌的实验室诊断的寡聚核苷酸阵列的应用(Use of an oligonucleotide array forlaboratory diagnosis of bacteria responsible for acute upper respiratory infections)”J.Clin.Microbiol.,42,4268-4274(2004);Chizhikov等,“微生物毒力因素的微阵列分析(Microarray analysis of microbial virulence factors)”Appl.Environ.Microbiol.,67,3258-3263(2001);Chizhikov等,“通过寡聚核苷酸微阵列杂交检测和基因分型人类A型轮状病毒(Detection and genotyping of human group Arotaviruses by oligonucleotide microarray hybridization)”J.Clin.Microbiol.,40,2398-2407(2002);Wang等,“基于微阵列的病毒病原体检测和基因分型(Microarray-based detection and genotyping of viral pathogens)”Proc.Natl.Acad.Sci.USA,99,15687-15692(2002);Wang等,“使用DNA微阵列发现病毒并回收序列(Viral discovery and sequence recovery using DNA microarrays)”PLoS Biol.,1,E2(2003);Wilson等,“小亚基核糖体DNA探针的高密度微阵列(High-density microarray of small-subunit ribosomal DNA probes)”Appl.Environ.Microbiol.,68,2535-2541(2002);Wilson等,“使用微阵列技术的18个病原体微生物的序列特异性鉴定(Sequence-specific identification of 18pathogenic microorganisms using microarray technology)”Mol.Cell.Probes,16,119-127(2002);Call等,“使用DNA微阵列鉴定抗微生物剂抗性基因(Identifyingantimicrobial resistance genes with DNA microarrays)”Antimicrob.AgentsChemother.,47,3290-3295(2003);Call等,“混合基因组微阵列揭示单核细胞增多性李斯特氏菌的多重血清型和谱系特异性差异(Mixed-genome microarraysreveal multiple serotype and lineage-specific differences among strains of Listeriamonocytogenes)”J.Clin.Microbiol.,41,632-639(2003)。这些系统的主要限制是不能够区分相同生物体亲缘关系密切的株系,原因在于所检测的杂交事件可能对局部的序列多样性不敏感。例如,点样微阵列探针(spotted microarrayprobe)可以与变异多达25%的序列非特异性地交叉杂交-考虑到若能够具体地定义多态性,则这种难以辨别的变异携带可以高度区分株系的足够信息的事实,这是个不利事件。Several techniques have been developed that allow simultaneous detection of more pathogens by RT-PCR/PCR methods. Multiplex identification of up to 22 respiratory pathogens has been performed with the MASSCODE ™ multiplex RT-PCR system (Briese et al., "Diagnostic system for rapid and sensitive differential detection of pathogens" Emerg.Infect.Dis ., 11, 310-313 (2005)). Spotted (especially long oligonucleotide) microarrays have also been used with some success as a multiplex PCR analysis tool (Roth et al., "Oligonucleotides for the Laboratory Diagnosis of Bacteria Associated with Acute Upper Respiratory Tract Infection". Application of an oligonucleotide array for laboratory diagnosis of bacteria responsible for acute upper respiratory infections" J.Clin.Microbiol., 42, 4268-4274 (2004); Chizhikov et al., "Microarray Analysis of Microbial Virulence Factors (Microarray analysis of microbial virulence factors)” Appl.Environ.Microbiol., 67, 3258-3263 (2001); Chizhikov et al., “Detection and genotyping of human type A rotavirus by oligonucleotide microarray hybridization ( Detection and genotyping of human group Arotaviruses by oligonucleotide microarray hybridization)” J.Clin.Microbiol., 40, 2398-2407 (2002); Wang et al., “Microarray-based detection and genotyping of viral pathogens genotyping of viral pathogens)” Proc.Natl.Acad.Sci.USA, 99, 15687-15692(2002); Wang et al., “Viral discovery and sequence recovery using DNA microarrays” PLoS Biol., 1, E2 (2003); Wilson et al., "High-density microarray of small-subunit ribosomal DNA probes" Appl.Environ.Microbiol., 68, 2535-2541 (2002); Wilson et al., "Sequence-specific identification of 18 pathogenic microorganisms using microarray technology" Mol.Cell.Probes, 16, 119-127( 2002); Call et al., "Identifying antimicrobial resistance genes with DNA microarrays" Antimicrob.AgentsChemother., 47, 3290-3295 (2003); Call et al., "Mixed genome microarrays reveal Mixed-genome microarrays reveal multiple serotype and lineage-specific differences among strains of Listeria monocytogenes" J. Clin. Microbiol., 41, 632-639 (2003 ). A major limitation of these systems is the inability to distinguish closely related strains of the same organism, since the detected hybridization events may not be sensitive to local sequence diversity. For example, spotted microarray probes can non-specifically cross-hybridize to sequences that vary by as much as 25%—considering that if polymorphisms can be specifically defined, such elusive variant carriers can be highly distinguishable between strains. The fact that there is enough information about the system, this is an adverse event.
株系水平的鉴定可能在其中亲缘关系密切的生物体可以具有完全不同的临床后果及流行病学模式的情况下是重要的。在此类情况下,株系必须得到区分以采取恰当的处理及控制。临床相关的百日咳博代氏菌(Bordetella pertussis)及其临床不相关的姊妹物种副百日咳博代氏菌(B.parapertussis)提供了经典例证。另一个例子是流感病毒,对它区分疫苗敏感株系和疫苗不敏感株系及循环性人分离株和可能的动物传染毒株(例如禽H5N1)是具有重要而明显价值的。Identification at the strain level may be important in situations where closely related organisms may have disparate clinical outcomes and epidemiological patterns. In such cases, strains must be differentiated for proper handling and control. The clinically relevant Bordetella pertussis (Bordetella pertussis) and its clinically irrelevant sister species B. parapertussis provide a classic example. Another example is influenza viruses, for which distinction of vaccine-susceptible from vaccine-insensitive strains and circulating human isolates from possible zoonotic strains (eg avian H5N1) is of significant and obvious value.
发明内容 Contents of the invention
本发明包括一种方法,该方法包括:提供怀疑含有来自预定义病原体组内的一种或多种病原体核酸的生物样品;添加与预定义病原体组内找得到的基因对应的多种PCR引物至样品内;以及在样品上进行聚合酶链式反应以扩增与基因相对应的核酸的亚群。引物包括用于每种病原体的至少一种引物对并且引物包含不与样品内任何病原体DNA或与任何背景DNA同源的尾随序列。聚合酶链式反应内的至少一种引物的浓度不大于约100nM。The present invention includes a method comprising: providing a biological sample suspected of containing one or more pathogenic nucleic acids from within a predefined group of pathogens; adding a plurality of PCR primers corresponding to genes found within the predefined group of pathogens to within the sample; and performing a polymerase chain reaction on the sample to amplify a subpopulation of nucleic acid corresponding to the gene. The primers include at least one primer pair for each pathogen and the primers include a trailer sequence that is not homologous to any pathogen DNA within the sample or to any background DNA. The concentration of at least one primer within the polymerase chain reaction is not greater than about 100 nM.
实施本发明的方式Modes of Carrying Out the Invention
在如下旨在说明而不是限制的说明书中,叙述具体细节以提供对本发明的彻底理解。然而,本领域技术人员明白本发明可以在与这些具体细节不同的其它实施方案内实施。在其它情况下,省略对公知方法及装置的详细描述,以便不以非必要的细节而使本发明的描述含混不清。In the following description, which is intended to be illustrative rather than limiting, specific details are set forth in order to provide a thorough understanding of the invention. However, it will be apparent to those skilled in the art that the invention may be practiced in other embodiments that depart from these specific details. In other instances, detailed descriptions of well-known methods and apparatus are omitted so as not to obscure the description of the present invention with unnecessary detail.
临床的综合症几乎很少对单种病原体是特异性的,因此允许检验并区分大量候选病原体的测定法毫无疑问将有益于公共健康工作。本文这里呈现的工作证实了联合多重RT-PCR/PCR、RA和自动化序列相似性搜索及病原体鉴定的再测序阵列(resequencing array,RA)途径-RPM v.1系统在广谱条件下对20种常见呼吸道病原体以及6种生物威胁因子(biothreat agent)的临床诊断能力及流行病学监测能力。通过联合多重PCR扩增的敏感性与RA特异性,可以避免当评估诊断性鉴定法时经常遇见的对特异性与敏感性之间的权衡。使用无论在提取缓冲液内,或作为复杂混合物与提取缓冲液一起添加(spike)至健康患者临床样品内的对照样品证实这一点。数据还显示使用来自患有流感样疾病的患者中101份咽喉拭子样品,该系统提供与用于HAdV和流感病毒A二者的已接受的基于RT-PCR/PCR和基于培养的方法的等效敏感性。Clinical syndromes are rarely specific to a single pathogen, so assays that allow the detection and differentiation of a large number of candidate pathogens will undoubtedly benefit public health efforts. The work presented here demonstrates the resequencing array (RA) approach combining multiplex RT-PCR/PCR, RA, and automated sequence similarity search and pathogen identification-RPM v.1 system for 20 species under broad-spectrum conditions. The clinical diagnosis and epidemiological monitoring capabilities of common respiratory pathogens and 6 biothreat agents. By combining the sensitivity of multiplex PCR amplification with RA specificity, the trade-off between specificity and sensitivity often encountered when evaluating diagnostic assays can be avoided. This was demonstrated using control samples spiked into healthy patient clinical samples either in extraction buffer, or as a complex mixture with extraction buffer. The data also show that using 101 throat swab samples from patients with influenza-like illness, the system provides equivalence with accepted RT-PCR/PCR-based and culture-based methods for both HAdV and influenza virus A. effect sensitivity.
短寡核苷酸再测序阵列法(RA)可以同时提供物种水平和株系水平的对来自ARI病原体的PCR扩增子的鉴定。通过在该阵列上所拼贴的(tiled)揭示区分已杂交靶与原型序列的序列差异的RA能力而提供株系特异性信息,该信息包括来自先前未知变种的独特多态性(ProSeqs,见Malanoski等的美国专利申请号11/___,___,名为“计算机执行的生物序列鉴定系统和方法(Computer-Implemented Biological Sequence Identifier System and Method)”并且在与本申请的相同日期提交)。先前研究将自定义设计(custom designed)的呼吸道病原体微阵列(RPM v.1)与用于微生物核酸富集、随机核酸扩增和自动化序列相似性搜索的方法进行组合,以便在物种水平和株系水平上用毫无疑问的统计解释实现鉴定广谱呼吸道病原体(Lin等,“使用再测序DNA微阵列鉴定广谱呼吸道病原体(Broad-spectrum respiratory tract pathogenidentification using resequencing DNA microarrays)”Genome Res.,16(4),527-535(2006);Wang等,“通过再测定微阵列快速、广谱鉴定流感病毒(Rapid,Broad-spectrum Identification of Influenza Viruses by Resequencing Microarrays)”Emerg.Infect.Dis.,12(4),638-646(2006))。然而,在处理具有较低病原体滴度的临床样品时,类属性扩增(generic amplification)方法的成功有限。在本文中公开的是改良的多重PCR扩增策略,该策略缓和与靶随机扩增有关的敏感问题。成功的概念验证性实验使用从显示ARI的患者中得到的临床样品,证实可以实现与标准参考测定法高物种水平的一致性(例如培养法、美国病理学家协会(College of American Pathologist)[CAP]认证的PCR),与此同时通过在改良的检定时间内(8.5小时)的直接序列读数,仍产生正确的物种水平和株系水平鉴定。该结果提示此方法对于简明的自动化及微型化方法是经得起检验的,并且因此可以产生用于诊断目的和监测目的基于微阵列的平台。Short oligonucleotide resequencing arrays (RA) can provide both species-level and strain-level identification of PCR amplicons from ARI pathogens. Strain-specific information, including unique polymorphisms from previously unknown variants, is provided by the ability of RAs tiled on the array to reveal sequence differences between hybridized target and prototype sequences (ProSeqs, see U.S. Patent Application No. 11/___,___ by Malanoski et al., entitled "Computer-Implemented Biological Sequence Identifier System and Method" and filed on the same date as the present application). Previous studies combined custom-designed respiratory pathogen microarrays (RPM v.1) with methods for microbial nucleic acid enrichment, random nucleic acid amplification, and automated sequence similarity Broad-spectrum respiratory tract pathogen identification using resequencing DNA microarrays (Broad-spectrum respiratory tract pathogen identification using resequencing DNA microarrays)” Genome Res., 16 (4), 527-535 (2006); Wang et al., "Rapid, Broad-spectrum Identification of Influenza Viruses by Resequencing Microarrays (Rapid, Broad-spectrum Identification of Influenza Viruses by Resequencing Microarrays)" Emerg.Infect.Dis., 12 (4), 638-646 (2006)). However, generic amplification methods have had limited success when processing clinical samples with lower pathogen titers. Disclosed herein is an improved multiplex PCR amplification strategy that alleviates sensitivity issues associated with random amplification of targets. Successful proof-of-concept experiments using clinical samples from patients exhibiting ARI demonstrated that high species-level concordance with standard reference assays (e.g. culture, College of American Pathologist [CAP ] authenticated PCR), while still yielding correct species-level and strain-level identifications by direct sequence reads within an improved assay time (8.5 hours). The results suggest that this approach is amenable to straightforward automation and miniaturization, and thus could lead to microarray-based platforms for diagnostic and monitoring purposes.
聚合酶链式反应(PCR)是本领域内公知的。本发明方法使用可能含有特定病原体核酸的生物样品。该方法不需要病原体核酸的存在,因而本方法可以例如在来自健康个体的标本上进行。作为初始步骤,病原体核酸可以从临床样品例如但不限于鼻冲洗物、咽喉拭子、痰、血液或环境样品中提取。临床样品可以从包括但不限于人的任何生物物种中获得。可以检测任何类型的病原体,包括但不限于呼吸道病原体、肠道病原体和生物威胁因子如炭疽孢子。病原体的组可以例如在物种水平或株系水平上加以定义。Polymerase chain reaction (PCR) is well known in the art. The methods of the invention use biological samples that may contain nucleic acids of a particular pathogen. The method does not require the presence of pathogenic nucleic acid and thus the method may be performed, for example, on specimens from healthy individuals. As an initial step, pathogenic nucleic acids can be extracted from clinical samples such as, but not limited to, nasal rinses, throat swabs, sputum, blood, or environmental samples. Clinical samples can be obtained from any biological species including, but not limited to, humans. Any type of pathogen can be detected, including but not limited to respiratory pathogens, enteric pathogens, and biological threats such as anthrax spores. Groups of pathogens can eg be defined at the species level or at the strain level.
本方法涉及与可以在病原体内找得到的基因对应的PCR引物。PCR引物是本领域内公知。存在用于每种病原体的至少一种引物对。在本方法内所用的引物具有与任意病原体的DNA或与样品内的任何背景DNA不同源的尾随序列。背景DNA可以是从其中获得临床样品的物种的DNA。有效的(Potential)尾随序列可以随机或额外地生成,并且可以例如通过与遗传序列数据库如GenBank进行比较而受到评估。尾随序列本身通常不与病原体DNA结合,并且可以减少PCR中引物二聚体的形成,原因在于尾随序列不与任何其它引物互补。与从人中获得的标本一起使用的合适尾随序列包括但不限于CGATACGACGGGCGTACTAGCG(引物L,SEQ ID NO.1)和CGATACGACGGGCGTACTAGCGNNNNNNNNN(引物LN,SEQ ID NO.2)。The method involves PCR primers corresponding to genes that can be found in the pathogen. PCR primers are well known in the art. There is at least one primer pair for each pathogen. The primers used within the method have trailer sequences that are not homologous to the DNA of any pathogen or to any background DNA within the sample. The background DNA may be the DNA of the species from which the clinical sample was obtained. Potential trailer sequences can be generated randomly or additionally, and can be evaluated, for example, by comparison with genetic sequence databases such as GenBank. The trailer itself usually does not bind to pathogen DNA and can reduce the formation of primer dimers in PCR because the trailer is not complementary to any other primers. Suitable trailer sequences for use with specimens obtained from humans include, but are not limited to, CGATACGACGGGCGTACTACTAGCG (Primer L, SEQ ID NO. 1) and CGATACGACGGGCGTACTAGCGNNNNNNNNN (Primer LN, SEQ ID NO. 2).
在单个PCR内的引物套可以例如包括至少30、40、50、60、70、80、90或100种不同引物。与长度不同的基因相对应的引物可以在相同的PCR中使用。例如,可以在单个PCR内产生长度小于50、100或200个核苷酸并且大于3000或2000个核苷酸的扩增核酸。A primer set within a single PCR may eg comprise at least 30, 40, 50, 60, 70, 80, 90 or 100 different primers. Primers corresponding to genes of different lengths can be used in the same PCR. For example, amplified nucleic acids less than 50, 100 or 200 nucleotides in length and greater than 3000 or 2000 nucleotides in length can be generated within a single PCR.
使用这些引物的PCR可以包括如PCR领域内通常已知以及如本文内公开的其它成分或使用如PCR领域内通常已知以及如本文内公开的设备。可以在反应内使用低浓度的引物。一种引物至全部引物可以在不大于约100nM的浓度上存在。可以使用较低的浓度如40-50nM。PCR using these primers can include other components or use equipment as generally known in the PCR art and as disclosed herein. Low concentrations of primers can be used within the reaction. One primer to all primers may be present at a concentration of no greater than about 100 nM. Lower concentrations such as 40-50 nM can be used.
生物样品可以分成多个等分试样并且在每一等分试样上进行使用不同引物的独立PCR。等分试样随后可以在PCR后被重新合并。这可以在使用大量引物时完成。PCR内使用的引物越多,形成引物二聚体的可能性越高。PCR可以随具有不同引物混合物的多重等分试样而进行更好优化。A biological sample can be divided into multiple aliquots and an independent PCR using different primers performed on each aliquot. Aliquots can then be repooled after PCR. This can be done when using a large number of primers. The more primers used in a PCR, the higher the probability of primer-dimer formation. PCR can be better optimized with multiple aliquots with different primer mixes.
PCR之后,可以进行病原体的鉴定。这可以如此完成,即通过使样品与包含至少部分互补于已扩增核酸的多个核酸序列的微阵列接触,并允许已扩增核酸与互补核酸杂交。此类方法在美国专利申请号11/177,646内描述。互补核酸可以是,但不限于25至29聚物。这类短互补核酸的使用减少任意错配与微阵列杂交的可能性。互补核酸可以包括针对至少一种已扩增核酸的并且至多针对全部已扩增核酸的完全匹配探针及每一完全匹配探针的中央位置的三种不同单核苷酸多态性。这种排列允许确定基因的全部序列,而这可以允许鉴定病原体株。Following PCR, identification of the pathogen can be performed. This can be accomplished by contacting the sample with a microarray comprising a plurality of nucleic acid sequences that are at least partially complementary to the amplified nucleic acid, and allowing the amplified nucleic acid to hybridize to the complementary nucleic acid. Such methods are described in US Patent Application No. 11/177,646. Complementary nucleic acids can be, but are not limited to, 25 to 29 mers. The use of such short complementary nucleic acids reduces the likelihood of any mismatches hybridizing to the microarray. Complementary nucleic acids may include perfect match probes to at least one of the amplified nucleic acids and at most to all amplified nucleic acids and three different single nucleotide polymorphisms at the central position of each perfect match probe. This arrangement allows the determination of the complete sequence of the gene, which may allow the identification of the pathogen strain.
在杂交后,可以使用已知方法如荧光法以检测哪些互补核酸已经杂交扩增的核酸。随后可以基于检测到哪些扩增的核酸而鉴定病原体。这可以通过模式识别算法完成,其中病原体基于哪些基因与阵列杂交而得到鉴定。这还可以如上所述基于对杂交的基因测序而完成。After hybridization, known methods such as fluorescence can be used to detect which complementary nucleic acids have hybridized to the amplified nucleic acid. Pathogens can then be identified based on which amplified nucleic acids are detected. This can be done with pattern recognition algorithms, where pathogens are identified based on which genes hybridize to the array. This can also be done based on genetic sequencing of hybrids as described above.
分子诊断技术使得快速而敏感地鉴定病原(etiological agent)成为可能。当前方法如PCR、RT-PCR和点样微阵列等因假阳性及假阴性检测结果而容易错误鉴定,并总是因在敏感性和特异性间的直接权衡而受不利影响。样品由大量和多样类型的背景生物体组成,其中所述的生物体也可能含有与诊断性PCR扩增所用的靶序列相似的区域。非靶DNA(尤其人DNA)的遗传复杂性可能因交叉反应性而引起“假阳性”产物扩增。此外,病毒通过突变和重组事件以极高的速率进化,使非常敏感的检测法处于经常重新设计或几乎马上过时报废的状态。遗传性变异也是临床相关的,因为它们可能与对感染的持续性和治疗应答和/或接种应答有潜在意义的抗原变异有关。为了用当前的PCR方法研究遗传性变异,总是需要额外的测序步骤。RPM v.1方法不仅在物种水平和株系水平上检测感染因子,还可以不需要其它实验而鉴定细微的基因组差异。还证实该方法是以高敏感性和高特异性同时检测至多达7种病原体的有效手段,并允许对病原体进行毫无疑问的和可重复的基于序列的株系鉴定,其中所述的病原体在微阵列(ProSeqs)上具有适度选择的原型序列。这可以通过允许每种病原体的精确的指纹分析、抗生素耐药性分布分析、遗传漂变/漂移分析、辩论(forensics)和众多其它参数而用于增强临床管理和流行病暴发响应。这种能力对于紧急疾病如禽流感病毒H5N1的快速检测和生物恐怖事件的价值可能非常宝贵。Molecular diagnostic techniques make it possible to quickly and sensitively identify etiological agents. Current methods such as PCR, RT-PCR, and spotted microarrays are prone to misidentification due to false positive and false negative test results, and are always adversely affected by the direct trade-off between sensitivity and specificity. The sample consists of a large number and variety of types of background organisms which may also contain similar regions to the target sequences used for diagnostic PCR amplification. The genetic complexity of non-target DNA, especially human DNA, can cause "false positive" product amplification due to cross-reactivity. In addition, viruses evolve at an extremely high rate through mutation and recombination events, leaving very sensitive assays in a state of frequent redesign or near-immediate obsolescence. Inherited variants are also clinically relevant because they may be associated with potentially significant antigenic variants for persistence of infection and response to therapy and/or vaccination. To study genetic variation with current PCR methods, an additional sequencing step is always required. The RPM v.1 method not only detects infectious agents at the species and strain levels, but also identifies subtle genomic differences without additional experiments. The method has also been demonstrated to be an efficient means for the simultaneous detection of up to seven pathogens with high sensitivity and specificity and allows unambiguous and reproducible sequence-based strain identification of pathogens in Moderate selection of prototype sequences on microarrays (ProSeqs). This can be used to enhance clinical management and epidemic outbreak response by allowing precise fingerprinting of each pathogen, antibiotic resistance distribution analysis, genetic drift/drift analysis, forensics and numerous other parameters. This capability could be invaluable for rapid detection of emergency diseases such as the avian influenza virus H5N1 and for bioterrorism events.
在描述本发明后,给出如下实施例以说明本发明的具体应用。这些具体的实施例不意图限制在本申请内描述的本发明的范围。After describing the present invention, the following examples are given to illustrate specific applications of the present invention. These specific examples are not intended to limit the scope of the invention described within this application.
实施例1Example 1
RPM v.1芯片设计-RPM v.1(呼吸道病原体微阵列)芯片设计包括允许对来自27种呼吸道病原体和生物战剂的29.7kb序列再测序的57个拼贴区并在先前研究内得到详细描述(Lin等,“使用再测序DNA微阵列鉴定广谱呼吸道病原体(Broad-spectrum respiratory tract pathogen identification usingresequencing DNA microarrays)”Genome Res.,16(4),527-535(2006))。简而言之,RPM阵列由代表选自靶生物基因组的序列内每个碱基(并以其为中心)顺序的25聚体完全匹配探针组成。此外,对于每种完全匹配探针,代表中央位置的三种可能单核苷酸多态性(SNP)的三种错配探针也在阵列上拼贴。因此,与一系列完全匹配探针的杂交提供冗余的存在/不存在信息,而与错配探针的杂交揭示株系特异性SNP数据。在芯片上,给予两种病原体即HAdV和流感病毒比其它病原体更多的探针代表。这些探针代表基于对直接感兴趣群体(训练中的美国军队新兵)的临床相关性进行选择。对于HadV,来自E1A、六邻体(hexon)基因和纤突(fiber)基因的含有血清型4、5和7的诊断性区域的部分序列得到拼贴,以便检测全部ARI相关性HadV。类似地,用于流感病毒A检测的拼贴区包含来自血凝素(亚型H1、H3和H5)基因、神经氨酸酶基因(亚型N1和N2)和基质(matrix)基因的部分序列。除了3种HAdV和3种流感病毒A以外,目前的RPM设计允许区分已知引起ARI(即感染早期的“类流感”症状)的15种其它常见呼吸道病原体和6种疾病预防控制中心A类别的生物恐怖病原体(表1)。用来检验RPM v.1敏感性和特异性的全部对照株和野毒株(field strain)以及它们的来源列于表1。RPM v.1 Chip Design - The RPM v.1 (Respiratory Pathogen Microarray) chip design includes 57 tiles that allow resequencing of 29.7kb sequences from 27 respiratory pathogens and biological warfare agents and was detailed in previous studies Described (Lin et al., "Broad-spectrum respiratory tract pathogen identification using resequencing DNA microarrays" Genome Res., 16(4), 527-535(2006)). Briefly, RPM arrays consist of 25-mer perfectly matched probes representing sequences at each base within (and centered around) sequences selected from the genome of a target organism. In addition, for each perfectly matched probe, three mismatched probes representing the three possible single nucleotide polymorphisms (SNPs) at the central location were also tiled on the array. Thus, hybridization to a series of perfectly matched probes provides redundant presence/absence information, while hybridization to mismatched probes reveals strain-specific SNP data. On the chip, two pathogens, HAdV and influenza virus, were given more probe representation than the other pathogens. These probe representatives were selected based on clinical relevance to the population of immediate interest (US Army recruits in training). For HadV, partial sequences from ElA, hexon and fiber genes containing diagnostic regions for serotypes 4, 5 and 7 were collaged to detect all ARI-associated HadV. Similarly, the tiled regions for influenza virus A detection contain partial sequences from the hemagglutinin (subtypes H1, H3, and H5) gene, neuraminidase gene (subtypes N1 and N2), and matrix (matrix) gene . In addition to the 3 HAdVs and 3 influenza A viruses, the current RPM design allows the distinction between 15 other common respiratory pathogens known to cause ARI (i.e., "flu-like" symptoms early in infection) and 6 CDC category A viruses. Bioterrorism pathogens (Table 1). All control strains and field strains used to test the sensitivity and specificity of RPM v.1 and their sources are listed in Table 1.
表1:基于微阵列的检测对原型对照株的分析敏感性Table 1: Analytical sensitivity of microarray-based assays against prototype control strains
Note:@:噬斑纯化;*:最低检测限得以检测;#:靶基因由布鲁海若恩生物工艺(BlueHeron Biotechnology)(Bothell,WA)构建并克隆至pUC119。Note: @ : plaque purified; * : minimum detection limit detected; # : target gene was constructed by BlueHeron Biotechnology (Bothell, WA) and cloned into pUC119.
实施例2Example 2
临床样品-归档的咽喉拭子从多个军队新兵训练中心、美国墨西哥边界区和在1999-2005部署的海军舰艇内的具有ARI症状的患者中收集。这些咽喉拭子立即放置在含有1.5mL病毒运输培养基(VTM)的降温的2mL管形瓶内,冷冻并在-80℃或以下贮存,以便在运输期间维持病毒粒子。随后将样品运输至海军健康研究中心(Naval Health Research Center,NHRC,圣地亚哥(SanDiego),CA)、解冻并等分,并且使用CAP认证的诊断性RT-PCR/PCR和培养试验对HAdV和流感病毒进行检验。冷冻的等分试样以双盲方式(blindedfashion)随后提交用于基于微阵列的检测。Clinical samples-archived throat swabs were collected from patients with symptoms of ARI at multiple Army recruit training centers, the US-Mexico border zone, and on board Navy ships deployed in 1999-2005. These throat swabs were immediately placed in chilled 2 mL vials containing 1.5 mL of viral transport medium (VTM), frozen and stored at -80°C or below to maintain virions during transport. Samples were then shipped to the Naval Health Research Center (NHRC, San Diego, CA), thawed, aliquoted, and tested for HAdV and influenza using a CAP-certified diagnostic RT-PCR/PCR and culture assay. to test. Frozen aliquots were subsequently submitted for microarray-based detection in blinded fashion.
实施例3Example 3
核酸提取-使用MasterPureTM DNA纯化试剂盒(艾匹森特技术(EpicentreTechnologies),麦迪逊(Madison),WI),省略RNA消化,或使用MagNA纯简明核酸分离试剂盒I(MagNA Pure Compact Nucleic Acid Isolation Kit I)(罗奇应用科技(Roche Applied Science),印第安纳波利斯(Indianapolis),IN)按照制造商推荐方案,从临床样品中提取核酸。Nucleic acid extraction - use the MasterPure ™ DNA Purification Kit (Epicentre Technologies, Madison, WI), omitting RNA digestion, or use the MagNA Pure Compact Nucleic Acid Isolation Kit I (MagNA Pure Compact Nucleic Acid Isolation Kit Kit I) (Roche Applied Science, Indianapolis, IN) was used to extract nucleic acids from clinical samples according to the manufacturer's recommended protocol.
实施例4Example 4
内对照-选择与NACl和磷酸丙糖异构酶(TIM)对应的两个拟南芥(Arabidopsis thaliana)基因作为逆转录(RT)和PCR反应的内对照,因为它们不可能天然存在于临床样品内。含有这两个基因约500bp的两种质粒pSP64poly(A)-NAC1和pSP64poly(A)-TIM由在基因组研究所(The Institute forGenome Research(罗克维尔(Rockville),MD))的Dr.Norman H.Lee友好提供。NAC1通过PCR用SP6和M13R引物扩增,并且使用QIAquick PCR纯化试剂盒(奎阿根(Qiagen),巴伦西亚(Valencia),CA)纯化PCR产物。为产生来自pSP64poly(A)-TIM的RNA,将该质粒用EcoRI线性化并使用高产转录试剂盒(High Yield Transciption Kit)(艾姆拜恩(Ambion),奥斯汀(Austin),TX)从SP 6启动子进行体外转录。使用NAC1和TIM各60fg作为检查扩增效率和标本内抑制物存在的内对照。Internal Controls - Two Arabidopsis thaliana genes corresponding to NACl and triose phosphate isomerase (TIM) were selected as internal controls for reverse transcription (RT) and PCR reactions because they are unlikely to be naturally present in clinical samples Inside. The two plasmids pSP64poly(A)-NAC1 and pSP64poly(A)-TIM containing about 500bp of these two genes were obtained by Dr.Norman H from The Institute for Genome Research (Rockville, MD). . Kindly provided by Lee. NAC1 was amplified by PCR with SP6 and M13R primers, and the PCR product was purified using the QIAquick PCR purification kit (Qiagen, Valencia, CA). To generate RNA from pSP64poly(A)-TIM, this plasmid was linearized with EcoRI and used The High Yield Transcription Kit (Ambion, Austin, TX) performs in vitro transcription from the SP 6 promoter. Use 60 fg each of NAC1 and TIM as an internal control for checking the amplification efficiency and the presence of inhibitors in the specimen.
实施例5Example 5
引物设计和多重RT-PCR扩增-将引物分配至两个独立的反应简化了引物的设计及优化。实施对两种混合物(替换对新混合物扩增不良的引物)的精细调整以确保将充分扩增来自26种所靶向病原体(在阵列上包括西尼罗河病毒,但在该扩增方案内不包括)的全部靶基因以便允许杂交。设计用于RPMv.1芯片上的全部靶的基因特异性引物对(列于表2(a)和2(b))以确保用于多重PCR的优异扩增效率。设计全部引物以具有相似的复性温度,并且使用GenBank数据库的完全搜索,以BLAST程序对已知序列进行检查以确保独特性。对全部引物检查与其它引物的潜在杂交以减少引物二聚体形成的可能。此外,我们调整了由Shuber等,“用于开发多重PCR的简化方法(A simplifiedprocedure for developing multiplex PCRs)”Genome Res.,5,488-493(1995)和Brownie等,“减少PCR中引物二聚体积聚(The elimination of primer-dimeraccumulation in PCR)”Nucleic Acids Res.,25,3235-3241(1997)开发的方法,旨在通过添加22bp接头序列(引物L)至本研究内所用的引物5’端而进一步抑制引物二聚体形成。逆转录(RT)反应在20μl体积内进行,其中所述的20μl体积含有50mM Tris-HCl(pH8.3)、75mM KCl、3mM MgCl2、dATP、dCTP、dGTP、dTTP的每种500μM、40U的RNA酶OUTM、10mM DTT、2μM引物LN、200U Superscript III(印威畴根生命技术(Invitrogen LifeTechnologies),卡尔斯巴德(Carlsbad),CA)、两种内对照(NAC1和TIM)各60fg和5-8μl已提取的临床标本或实验室对照。在珀耳帖热循环-PTC240DNA工具Tetrad 2(Peltier Thermal Cycler-PTC240 DNA Engine Tetrad 2)(MJ研究公司(MJ Research Inc.),里诺(Reno),NV)内,使用制造商推荐的方案实施反应。Primer Design and Multiplex RT-PCR Amplification - Assigning primers to two separate reactions simplifies primer design and optimization. Fine-tuning of both mixes (replacing primers that amplified poorly with the new mix) was performed to ensure adequate amplification from the 26 targeted pathogens (West Nile virus was included on the array but not included in the amplification protocol) would be adequately amplified. ) to allow hybridization. Gene-specific primer pairs (listed in Tables 2(a) and 2(b)) for all targets on the RPMv.1 chip were designed to ensure excellent amplification efficiency for multiplex PCR. All primers were designed to have similar annealing temperatures, and known sequences were checked with the BLAST program for uniqueness using a full search of the GenBank database. All primers were checked for potential hybridization with other primers to reduce the possibility of primer-dimer formation. In addition, we adapted the method developed by Shuber et al., "A simplified procedure for developing multiplex PCRs" Genome Res., 5, 488-493 (1995) and Brownie et al., "Reducing primer dimerization in PCR." A method developed by "The elimination of primer-dimeraccumulation in PCR" Nucleic Acids Res., 25, 3235-3241 (1997), aimed at adding a 22bp linker sequence (primer L) to the 5' primer used in this study end to further inhibit primer-dimer formation. The reverse transcription (RT) reaction was carried out in a 20 μl volume containing 500 μM, 40 U of each of 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl 2 , dATP, dCTP, dGTP, and dTTP RNase OU ™ , 10 mM DTT, 2 μM Primer LN, 200 U Superscript III (Invitrogen Life Technologies, Carlsbad, CA), 60 fg each of the two internal controls (NAC1 and TIM) and 5-8μl extracted clinical specimens or laboratory controls. Performed within a Peltier Thermal Cycler-PTC240 DNA Engine Tetrad 2 (MJ Research Inc., Reno, NV) using the manufacturer's recommended protocol reaction.
表2(a):用于多重PCR的引物混合物A内的PCR引物列表Table 2(a): List of PCR primers within primer mix A for multiplex PCR
表2(b):用于多重PCR的引物混合物B内的PCR引物列表Table 2(b): List of PCR primers within primer mix B for multiplex PCR
*RSV:呼吸道合胞体病毒 * RSV: respiratory syncytial virus
将RT反应产物分成两个10μl体积以进行两种不同的多重PCR反应。引物混合物A含有19对引物对并扩增来自3种不同流感病毒A、1种流感病毒B、HadV的3种血清型和一个内对照(TIM)的18个基因靶。引物混合物B含有38对引物对并扩增其余37个基因靶和另一个内对照(NAC1)。PCR反应在50μl体积内进行,其中所述的50μl体积含有20mM Tris-HCl(pH8.4)、50mM KCl、2mM MgCl2、dATP、dCTP、dGTP、dUTP的每种400μM、1U易受热破坏的尿嘧啶-DNA糖基化酶(USB,Carlsbad,CA)、2μM引物L、40nM来自混合物A的每种引物或50nM来自混合物B的每种引物、10U铂(Platinum)Taq DNA聚合酶(Invitrogen Life Technologies,Carlsbad,CA)和10μl RT产物。扩增反应在Peltier Thermal Cycler-PTC240 DNA EngineTetrad 2(MJ Research Inc.,Reno,NV)内实施,在25℃初始温育10分钟,在94℃初次变性3分钟,随后是5个循环:94℃持续30秒,50℃持续90秒,72℃持续120秒;随后是35个循环:94℃持续30秒,64℃持续120秒以及最终在72℃延长5分钟。将来自两个PCR反应的扩增产物合并为一个体积并进行与RPM v.1芯片杂交前的纯化和加工(见下文)。The RT reaction product was divided into two 10 μl volumes for two different multiplex PCR reactions. Primer mix A contained 19 primer pairs and amplified 18 gene targets from 3 different influenza A viruses, 1 influenza virus B, 3 serotypes of HadV and an internal control (TIM). Primer mix B contained 38 primer pairs and amplified the remaining 37 gene targets and another internal control (NAC1). PCR reactions were carried out in a volume of 50 μl containing 400 μM, 1 U of each heat-susceptible urine Pyrimidine-DNA Glycosylase (USB, Carlsbad, CA), 2 μM Primer L, 40 nM each primer from mix A or 50 nM each primer from mix B, 10 U Platinum (Platinum) Taq DNA polymerase (Invitrogen Life Technologies , Carlsbad, CA) and 10 μl of RT product. The amplification reaction was carried out in a Peltier Thermal Cycler-PTC240 DNA Engine Tetrad 2 (MJ Research Inc., Reno, NV), with initial incubation at 25°C for 10 minutes, initial denaturation at 94°C for 3 minutes, followed by 5 cycles: 94°C 30 s hold, 90 s at 50°C, 120 s at 72°C; followed by 35 cycles of 30 s at 94°C, 120 s at 64°C and a final 5 min extension at 72°C. Amplified products from the two PCR reactions were pooled into one volume and subjected to purification and processing prior to hybridization to the RPM v.1 chip (see below).
实施例6Example 6
微阵列杂交和加工-将两种PCR产物混合物在扩增后再合并以便片段化及与微阵列杂交。微阵列杂交和加工根据制造商推荐方案(艾菲麦垂克斯公司(Affymetrix Inc.),圣克拉拉(Santa Clara),CA)实施,具有如下改良。纯化的PCR产物在37℃进行片段化5分钟,并随后在37℃用生物素-N6-ddATP标记30分钟。杂交在旋转电烤箱内在45℃和60转/分钟实施2小时。在扫描后,使用GCOS软件以缩减原始图像(.DAT)文件至简化文件格式(.CEL file),同时将密度赋予每种相应探针位置。最后,使用GDAS软件来应用内置版ABACUS(Cutler等,“用微阵列高通量变异检测和基因分型(High-throughputvariation detection and genotyping using microarrays)”Genome Res.,11,1913-1925(2001))算法以便产生正确的碱基响应(base call)估计值,比较有义探针组及反义探针组各自的强度。为增加碱基响应的百分数,调节参数以允许最大容许的碱基响应(见下文)。来自对再测序阵列法的每个拼贴区所产生的碱基响应中的序列随后从GDAS内输出为FASTA格式文件。Microarray Hybridization and Processing - The two PCR product mixtures are combined after amplification for fragmentation and hybridization to the microarray. Microarray hybridization and processing were performed according to the manufacturer's recommended protocol (Affymetrix Inc., Santa Clara, CA) with the following modifications. Purified PCR products were fragmented at 37°C for 5 minutes and subsequently labeled with biotin-N6-ddATP for 30 minutes at 37°C. Hybridization was carried out in a rotary electric oven at 45°C and 60 rpm for 2 hours. After scanning, GCOS software was used to downscale the original image (.DAT) file to a simplified file format (.CEL file) while assigning densities to each corresponding probe location. Finally, use the GDAS software to apply the built-in version of ABACUS (Cutler et al., "High-throughput variation detection and genotyping using microarrays" Genome Res., 11, 1913-1925 (2001) ) algorithm in order to generate correct base call (base call) estimates, comparing the respective strengths of the sense probe set and the antisense probe set. To increase the percentage of base calls, parameters were adjusted to allow the maximum allowable base calls (see below). Sequences from the base calls generated for each tile of the resequencing array method are then exported from within GDAS as FASTA format files.
-过滤条件- filter conditions
·无信号阈值=0.500(默认=1.000000)No signal threshold = 0.500 (default = 1.000000)
·弱信号加倍阈值=20000.000(默认=20.000000)Weak signal doubling threshold = 20000.000 (default = 20.000000)
·巨大信号噪声比(SNR)阈值=20.000000(默认=20.000000)Huge signal-to-noise ratio (SNR) threshold = 20.000000 (default = 20.000000)
-算法参数- Algorithm parameters
·链质量阈值=0.000(默认=0.000000)Chain quality threshold = 0.000 (default = 0.000000)
·总体质量阈值=25.0000(默认=75.000000)Overall quality threshold = 25.0000 (default = 75.000000)
·杂合体响应的最大部分=0.99000(默认=0.900000)Maximum fraction of heterozygous responses = 0.99000 (default = 0.900000)
·模式类型(0=杂合体,1=纯合体)=0Pattern type (0=heterozygote, 1=homozygote)=0
·完全响应质量阈值=0.500(默认=2.000000)Full Response Quality Threshold = 0.500 (default = 2.000000)
-终末可靠性原则- Terminal reliability principle
·临近探针内响应的最小部分=1.0000(不能过滤)· Minimum fraction of responses within adjacent probes = 1.0000 (cannot be filtered)
·样品的响应最小部分=1.0000(不能过滤)• Response min fraction of samples = 1.0000 (cannot be filtered)
实施例7Example 7
自动化病原体鉴定算法(基于NA序列的病原体鉴定)-使用如此算法加工从微阵列杂交和扫描中产生的未处理输出序列(raw output sequence),其中所述算法使用对数据库记录的序列相似性比较而鉴定病原体。开发新的软件程序即计算机执行的基于生物序列的鉴定仪系统版本2(Computer-ImplementedBiological Sequence-based Identifier system version 2,CIBSI 2.0)来通过并入先前在再测序病原体鉴定(REPI)程序(Lin等,“使用再测序DNA微阵列鉴定广谱呼吸道病原体(Broad-spectrum respiratory tract pathogen identification usingresequencing DNA microarrays)”Genome Res.,16(4),527-535(2006))内进行的任务,并且此外还进行以前手工进行的决策而彻底地分析该结果。对该方法包括对改良REPI算法更广泛的讨论在2006年6月6日提交的美国专利申请号11/422,431内详细描述。Automated Pathogen Identification Algorithm (NA Sequence-Based Pathogen Identification) - The raw output sequences generated from microarray hybridizations and scans are processed using an algorithm that uses sequence similarity comparisons to database records and Identify pathogens. A new software program , Computer -Implemented Biological Sequence -based I dentifier system version 2 (CIBSI 2.0), was developed to identify pathogens by incorporating previous research in resequencing ( REPI) program (Lin et al., "Broad-spectrum respiratory tract pathogen identification using resequencing DNA microarrays" Genome Res., 16(4), 527-535(2006)) tasks and, in addition, thoroughly analyze the results by making decisions that were previously made manually. A more extensive discussion of this approach, including the modified REPI algorithm, is described in detail in US Patent Application No. 11/422,431, filed June 6, 2006.
实施例8Example 8
病原体的定量-使用多种原型株和临床样品证实本鉴定法的特异性。结果未显示靶之间可辨别的的干扰。随后使用原型株的连续十倍稀释的核酸模板评估RPM v.1鉴定法的分析敏感性。表1显示对每种病原体的病原体最低可检测稀释度。该结果显示用于原型株的敏感性范围是每个反应10-103个基因组拷贝,该敏感性与标准多重RT-PCR/PCR方法的敏感性是可比较的。应当指出基因组拷贝数不应该等同于活力计数(噬斑形成单位),因为对于呼吸道病原体而言,基因组拷贝数通常比活力计数如果不是高出数个数量级,至少高出一个数量级。RPM v.1鉴定和区分近亲遗传邻居之间的能力首先用更特异性的方案证实,随后已经用该方案重现。从人腺病毒(HAdV)的17种不同血清型中产生的序列揭示该鉴定法可以区分多种ARI相关性HAdV株并证明该鉴定法可以用来检测类型广泛的变体(表3)。靶的交叉杂交仅在不同血清型间的HAdV六邻体基因上观察到;但是这不影响正确的靶向病原体的阳性鉴定。Quantification of pathogens - The specificity of the assay was demonstrated using a variety of prototype strains and clinical samples. The results showed no discernible interference between targets. The analytical sensitivity of the RPM v.1 assay was subsequently assessed using serial ten-fold dilutions of the nucleic acid template of the prototype strain. Table 1 shows the lowest detectable dilution of pathogen for each pathogen. The results show that the sensitivity range for the prototype strain is 10-103 genome copies per reaction, which is comparable to that of the standard multiplex RT-PCR/PCR method. It should be noted that genome copy number should not be equated with viability counts (plaque forming units) because for respiratory pathogens genome copy number is usually at least an order of magnitude higher than viability counts if not several orders of magnitude. The ability of RPM v.1 to identify and distinguish between close genetic neighbors was first demonstrated with a more specific protocol and has subsequently been reproduced with this protocol. Sequences generated from 17 different serotypes of human adenovirus (HAdV) revealed that the assay could distinguish multiple ARI-associated HAdV strains and demonstrated that the assay could be used to detect a broad class of variants (Table 3). Cross-hybridization of targets was only observed on the HAdV hexon gene between different serotypes; however this did not affect the positive identification of the correct targeted pathogen.
表3:用RPM v.1区分多种引起FRI的HAdVTable 3: Differentiation of multiple FRI-causing HAdVs using RPM v.1
对于敏感性评估,在iCycler或MYIQTM仪器(伯乐实验室(Bio-RadLaboratories),赫尔克里斯(Hercules),CA)上进行实时PCR鉴定法以确定每一样品内腺病毒基因组的数目。样品的结果通过使用纤突特异性引物Ad4F-F和Ad4F-R(表4)与对拷贝数已知(101至106拷贝)的HAdV-4原型基因组DNA模板的10倍连续稀释物的结果进行了比较。HAdV-4基因组拷贝数通过测量来自纯化的病毒DNA内的DNA浓度并使用如下转换因数:0.384fg=约35kb(~35kb)的单个腺病毒基因组而得以计算。实时PCR反应在25μl反应体积内实施,其中所述的25μl反应体积含有2.5μl FastStart反应混合物SYBR Green I(Roche Applied Science,Indianapolis,IN)、20mM Tris-HCl(pH8.4)、50mM KCl、3mM MgCl2、dATP、dTTP、dGTP、dCTP的每种200μM、200nM引物和腺病毒基因组DNA(1-4μl临床标本或DNA提取物)。如此进行扩增反应:在94℃初始变性10分钟,随后是40个循环:94℃持续20秒,60℃持续30秒。For sensitivity assessment, real-time PCR assays were performed on an iCycler or MYIQ ™ instrument (Bio-Rad Laboratories, Hercules, CA) to determine the number of adenoviral genomes in each sample. The results of the samples were compared by using the fiber-specific primers Ad4F-F and Ad4F-R (Table 4) with 10-fold serial dilutions of the HAdV-4 prototype genomic DNA template of known copy number ( 101 to 106 copies). The results were compared. HAdV-4 genome copy number was calculated by measuring the DNA concentration from purified viral DNA and using the following conversion factor: 0.384fg = about 35kb (-35kb) of a single adenovirus genome. Real-time PCR reactions were performed in a 25 μl reaction volume containing 2.5 μl FastStart reaction mix SYBR Green I (Roche Applied Science, Indianapolis, IN), 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 3 mM 200 μM each of MgCl 2 , dATP, dTTP, dGTP, dCTP, 200 nM primers and adenoviral genomic DNA (1-4 μl clinical specimen or DNA extract). Amplification reactions were performed with initial denaturation at 94°C for 10 minutes, followed by 40 cycles of 94°C for 20 seconds and 60°C for 30 seconds.
实施相似的鉴定法以通过使用如前所述的特异性引物(表4)和RT-PCR/PCR条件(Stone等,“通过实时PCR快速检测和同步亚型区分流感病毒A(Rapid detection and simultaneous subtype differentiation of influenza Aviruses by real time PCR)”J.Virol.Methods,117,103-112(2004);Hardegger等,“通过实时PCR快速检测临床样本中的肺炎支原体(Rapid detection ofMycoplasma pneumoniae in clinical samples by real-time PCR)”J.Microbiol.Methods,41,45-51(2000);Corless等,“在怀疑脑膜炎和败血症的情况下使用实时PCR同时检测脑膜炎萘瑟氏菌、流感嗜血杆菌和肺炎链球菌(Simultaneousdetection of Neisseria meningitidis,Haemophilus influenzae,and Streptococcuspneumoniae in suspected cases of meningitis and septicemia using real-time PCR)”J.Clin.Microbiol.,39,1553-1558(2001);等,“通过LightCycler PCR直接并快速对脑膜炎球菌及porA扩增鉴定和基因分型(Direct and rapididentification and genogrouping of meningococci and porA amplification byLightCycler PCR)”J.Clin.Microbiol.,40,4531-4535(2002);Vabret等,“用聚合酶链式反应直接诊断人呼吸冠形病毒229E和OC43(Direct diagnosis of humanrespiratory coronaviruses 229E and OC43 by the polymerase chain reaction)”J.Virol.Methods,97,59-66(2001))确定其它病原体的基因组拷贝数。A similar assay was performed to distinguish influenza A virus by using specific primers (Table 4) and RT-PCR/PCR conditions as previously described (Stone et al., "Rapid detection and simultaneous subtype differentiation by real-time PCR subtype differentiation of influenza Aviruses by real time PCR)” J.Virol.Methods, 117, 103-112(2004); Hardegger et al., “Rapid detection of Mycoplasma pneumoniae in clinical samples by real-time PCR real-time PCR)” J. Microbiol. Methods, 41, 45-51 (2000); Corless et al., “Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae using real-time PCR in cases of suspected meningitis and sepsis and Streptococcus pneumoniae (Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcuspneumoniae in suspected cases of meningitis and septicemia using real-time PCR)" J.Clin.Microbiol., 39, 1553-1558 (2001); etc., "Direct and rapid identification and genogrouping of meningococci and porA amplification by LightCycler PCR" J.Clin.Microbiol., 40, 4531-4535 ( 2002); Vabret et al., "Direct diagnosis of human respiratory viruses 229E and OC43 by the polymerase chain reaction" J.Virol.Methods, 97, 59-66 (2001)) to determine the genome copy number of other pathogens.
表4.用于定量实时PCR的PCR引物列表Table 4. List of PCR primers used for quantitative real-time PCR
*RSV:呼吸道合胞体病毒,双标记探针在5’端含有6-羧基-荧光素(FAM)作为荧光报告染料并在3’端含有Black Hole猝灭剂。 * RSV: respiratory syncytial virus, The dual-labeled probe contains 6-carboxy-fluorescein (FAM) as a fluorescent reporter dye at the 5' end and a Black Hole quencher at the 3' end.
参考文献:references:
Stone等,“通过实时PCR快速检测和同步亚型区分流感病毒A(Rapiddetection and simultaneous subtype differentiation of influenza A viruses by realtime PCR)”J.Virol.Methods,117,103-112(2004).Stone et al., "Rapid detection and simultaneous subtype differentiation of influenza A viruses by realtime PCR" J.Virol.Methods, 117, 103-112 (2004).
Vabret等,“用聚合酶链式反应直接诊断人呼吸冠形病毒229E和OC43(Direct diagnosis of human respiratory coronaviruses 229E and OC43 by thepolymerase chain reaction)”J.Virol.Methods,97,59-66(2001)Vabret et al., "Direct diagnosis of human respiratory coronaviruses 229E and OC43 by the polymerase chain reaction" J.Virol.Methods, 97, 59-66 (2001)
Hardegger等,“通过实时PCR快速检测临床样本中的肺炎支原体(Rapiddetection of Mycoplasma pneumoniae in clinical samples by real-time PCR)”J.Microbiol.Methods,41,45-51(2000)Hardegger et al., "Rapid detection of Mycoplasma pneumoniae in clinical samples by real-time PCR" J. Microbiol. Methods, 41, 45-51 (2000)
Corless等,“在怀疑脑膜炎和败血症的情况下使用实时PCR同时检测脑膜炎萘瑟氏菌、流感嗜血杆菌和肺炎链球菌(Simultaneous detection of Neisseriameningitidis,Haemophilus influenzae,and Streptococcus pneumoniae in suspectedcases of meningitis and septicemia using real-time PCR)”J.Clin.Microbiol.,39,1553-1558(2001)Corless et al, "Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR)" J. Clin. Microbiol., 39, 1553-1558 (2001)
Mentel等,“改善呼吸道合胞体病毒感染诊断的实时PCR(Real-time PCR toimprove the diagnosis of respiratory syncytial virus infection)”J.Med.Microbiol.,52,893-896(2003)Mentel et al., "Real-time PCR to improve the diagnosis of respiratory syncytial virus infection" J.Med.Microbiol., 52, 893-896 (2003)
等,“通过LightCycler PCR直接并快速对脑膜炎球菌及porA扩增鉴定和基因分型(Direct and rapid identification and genogrouping ofmeningococci and porA amplification by LightCycler PCR)”J.Clin.Microbiol.,40,4531-4535(2002) etc., "Direct and rapid identification and genogrouping of meningococci and porA amplification by LightCycler PCR" J.Clin.Microbiol., 40, 4531-4535 (2002)
实施例9Example 9
呼吸道病原体的同时检测和区分-先前研究已经证实,除精确鉴定单个病原物种之外,对病原体检测使用RPM v.1测定法的突出益处之一是能够检测同时感染。在本研究中,通过制备病原体模板的多种组合(表5和表6)进一步评估RPM v.1测定法同时鉴定多种病原体的能力。使用模板的连续稀释物来估计对多种病原体的检测敏感性和特异性。将含有每反应每种病原体即HAdV-4、化脓性链球菌、肺炎支原体和鼠疫耶尔森氏菌的106-103个基因组拷贝的核酸模板混合在一起并用RPM v.1阵列进行检验。这些结果证实本测定法允许甚至在每反应每靶的最低浓度103个基因组拷贝时对全部4种病原体进行可重复的基于序列的鉴定(表5)。在这种复杂混合物内没有可辨别得出的干扰,该事实进一步支持RA的核苷酸碱基响应能力及附带的鉴定算法的耐用性,甚至在复杂混合物内也是如此。Simultaneous Detection and Differentiation of Respiratory Pathogens - Previous studies have demonstrated that one of the outstanding benefits of using the RPM v.1 assay for pathogen detection, in addition to the precise identification of individual pathogen species, is the ability to detect co-infections. In this study, the ability of the RPM v.1 assay to simultaneously identify multiple pathogens was further evaluated by preparing various combinations of pathogen templates (Table 5 and Table 6). Serial dilutions of template were used to estimate detection sensitivity and specificity for multiple pathogens. Nucleic acid templates containing 10 6 -10 3 genome copies per reaction of each pathogen, HAdV-4, S. pyogenes, M. pneumoniae and Y. pestis, were pooled and tested with the RPM v.1 array. These results demonstrate that the assay allows reproducible sequence-based identification of all 4 pathogens even at a minimum concentration of 103 genome copies per target per reaction (Table 5). The fact that there were no discernible interferences in this complex mixture further supports the nucleotide base calling capability of RA and the robustness of the accompanying identification algorithm, even in complex mixtures.
为进一步估计这种方法对检测复杂混合物内多种病原体的效率,将3-7种培养的生物体以不同滴度[102-105个(菌落形成单位或噬斑形成单位)/mL]添加到从自志愿者中收集的汇集的鼻冲洗物内,并且将150μl制备的样品用于检验。初步结果揭示该方法允许毫无疑问地同时检测在最低滴度100个菌落形成单位(噬斑形成单位)/mL上的7种病原体:HAdV-4、HAdV-7、炭疽芽孢杆菌、流感病毒A-H1N1、副流感病毒1、RSV-A、肺炎支原体和化脓性链球菌(表6)。进一步用7种病原体不同组合的评估显示RPM v.1测定法可以同时检测其中6种。在这些病原体中,HAdV-4、炭疽芽孢杆菌、流感病毒A-H1N1、RSV-A和肺炎支原体在最低滴度100个菌落形成单位(噬斑形成单位)/mL上得到检测,而化脓性链球菌在1000cfu/mL上得到检测到(表6)。鼠疫耶尔森氏菌甚至在最高浓度上不能得到检测。这归咎于用于完整鼠疫耶尔森氏菌病原体的核酸提取方案的不适当性,因为当使用纯化的核酸模板时,可以检测到的鼠疫耶尔森氏菌的1000个基因组拷贝(表1和表5)。为进一步证实,RPMv.1在4种病原体的相同组合上以培养的生物体进行检验,其中所述的病原体使用纯化的核酸模板(表5)进行检测。结果显示该鉴定法可以重复检测出在100个菌落形成单位(噬斑形成单位)/mL上的HAdV-4和肺炎支原体而无检测失败,对化脓性链球菌的敏感性较低(1000个菌落形成单位/mL),但不能检测到鼠疫耶尔森氏菌。当同时检验3种病原体时,在该例子中是炭疽芽孢杆菌、流感病毒A-H1N1和HCoV-229E或RSV-A,测定法检测到滴度低至100个菌落形成单位(噬斑形成单位)/mL的全部3种病原体(表6)。这些结果表明基于RA的方法是对来自鼻冲洗物样品的多种病原体进行直接检测并分型的有效手段,具有用于检测至少7种病原体同时感染的高敏感性和特异性益处。该方法将用于群体内这些病原体的日常诊断和流行病学调查,提供有关多种病原体发生率的新信息。To further estimate the efficiency of this method for detecting multiple pathogens in complex mixtures, 3-7 cultured organisms were cultured at various titers [102-105 ( colony-forming units or plaque-forming units)/mL] Added to pooled nasal rinses collected from volunteers and 150 μl of prepared samples were used for testing. Preliminary results reveal that the method allows unambiguous simultaneous detection of 7 pathogens at a minimum titer of 100 colony forming units (plaque forming units)/mL: HAdV-4, HAdV-7, Bacillus anthracis, Influenza virus A - H1N1, Parainfluenza virus 1, RSV-A, Mycoplasma pneumoniae and Streptococcus pyogenes (Table 6). Further evaluation with different combinations of 7 pathogens showed that the RPM v.1 assay could detect 6 of them simultaneously. Among these pathogens, HAdV-4, Bacillus anthracis, influenza virus A-H1N1, RSV-A, and Mycoplasma pneumoniae were detected at a minimum titer of 100 colony-forming units (plaque-forming units)/mL, while chain pyogenes Cocci were detected at 1000 cfu/mL (Table 6). Yersinia pestis could not be detected even at the highest concentrations. This was attributed to the inadequacy of the nucleic acid extraction protocol used for the intact Y. pestis pathogen, as 1000 copies of the genome of Y. pestis could be detected when using the purified nucleic acid template (Table 1 and table 5). For further confirmation, RPMv.1 was tested as cultured organisms on the same combination of 4 pathogens detected using purified nucleic acid templates (Table 5). The results showed that the assay could reproducibly detect HAdV-4 and Mycoplasma pneumoniae at 100 colony-forming units (plaque-forming units)/mL without detection failure, and was less sensitive to Streptococcus pyogenes (1000 colonies forming units/mL), but Yersinia pestis could not be detected. When testing for 3 pathogens simultaneously, in this example Bacillus anthracis, influenza virus A-H1N1, and HCoV-229E or RSV-A, the assay detected titers as low as 100 colony-forming units (plaque-forming units) /mL of all 3 pathogens (Table 6). These results suggest that the RA-based method is an effective means for the direct detection and typing of multiple pathogens from nasal rinse samples, with the benefit of high sensitivity and specificity for detection of co-infection with at least 7 pathogens. The method will be used in routine diagnostic and epidemiological investigations of these pathogens within populations, providing new information on the incidence of multiple pathogens.
表5:通过RPM v.1同时检测多种核酸模板Table 5: Simultaneous detection of multiple nucleic acid templates by RPM v.1
注意:样品通过在TE缓冲液内混合纯化的核酸模板以产生106个基因组拷贝/ul贮存液而生成。从该浓度开始,制备TE缓冲液内的10倍连续稀释物。NOTE: Samples were generated by mixing purified nucleic acid templates in TE buffer to yield 106 genome copies/ul stock. Starting from this concentration, 10-fold serial dilutions in TE buffer were prepared.
表6;通过RPM v.1同时检测多种病原体Table 6; Simultaneous detection of multiple pathogens by RPM v.1
注意:样品通过培养物样品与自正常志愿者中收集的汇集的鼻冲洗物混合以产生105个菌落形成单位(噬斑形成单位)/ml而生成。从该浓度开始,制备含有自正常志愿者中收集的汇集的鼻冲洗物的10倍连续稀释物。对于每种稀释物,将150μl样品用于RPM v.1方法。BA-炭疽芽孢杆菌(Sterne)、H1N1-流感病毒A-H1N1、HCoV229E-人冠状病毒229E、HAdV-人腺病毒、GAS-化脓性链球菌(A组链球菌)、MP-肺炎支原体、PIV1:副流感病毒1、RSV-呼吸道合胞体病毒、YP-鼠疫耶尔森氏菌。+:检测到、-:未检测到。NOTE: Samples were generated by mixing culture samples with pooled nasal rinses collected from normal volunteers to yield 105 colony forming units (plaque forming units)/ml. Starting from this concentration, 10-fold serial dilutions containing pooled nasal rinses collected from normal volunteers were prepared. For each dilution, 150 μl of sample was used for the RPM v.1 method. BA-Bacillus anthracis (Sterne), H1N1-Influenza virus A-H1N1, HCoV229E-human coronavirus 229E, HAdV-human adenovirus, GAS-streptococcus pyogenes (group A streptococcus), MP-mycoplasma pneumoniae, PIV1: Parainfluenza virus 1, RSV-respiratory syncytial virus, YP-Yersinia pestis. +: detected, -: not detected.
实施例10Example 10
临床标本的评估-在成功地证实RPM v.1测定法用于病原体检测的能力后,该鉴定法用于前瞻性诊断和回顾性诊断引起ARI的感染。使用主要从表现ARI的军队新兵中收集的临床标本来比较基于微阵列的诊断法与建立更久的呼吸道病原体检测方法的用途。样品(n=101)由病毒转运培养基内的具有临床已记录呼吸道疾病的咽喉拭子组成。样品从已经使用CAP认证的诊断方法(细胞培养和/或PCR)在NHRC检验对HAdV或流感病毒呈阳性的组内随机选择。将这些样品双盲化(随机重新编号并与相关的临床记录分开)并送到海军研究实验室(NRL)以进行RPM v.1检验。比较性实验由两个独立实验室进行并且样品身份仅在结果已经最终完成后才揭示。对于流感病毒A,RPMv.1方法显示相对于最初诊断结果的87%检测敏感性和96%特异性以及92%整体符合度(表7)。对于腺病毒,RPM v.1检测敏感性是87%,特异性是97%,整体符合度97%(表7)。在进一步比较RPM v.1结果与培养方法及PCR方法的结果时,数据显示出与培养测定方法或PCR测定方法可比较的检测敏感性和特异性(表8)。数据表明RPM v.1具有比培养法和PCR法更好的敏感性及特异性,这是可以预期的,因为分子方法通常比培养法更敏感,并且RPM v.1方法的测序能力提供比PCR更高的特异性(表9)。该数据还有力地证实基于微阵列的诊断法在未培养的患者标本内正确鉴定临床相关性流感病毒A株的能力。Evaluation of Clinical Specimens - Following successful demonstration of the capability of the RPM v.1 assay for pathogen detection, the assay was used for the prospective diagnosis and retrospective diagnosis of infections causing ARI. Clinical specimens collected primarily from military recruits presenting with ARI were used to compare the use of microarray-based diagnostics with more established methods for the detection of respiratory pathogens. Samples (n=101) consisted of throat swabs with clinically documented respiratory disease in viral transport medium. Samples were randomly selected from within groups that had tested positive for HAdV or influenza virus at the NHRC using CAP-approved diagnostic methods (cell culture and/or PCR). These samples were double-blinded (randomly renumbered and separated from relevant clinical records) and sent to the Naval Research Laboratory (NRL) for RPM v.1 testing. Comparative experiments were performed by two independent laboratories and sample identities were only revealed after the results had been finalized. For influenza virus A, the RPMv.1 method showed a detection sensitivity of 87% and a specificity of 96% and an overall agreement of 92% relative to the initial diagnosis (Table 7). For adenovirus, the sensitivity of RPM v.1 detection was 87%, the specificity was 97%, and the overall coincidence was 97% (Table 7). When the RPM v.1 results were further compared with those of the culture and PCR methods, the data showed comparable detection sensitivity and specificity to either the culture assay or the PCR assay (Table 8). The data indicate that RPM v.1 has better sensitivity and specificity than culture and PCR, which is expected since molecular methods are generally more sensitive than culture, and the sequencing power of RPM v.1 provides greater sensitivity than PCR. Higher specificity (Table 9). The data also strongly demonstrate the ability of microarray-based diagnostics to correctly identify clinically relevant influenza A strains in uncultured patient specimens.
表7:RPM v.1用于临床样品内腺病毒、流感病毒A和阴性对照检测的评估Table 7: Evaluation of RPM v.1 for the detection of Adenovirus, Influenza A and Negative Controls in Clinical Samples
认证的PCR;*将CAP认证的PCR阴性样品中的一个样品对流感病毒A进行培养,RPM v.1显示同时感染HAdV-4和流感病毒A,证实另一个阴性样品具有低滴度的HAdV-4;¢3份流感病毒A培养法阳性样品也不能通过定量实时PCR得以检测,表明模板降解。 Authenticated PCR; * One of the CAP-authenticated PCR-negative samples was cultured for Influenza A, RPM v.1 showing co-infection with HAdV-4 and Influenza A, confirming that the other negative sample had low titers of HAdV- 4; ¢ 3 samples positive for influenza virus A culture method could not be detected by quantitative real-time PCR, indicating template degradation.
表8:对40份临床样品内流感病毒A阳性对照和阴性对照检测的RPM v.1与培养法和实时PCR测定法的比较Table 8: Comparison of RPM v.1 to culture and real-time PCR assays for detection of influenza virus A positive and negative controls in 40 clinical samples
表9:对40份临床样品内流感病毒A阳性对照和阴性对照检测的培养法与实时PCR鉴定法的比较Table 9: Comparison of culture method and real-time PCR identification method for influenza virus A positive control and negative control detection in 40 clinical samples
本研究证实本测定法鉴定流感病毒亚型并追踪遗传性变化的能力。这对于流感病毒流行病学尤其重要,因为抗原漂变是流感病毒逃脱因先前自然暴露和接种所诱导的免疫压力的机制。对从RPM v.1中产生的血凝素(HA)序列和神经氨酸酶(NA)序列的分析重现从1999-2005通过抗原漂变而出现的已知谱系变化(表10)。7份在2003-2004流感季节前收集的流感病毒A/H3N2临床标本被鉴定为属于A/巴拿马/2007/99样谱系,而9份在2003-2004流感季节内收集的流感病毒A/H3N2样品明白无误地携带在HA基因内的特征A/福建/411/2002-样谱系核苷酸置换。从A/福建/411/2002样株至A/加利福尼亚/7/2004样株的漂移(shift)在18份于2004-2005流感季节中收集的流感病毒A/H3N2样品内是明显的。3份样品被鉴定为A/福建/411/2002样株,而其余样品在HA基因内显示特征性加利福尼亚样核苷酸置换。2份在相同时间期间收集的样品仅能够被鉴定为流感病毒A/H3N2。其原因在于靶的不良扩增和/或杂交,导致用于株水平鉴定的信息不充分。2份在2000-2001内收集的流感病毒A/H1N1样品被鉴定为与A/新喀里多尼亚/20/99亲缘关系密切。This study demonstrates the ability of this assay to identify influenza virus subtypes and track genetic changes. This is especially important for influenza virus epidemiology, as antigenic drift is a mechanism by which influenza viruses escape immune pressure induced by prior natural exposure and vaccination. Analysis of the hemagglutinin (HA) and neuraminidase (NA) sequences generated from RPM v.1 reproduced known lineage changes through antigenic drift from 1999-2005 (Table 10). Seven influenza A/H3N2 clinical specimens collected before the 2003-2004 influenza season were identified as belonging to the A/Panama/2007/99-like lineage, while nine influenza A/H3N2 samples collected during the 2003-2004 influenza season Unmistakably carry characteristic A/Fujian/411/2002-like lineage nucleotide substitutions within the HA gene. A shift from the A/Fujian/411/2002 strain to the A/California/7/2004 strain was evident in 18 influenza A/H3N2 samples collected during the 2004-2005 influenza season. Three samples were identified as A/Fujian/411/2002-like strains, while the remaining samples showed characteristic California-like nucleotide substitutions within the HA gene. 2 samples collected during the same time period could only be identified as influenza virus A/H3N2. This is due to poor amplification and/or hybridization of the target, resulting in insufficient information for strain-level identification. Two samples of influenza virus A/H1N1 collected in 2000-2001 were identified as being closely related to A/New Caledonia/20/99.
表10:流感病毒株和使用RPM v.1的谱系鉴定Table 10: Influenza strains and lineage identification using RPM v.1
Note:*表示仅单株得到鉴定Note: * indicates that only a single plant has been identified
除了检测临床样品内的单种病原体之外,可以在临床样品内检测到多种同时感染如HAdV-4/流感病毒A、HAdV-4/化脓性链球菌和流感病毒A/肺炎支原体(数据未显示)。这些同时感染使用公开的型特异性PCR测定法(Stone等,“通过实时PCR快速检测和同步亚型区分流感病毒A(Rapid detection andsimultaneous subtype differentiation of influenza A viruses by real time PCR)”J.Virol.Methods,117,103-112(2004);Hardegger等,“通过实时PCR快速检测临床样本中的肺炎支原体(Rapid detection of Mycoplasma pneumoniae in clinicalsamples by real-time PCR)”J.Microbiol.Methods,41,45-5(2000))和自有(in-house)特异性PCR引物(表4)(数据未显示)进一步验证。此外,该测定法还检测到在26%临床样品内的肺炎链球菌和在16%临床样品内的脑膜炎奈瑟氏菌。肺炎链球菌和脑膜炎奈瑟氏菌的存在通过公开的物种特异性定量实时PCR鉴定法(数据未显示)在40份临床样品的亚群(因样品的可获得体积而受限制)内进行验证。公知肺炎链球菌和脑膜炎奈瑟氏菌是在嘴和上呼吸道系统内的共生性细菌,因此在临床样品内找到这些细菌通常不令人惊讶。然而,定量实时PCR数据显示,尽管大多数临床样品内存在的肺炎链球菌和脑膜炎奈瑟氏菌的滴度低(≤103基因组拷贝/μl),32%的流感阳性样品携带高滴度的肺炎链球菌(7/25)或脑膜炎奈瑟氏菌(1/25)(≥105基因组拷贝/μl)(数据未显示)。存在于这些临床样品内的高滴度细菌可能归因于病毒诱导性细菌超感染。In addition to detecting single pathogens in clinical samples, multiple co-infections such as HAdV-4/influenza virus A, HAdV-4/S. pyogenes, and influenza A/M. show). These co-infections were performed using published type-specific PCR assays (Stone et al., "Rapid detection and simultaneous subtype differentiation of influenza A viruses by real time PCR" J. Virol. Methods, 117, 103-112 (2004); Hardegger et al., "Rapid detection of Mycoplasma pneumoniae in clinical samples by real-time PCR" J.Microbiol.Methods, 41, 45 -5 (2000)) and in-house specific PCR primers (Table 4) (data not shown) for further validation. In addition, the assay detected S. pneumoniae in 26% of clinical samples and N. meningitidis in 16% of clinical samples. The presence of S. pneumoniae and N. meningitidis was verified within a subset of 40 clinical samples (limited by the available volume of samples) by a published species-specific quantitative real-time PCR assay (data not shown) . Streptococcus pneumoniae and N. meningitidis are well known commensal bacteria in the mouth and upper respiratory system, so it is generally not surprising to find these bacteria in clinical samples. However, quantitative real-time PCR data showed that despite low titers (≤10 3 genome copies/μl) of S. pneumoniae and N. meningitidis present in most clinical samples, 32% of influenza-positive samples carried high titers pneumoniae (7/25) or N. meningitidis (1/25) (≥10 5 genome copies/μl) (data not shown). The high titers of bacteria present in these clinical samples may be due to virus-induced bacterial superinfection.
实施例11Example 11
用引物L和LN的多重PCR方案-如下是实施例方法的详细方案。Multiplex PCR protocol with primers L and LN - The following is a detailed protocol of the example method.
准备工作Preparation
1.从pSP64poly(A)-TIM中制备TIM RNA-SP6试剂盒1. Preparation of TIM RNA from pSP64poly(A)-TIM- SP6 Kit
(Ambion,目录号1330)(Ambion, catalog number 1330)
a)用EcoRI酶线性化的1μg的pSP64poly(A)-TIMa) 1 μg of pSP64poly(A)-TIM linearized with EcoRI enzyme
xμl pSP64poly(A)-TIMxμl pSP64poly(A)-TIM
2μl 10×EcoRI缓冲液2 μl 10× EcoRI buffer
2μl EcoRI(NEB,目录号R0101S)2 μl EcoRI (NEB, catalog number R0101S)
(16-x)μl H2O(16-x)μl H 2 O
20μl总体积20μl total volume
将反应物在37℃下温育5小时。The reactions were incubated at 37°C for 5 hours.
b)通过添加如下物质终止限制酶切消化:b) Terminate the restriction digest by adding:
·1/20体积0.5M EDTA(1μl)1/20 volume 0.5M EDTA (1μl)
·1/10体积3M乙酸钠(2μl)1/10 volume of 3M sodium acetate (2μl)
·2体积乙醇(40μl)2 volumes of ethanol (40 μl)
c)充分混合并在-20℃冷冻20分钟。随后在微量离心机内在最高速度使DNA沉淀(pellet)15分钟。c) Mix well and freeze at -20°C for 20 minutes. The DNA was then pelleted in a microcentrifuge at top speed for 15 minutes.
d)除去上清液,使管再离心(re-spin)数秒,并用非常尖的吸头除去残余液体。重悬于20μl无核酸酶的水内。d) Remove the supernatant, re-spin the tube for a few seconds, and remove residual liquid with a very sharp tip. Resuspend in 20 μl nuclease-free water.
e)将RNA聚合酶酶混合物放置在冰上e) Place the RNA polymerase enzyme mix on ice
f)涡旋混合10×反应缓冲液与4种核糖核苷酸溶液f) Vortex to mix 10× reaction buffer with 4 ribonucleotide solutions
g)(ATP、CTP、GTP和UTP)直至它们完全溶解于溶液内。g) (ATP, CTP, GTP and UTP) until they are completely dissolved in solution.
h)核糖核苷酸一旦融化则在冰上贮存,但是组成(assembling)反应时将10×反应缓冲液维持在室温下。h) Ribonucleotides were stored on ice once thawed, but the 10X reaction buffer was maintained at room temperature during assembling reactions.
i)应当在开启之前使全部试剂短暂微量离心,以防止可能存在于管边缘周围的材料损失和/或污染。i) All reagents should be microcentrifuged briefly prior to opening to prevent loss and/or contamination of material that may be present around the edge of the tube.
j)在室温下形成如下转录反应物j) Form the following transcription reaction at room temperature
16μl 线性化pSP64poly(A)-TIM16 μl linearized pSP64poly(A)-TIM
16μl NTP(ATP、GTP、CTP、UTP各4μl)16μl NTP (ATP, GTP, CTP, UTP each 4μl)
4μl 10×反应缓冲液4 μl 10× reaction buffer
4μl 酶混合物4 μl enzyme mix
40μl 总体积40μl total volume
将反应物在37℃下温育6小时。The reactions were incubated at 37°C for 6 hours.
k)纯化RNA产物用探针QuantTM G-50微量柱(Amersham,目录号27533501)k) Probe Quant TM G-50 microcolumn (Amersham, Cat. No. 27533501) for purification of RNA products
1)测量所回收RNA的O.D.并稀释以产生60fg/μl贮存液。1) Measure the O.D. of recovered RNA and dilute to create a 60 fg/μl stock solution.
2.用platinum Taq DNA聚合酶(Invitrogen,目录号10966-034)从pSP64poly(A)-NAC1-PCR中制备NAC1 DNA片段2. Prepare NAC1 DNA fragments from pSP64poly(A)-NAC1-PCR with platinum Taq DNA polymerase (Invitrogen, catalog number 10966-034)
1μl pSP64poly(A)-NAC1(1ng/μl)1μl pSP64poly(A)-NAC1 (1ng/μl)
5μl 10×PCR缓冲液5 μl 10×PCR buffer
2μl 50mM MgCl2 2μl 50mM MgCl2
1μl 10mM dNTP混合物1 μl 10mM dNTP mix
1μl SP6(10μM)1μl SP6 (10μM)
5’-ATT TAG GTG ACA CTA TAG AAT-3’5’-ATT TAG GTG ACA CTA TAG AAT-3’
1μl SP6(10μM)1μl SP6 (10μM)
5’-CAG GAA ACA GCT ATG ACC ATG-3’5’-CAG GAA ACA GCT ATG ACC ATG-3’
0.5μl Platinum Taq聚合酶0.5 μl Platinum Taq polymerase
38.5μl H2O38.5 μl H2O
50μl 总体积50μl total volume
运行如下PCR程序:Run the following PCR program:
94℃-3分钟94°C - 3 minutes
40个循环:40 loops:
94℃-30秒94°C-30 seconds
50℃-30秒50℃-30 seconds
72℃-40秒72°C-40 seconds
72℃-5分钟72°C - 5 minutes
4℃-永久4℃-permanent
纯化的PCR产物-PCR纯化试剂盒(Qiagen,目录号28106)Purified PCR product- PCR purification kit (Qiagen, cat. no. 28106)
a)添加250μl缓冲液PB至50μl PCR样品。a) Add 250 μl buffer PB to 50 μl PCR sample.
b)将QIA快速离心柱(spin column)放在提供的2ml收集管内。b) Place the QIA spin column in the provided 2ml collection tube.
c)为结合DNA,施加样品至QIA快速柱并离心30-60秒。c) To bind DNA, apply sample to QIA flash column and centrifuge for 30-60 seconds.
d)弃去流过的液体。将QIA快速柱放回相同管内。d) Discard the flow-through liquid. Put the QIA Flash Column back into the same tube.
e)为洗涤,添加0.75ml缓冲液PE至QIA快速柱并离心30-60秒。e) For washing, add 0.75ml buffer PE to the QIA flash column and centrifuge for 30-60 seconds.
f)弃去流过的液体并将QIA快速柱放回相同管内。f) Discard the flow-through and place the QIA Flash Column back in the same tube.
g)使该柱额外离心1分钟。g) Centrifuge the column for an additional 1 minute.
h)将QIA快速柱放在一个清洁的1.5ml微量离心管内。h) Place the QIA Flash Column in a clean 1.5ml microcentrifuge tube.
i)为洗脱DNA,添加50μl缓冲液EB(10mM Tris·Cl,pH8.5)或H2O至QIA快速膜的中央,搁置该柱1分钟并随后使该柱离心1分钟。i) To elute the DNA, add 50 μl buffer EB (10 mM Tris·Cl, pH 8.5) or H 2 O to the center of the QIA fast membrane, let the column rest for 1 minute and then centrifuge the column for 1 minute.
j)测量PCR产物的O.D.并稀释以产生60fg/μl贮存液。j) Measure the O.D. of the PCR product and dilute to create a 60 fg/μl stock solution.
3.通过混合10μl的100μM寡核苷酸贮存液(表2(a))并添加水至1m,产生1ml的1μM引物混合物A贮存液1。充分混合,随后分成100μl等分试样。3. Generate 1 ml of 1 μM Primer Mix A stock solution 1 by mixing 10 μl of 100 μM oligonucleotide stock solution (Table 2(a)) and adding water to 1 m. Mix well and then divide into 100 μl aliquots.
4.通过混合10μl的100μM寡核苷酸贮存液(表2(b))并添加水至1ml,产生1ml的1μM引物混合物B贮存液。充分混合,随后分成100μl等分试样。4. Create 1 ml of 1 μM primer mix B stock solution by mixing 10 μl of 100 μM oligonucleotide stock solution (Table 2(b)) and adding water to 1 ml. Mix well and then divide into 100 μl aliquots.
多重PCRMultiplex PCR
1.核酸提取-MasterPureTM DNA纯化试剂盒(Epicentre,目录号MC89010)。1. Nucleic acid extraction - MasterPure ™ DNA Purification Kit (Epicentre, cat. no. MC89010).
a)添加100μl的1×PBS至50μl鼻冲洗物。a) Add 100 μl of 1×PBS to 50 μl nasal rinse.
b)添加含有1μl蛋白酶K的150μl 2×T & C裂解溶液。b) Add 150 μl 2×T&C lysis solution containing 1 μl proteinase K.
c)在65℃下温育15分钟,每隔5分钟涡旋混合。c) Incubate at 65°C for 15 minutes, vortexing every 5 minutes.
d)在冰上或4℃下温育3-5分钟。d) Incubate on ice or at 4°C for 3-5 minutes.
e)添加150μl MPC溶液至样品内,涡旋混合10秒。e) Add 150 μl MPC solution to the sample, and vortex to mix for 10 seconds.
f)在最大速度上离心(spin)10分钟。f) Spin at maximum speed for 10 minutes.
g)转移上清液至一只1.5ml新管,随后添加500μl异丙醇,充分混合。g) Transfer the supernatant to a new 1.5 ml tube, then add 500 μl of isopropanol and mix well.
h)在最大速度于a4℃离心10分钟。弃去上清液,随后用80%乙醇洗涤两次。h) Centrifuge at maximum speed for 10 minutes at a4°C. The supernatant was discarded, followed by two washes with 80% ethanol.
i)使沉淀(pellet)干燥并重悬于8μl无核酸酶的水内。i) The pellet was dried and resuspended in 8 μl of nuclease-free water.
2.用引物LN-Invitrogen Superscript III(Invitrogen,目录号18080-093)的逆转录2. Reverse transcription with primer LN-Invitrogen Superscript III (Invitrogen, catalog number 18080-093)
来自步骤1的NA 8μl8 μl of NA from step 1
引物LN(40μM) 1μlPrimer LN (40μM) 1μl
5’-CGA TAC GAC GGG CGT ACT AGC GNN NNN NNN N-3’5’-CGA TAC GAC GGG CGT ACT AGC GNN NNN NNN N-3’
10mM dNTP 1μl10mM dNTP 1μl
TIM(60fg/μl) 1μlTIM (60fg/μl) 1μl
NAC1(60fg/μl) 1μlNAC1 (60fg/μl) 1μl
总体积 12μlTotal volume 12μl
在65℃下温育5分钟,随后在冰上放置超过1分钟添加如下反应混合物至管内并通过抽吸加以温和混合:Incubate at 65°C for 5 minutes, then place on ice for over 1 minute Add the following reaction mixture to the tube and mix gently by aspiration:
5×第一链缓冲液 4μl5×First strand buffer 4μl
0.1M DTT 2μl0.1M DTT 2μl
RNA酶OUT 1μlRNase OUT 1 μl
SuperScript III 1μlSuperScript III 1μl
总体积 8μlTotal volume 8μl
在PCR仪器上运行如下程序:Run the following program on the PCR instrument:
25℃-10分钟25℃-10 minutes
50℃-50分钟50℃-50 minutes
85℃-5分钟85℃-5 minutes
3.分割具有引物L的多重PCR3. Split multiplex PCR with primer L
a.反应A:a. Reaction A:
10×PCR缓冲液 5μl10×PCR buffer 5μl
50mM MgCl2 4μl50mM MgCl2 4μl
50×dNTP 2μl50×dNTP 2μl
引物L(100μM) 1μlPrimer L (100μM) 1μl
5’-CGA TAC GAC GGG CGT ACT AGC G-3’5’-CGA TAC GAC GGG CGT ACT AGC G-3’
引物A混合物(1μM) 2μlPrimer A mix (1μM) 2μl
5×Q-溶液 5μl5×Q-solution 5μl
RT模板(来自步骤2) 10μlRT template (from step 2) 10 μl
Platinum taq 2μlPlatinum taq 2μl
无核酸酶的水 18μlNuclease-free water 18 μl
UDG 1μlUDG 1 μl
总体积 50μlTotal volume 50μl
b.反应B:b. Reaction B:
10×PCR缓冲液 5μl10×PCR buffer 5μl
50mM MgCl2 4μl50mM MgCl2 4μl
50×dNTP 2μl50×dNTP 2μl
引物L(100μM) 1μlPrimer L (100μM) 1μl
5’-CGA TAC GAC GGG CGT ACT AGC G-3’5’-CGA TAC GAC GGG CGT ACT AGC G-3’
引物B混合物(1μM) 2.5μlPrimer B mix (1μM) 2.5μl
5×Q-溶液 5μl5×Q-solution 5μl
RT模板 10μlRT template 10 μl
Platinum taq 2μlPlatinum taq 2μl
无RNA酶的水 17.5μlRNase-free water 17.5 μl
UDG 1μlUDG 1 μl
总体积 50μlTotal volume 50μl
运行如下PCR程序:Run the following PCR program:
94℃-3分钟94°C - 3 minutes
5个循环:5 loops:
94℃-30秒94°C-30 seconds
50℃-90秒50℃-90 seconds
72℃-2分钟72°C - 2 minutes
35个循环:35 loops:
94℃-30秒94°C-30 seconds
64℃-2分钟64°C - 2 minutes
72℃-5分钟72°C - 5 minutes
4℃-永久4℃-permanent
阵列制备Array preparation
Tag IQ-EX PCR-1.0kb Tag IQ-EX或7.5kb Tag IQ-EXTag IQ-EX PCR-1.0kb Tag IQ-EX or 7.5kb Tag IQ-EX
1.0kb Tag IQ-EX PCR1.0kb Tag IQ-EX PCR
正向引物(1kb) 3μlForward primer (1kb) 3μl
反向引物 3μlReverse primer 3μl
Tag IQ-EX 5μlTag IQ-EX 5μl
MgCl2(50mM) 5μl MgCl2 (50mM) 5μl
dNTP(10mM) 2μldNTP(10mM) 2μl
10×PCR缓冲液 10μl10×PCR buffer 10μl
Platinum Taq DNA聚合酶 1μlPlatinum Taq DNA polymerase 1μl
水 71μlWater 71μl
总体积 100μlTotal volume 100μl
·94℃,3分钟94°C, 3 minutes
·30个循环:94℃,30秒;68℃,30秒;72℃,40秒30 cycles: 94°C, 30 seconds; 68°C, 30 seconds; 72°C, 40 seconds
·72℃,10分钟·72°C, 10 minutes
7.5kb Tag IQ-EX PCR7.5kb Tag IQ-EX PCR
正向引物(7.5kb) 3μlForward primer (7.5kb) 3μl
反向引物 3μlReverse primer 3μl
Tag IQ-EX 5μlTag IQ-EX 5μl
dNTP(LA PCR试剂盒) 16μldNTP(LA PCR Kit) 16μl
10×PCR缓冲液(LA PCR试剂盒) 10μl10×PCR buffer (LA PCR kit) 10μl
TaKaRa Taq 1μlTaKaRa Taq 1 μl
水 62μlWater 62μl
总体积 100μlTotal volume 100μl
·94℃,3分钟94°C, 3 minutes
·30个循环:94℃,30秒;68℃,7分钟30秒30 cycles: 94°C, 30 seconds; 68°C, 7 minutes 30 seconds
·68℃,10分钟·68°C, 10 minutes
纯化的PCR产物(Tag IQ-EX和多重PCR)-PCR纯化试剂盒(Qiagen,目录号28106)Purified PCR products (Tag IQ-EX and multiplex PCR)- PCR purification kit (Qiagen, cat. no. 28106)
a)添加500μl缓冲液PB至100μl PCR样品(合并反应A和B).a) Add 500 μl buffer PB to 100 μl PCR sample (combine reactions A and B).
b)将QIA快速离心柱放在提供的2ml收集管内。b) Place the QIA Fast Spin Column in the 2ml collection tube provided.
c)为结合DNA,施加样品至QIA快速柱并离心30-60秒。c) To bind DNA, apply sample to QIA flash column and centrifuge for 30-60 seconds.
d)弃去流过的液体。将QIA快速柱放回相同管内。d) Discard the flow-through liquid. Put the QIA Flash Column back into the same tube.
e)为洗涤,添加0.75ml缓冲液PE至QIA快速柱并离心30-60秒。e) For washing, add 0.75ml buffer PE to the QIA flash column and centrifuge for 30-60 seconds.
f)弃去流过的液体和将QIA快速柱放回相同管内。f) Discard the flow-through and place the QIA Flash Column back in the same tube.
g)使该柱离心额外1分钟。g) Centrifuge the column for an additional 1 minute.
h)将QIA快速柱放在一个清洁的1.5ml微量离心管内。h) Place the QIA Flash Column in a clean 1.5ml microcentrifuge tube.
i)洗脱DNA,添加40μl缓冲液EB(10mM Tris·Cl,pH8.5)或H2O至QIA快速膜的中央,搁置该柱(let the column stand)1分钟并随后使该柱离心1分钟。i) To elute the DNA, add 40 μl buffer EB (10 mM Tris·Cl, pH 8.5) or H 2 O to the center of the QIA fast membrane, let the column stand for 1 minute and then centrifuge the column for 1 minute minute.
j)测量PCR产物的O.D.。j) Measure the O.D. of the PCR product.
片段化和标记Fragmentation and Tagging
1.每个用于片段化的样品设立一个管,对于每一反应,添加EB缓冲液至终体积35μl。处理Tag IQ-EX作为一个样品1. Set up one tube per sample for fragmentation, and for each reaction, add EB buffer to a final volume of 35 μl. Handle Tag IQ-EX as a sample
2.在冰上制备片段化混合物2. Preparation of Fragmentation Mixture on Ice
10×片段化缓冲液 4.3μl10× fragmentation buffer 4.3μl
水 3.23μlWater 3.23 μl
片段化试剂 0.07μlFragmentation Reagent 0.07μl
总体积 7.6μlTotal volume 7.6μl
3.在冰上冷冻片段化混合物,随后添加7.6μl至从步骤1和2制备的每种DNA上。3. Freeze the fragmentation mixture on ice, then add 7.6 μl to each DNA prepared from steps 1 and 2.
4.运行如下程序:4. Run the following program:
·37℃,5分钟37°C, 5 minutes
·95℃,10分钟95°C, 10 minutes
·4℃,保持4°C, keep
5.制备标记混合物(每反应)5. Preparation of Labeling Mixture (per reaction)
Tdt缓冲液(5×) 12μlTdt buffer (5×) 12μl
基因芯片DNA标记试剂(5mM) 2μlGene Chip DNA Labeling Reagent (5mM) 2μl
TdT(30U/μl) 3.4μlTdT(30U/μl) 3.4μl
总计 17.4μlTotal 17.4μl
6.添加17.4μl标记混合物至每一个反应内和对照片段化PCR产物内。6. Add 17.4 [mu]l labeling mix to each reaction and to the control fragmented PCR product.
7.运行如下程序。7. Run the following program.
·37℃,30分钟·37°C, 30 minutes
·95℃,5分钟95°C, 5 minutes
·4℃,保持4°C, keep
杂交hybridize
1.开启设定在45℃上的杂交炉,加温芯片至室温.1. Turn on the hybridization oven set at 45°C and warm the chip to room temperature.
2.制备预杂交溶液。2. Prepare the prehybridization solution.
1%Tween-20 2μl1% Tween-20 2μl
1M Tris,pH7.8 2μl1M Tris, pH7.8 2μl
水 196μlWater 196μl
总体积(每个芯片) 200μlTotal volume (per chip) 200μl
3.芯片与预杂交缓冲液在45℃预杂交。3. The chip is pre-hybridized with the pre-hybridization buffer at 45°C.
4.形成杂交主混合物。4. Form the hybridization master mix.
Tag IQ-EX*(片段化的0.26μg) 1.9μlTag IQ-EX * (fragmented 0.26μg) 1.9 μl
5M TMAC 132μl5M TMAC 132μl
1M Tris,pH7.8 2.2μl1M Tris, pH7.8 2.2μl
1%Tween-20 2.2μl1% Tween-20 2.2μl
鲱鱼精子DNA(10mg/ml) 2.2μlHerring sperm DNA (10mg/ml) 2.2μl
乙酰化BSA 2.2μlAcetylated BSA 2.2μl
对照寡核苷酸B2 3.4μlControl oligonucleotide B2 3.4μl
水 13.9μlWater 13.9μl
终体积(每个芯片) 160μlFinal volume (per chip) 160μl
*使用如下计算以确定多少片段化的Tag IQ-EX用于杂交主混合物。 * Use the calculation below to determine how much fragmented Tag IQ-EX to use in the hybridization master mix.
·纯化的PCR产物浓度(例如100ng/μl)×35μl=3500ngConcentration of purified PCR product (eg 100ng/μl)×35μl=3500ng
·在进行片段化和标记后的终体积是60μlThe final volume after fragmentation and labeling is 60 μl
·片段化的Tag IQ-EX的终浓度=58.3ng/μlThe final concentration of fragmented Tag IQ-EX = 58.3ng/μl
·将需要260/58.3=4.4658.3μl· 260/58.3 = 4.4658.3 μl will be required
5.添加160μl至60μl标记的样品。运行如下程序。5. Add 160 μl to 60 μl of labeled sample. Run the following program.
·95℃,5分钟95°C, 5 minutes
·45℃,5分钟45°C, 5 minutes
6.从芯片上除去预杂交缓冲液并填满杂交混合物。6. Remove prehybridization buffer from chip and fill with hybridization mixture.
7.在45℃下杂交过夜,60转/分钟。7. Hybridize overnight at 45°C, 60 rpm.
洗涤和染色washing and dyeing
1.制备洗涤缓冲液A与B1. Preparation of Wash Buffers A and B
洗液ALotion A
20×SSPE 300ml20×SSPE 300ml
10%Tween-20 1ml10% Tween-20 1ml
水 699mlWater 699ml
通过0.2μm滤器过滤并加盖贮存在室温下。Filter through a 0.2 μm filter and store capped at room temperature.
洗液BLotion B
20×SSPE 30ml20×SSPE 30ml
10%Tween-20 1ml10% Tween-20 1ml
水 969mlWater 969ml
通过0.2μm滤器过滤并加盖贮存在室温下。Filter through a 0.2 μm filter and store capped at room temperature.
2.制备SAPE染色溶液(每个芯片)2. Preparation of SAPE staining solution (per chip)
20X SSPE 360μl20X SSPE 360μl
1%Tween-20 12μl1% Tween-20 12μl
50mg/ml乙酰化BSA 50μl50mg/ml acetylated BSA 50μl
SAPE 12μlSAPE 12μl
DI水 766μlDI water 766μl
充分混合并分成600μl的2份等分试样(染色液1和染色液3)Mix well and divide into 2 aliquots of 600 μl (staining solution 1 and staining solution 3)
3.制备抗体溶液(每个芯片)3. Preparation of antibody solution (per chip)
20×SSPE 180μl20×SSPE 180μl
1%Tween-20 6μl1% Tween-20 6μl
50mg/ml乙酰化BSA 25μl50mg/ml acetylated BSA 25μl
10mg/ml正常山羊IgG 6μl10mg/ml normal goat IgG 6μl
0.5mg/ml生物素化抗体 3.6μl0.5mg/ml biotinylated antibody 3.6μl
DI水 379.4μlDI water 379.4μl
终体积 600μlFinal volume 600μl
4.运行洗涤方案-DNA阵列WS4。4. Run Wash Protocol - DNA Array WS4.
与常规方法不同,优化的RPM v.1测定法不仅可以鉴定病原体,还可以提供序列信息,允许在相同测定法内检测数量众多的病原体并进行系统发生分类。序列信息证实作为遗传性变异分析循环性和新发性病毒(即流感病毒)的有力工具的RPM v.1鉴定类型广泛变体(例如HAdV)的能力。这种能力还用于追踪已知变体的变化。这种用途清楚地在流感病毒A阳性临床样品内得到证实,显示出从A/A/巴拿马/2007/99样株(在2003年流感季节之前)至2003-2004年流感季节内的A/福建/411/2002样株,随后至2004-2005年流感季节内的A/加利福尼亚/7/2004样株的谱系变化。在流感病毒A内相对保守的仅一种M基因(H1N1)序列拼贴在RPM v.1上。但是,M基因ProSeq仍能够检测到完全不同亚型的同源区域,允许正确区分(表10)。这种M基因ProSeq理论上将允许检测在阵列上未拼贴抗原性HA序列和NA序列的任何其它类型的流感病毒。Unlike conventional methods, the optimized RPM v.1 assay not only identifies the pathogen, but also provides sequence information, allowing detection and phylogenetic classification of a large number of pathogens within the same assay. Sequence information confirmed the ability of RPM v.1, a powerful tool for genetic variation analysis of circulating and emerging viruses (ie, influenza viruses), to identify type-wide variants (eg, HAdV). This capability is also used to track changes in known variants. This use was clearly demonstrated in influenza virus A positive clinical samples, showing that from the A/A/Panama/2007/99 sample strain (before the 2003 flu season) to the A/Fujian flu season in 2003-2004 Lineage changes in the /411/2002 strains followed by the A/California/7/2004 strains during the 2004-2005 influenza season. Only one M gene (H1N1) sequence that is relatively conserved in influenza virus A is collaged on RPM v.1. However, M gene ProSeq was still able to detect homologous regions of completely different subtypes, allowing correct discrimination (Table 10). This M gene ProSeq would theoretically allow the detection of any other type of influenza virus that does not tile the antigenic HA and NA sequences on the array.
本研究证实这种系统可以显示优异的临床敏感性和特异性、解析复杂的同时感染而不丧失敏感性的能力,并且敏感性对于全部26种靶向的病原体和潜在生物战剂是相似的。与培养法和PCR测定法相反,本测定法平台显示可比较的对HAdV和流感病毒A的检测敏感性和特异性(表7)。该数据支持使用RPM v.1系统作为诊断工具,以便在直接临床标本内以与常规监测方法非常相关的方式正确鉴定并分型临床相关性腺病毒株和流感病毒A株的可行性。This study demonstrates that such a system can display excellent clinical sensitivity and specificity, the ability to resolve complex co-infections without loss of sensitivity, and that sensitivity is similar for all 26 targeted pathogens and potential biological warfare agents. In contrast to culture and PCR assays, this assay platform showed comparable detection sensitivity and specificity for HAdV and Influenza A (Table 7). This data supports the feasibility of using the RPM v.1 system as a diagnostic tool to correctly identify and type clinically relevant adenovirus and influenza A strains within direct clinical specimens in a manner that is very relevant to routine surveillance methods.
显然,本发明的众多修改和变型在以上教授内容影响下是可能的。因此将理解的是所要求权力的本发明可以与如具体所述的不同方式加以实施。任何处于单数形式的对权力部分的指称,例如使用冠词“a”、“an”、“这个”或“所述”不被解释为限制该部分至单数。Obviously many modifications and variations of the present invention are possible in light of the above teaching. It is therefore to be understood that the invention as claimed may be practiced otherwise than as specifically described. Any reference to a part of authority in the singular, eg, using the articles "a", "an", "the" or "said" is not to be construed as limiting that part to the singular.
序列表sequence listing
<110><110>
海军部长代表的美国政府United States Government represented by the Secretary of the Navy
<120>用于遗传序列分析的多重聚合酶链反应<120> Multiplex polymerase chain reaction for genetic sequence analysis
<130>PIUS0712387<130>PIUS0712387
<150>60/691,768<150>60/691,768
<151>2005-06-16<151>2005-06-16
<150>60/735,876<150>60/735,876
<151>2005-11-14<151>2005-11-14
<150>60/735,824<150>60/735,824
<151>2005-11-14<151>2005-11-14
<150>60/743,977<150>60/743,977
<151>2006-03-30<151>2006-03-30
<150>11/177,647<150>11/177,647
<151>2005-07-02<151>2005-07-02
<150>11/177,646<150>11/177,646
<151>2005-07-02<151>2005-07-02
<150>11/268,373<150>11/268,373
<151>2005-11-07<151>2005-11-07
<150>11/422,425<150>11/422,425
<151>2006-06-06<151>2006-06-06
<150>11/422,431<150>11/422,431
<151>2006-06-06<151>2006-06-06
<160>147<160>147
<170>PatentIn version 3.3<170>PatentIn version 3.3
<210>1<210>1
<211>22<211>22
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物尾随序列 Primer Trailing Sequence
<223><223>
<400>1<400>1
cgatacgacg ggcgtactag cg 22cgatacgacg ggcgtactag cg 22
<210>2<210>2
<211>31<211>31
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物尾随序列 Primer Trailing Sequence
<223><223>
<220><220>
<221>misc_feature<221>misc_feature
<222>(23)..(31)<222>(23)..(31)
<223>n is a,t,c,or g<223> n is a, t, c, or g
<400>2<400>2
cgatacgacg ggcgtactag cgnnnnnnnn n 31cgatacgacg ggcgtactag cgnnnnnnnn n 31
<210>3<210>3
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>3<400>3
cgatacgacg ggcgtactag cggccaacaa ctcaaccgac ac 42cgatacgacg ggcgtactag cggccaacaa ctcaaccgac ac 42
<210>4<210>4
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>4<400>4
cgatacgacg ggcgtactag cgacacttcg catcacattc atcc 44cgatacgacg ggcgtactag cgacacttcg catcacattc atcc 44
<210>5<210>5
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primer
<223><223>
<400>5<400>5
cgatacgacg ggcgtactag cgacttcccg gaaatgacaa ca 42cgatacgacg ggcgtactag cgacttcccg gaaatgacaa ca 42
<210>6<210>6
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>6<400>6
cgatacgacg ggcgtactag cgggtttgtc attgggaatg ct 42cgatacgacg ggcgtactag cgggtttgtc attgggaatg ct 42
<210>7<210>7
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>7<400>7
cgatacgacg ggcgtactag cggccattcc acaacataca cc 42cgatacgacg ggcgtactag cggccattcc acaacataca cc 42
<210>8<210>8
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>8<400>8
cgatacgacg ggcgtactag cgagctacca tgattgccag tg 42cgatacgacg ggcgtactag cgagctacca tgattgccag tg 42
<210>9<210>9
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>9<400>9
cgatacgacg ggcgtactag cgacgttgtt gctggaaagg ac 42cgatacgacg ggcgtactag cgacgttgtt gctggaaagg ac 42
<210>10<210>10
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>10<400>10
cgatacgacg ggcgtactag cgaaacttcc gctgtaccct ga 42cgatacgacg ggcgtactag cgaaacttcc gctgtacccct ga 42
<210>11<210>11
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>11<400>11
cgatacgacg ggcgtactag cgggaaatat gccccaaact agc 43cgatacgacg ggcgtactag cgggaaatat gccccaaact agc 43
<210>12<210>12
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>12<400>12
cgatacgacg ggcgtactag cgatgcagct tttgccttca ac 42cgatacgacg ggcgtactag cgatgcagct tttgccttca ac 42
<210>13<210>13
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>13<400>13
cgatacgacg ggcgtactag cgttctaacc gaggtcgaaa cg 42cgatacgacg ggcgtactag cgttctaacc gaggtcgaaa cg 42
<210>14<210>14
<211>42<211>42
<212>DNA<212> DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>14<400>14
cgatacgacg ggcgtactag cgctctggca ctccttccgt ag 42cgatacgacg ggcgtactag cgctctggca ctccttccgt ag 42
<210>15<210>15
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>15<400>15
cgatacgacg ggcgtactag cggggaggtc aatgtgactg gt 42cgatacgacg ggcgtactag cggggaggtc aatgtgactg gt 42
<210>16<210>16
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>16<400>16
cgatacgacg ggcgtactag cggggcaatt tcctatggct tt 42cgatacgacg ggcgtactag cggggcaatt tcctatggct tt 42
<210>17<210>17
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>17<400>17
cgatacgacg ggcgtactag cggtgaaccg ttctgcaaca aa 42cgatacgacg ggcgtactag cggtgaaccg ttctgcaaca aa 42
<210>18<210>18
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>18<400>18
cgatacgacg ggcgtactag cgccaatctt ggatgccatt ct 42cgatacgacg ggcgtactag cgccaatctt ggatgccatt ct 42
<210>19<210>19
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>19<400>19
cgatacgacg ggcgtactag cgcattgaca gaagatggag aagg 44cgatacgacg ggcgtactag cgcattgaca gaagatggag aagg 44
<210>20<210>20
<211>41<211>41
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>20<400>20
cgatacgacg ggcgtactag cgaagcacag agcgttccta g 41cgatacgacg ggcgtactag cgaagcacag agcgttccta g 41
<210>21<210>21
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>21<400>21
cgatacgacg ggcgtactag cgctgtggac cgtgaggata ct 42cgatacgacg ggcgtactag cgctgtggac cgtgaggata ct 42
<210>22<210>22
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>22<400>22
cgatacgacg ggcgtactag cgttggcggg tatagggtag agc 43cgatacgacg ggcgtactag cgttggcggg tatagggtag agc 43
<210>23<210>23
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>23<400>23
cgatacgacg ggcgtactag cgttattcag cagcacctcc ttg 43cgatacgacg ggcgtactag cgttattcag cagcacctcc ttg 43
<210>24<210>24
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>24<400>24
cgatacgacg gg cgtactag cgggtggcag gttgaatact ag 42cgatacgacg gg cgtactag cgggtggcag gttgaatact ag 42
<210>25<210>25
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>25<400>25
cgatacgacg ggcgtactag cgggctgata atcttccacc tcc 43cgatacgacg ggcgtactag cgggctgata atcttccacc tcc 43
<210>26<210>26
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>26<400>26
cgatacgacg ggcgtactag cgctctcacg gcaactggtt taa 43cgatacgacg ggcgtactag cgctctcacg gcaactggtt taa 43
<210>27<210>27
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>27<400>27
cgatacgacg ggcgtactag cggacaggac gcttcggagt ac 42cgatacgacg ggcgtactag cggacaggac gcttcggagt ac 42
<210>28<210>28
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>28<400>28
cgatacgacg ggcgtactag cgggcaacat tggcatagag gaag 44cgatacgacg ggcgtactag cgggcaacat tggcatagag gaag 44
<210>29<210>29
<211>40<211>40
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>29<400>29
cgatacgacg ggcgtactag cgggtggagt gatggcttcg 40cgatacgacg ggcgtactag cgggtggagt gatggcttcg 40
<210>30<210>30
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>30<400>30
cgatacgacg ggcgtactag cgagtgccat ctatgctatc tcc 43cgatacgacg ggcgtactag cgagtgccat ctatgctatc tcc 43
<210>31<210>31
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>31<400>31
cgatacgacg ggcgtactag cggccgtgga gtaaatggct aa 42cgatacgacg ggcgtactag cggccgtgga gtaaatggct aa 42
<210>32<210>32
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>32<400>32
cgatacgacg ggcgtactag cgagtcttcc aagaccgtcc aa 42cgatacgacg ggcgtactag cgagtcttcc aagaccgtcc aa 42
<210>33<210>33
<211>41<211>41
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>33<400>33
cgatacgacg ggcgtactag cgatgtgacc accgaccgta g 41cgatacgacg ggcgtactag cgatgtgacc accgaccgta g 41
<210>34<210>34
<211>41<211>41
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>34<400>34
cgatacgacg ggcgtactag cggttgctgg agaacggtat g 41cgatacgacg ggcgtactag cggttgctgg agaacggtat g 41
<210>35<210>35
<211>45<211>45
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>35<400>35
cgatacgacg ggcgtactag cgtctacccc tatgaagatg aaagc 45cgatacgacg ggcgtactag cgtctacccc tatgaagatg aaagc 45
<210>36<210>36
<211>45<211>45
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>36<400>36
cgatacgacg ggcgtactag cgggataggc agttgtgctg ggcat 45cgatacgacg ggcgtactag cgggataggc agttgtgctg ggcat 45
<210>37<210>37
<211>41<211>41
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>37<400>37
cgatacgacg ggcgtactag cgtgagtgcc agcgagaaga g 41cgatacgacg ggcgtactag cgtgagtgcc agcgagaaga g 41
<210>38<210>38
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>38<400>38
cgatacgacg ggcgtactag cgcaggaggt gaggtagttg aatc 44cgatacgacg ggcgtactag cgcaggaggt gaggtagttg aatc 44
<210>39<210>39
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>39<400>39
cgatacgacg ggcgtactag cgtcaaatcc tcgttgacag ac 42cgatacgacg ggcgtactag cgtcaaatcc tcgttgacag ac 42
<210>40<210>40
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>40<400>40
cgatacgacg ggcgtactag cgtgcactgt tgcctccatt ga 42cgatacgacg ggcgtactag cgtgcactgt tgcctccatt ga 42
<210>41<210>41
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>41<400>41
cgatacgacg ggcgtactag cgacaggaat tggctcagat atg 43cgatacgacg ggcgtactag cgacaggaat tggctcagat atg 43
<210>42<210>42
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>42<400>42
cgatacgacg ggcgtactag cgacatgatc tcctgttgtc gt 42cgatacgacg ggcgtactag cgacatgatc tcctgttgtc gt 42
<210>43<210>43
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>43<400>43
cgatacgacg ggcgtactag cgtcgaggtt gccaggatat agg 43cgatacgacg ggcgtactag cgtcgaggtt gccaggatat agg 43
<210>44<210>44
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>44<400>44
cgatacgacg ggcgtactag cgggactatg agatgcctga ttgc 44cgatacgacg ggcgtactag cgggactatg agatgcctga ttgc 44
<210>45<210>45
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>45<400>45
cgatacgacg ggcgtactag cgcaactatt agcagtcaca ctcg 44cgatacgacg ggcgtactag cgcaactatt agcagtcaca ctcg 44
<210>46<210>46
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>46<400>46
cgatacgacg ggcgtactag cgaagttggc attgtgttca gtg 43cgatacgacg ggcgtactag cgaagttggc attgtgttca gtg 43
<210>47<210>47
<211>41<211>41
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>47<400>47
cgatacgacg ggcgtactag cgtcatccag actgtcaaag g 41cgatacgacg ggcgtactag cgtcatccag actgtcaaag g 41
<210>48<210>48
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>48<400>48
cgatacgacg ggcgtactag cgaaacagga aacacggaca cc 42cgatacgacg ggcgtactag cgaaacagga aacacggaca cc 42
<210>49<210>49
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>49<400>49
cgatacgacg ggcgtactag cgctctatca tcacagatct cagc 44cgatacgacg ggcgtactag cgctctatca tcacagatct cagc 44
<210>50<210>50
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>50<400>50
cgatacgacg ggcgtactag cgcatgagtc tgactggttt gc 42cgatacgacg ggcgtactag cgcatgagtc tgactggttt gc 42
<210>51<210>51
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>51<400>51
cgatacgacg ggcgtactag cgacaaagat ggctcttagc aaag 44cgatacgacg ggcgtactag cgacaaagat ggctcttagc aaag 44
<210>52<210>52
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>52<400>52
cgatacgacg ggcgtactag cgacccagtg aatttatgat tagc 44cgatacgacg ggcgtactag cgacccagtg aatttatgat tagc 44
<210>53<210>53
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>53<400>53
cgatacgacg ggcgtactag cgaaaaccaa cccaaccaaa cc 42cgatacgacg ggcgtactag cgaaaaccaa cccaaccaaa cc 42
<210>54<210>54
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>54<400>54
cgatacgacg ggcgtactag cggcacatca taattgggag tgtc 44cgatacgacg ggcgtactag cggcacatca taattggggag tgtc 44
<210>55<210>55
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>55<400>55
cgatacgacg ggcgtactag cggctctctt ggcgttcttc ag 42cgatacgacg ggcgtactag cggctctctt ggcgttcttc ag 42
<210>56<210>56
<211>42<211>42
<212>DNA<212> DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>56<400>56
cgatacgacg ggcgtactag cgtcattacc agccgacagc ac 42cgatacgacg ggcgtactag cgtcattacc agccgacagc ac 42
<210>57<210>57
<211>41<211>41
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>57<400>57
cgatacgacg ggcgtactag cgccgtcagc gatctctcca c 41cgatacgacg ggcgtactag cgccgtcagc gatctctcca c 41
<210>58<210>58
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>58<400>58
cgatacgacg ggcgtactag cgcctgtcca ccactccttg tc 42cgatacgacg ggcgtactag cgcctgtcca ccactccttg tc 42
<210>59<210>59
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>59<400>59
cgatacgacg ggcgtactag cggcttgaaa gggcagttct gg 42cgatacgacg ggcgtactag cggcttgaaa gggcagttct gg 42
<210>60<210>60
<211>43<211>43
<212>DNA<212> DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>60<400>60
cgatacgacg ggcgtactag cgcaggtctc cgattgtgat tgc 43cgatacgacg ggcgtactag cgcaggtctc cgattgtgat tgc 43
<210>61<210>61
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>61<400>61
cgatacgacg ggcgtactag cgctctggtg tgtggtgctt ata 43cgatacgacg ggcgtactag cgctctggtg tgtggtgctt ata 43
<210>62<210>62
<211>40<211>40
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>62<400>62
cgatacgacg ggcgtactag cgctcggcac ggcaactgtc 40cgatacgacg ggcgtactag cgctcggcac ggcaactgtc 40
<210>63<210>63
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>63<400>63
cgatacgacg ggcgtactag cgatgtggat gacgtttagg ta 42cgatacgacg ggcgtactag cgatgtggat gacgtttagg ta 42
<210>64<210>64
<211>41<211>41
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>64<400>64
cgatacgacg ggcgtactag cgggttgatg gcagtcggta a 41cgatacgacg ggcgtactag cgggttgatg gcagtcggta a 41
<210>65<210>65
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>65<400>65
cgatacgacg ggcgtactag cgaagaagag ttcatgacgg ac 42cgatacgacg ggcgtactag cgaagaagag ttcatgacgg ac 42
<210>66<210>66
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>66<400>66
cgatacgacg ggcgtactag cgtggttgtt tggttggtta ttcg 44cgatacgacg ggcgtactag cgtggttgtt tggttggtta ttcg 44
<210>67<210>67
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>67<400>67
cgatacgacg ggcgtactag cgccgatgac ttatagtatt ga 42cgatacgacg ggcgtactag cgccgatgac ttatagtatt ga 42
<210>68<210>68
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>68<400>68
cgatacgacg ggcgtactag cgataatctt gatgccactt agc 43cgatacgacg ggcgtactag cgataatctt gatgccactt agc 43
<210>69<210>69
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>69<400>69
cgatacgacg ggcgtactag cggttcttca ggctcaggtc aatc 44cgatacgacg ggcgtactag cggttcttca ggctcaggtc aatc 44
<210>70<210>70
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>70<400>70
cgatacgacg ggcgtactag cgacagcggt atgtactggt cata 44cgatacgacg ggcgtactag cgacagcggt atgtactggt cata 44
<210>71<210>71
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>71<400>71
cgatacgacg ggcgtactag cgtgggaata gtgtgcgtat gc 42cgatacgacg ggcgtactag cgtgggaata gtgtgcgtat gc 42
<210>72<210>72
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>72<400>72
cgatacgacg ggcgtactag cgacatcacc gcgacgcagc aa 42cgatacgacg ggcgtactag cgacatcacc gcgacgcagc aa 42
<210>73<210>73
<211>40<211>40
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>73<400>73
cgatacgacg ggcgtactag cggattccgc gatgccgatg 40cgatacgacg ggcgtactag cggattccgc gatgccgatg 40
<210>74<210>74
<211>44<211>44
<212>DNA<212> DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>74<400>74
cgatacgacg ggcgtactag cgcgcccatg tatttagaga accg 44cgatacgacg ggcgtactag cgcgcccatg tatttagaga accg 44
<210>75<210>75
<211>40<211>40
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>75<400>75
cgatacgacg ggcgtactag cgccggcgtc gtgcgcgaaa 40cgatacgacg ggcgtactag cgccggcgtc gtgcgcgaaa 40
<210>76<210>76
<211>40<211>40
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>76<400>76
cgatacgacg ggcgtactag cgcagccacg tcagccagcc 40cgatacgacg ggcgtactag cgcagccacg tcagccagcc 40
<210>77<210>77
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>77<400>77
cgatacgacg ggcgtactag cggagcgaat atctggcaca cc 42cgatacgacg ggcgtactag cggagcgaat atctggcaca cc 42
<210>78<210>78
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>78<400>78
cgatacgacg ggcgtactag cggggccagg tctagaacga at 42cgatacgacg ggcgtactag cggggccagg tctagaacga at 42
<210>79<210>79
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>79<400>79
cgatacgacg ggcgtactag cgtggagtac aatggtctcg agc 43cgatacgacg ggcgtactag cgtggagtac aatggtctcg agc 43
<210>80<210>80
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>80<400>80
cgatacgacg ggcgtactag cgtttgcatg aagtctgaga acga 44cgatacgacg ggcgtactag cgtttgcatg aagtctgaga acga 44
<210>81<210>81
<211>41<211>41
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>81<400>81
cgatacgacg ggcgtactag cgacggcatt acaacggcta g 41cgatacgacg ggcgtactag cgacggcatt acaacggcta g 41
<210>82<210>82
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>82<400>82
cgatacgacg ggcgtactag cgcatcttct ggtaatccct gttc 44cgatacgacg ggcgtactag cgcatcttct ggtaatccct gttc 44
<210>83<210>83
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>83<400>83
cgatacgacg ggcgtactag cgacagcgtt caatctcgtt gg 42cgatacgacg ggcgtactag cgacagcgtt caatctcgtt gg 42
<210>84<210>84
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>84<400>84
cgatacgacg ggcgtactag cgagagaatt gcgatacgtt acag 44cgatacgacg ggcgtactag cgagagaatt gcgatacgtt acag 44
<210>85<210>85
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>85<400>85
cgatacgacg ggcgtactag cgccttacaa cctattgaca cctg 44cgatacgacg ggcgtactag cgccttacaa cctattgaca cctg 44
<210>86<210>86
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>86<400>86
cgatacgacg ggcgtactag cgacacgaga gctacctgca ga 42cgatacgacg ggcgtactag cgacacgaga gctacctgca ga 42
<210>87<210>87
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>87<400>87
cgatacgacg ggcgtactag cgtttataca atatgggcag gg 42cgatacgacg ggcgtactag cgtttataca atatgggcag gg 42
<210>88<210>88
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>88<400>88
cgatacgacg ggcgtactag cgtcgtaagc tgttcttctg gtac 44cgatacgacg ggcgtactag cgtcgtaagc tgttcttctg gtac 44
<210>89<210>89
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>89<400>89
cgatacgacg ggcgtactag cgtcattgct tgatgaaact gat 43cgatacgacg ggcgtactag cgtcattgct tgatgaaact gat 43
<210>90<210>90
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>90<400>90
cgatacgacg ggcgtactag cgttggatat tcaccgaaca ctag 44cgatacgacg ggcgtactag cgttggatat tcaccgaaca ctag 44
<210>91<210>91
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>91<400>91
cgatacgacg ggcgtactag cgcttgtgga aatgagtcaa cgg 43cgatacgacg ggcgtactag cgcttgtgga aatgagtcaa cgg 43
<210>92<210>92
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>92<400>92
cgatacgacg ggcgtactag cgaggtagct atatttcgct tgac 44cgatacgacg ggcgtactag cgaggtagct atatttcgct tgac 44
<210>93<210>93
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>93<400>93
cgatacgacg ggcgtactag cggagcgtct acgtcctggt ga 42cgatacgacg ggcgtactag cggagcgtct acgtcctggt ga 42
<210>94<210>94
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>94<400>94
cgatacgacg ggcgtactag cgcattggtt tcgctgtttt ga 42cgatacgacg ggcgtactag cgcattggtt tcgctgtttt ga 42
<210>95<210>95
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>95<400>95
cgatacgacg ggcgtactag cgtggaagag tgagggtgga tac 43cgatacgacg ggcgtactag cgtggaagag tgagggtgga tac 43
<210>96<210>96
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>96<400>96
cgatacgacg ggcgtactag cgaataatcc ctctgttgac gaa 43cgatacgacg ggcgtactag cgaataatcc ctctgttgac gaa 43
<210>97<210>97
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>97<400>97
cgatacgacg ggcgtactag cgaggagcaa tgagaattac acg 43cgatacgacg ggcgtactag cgaggagcaa tgagaattac acg 43
<210>98<210>98
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>98<400>98
cgatacgacg ggcgtactag cgctaagttc caatactctt gc 42cgatacgacg ggcgtactag cgctaagttc caatactctt gc 42
<210>99<210>99
<211>45<211>45
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>99<400>99
cgatacgacg ggcgtactag cggccggtac ttatgtatgt gcatt 45cgatacgacg ggcgtactag cggccggtac ttatgtatgt gcatt 45
<210>100<210>100
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>100<400>100
cgatacgacg ggcgtactag cgcatcattg gcggttgatt ta 42cgatacgacg ggcgtactag cgcatcattg gcggttgatt ta 42
<210>101<210>101
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>101<400>101
cgatacgacg ggcgtactag cggggaacat acgcttccag at 42cgatacgacg ggcgtactag cggggaacat acgcttccag at 42
<210>102<210>102
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>102<400>102
cgatacgacg ggcgtactag cgttccacat tttgtttggg aaa 43cgatacgacg ggcgtactag cgttccacat tttgtttggg aaa 43
<210>103<210>103
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>103<400>103
cgatacgacg ggcgtactag cgccttatcc gactcgcaat gt 42cgatacgacg ggcgtactag cgccttatcc gactcgcaat gt 42
<210>104<210>104
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>104<400>104
cgatacgacg ggcgtactag cgcagtgtga ggttatgtgg tgga 44cgatacgacg ggcgtactag cgcagtgtga ggttatgtgg tgga 44
<210>105<210>105
<211>41<211>41
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>105<400>105
cgatacgacg ggcgtactag cgttggttgc gcaattcaag t 41cgatacgacg ggcgtactag cgttggttgc gcaattcaag t 41
<210>106<210>106
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>106<400>106
cgatacgacg ggcgtactag cgtgttgttc tttgtgcagg aga 43cgatacgacg ggcgtactag cgtgttgttc tttgtgcagg aga 43
<210>107<210>107
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>107<400>107
cgatacgacg ggcgtactag cgtcgtaatg ttagctgtat catc 44cgatacgacg ggcgtactag cgtcgtaatg ttagctgtat catc 44
<210>108<210>108
<211>44<211>44
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>108<400>108
cgatacgacg ggcgtactag cgtacattag ctgtccactt accg 44cgatacgacg ggcgtactag cgtacattag ctgtccactt accg 44
<210>109<210>109
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>109<400>109
cgatacgacg ggcgtactag cggtgggtgg tggtcttaag ttt 43cgatacgacg ggcgtactag cggtgggtgg tggtcttaag ttt 43
<210>110<210>110
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>110<400>110
cgatacgacg ggcgtactag cgctggatat taccagtgtc att 43cgatacgacg ggcgtactag cgctggatat taccagtgtc att 43
<210>111<210>111
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>111<400>111
cgatacgacg ggcgtactag cgactgataa aggggagtgg ata 43cgatacgacg ggcgtactag cgactgataa agggggagtgg ata 43
<210>112<210>112
<211>41<211>41
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>112<400>112
cgatacgacg ggcgtactag cgctcgcctt gctctttgag c 41cgatacgacg ggcgtactag cgctcgcctt gctctttgag c 41
<210>113<210>113
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>113<400>113
cgatacgacg ggcgtactag cgggacacaa gccctctcta cg 42cgatacgacg ggcgtactag cgggacacaa gccctctcta cg 42
<210>114<210>114
<211>43<211>43
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>114<400>114
cgatacgacg ggcgtactag cgtagatacg gttacggtta cag 43cgatacgacg ggcgtactag cgtagatacg gttacggtta cag 43
<210>115<210>115
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>115<400>115
cgatacgacg ggcgtactag cgcatgggaa gctgttttga tg 42cgatacgacg ggcgtactag cgcatgggaa gctgttttga tg 42
<210>116<210>116
<211>42<211>42
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>116<400>116
cgatacgacg ggcgtactag cgcccgaaga attgttccaa tc 42cgatacgacg ggcgtactag cgcccgaaga attgttccaa tc 42
<210>117<210>117
<211>21<211>21
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>117<400>117
gaccaatcct gtcacctctg a 21gaccaatcct gtcacctctg a 21
<210>118<210>118
<211>21<211>21
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>118<400>118
gtatatgagk cccatrcaac t 21gtatatgagk cccatrcaact t 21
<210>119<210>119
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>119<400>119
tcggtgggaa agaatttgac 20tcggtgggaa agaatttgac 20
<210>120<210>120
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>120<400>120
ttcctgatag gggctctgtg 20ttcctgatag gggctctgtg 20
<210>121<210>121
<211>24<211>24
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>121<400>121
acaagcaagg agatagcata gatg 24acaagcaagg agatagcata gatg 24
<210>122<210>122
<211>24<211>24
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>122<400>122
gtaggagaag gtgtatgagt tagc 24gtaggagaag gtgtatgagt tagc 24
<210>123<210>123
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>123<400>123
acctgggcta attgggattc 20acctgggcta attgggattc 20
<210>124<210>124
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>124<400>124
aatgcctgtt ggagcttgtt 20aatgcctgtt ggagcttgtt 20
<210>125<210>125
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>125<400>125
ggcttatgtg gccccttact 20ggcttatgtg gccccttact 20
<210>126<210>126
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>126<400>126
aagatggccg cgtattattg 20aagatggccg cgtattattg 20
<210>127<210>127
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>127<400>127
ggctcagata tgcgagaaca 20ggctcagata tgcgagaaca 20
<210>128<210>128
<211>21<211>21
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>128<400>128
ttggtccggg taataatgag a 21ttggtccggg taataatgag a 21
<210>129<210>129
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>129<400>129
ccatatgcgg cattataccc 20ccatatgcgg catttataccc 20
<210>130<210>130
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>130<400>130
gcagtctctc tgcgttttcc 20gcagtctctc tgcgttttcc 20
<210>131<210>131
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>131<400>131
tgctttaccc aaggcaaaaa 20tgctttaccc aaggcaaaaa 20
<210>132<210>132
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>132<400>132
agcctcatct gccaggtcta 20agcctcatct gccaggtcta 20
<210>133<210>133
<211>23<211>23
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>133<400>133
aagatggctc ttagcaaagt caa 23aagatggctc ttagcaaagt caa 23
<210>134<210>134
<211>22<211>22
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>134<400>134
tactatctcc tgtgctccgt tg 22tactatctcc tgtgctccgt tg 22
<210>135<210>135
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>135<400>135
tggggcaaat acaaagatgg 20tggggcaaat acaaagatgg 20
<210>136<210>136
<211>23<211>23
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>136<400>136
cacatcataa ttgggagtgt caa 23cacatcataa ttgggagtgt caa 23
<210>137<210>137
<211>21<211>21
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400><400>
ccaaccaaac aacaacgttc a 21ccaaccaaac aacaacgttc a 21
<210>138<210>138
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>138<400>138
accttgactg gaggccgtta 20accttgactg gaggccgtta 20
<210>139<210>139
<211>32<211>32
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>139<400>139
tcaactcgaa taacggtgac ttcttaccac tg 32tcaactcgaa taacggtgac ttcttaccac tg 32
人工artificial
<210>140<210>140
<211>22<211>22
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>140<400>140
tgcagagcgt cctttggtct at 22tgcagagcgt cctttggtct at 22
<210>141<210>141
<211>25<211>25
<212>DNA<212>DNA
<213><213>
<220><220>
引物Primers
<223><223>
<400>141<400>141
ctcttactcg tggtttccaa cttga 25ctcttactcg tggtttccaa cttga 25
<210>142<210>142
<211>24<211>24
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>142<400>142
tggcgcccat aagcaacact cgaa 24tggcgcccat aagcaacact cgaa 24
<210>143<210>143
<211>25<211>25
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>143<400>143
aacagatgta agcagctccg ttatc 25aacagatgta agcagctccg ttatc 25
<210>144<210>144
<211>26<211>26
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>144<400>144
cgatttttat tggatgctgt acattt 26cgatttttat tggatgctgt aattt 26
<210>145<210>145
<211>26<211>26
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>145<400>145
tgccatagca tgacacaatg gctcct 26tgccatagca tgacacaatg gctcct 26
<210>146<210>146
<211>21<211>21
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>146<400>146
cggcagcgtc tcaattcgtt c 21cggcagcgtc tcaattcgtt c 21
<210>147<210>147
<211>20<211>20
<212>DNA<212>DNA
<213>人工<213> Artificial
<220><220>
引物Primers
<223><223>
<400>147<400>147
caagccgcct tcctcatagc 20caagccgcct tcctcatagc 20
Claims (22)
Applications Claiming Priority (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US69176805P | 2005-06-16 | 2005-06-16 | |
| US60/691,768 | 2005-06-16 | ||
| US11/177,647 | 2005-07-02 | ||
| US11/177,646 | 2005-07-02 | ||
| US11/268,373 | 2005-11-07 | ||
| US60/735,876 | 2005-11-14 | ||
| US60/735,824 | 2005-11-14 | ||
| US60/743,639 | 2006-03-22 | ||
| US11/422,425 | 2006-06-06 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN101273143A true CN101273143A (en) | 2008-09-24 |
Family
ID=40006359
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNA2006800295834A Pending CN101273143A (en) | 2005-06-16 | 2006-06-09 | Multiplex polymerase chain reaction for genetic sequence analysis |
| CNA2006800293307A Pending CN101495652A (en) | 2005-06-16 | 2006-06-09 | Computer-implemented biological sequence identification system and method |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNA2006800293307A Pending CN101495652A (en) | 2005-06-16 | 2006-06-09 | Computer-implemented biological sequence identification system and method |
Country Status (1)
| Country | Link |
|---|---|
| CN (2) | CN101273143A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102344969A (en) * | 2010-07-28 | 2012-02-08 | 中国人民解放军军事医学科学院微生物流行病研究所 | Probe and primer pair assisting identification of drug resistance of influenza A virus H3N2 |
| CN107365876A (en) * | 2017-08-07 | 2017-11-21 | 南京岚煜生物科技有限公司 | For detecting the kit and its application method of 10 respiratory tract infection pathogen |
| CN109457053A (en) * | 2018-12-28 | 2019-03-12 | 中国科学院苏州纳米技术与纳米仿生研究所 | A kind of primer sets for detecting respiratory pathogen, kit and method |
| CN109897917A (en) * | 2019-04-01 | 2019-06-18 | 广东和信健康科技有限公司 | A kind of swin flu, second stream and adenovirus multiple nucleic acid detection primer probe groups and its kit |
| CN110408726A (en) * | 2019-07-23 | 2019-11-05 | 中国人民解放军军事科学院军事医学研究院 | A method for detection of 29 respiratory pathogens using Taqman low-density microfluidic chip technology |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102799795B (en) * | 2011-05-25 | 2016-08-17 | 中国医学科学院药用植物研究所 | Species move identification system, terminal, server and method |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6996477B2 (en) * | 2001-04-19 | 2006-02-07 | Dana Farber Cancer Institute, Inc. | Computational subtraction method |
-
2006
- 2006-06-09 CN CNA2006800295834A patent/CN101273143A/en active Pending
- 2006-06-09 CN CNA2006800293307A patent/CN101495652A/en active Pending
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102344969A (en) * | 2010-07-28 | 2012-02-08 | 中国人民解放军军事医学科学院微生物流行病研究所 | Probe and primer pair assisting identification of drug resistance of influenza A virus H3N2 |
| CN102344969B (en) * | 2010-07-28 | 2013-07-10 | 中国人民解放军军事医学科学院微生物流行病研究所 | Probe and primer pair assisting identification of drug resistance of influenza A virus H3N2 |
| CN107365876A (en) * | 2017-08-07 | 2017-11-21 | 南京岚煜生物科技有限公司 | For detecting the kit and its application method of 10 respiratory tract infection pathogen |
| CN107365876B (en) * | 2017-08-07 | 2020-04-14 | 南京岚煜生物科技有限公司 | Kit for detecting 10 respiratory tract infection pathogens and using method thereof |
| CN109457053A (en) * | 2018-12-28 | 2019-03-12 | 中国科学院苏州纳米技术与纳米仿生研究所 | A kind of primer sets for detecting respiratory pathogen, kit and method |
| CN109897917A (en) * | 2019-04-01 | 2019-06-18 | 广东和信健康科技有限公司 | A kind of swin flu, second stream and adenovirus multiple nucleic acid detection primer probe groups and its kit |
| CN110408726A (en) * | 2019-07-23 | 2019-11-05 | 中国人民解放军军事科学院军事医学研究院 | A method for detection of 29 respiratory pathogens using Taqman low-density microfluidic chip technology |
| CN110408726B (en) * | 2019-07-23 | 2022-10-04 | 中国人民解放军军事科学院军事医学研究院 | A method for detection of 29 respiratory pathogens using Taqman low-density microfluidic chip technology |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101495652A (en) | 2009-07-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Liu et al. | Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens | |
| US7695941B2 (en) | Multiplexed polymerase chain reaction for genetic sequence analysis | |
| Lauri et al. | Potentials and limitations of molecular diagnostic methods in food safety | |
| JP5565781B2 (en) | Method for detecting pneumonia-causing bacteria using nucleic acid chromatography | |
| JP6081916B2 (en) | Gardnerella vaginails assay | |
| US8232058B2 (en) | Multiplex detection of respiratory pathogens | |
| Beck et al. | Molecular diagnosis of respiratory viruses | |
| US20100279273A1 (en) | Nucleic acid sequences for the amplification and detection of respiratory viruses | |
| Lodes et al. | Identification of upper respiratory tract pathogens using electrochemical detection on an oligonucleotide microarray | |
| CN107532213B (en) | Method for simultaneously detecting multiple nucleic acid sequences in a sample | |
| AU2014403832B2 (en) | Methods of detecting influenza | |
| JP2009504153A (en) | Method and / or apparatus for oligonucleotide design and / or nucleic acid detection | |
| CN116323980A (en) | Methods for detecting SARS-COV-2, influenza and RSV | |
| US20220042117A1 (en) | COMPOSITIONS AND METHODS FOR THE SIMULTANEOUS DETECTION OF INFLUENZA A, INFLUENZA B, AND SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 (SARS-CoV-2) | |
| CN101273143A (en) | Multiplex polymerase chain reaction for genetic sequence analysis | |
| CN101545014B (en) | A method and kit for detecting pathogens of infectious diseases | |
| US12129523B2 (en) | Pathogen diagnostic test | |
| KR101058820B1 (en) | Multiple Polymerase Chain Reaction for Gene Sequencing | |
| US20150344975A1 (en) | Compositions and methods for detecting, extracting, visualizing, and identifying protomyxzoa rhuematic | |
| HK1245352A1 (en) | Method for the simultaneous detection of multiple nucleic acid sequences in a sample | |
| HK1245352B (en) | Method for the simultaneous detection of multiple nucleic acid sequences in a sample |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20080924 |