[go: up one dir, main page]

CN101299713A - Method for setting multilayer satellite network system route - Google Patents

Method for setting multilayer satellite network system route Download PDF

Info

Publication number
CN101299713A
CN101299713A CNA2008100661403A CN200810066140A CN101299713A CN 101299713 A CN101299713 A CN 101299713A CN A2008100661403 A CNA2008100661403 A CN A2008100661403A CN 200810066140 A CN200810066140 A CN 200810066140A CN 101299713 A CN101299713 A CN 101299713A
Authority
CN
China
Prior art keywords
satellite
layer
orbit
network
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100661403A
Other languages
Chinese (zh)
Inventor
李晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CNA2008100661403A priority Critical patent/CN101299713A/en
Publication of CN101299713A publication Critical patent/CN101299713A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radio Relay Systems (AREA)

Abstract

The present invention relates to a method for setting multilayer satellite network system route, including steps of: 1. setting parameters for the network initialization; 2. fixing a time, solving satellite orbit parameters in the interval of time, calculating the location coordinates of the satellite and the length of the link between stars, and establishing a network topological structure; 3. calculating the load of link between stars of the multi-layer satellite network; 4. calculating the process and exchange time delay on stars according to the queuing theory; 5. searching source satellite and object satellite of each satellite layer; 6. selecting the satellite layer for transporting services according to the communication service instruction requirement and network states, and searching an optimum route according to routing algorithm. Relative to traditional stationary orbit satellite, the present invention has small transmission delay, and high validity. The system has advantages of more flexible routing, effective guaranty of service quality, multiple replaceable chain circuits, stronger survivability, a capacity of processing and exchanging on star, optical or microwave links between stars, and capability of providing wideband synthetic service for users in global scope.

Description

一种多层卫星网络系统路由设定方法 A multi-layer satellite network system routing setting method

技术领域 technical field

本发明属于深空通信领域,具体涉及一种多层卫星网络系统路由设定方法。The invention belongs to the field of deep space communication, and in particular relates to a multilayer satellite network system routing setting method.

背景技术 Background technique

早期的卫星通信往往采用单颗静止轨道卫星,该卫星轨道高度约为35786千米,轨道倾角0度,位于赤道上空一定经度位置上,相对地面静止。静止轨道卫星轨道高、覆盖范围大,但是由于星-地之间的通信距离大,链路易受损,不支持地面手持机等小功率用户。同时由于静止轨道卫星轨道倾角为0度,不能覆盖极地地区,高纬度地区通信仰角小、通信质量难以保证。卫星星间链路技术的出现使得静止轨道卫星构成网络,星间能够进行通信。静止轨道卫星网络的设计方法较为简单,只要确定由几颗卫星能够构成网络、卫星所在的经度位置即可,其他参数都是相对确定的。Early satellite communications often used a single geostationary orbit satellite with an orbital altitude of about 35,786 kilometers and an orbital inclination of 0 degrees. It was located at a certain longitude position above the equator and was stationary relative to the ground. Geostationary orbit satellites have a high orbit and a large coverage area, but due to the large communication distance between the satellite and the ground, the link is easily damaged, and it does not support low-power users such as ground handsets. At the same time, because the geostationary orbit satellite orbit has an inclination angle of 0 degrees, it cannot cover the polar regions, and the communication angle in high latitude regions is small, and the communication quality is difficult to guarantee. The emergence of satellite inter-satellite link technology makes geostationary orbit satellites form a network, and the satellites can communicate. The design method of the geostationary satellite network is relatively simple. It is only necessary to determine how many satellites can form the network and the longitude position of the satellite. Other parameters are relatively determined.

中轨卫星位于两个范·艾伦带之间的轨道上,星座一般由十几颗卫星构成,单颗可视时间达1~2小时。作为静止轨道卫星和低轨卫星的折衷,中轨卫星双跳传输时延大于低轨卫星,但作为一个网络,考虑整个星间链路长度、星上处理和上下行链路等因素,中轨卫星网络时延性能可能优于低轨卫星网络。同时,相对于低轨卫星,中轨卫星切换概率低、多普勒效应较小,轨道控制系统和天线跟瞄系统简化,一般能获得20~30度通信仰角。The medium-orbit satellites are located in the orbit between the two Van Allen belts. The constellation is generally composed of more than a dozen satellites, and the visible time of a single satellite is 1 to 2 hours. As a compromise between geostationary orbit satellites and low-orbit satellites, the double-hop transmission delay of medium-orbit satellites is greater than that of low-orbit satellites. The delay performance of the satellite network may be better than that of the low-orbit satellite network. At the same time, compared with low-orbit satellites, medium-orbit satellites have a low switching probability and a small Doppler effect. The orbit control system and antenna tracking system are simplified, and generally can obtain a communication angle of 20 to 30 degrees.

低轨卫星分布在500~2000千米的圆或椭圆轨道上,增个卫星通信网络一般由几十颗卫星组成。单颗卫星可见时间短,需要波束切换和卫星切换。低轨卫星优点很多,因为轨道低,星间链路性能优越,传输时延小,同时小卫星技术的应用使得卫星体积较小,便于发射。但是,低轨卫星组成的网络建设周期长,空间控制系统相对复杂,系统投资巨大。同时,数目众多的信关站需要快速跟瞄系统,需要考虑多普勒效应。卫星轨道低,通信仰角为10度左右,因为仰角的快速变化,信号传输路径有差异。Low-orbit satellites are distributed in circular or elliptical orbits ranging from 500 to 2,000 kilometers, and a satellite communication network generally consists of dozens of satellites. The visibility time of a single satellite is short, requiring beam switching and satellite switching. Low-orbit satellites have many advantages, because the orbit is low, the performance of the inter-satellite link is superior, and the transmission delay is small. At the same time, the application of small satellite technology makes the satellite smaller and easier to launch. However, the network construction period composed of low-orbit satellites is long, the space control system is relatively complex, and the system investment is huge. At the same time, a large number of gateway stations need a fast tracking and targeting system, and the Doppler effect needs to be considered. The satellite orbit is low, and the communication elevation angle is about 10 degrees. Because of the rapid change of the elevation angle, the signal transmission path is different.

考虑到极轨道或近极轨道如π型星座的轨道,在相向运动的轨道间存在“缝隙”,在缝隙两侧卫星因为相向运动,无法建立轨道间链路;同时轨道间链路在极地上空要关闭,因为在极地上空,相邻卫星轨道交叉,星间距离变化迅速,无法建立星间链路。Considering the orbits of polar orbits or near-polar orbits such as π-shaped constellations, there is a "gap" between the opposite-moving orbits, and the satellites on both sides of the gap cannot establish an inter-orbital link because of their relative motion; at the same time, the inter-orbital link is over the polar regions It must be closed, because over the polar regions, the orbits of adjacent satellites cross, and the inter-satellite distance changes rapidly, making it impossible to establish an inter-satellite link.

另外,在研究过程中发现,单层卫星网络特别是低轨(LEO:Low EarthOrbit)和中轨(MEO:Medium Earth Orbit)卫星网络,两颗卫星空间距离很近,但是因为没有星间链路(ISL:Inter-Satellite Link)直接连接,使得不能直接通信,必须通过若干ISL建立的卫星路径才能完成通信,这样不但不能满足通信服务指令(QoS:Quality of Service),而且浪费了大量系统和星上资源,甚至造成链路阻塞。In addition, during the research process, it was found that the single-layer satellite network, especially the low-orbit (LEO: Low Earth Orbit) and medium-orbit (MEO: Medium Earth Orbit) satellite network, the space distance between the two satellites is very close, but because there is no inter-satellite link (ISL: Inter-Satellite Link) direct connection makes it impossible to communicate directly. The communication must be completed through satellite paths established by several ISLs. This not only fails to meet the communication service instructions (QoS: Quality of Service), but also wastes a lot of system and satellite resources. resources, and even cause link congestion.

为了有效的解决上述技术问题许多研究机构在进行卫星层间链路的试验,欧洲SILEX试验中LEO卫星SPOT IV同GEO卫星Artemis通过0.8μm的星间链路以50Mbps的速率通信,后继实验由Artemis和日本的OICETS卫星进行的星间通信实验完成,两个实验的ISL均为LEO到GEO卫星光学链路,美国也进行了类似的ISL试验。其它计划如Motorola将Celestri低轨卫星系统同GEO卫星结合,构成混合卫星网络,13颗LEO卫星和6颗MEO卫星共同组成了Rostelesat星座,GESN、GNSS/Galileo和West系统均由数目不同的MEO/GEO卫星构成等。In order to effectively solve the above technical problems, many research institutions are conducting satellite interlayer link tests. In the European SILEX test, the LEO satellite SPOT IV and the GEO satellite Artemis communicate at a rate of 50Mbps through a 0.8μm inter-satellite link. The inter-satellite communication experiment with Japan's OICETS satellite is completed. The ISL of the two experiments is the optical link from LEO to GEO satellite. The United States has also conducted a similar ISL experiment. Other plans such as Motorola combine the Celestri low-orbit satellite system with GEO satellites to form a hybrid satellite network. 13 LEO satellites and 6 MEO satellites together form the Rostelesat constellation. GESN, GNSS/Galileo and West systems are composed of different numbers of MEO/ GEO satellite composition, etc.

多层卫星网络(MLSN:Multi layer satellite networks)在上世纪90年代后期成为研究的热点。Kimura提出一种双层(LEO和MEO)卫星星座,比较了极轨道和倾斜轨道星座的差别,通过多覆盖和增加仰角的方法,保证通信的可靠性要求,但卫星数量巨大。Multi-layer satellite networks (MLSN: Multi layer satellite networks) became a research hotspot in the late 1990s. Kimura proposed a double-layer (LEO and MEO) satellite constellation, comparing the difference between the polar orbit and the inclined orbit constellation. Through the method of multi-coverage and increasing the elevation angle, the reliability requirements of communication are guaranteed, but the number of satellites is huge.

发明内容 Contents of the invention

为了解决现有技术中存在的卫星网络系统庞大、造成大量系统和星上资源浪费,传输过程中时延长、容易造成链路阻塞等技术问题,本发明提供了一种多层卫星网络系统路由设定方法。In order to solve the technical problems existing in the prior art that the satellite network system is huge, causing a large amount of system and on-board resources to be wasted, the time extension during the transmission process, and easily causing link congestion, etc., the present invention provides a multi-layer satellite network system routing design Determine the method.

本发明解决现有技术问题所采用的方案为提供一种多层卫星网络系统路由设定方法,所述路由设定方法包括步骤:第一步、设定参数,进行网络初始化;第二步、固定一时刻tk,在该时间区间Δt,求解卫星轨道参量,计算卫星位置坐标和星间链路长度,建立网络拓扑结构;第三步、按照设定的业务模型,计算所述多层卫星网络的星间链路负载。第四步、根据排队理论计算星上处理和交换的时延;第五步、根据地面源目标位置,寻找每个卫星层中源卫星和目标卫星;第六步、根据通信服务指令需求和网络状态选择传输业务的卫星层,按照路由算法,寻找最优路径。The solution adopted by the present invention to solve the problems of the prior art is to provide a multi-layer satellite network system routing setting method, the routing setting method includes steps: the first step, setting parameters, and performing network initialization; the second step, Fix a time t k , in this time interval Δt, solve the satellite orbit parameters, calculate the satellite position coordinates and the length of the inter-satellite link, and establish the network topology; the third step is to calculate the multi-layer satellite according to the set business model The inter-satellite link load of the network. The fourth step is to calculate the delay of on-board processing and exchange according to the queuing theory; the fifth step is to find the source satellite and target satellite in each satellite layer according to the ground source target position; The state selects the satellite layer of the transmission service, and finds the optimal path according to the routing algorithm.

根据本发明的一优选实施例:所述第一步中设定的参数包括:多层卫星网络层数、各层中卫星数目、星间链路条数、各颗卫星轨道类型、轨道高度、轨道倾角和轨道数目。According to a preferred embodiment of the present invention: the parameters set in the first step include: the number of layers of the multi-layer satellite network, the number of satellites in each layer, the number of inter-satellite links, each satellite orbit type, orbit height, Orbital inclination and number of orbits.

根据本发明的一优选实施例:所述第三步进一步包括子步骤:一、在非均匀分布模型下,考虑到陆地和海洋、沙漠和平原用户分布的差异,将人口密度分为5个等级,用数字表示每个区域内的人口密度;二、将地球表面分成48而部分,采用平行于纬线,倾斜于经线的划分方法,8条斜线与纬线呈52度。将经度360度平均分成8份,纬度均分成6份;在每个区域内设一个地面站,地面站位于南北纬15度、45度和68度,数目为48个;采用仰角最大接入方案进行接入;三、在统计分布模型下,考虑用户的分布密度的差异、呼叫的源和目标所在位置及密度差异,得出网络中每条星间链路的信道占用情况。According to a preferred embodiment of the present invention: the third step further includes sub-steps: 1. Under the non-uniform distribution model, the population density is divided into 5 levels in consideration of the differences in user distribution between land and sea, desert and plain , use numbers to represent the population density in each region; 2. Divide the earth's surface into 48 parts, adopt the method of dividing parallel to the latitude and oblique to the meridian, and the 8 oblique lines are 52 degrees to the latitude. Divide the longitude 360 degrees into 8 parts and the latitude into 6 parts; set up a ground station in each area, the ground stations are located at 15 degrees north and south latitude, 45 degrees and 68 degrees, the number is 48; adopt the maximum elevation angle access scheme Access; 3. Under the statistical distribution model, consider the difference in user distribution density, the location and density difference of the source and target of the call, and obtain the channel occupancy of each inter-satellite link in the network.

根据本发明的一优选实施例:所述第四步进一步包括子步骤:一、根据排队理论,可以将每条星间链路看成单服务窗混合制排队模型M/M/l/m,每条星间链路只含单个服务窗口,“顾客”到来的间隔时间服从负指数分布,参数为β;服务时间是参数为μ为负指数分布;每条星间链路有m个排队容量。当系统中已有m个数据包时,新来的数据包不再进入排队,有:ρ=β/μ;二、数据包的平均等待时延为 W = 1 μ · ( 1 - ρ ) - m · ρ m μ · ( 1 - ρ m ) . According to a preferred embodiment of the present invention: the fourth step further includes sub-steps: one, according to the queuing theory, each inter-satellite link can be regarded as a single service window mixed system queuing model M/M/l/m, Each inter-satellite link only contains a single service window, and the interval between arrivals of "customers" obeys a negative exponential distribution with a parameter of β; the service time is a negative exponential distribution with a parameter of μ; each inter-satellite link has m queuing capacity . When there are already m data packets in the system, new data packets will no longer enter the queue, there is: ρ=β/μ; 2. The average waiting time delay of data packets is W = 1 μ &Center Dot; ( 1 - ρ ) - m &Center Dot; ρ m μ &Center Dot; ( 1 - ρ m ) .

根据本发明的一优选实施例:所述第六步中的路由算法为FBellman-Ford路由算法。According to a preferred embodiment of the present invention: the routing algorithm in the sixth step is the FBellman-Ford routing algorithm.

根据本发明的一优选实施例:所述第六步具体包括子步骤:六一步、缺省的业务在所述多层卫星网络系统为低轨层,如果中轨源卫星、目标卫星相同,且低轨源卫星、目标卫星不同,执行步骤六四步;如果静止轨道源卫星、目标卫星相同,且低轨和中轨源卫星、目标卫星不同,执行步骤六五步、;否则,执行步骤六二步;六二步:如果该低轨层路径包含星间链路数量小于或等于星间链路低轨门限,执行步骤六三步;如果所述低轨层路径包含星间链路数量大于星间链路低轨门限,且中轨层路径包含星间链路数量小于或等于星间链路中轨门限,执行步骤六四步;否则,执行步骤六五步;六三步:建立低轨卫星层最优通信路径,完成传输任务;六四步:建立中轨卫星层最优通信路径,完成传输任务;六五步:建立静止轨道卫星层最优通信路径,完成传输任务;六六步:统计所述多层卫星网络系统中多层网络的特征参量,分析网络性能;六七步:更新时间区间,完成新路由表计算并完成卫星越区切换。According to a preferred embodiment of the present invention: the sixth step specifically includes sub-steps: six steps, the default service is the low-orbit layer in the multi-layer satellite network system, if the medium-orbit source satellite and the target satellite are the same, And the low-orbit source satellite and the target satellite are different, execute steps six and four; if the geostationary orbit source satellite and the target satellite are the same, and the low-orbit and medium-orbit source satellites and target satellites are different, execute steps six and five; otherwise, execute steps Step 62; Step 62: If the low-orbit layer path contains the number of inter-satellite links less than or equal to the low-orbit threshold of the inter-satellite link, perform step six and step three; if the low-orbit layer path contains the number of inter-satellite links Greater than the low-orbit threshold of the inter-satellite link, and the number of inter-satellite links contained in the mid-orbit layer path is less than or equal to the mid-orbit threshold of the inter-satellite link, perform steps 6 and 4; otherwise, perform steps 6 and 5; step 6 and 3: establish The optimal communication path at the low-orbit satellite layer to complete the transmission task; the sixth and fourth steps: establish the optimal communication path at the medium-orbit satellite layer to complete the transmission task; the sixth and fifth steps: establish the optimal communication path at the geostationary satellite layer to complete the transmission task; six Step six: Statistical parameters of the multi-layer network in the multi-layer satellite network system, and analyze network performance; Step six and seven: update the time interval, complete the calculation of the new routing table and complete the satellite handover.

根据本发明的一优选实施例:所述步骤六三步、六四步和六五步应用到的Bellman-Ford路由算法,该算法包括子步骤:步骤1:令网络中所有非始节点的T标号值为∞,即T(i)=∞;令始节点的P标号为0,即P(s)=0;步骤2:以新的所述P标号为始节点i,检查以i为始节点的边的每一个终点j是否存在[P(i)+d(i,j)]<P(j)或者[P(i)+d(i,j)]<T(j),如果存在,执行步骤3,否则保留原标号;步骤3:将j点处的T标号或P标号改为新的T标号T(j)=P(i)+d(i,j)或者T(i)+d(i,j)。取网络中现有的T标号点的最小值,定为新的P标号点,重复执行步骤2;步骤4:当网络所有节点都是P标号点时,算法结束。According to a preferred embodiment of the present invention: the Bellman-Ford routing algorithm that described step 63 steps, 64 steps and 65 steps are applied to, this algorithm includes sub-steps: Step 1: make the T of all non-starting nodes in the network The label value is ∞, that is, T (i)=∞; the P label of the initial node is 0, that is, P (s)=0; Step 2: take the new P label as the initial node i, and check that i is the beginning Whether there is [P(i)+d(i,j)]<P(j) or [P(i)+d(i,j)]<T(j) for each terminal j of the edge of the node, if it exists , execute step 3, otherwise keep the original label; Step 3: Change the T label or P label at point j to a new T label T(j)=P(i)+d(i, j) or T(i) +d(i,j). Take the minimum value of the existing T-labeled points in the network, set it as a new P-labeled point, and repeat Step 2; Step 4: When all nodes in the network are P-labeled points, the algorithm ends.

根据本发明的一优选实施例:所述六六步骤中需要进行统计的所述特征参量包括:各卫星节点的存储器占用百分比、星间链路长度和阻塞概率。According to a preferred embodiment of the present invention: the characteristic parameters that need to be counted in the six or six steps include: the memory usage percentage of each satellite node, the length of the inter-satellite link and the blocking probability.

本发明的有益效果在于:相对于传统的静止轨道(GEO:GeostationaryEarth Orbit)卫星,由低轨(LEO:Low Earth Orbit)和中轨(MEO:MediumEarth Orbit)卫星构成了全球覆盖的网络,传输延时小,有效性高。卫星具有星上处理和交换能力,星间具有微波或光学链路,能够为全球范围内的用户提供宽带的综合业务,有效的保证了服务质量,而且路径选择更加灵活,可替换链路多,抗毁性能更强。The beneficial effects of the present invention are: compared with traditional geostationary orbit (GEO: Geostationary Earth Orbit) satellites, a global coverage network is formed by low-orbit (LEO: Low Earth Orbit) and medium-orbit (MEO: Medium Earth Orbit) satellites, and transmission delay Small hours, high effectiveness. Satellites have on-board processing and switching capabilities, and inter-satellite microwave or optical links can provide broadband integrated services to users around the world, effectively guaranteeing service quality, and the path selection is more flexible, and there are many replaceable links. The anti-destroy performance is stronger.

附图说明 Description of drawings

图1.极轨道或近极轨道星座的覆盖缝结构示意图;Figure 1. Schematic diagram of the coverage slot structure of polar orbit or near polar orbit constellations;

图2.极地上空极轨道或近极轨道星座相邻轨道交叉关系示意图;Figure 2. Schematic diagram of the intersecting relationship between adjacent orbits of polar orbit or near-polar orbit constellations over the polar regions;

图3.Walker delta星座中低轨卫星11到低轨卫星54之间的最短路径示意图;Fig. 3. Schematic diagram of the shortest path between the low-orbit satellite 11 and the low-orbit satellite 54 in the Walker delta constellation;

图4.星座中的轨道参数示意图;Figure 4. Schematic diagram of orbital parameters in the constellation;

图5.本发明一种多层卫星网络系统及其路由设定方法中多层卫星网络系统结构示意图;Fig. 5. a kind of multi-layer satellite network system structure schematic diagram in the multi-layer satellite network system of the present invention and route setting method thereof;

图6.本发明多层卫星网络系统空间结构示意图;Fig. 6. Schematic diagram of the spatial structure of the multi-layer satellite network system of the present invention;

图7.卫星星间链路计算数学模型示意图;Figure 7. Schematic diagram of the mathematical model for satellite inter-satellite link calculation;

图8.多层卫星网络中平均时延与星间链路数目的关系示意图;Figure 8. Schematic diagram of the relationship between the average delay and the number of inter-satellite links in a multi-layer satellite network;

图9.多层卫星网络归一化链路负载随星间链路信道容量变化示意图;Figure 9. Schematic diagram of the normalized link load of the multi-layer satellite network changing with the channel capacity of the inter-satellite link;

图10.多层卫星网络归一化链路负载随网络通信量变化示意图;Figure 10. Schematic diagram of normalized link load variation with network traffic in multi-layer satellite network;

图11.多层卫星网络归一化链路负载随时间变化示意图;Figure 11. Schematic diagram of the normalized link load over time in a multi-layer satellite network;

图12.丢包率随数据包平均长度变化示意图;Figure 12. Schematic diagram of packet loss rate changing with average packet length;

图13.多层卫星网络综合链路权重随时间变化示意图;Figure 13. Schematic diagram of the change of the comprehensive link weight of the multi-layer satellite network over time;

图14.多层卫星网络用户分布密度图;Figure 14. Distribution density map of multi-layer satellite network users;

图15.本发明一种多层卫星网络系统及其路由设定方法中路由设定方法流程图。Fig. 15 is a flow chart of a routing setting method in a multi-layer satellite network system and its routing setting method according to the present invention.

具体实施方式: Detailed ways:

下面结合附图和具体的实施方式对本发明作进一步详细地说明:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:

卫星网络的一个关键是发展特别的卫星网络路由算法,以适应卫星网络的动态特性。随着因特网的飞速发展,卫星网络中需要一种无缝的路由策略,同地面网络一样,卫星上有IP交换机,能够独立的运送IP包,星上交换机通过ISL相连。基于非静止轨道卫星系统的包交换路由策略已被广泛研究,但是因为卫星同地面用户不断地相对运动,ISL长度的不断变化,地面用户分布非均匀,ISL上业务量差异很大等原因,不论从保证用户服务质量角度,还是从系统维护者优化网络资源角度,建立有效的多层卫星网络系统并对其进行路由设定对于ISL主干网络来说是必不可少的。A key point of the satellite network is to develop a special satellite network routing algorithm to adapt to the dynamic characteristics of the satellite network. With the rapid development of the Internet, a seamless routing strategy is needed in the satellite network. Like the terrestrial network, there are IP switches on the satellite, which can transport IP packets independently, and the switches on the satellite are connected through ISL. The packet switching routing strategy based on the non-geostationary orbit satellite system has been widely studied, but because the satellite and the ground users are constantly moving relative to each other, the length of the ISL is constantly changing, the distribution of the ground users is uneven, and the traffic volume on the ISL is very different. From the perspective of ensuring the quality of service for users, or from the perspective of system maintainers optimizing network resources, establishing an effective multi-layer satellite network system and setting its routing is essential for the ISL backbone network.

低轨、中轨和静止轨道卫星是按照轨道高度划分,有各自的特点。很长时间以来,以各种卫星分别构建的卫星网络的优缺点也得到比较和权衡,用来支持不同的服务质量要求。由低轨卫星和中轨卫星分别构建的卫星通信网络已经在地球周围运行,星间链路的建立使得卫星之间的通信成为现实,构成了真正意义上的网络,比如Iridium和Milstar-2卫星网络。由各种卫星构建的单层卫星网络,特别是轨道高度较高的静止轨道卫星网络通信的延时指标过高,而多层卫星网路有利于解决切换概率和时延之间的矛盾;在单层卫星网络中,为实现全球的无缝覆盖,通常使用极轨道和近极轨道类型的星座,这会造成星间链路的关闭和切换概率、阻塞概率的增大的现象,多层卫星网络中各个层间互补,能够在倾斜轨道的基础上实现全球无缝覆盖,避免了上述问题;单层卫星网络抗毁性较差,在卫星或者星间链路损毁的情况下单层卫星网络不易找到满足原有通信指标要求的替代路径,而多层卫星网络中可以替代的备份链路有很多,不会造成通信质量的大幅度下降;而且,单层卫星网络特别是低轨卫星构成的网络星载跟瞄系统设计困难,因为低轨卫星网络往往采用的极轨道。在多层卫星网络中,通过中轨和静止轨道卫星的中继,卫星网络不需要再维持低轨道星座中逆向轨道间的星间链路,甚至可以采用倾斜轨道来实现低轨卫星网络,降低了对星载跟瞄系统的要求。Low-orbit, medium-orbit and geostationary-orbit satellites are divided according to orbital heights and have their own characteristics. For a long time, the advantages and disadvantages of satellite networks built with various satellites have also been compared and weighed to support different service quality requirements. Satellite communication networks constructed by low-orbit satellites and medium-orbit satellites have been operating around the earth. The establishment of inter-satellite links has made communication between satellites a reality, forming a real network, such as Iridium and Milstar-2 satellites network. The single-layer satellite network built by various satellites, especially the geostationary satellite network with a high orbital altitude, has too high communication delay indicators, and the multi-layer satellite network is conducive to solving the contradiction between switching probability and delay; In a single-layer satellite network, in order to achieve seamless global coverage, polar-orbit and near-polar-orbit constellations are usually used, which will result in increased inter-satellite link shutdown, switching probability, and blocking probability. Multi-layer satellites Each layer in the network complements each other, and can achieve global seamless coverage on the basis of inclined orbits, avoiding the above problems; the single-layer satellite network has poor invulnerability, and the single-layer satellite network can be used in the event of damage to satellites or inter-satellite links. It is not easy to find an alternative path that meets the requirements of the original communication indicators, and there are many backup links that can be replaced in the multi-layer satellite network, which will not cause a significant decline in communication quality; moreover, the single-layer satellite network, especially the low-orbit satellite network It is difficult to design a network satellite-borne tracking and targeting system, because low-orbit satellite networks often use polar orbits. In the multi-layer satellite network, through the relay of medium-orbit and geostationary-orbit satellites, the satellite network does not need to maintain the inter-satellite link between the reverse orbits in the low-orbit constellation, and can even use inclined orbits to realize the low-orbit satellite network, reducing Requirements for the spaceborne tracking and targeting system.

本发明提供的提供一种多层卫星网络系统路由设定方法,所述路由设定方法包括步骤:第一步、设定参数,进行网络初始化;第二步、固定一时刻tk,在该时间区间Δt,求解卫星轨道参量,计算卫星位置坐标和星间链路长度,建立网络拓扑结构;第三步、按照设定的业务模型,计算所述多层卫星网络的星间链路负载。第四步、根据排队理论计算星上处理和交换的时延;第五步、根据地面源目标位置,寻找每个卫星层中源卫星和目标卫星;第六步、根据通信服务指令需求和网络状态选择传输业务的卫星层,按照路由算法,寻找最优路径。The present invention provides a multi-layer satellite network system routing setting method. The routing setting method includes the steps: the first step, setting parameters, and performing network initialization; the second step, fixing a time t k , at the In the time interval Δt, solve the satellite orbit parameters, calculate the satellite position coordinates and the length of the inter-satellite link, and establish the network topology; the third step is to calculate the inter-satellite link load of the multi-layer satellite network according to the set business model. The fourth step is to calculate the delay of on-board processing and exchange according to the queuing theory; the fifth step is to find the source satellite and target satellite in each satellite layer according to the ground source target position; The state selects the satellite layer of the transmission service, and finds the optimal path according to the routing algorithm.

其中,所述第一步中设定的参数包括:多层卫星网络层数、各层中卫星数目、星间链路条数、各颗卫星轨道类型、轨道高度、轨道倾角、轨道数目。所述第三步进一步包括子步骤:一、在非均匀分布模型下,考虑到陆地和海洋、沙漠和平原用户分布的差异,将人口密度分为5个等级,用数字表示每个区域内的人口密度;二、将地球表面分成48而部分,采用平行于纬线,倾斜于经线的划分方法,8条斜线与纬线呈52度。将经度360度平均分成8份,纬度均分成6份;在每个区域内设一个地面站,地面站位于南北纬15度、45度和68度,数目为48个;采用仰角最大接入方案进行接入;三、在统计分布模型下,考虑用户的分布密度的差异、呼叫的源和目标所在位置及密度差异,得出网络中每条星间链路的信道占用情况。所述第四步进一步包括子步骤:一、根据排队理论,可以将每条星间链路看成单服务窗混合制排队模型M/M/l/m,每条星间链路只含单个服务窗口,“顾客”到来的间隔时间服从负指数分布,参数为β;服务时间是参数为μ为负指数分布;每条星间链路有m个排队容量。当系统中已有m个数据包时,新来的数据包不再进入排队,数据包被丢弃,有:ρ=β/μ;二、数据包的平均等待时延为 W = 1 &mu; &CenterDot; ( 1 - &rho; ) - m &CenterDot; &rho; m &mu; &CenterDot; ( 1 - &rho; m ) . 所述第六步中的路由算法为FBellman-Ford路由算法。Wherein, the parameters set in the first step include: the number of layers of the multi-layer satellite network, the number of satellites in each layer, the number of inter-satellite links, the orbit type of each satellite, the orbit height, the orbit inclination, and the number of orbits. The third step further includes sub-steps: 1. Under the non-uniform distribution model, taking into account the differences in the distribution of land and sea, desert and plain users, the population density is divided into 5 levels, and the number of people in each area is represented by numbers. Population density; 2. Divide the earth's surface into 48 parts, adopt the division method parallel to the latitude and inclined to the meridian, and the 8 oblique lines are 52 degrees to the latitude. Divide the longitude 360 degrees into 8 parts and the latitude into 6 parts; set up a ground station in each area, the ground stations are located at 15 degrees north and south latitudes, 45 degrees and 68 degrees, and the number is 48; adopt the maximum elevation angle access scheme Access; 3. Under the statistical distribution model, considering the difference in user distribution density, the location and density difference of the source and target of the call, the channel occupancy of each inter-satellite link in the network is obtained. The 4th step further comprises sub-steps: one, according to the queuing theory, each inter-satellite link can be regarded as a single service window mixed system queuing model M/M/l/m, and each inter-satellite link only contains a single In the service window, the time interval between arrivals of "customers" obeys a negative exponential distribution with a parameter of β; the service time is a negative exponential distribution with a parameter of μ; each inter-satellite link has m queuing capacity. When there are already m data packets in the system, the new data packets will no longer enter the queue, and the data packets will be discarded. There is: ρ=β/μ; 2. The average waiting time delay of data packets is W = 1 &mu; &CenterDot; ( 1 - &rho; ) - m &Center Dot; &rho; m &mu; &CenterDot; ( 1 - &rho; m ) . The routing algorithm in the sixth step is the FBellman-Ford routing algorithm.

根据本发明的一优选实施例:所述第六步具体包括子步骤:六一步、缺省的业务在所述多层卫星网络系统为低轨层,如果中轨源卫星、目标卫星相同,且低轨源卫星、目标卫星不同,执行步骤六四步;如果静止轨道源卫星、目标卫星相同,且低轨和中轨源卫星、目标卫星不同,执行步骤六五步、;否则,执行步骤六二步;六二步:如果该低轨层路径包含星间链路数量小于或等于星间链路低轨门限,执行步骤六三步;如果所述低轨层路径包含星间链路数量大于星间链路低轨门限,且中轨层路径包含星间链路数量小于或等于星间链路中轨门限,执行步骤六四步;否则,执行步骤六五步;六三步:建立低轨卫星层最优通信路径,完成传输任务;六四步:建立中轨卫星层最优通信路径,完成传输任务;六五步:建立静止轨道卫星层最优通信路径,完成传输任务;六六步:统计所述多层卫星网络系统中多层网络的特征参量,分析网络性能;六七步:更新时间区间,完成新路由表计算并完成卫星越区切换。所述步骤六三步、六四步和六五步应用到的Bellman-Ford路由算法,该算法包括子步骤:步骤1:令网络中所有非始节点的T标号值为∞,即T(i)=∞;令始节点的P标号为0,即P(s)=0;步骤2:以新的所述P标号为始节点i,检查以i为始节点的边的每一个终点j是否存在[P(i)+d(i,j)]<P(j)或者[P(i)+d(i,j)]<T(j),如果存在,执行步骤3,否则保留原标号;步骤3:将j点处的T标号或P标号改为新的T标号T(j)=P(i)+d(i,j)或者T(i)+d(i,j)。取网络中现有的T标号点的最小值,定为新的P标号点,重复执行步骤2;步骤4:当网络所有节点都是P标号点时,算法结束。所述六六步骤中需要进行统计的所述特征参量包括:各卫星节点的存储器占用百分比、星间链路长度和阻塞概率。According to a preferred embodiment of the present invention: the sixth step specifically includes sub-steps: six steps, the default service is the low-orbit layer in the multi-layer satellite network system, if the medium-orbit source satellite and the target satellite are the same, And the low-orbit source satellite and the target satellite are different, execute steps six and four; if the geostationary orbit source satellite and the target satellite are the same, and the low-orbit and medium-orbit source satellites and target satellites are different, execute steps six and five; otherwise, execute steps Step 62; Step 62: If the low-orbit layer path contains the number of inter-satellite links less than or equal to the low-orbit threshold of the inter-satellite link, perform step six and step three; if the low-orbit layer path contains the number of inter-satellite links Greater than the low-orbit threshold of the inter-satellite link, and the number of inter-satellite links contained in the mid-orbit layer path is less than or equal to the mid-orbit threshold of the inter-satellite link, perform steps 6 and 4; otherwise, perform steps 6 and 5; step 6 and 3: establish The optimal communication path at the low-orbit satellite layer to complete the transmission task; the sixth and fourth steps: establish the optimal communication path at the medium-orbit satellite layer to complete the transmission task; the sixth and fifth steps: establish the optimal communication path at the geostationary satellite layer to complete the transmission task; six Step six: Statistical parameters of the multi-layer network in the multi-layer satellite network system, and analyze network performance; Step six and seven: update the time interval, complete the calculation of the new routing table and complete the satellite handover. The Bellman-Ford routing algorithm that described step 63 steps, 64 steps and 65 steps are applied to, this algorithm comprises sub-steps: Step 1: make the T label value of all non-starting nodes in the network be ∞, namely T(i )=∞; Make the P label of the initial node be 0, that is, P(s)=0; Step 2: take the new P label as the initial node i, check whether each end point j of the edge with i as the initial node There is [P(i)+d(i, j)]<P(j) or [P(i)+d(i, j)]<T(j), if it exists, go to step 3, otherwise keep the original label ; Step 3: Change the T label or P label at point j to a new T label T(j)=P(i)+d(i, j) or T(i)+d(i, j). Take the minimum value of the existing T-labeled points in the network, set it as a new P-labeled point, and repeat Step 2; Step 4: When all nodes in the network are P-labeled points, the algorithm ends. The characteristic parameters that need to be counted in the six or six steps include: the memory usage percentage of each satellite node, the length of the inter-satellite link and the blocking probability.

考虑到极轨道或近极轨道如π型星座的轨道,在相向运动的轨道间存在“缝隙”,在缝隙两侧卫星因为相向运动,无法建立轨道间链路;同时轨道间链路在极地上空要关闭,因为在极地上空,相邻卫星轨道交叉,星间距离变化迅速,无法建立ISL,如附图1极轨道或近极轨道星座的覆盖缝结构示意图和附图2极地上空极轨道或近极轨道星座相邻轨道交叉关系示意图所示。Walker delta-2π型倾斜圆轨道星座构成的通信网络卫星相对位置固定,ISL几何结构简单、性能稳定。多层卫星网络能解决Walker delta型LEO星座高纬度地区覆盖不足的问题。Considering the orbits of polar orbits or near-polar orbits such as π-shaped constellations, there is a "gap" between the opposite-moving orbits, and the satellites on both sides of the gap cannot establish an inter-orbital link because of their relative motion; at the same time, the inter-orbital link is over the polar regions It must be closed, because adjacent satellite orbits cross over the polar regions, and the inter-satellite distance changes rapidly, so it is impossible to establish an ISL. The schematic diagram of the crossing relationship between adjacent orbits of the polar orbit constellation is shown. The relative position of the communication network satellite composed of Walker delta-2π inclined circular orbit constellation is fixed, and the ISL has a simple geometric structure and stable performance. The multi-layer satellite network can solve the problem of insufficient coverage in the high latitude areas of the Walker delta LEO constellation.

另外,在研究过程中发现,单层卫星网络特别是LEO和MEO卫星网络,两颗卫星空间距离很近,但是因为没有ISL直接连接,使得不能直接通信,必须通过若干条ISL建立的卫星路径才能完成通信,这样不但不能满足通信QoS,而且浪费了大量系统和星上资源,甚至造成链路阻塞,如图3Walker delta星座中低轨卫星11到低轨卫星之间的最短路径示意图所示Walker delta星座中LEO卫星11到LEO卫星之间的最短路径。In addition, during the research process, it was found that the single-layer satellite network, especially the LEO and MEO satellite network, has a very close spatial distance between two satellites, but because there is no ISL direct connection, it cannot communicate directly, and must pass through several satellite paths established by ISL. Completing the communication will not only fail to meet the communication QoS, but also waste a lot of system and on-board resources, and even cause link congestion, as shown in the shortest path diagram between the low-orbit satellite 11 and the low-orbit satellite in the Walker delta constellation in Figure 3 Walker delta The shortest path between LEO satellite 11 and LEO satellite in the constellation.

分层结构的多层卫星网络不但能够解决上述问题,而且能够综合三种单层卫星的优点,发挥其在覆盖范围、星间链路、时延要求等方面的巨大优势,满足各种业务的要求。多层卫星网络比单层网络更加有效,它的路径选择更加灵活,可替换链路多,抗毁性能更强。The multi-layer satellite network with hierarchical structure can not only solve the above problems, but also integrate the advantages of the three single-layer satellites, give full play to its huge advantages in coverage, inter-satellite links, and delay requirements, and meet the requirements of various services. Require. A multi-layer satellite network is more effective than a single-layer network, with more flexible path selection, more replaceable links, and stronger survivability.

图4为单层倾斜圆轨道卫星星座覆盖性能示意图。卫星星座包含l条倾角为γ高度为h的圆轨道,每个轨道上有m颗均匀分布的卫星,相位差δ=2π/m,每个轨道升交点赤经差值Ω=2π/l,相邻轨道卫星的相对位置可以用a和ω表示,ΔM为相对于参考卫星11的初始相位。可以用下式计算单颗卫星对地球的覆盖:Fig. 4 is a schematic diagram of the coverage performance of a single-layer inclined circular orbit satellite constellation. The satellite constellation includes l circular orbits with an inclination angle of γ and a height of h, and there are m evenly distributed satellites on each orbit, the phase difference δ=2π/m, the right ascension difference of the ascending node of each orbit Ω=2π/l, The relative positions of satellites in adjacent orbits can be expressed by a and ω, and ΔM is the initial phase relative to the reference satellite 11 . The coverage of the Earth by a single satellite can be calculated using the following formula:

&phi;&phi; == &pi;&pi; // 22 -- &epsiv;&epsiv; -- sinsin -- 11 (( rr EE. rr EE. ++ hh &CenterDot;&CenterDot; coscos &epsiv;&epsiv; )) -- -- -- (( 11 ))

式(1)中ε表示通信仰角,rE表示地球半径,计算结果

Figure A20081006614000122
表示覆盖区域对应的地心角的一半。对于多层卫星网络,需要考虑上层卫星覆盖下层卫星的情况。可以按照式(2)来计算:In formula (1), ε represents the angle of belief in communication, r E represents the radius of the earth, and the calculation result
Figure A20081006614000122
Indicates half of the geocentric angle corresponding to the coverage area. For a multi-layer satellite network, it is necessary to consider the situation where the upper layer satellites cover the lower layer satellites. It can be calculated according to formula (2):

&phi; i = &pi; / 2 - &epsiv; i - sin - 1 ( r i r i + h i &CenterDot; cos &epsiv; i ) i=1,2,3...    (2) &phi; i = &pi; / 2 - &epsiv; i - sin - 1 ( r i r i + h i &Center Dot; cos &epsiv; i ) i=1, 2, 3... (2)

图5本发明一种多层卫星网络系统及其路由设定方法中多层卫星网络系统结构示意图中表示式(2)中i=2的情况:其中ε2=θ,r2=rL。rL、rM表示LEO和MEO卫星轨道半径,h1表示LEO卫星高度,h2表示MEO与LEO卫星轨道高度之差,s1 L、s2 L、sn L和s1 M、sN M表示卫星,d1、d2、d3表示星间距离,θ表示LEO与MEO通信的最小仰角,图中上面的阴影表示MEO卫星对LEO卫星层的覆盖范围,即可以建立ISL的范围,下面的阴影表示LEO卫星对地面覆盖范围。计算星间距离只需将卫星坐标带入(3)式:Fig. 5 is the case of i=2 in expression (2) in the multi-layer satellite network system and routing setting method of the present invention, where ε 2 =θ, r 2 =r L . r L , r M represent the orbit radius of LEO and MEO satellites, h 1 represents the altitude of LEO satellite, h 2 represents the difference between the orbit height of MEO and LEO satellite, s 1 L , s 2 L , s n L and s 1 M , s N M represents the satellite, d 1 , d 2 , and d 3 represent the inter-satellite distance, θ represents the minimum elevation angle for communication between LEO and MEO, and the upper shadow in the figure represents the coverage of the MEO satellite to the LEO satellite layer, that is, the range where the ISL can be established. The shading below indicates the ground coverage of the LEO satellites. Calculating the inter-satellite distance only needs to bring the satellite coordinates into the formula (3):

dd == (( xx 11 -- xx 22 )) 22 ++ (( ythe y 11 ++ ythe y 22 )) 22 ++ (( zz 11 ++ zz 22 )) 22 -- -- -- (( 33 ))

其中卫星在地球固定坐标系中的坐标(x,y,z)可以通过式(4)计算:The coordinates (x, y, z) of the satellite in the earth’s fixed coordinate system can be calculated by formula (4):

xx == (( rr EE. ++ hh )) &CenterDot;&Center Dot; [[ coscos &xi;&xi; &CenterDot;&Center Dot; coscos &rho;&rho; -- sinsin &xi;&xi; &CenterDot;&Center Dot; sinsin &rho;&rho; &CenterDot;&Center Dot; coscos &gamma;&gamma; ]] ythe y == (( rr EE. ++ hh )) &CenterDot;&Center Dot; [[ coscos &xi;&xi; &CenterDot;&Center Dot; sinsin &rho;&rho; ++ sinsin &xi;&xi; &CenterDot;&Center Dot; coscos &rho;&rho; &CenterDot;&Center Dot; coscos &gamma;&gamma; ]] zz == (( rr EE. ++ hh )) &CenterDot;&Center Dot; sinsin &xi;&xi; &CenterDot;&Center Dot; sinsin &gamma;&gamma; -- -- -- (( 44 ))

式(4)中In formula (4)

ξ=ω0+v0+v·(t-t0)    (5)ξ=ω 0 +v 0 +v·(tt 0 ) (5)

ρ=ζ-vE·(t-t0)    (6)ρ=ζ-v E ·(tt 0 ) (6)

ω0为近地点辐角,v0为卫星初始真近点角,v为卫星运动角速度,其中 v = &mu; / r 3 , μ为地球引力常数,r为卫星轨道半径,t-t0为卫星运行时间,t0为初始时刻,ξ为真近点角,ζ为升交点赤经,vE为地球自转角速度。ω 0 is the argument of perigee, v 0 is the initial true anomaly angle of the satellite, and v is the angular velocity of the satellite motion, where v = &mu; / r 3 , μ is the gravitational constant of the earth, r is the orbital radius of the satellite, tt 0 is the running time of the satellite, t 0 is the initial moment, ξ is the true anomaly, ζ is the right ascension of the ascending node, and v E is the angular velocity of the earth.

表1:Table 1:

  卫星层 satellite layer   GEO GEO   MEO MEO   LEO LEO   卫星数目(颗) Number of satellites (pieces)   3 3   12 12   48 48   轨道高度(千米) Orbit height (km)   35786 35786   10355 10355   1400 1400   轨道倾角(度) Orbital inclination (degrees)   0.0 0.0   55.0 55.0   52.0 52.0   轨道周期 orbital period   24小时 24 hours   6小时 6 hours   114分钟 114 minutes   轨道数目 number of tracks   1 1   3 3   8 8   星座类型 Constellation type   同步轨道 synchronous orbit   Walker delta星座 Walker delta constellation   Walker delta星座 Walker delta constellation 层间链路(条/颗)Layer-to-layer link (piece/piece) GEO->MEO 4GEO->MEO 4   MEO->GEO 1MEO->LEO 4 MEO->GEO 1MEO->LEO 4 LEO->MEO 1LEO->MEO 1   同层链路(条/颗) Links of the same layer (piece/piece)   2 2   2轨道内+2轨道间 2 within the track + 2 between the tracks   2轨道内+2轨道间 2 within the track + 2 between the tracks   层间链路状态 Inter-layer link status   非永久性 non-permanent   非永久性 Non-permanent   非永久性 non-permanent   同层链路状态 Peer link status   永久性 permanent   永久性 permanent   永久性 permanent   通信仰角(度) Tong Faith Angle (degrees)   20 20   22 twenty two   10 10   覆盖范围 Coverage   ±61.8°范围 ±61.8° range   全球覆盖 Global coverage   ±68.1°范围 ±68.1° range

GEO卫星若采用一颗用于区域覆盖,可根据需要选择,如覆盖中国周边地区(东经67.5°到172.5°,南北纬54°范围,包括中亚、东亚和大洋洲等地区),卫星位于东经120.0°上空。如果覆盖全球,比如本文提出的多层卫星网络中的三颗GEO卫星位于东经0.0°、120.0°和240.0°。表1给出多层卫星网络结构参数,MLSN空间结构图如图6卫星星间链路计算数学模型示意图所示。If one GEO satellite is used for regional coverage, it can be selected according to needs, such as covering the surrounding areas of China (east longitude 67.5° to 172.5°, north and south latitude 54° range, including Central Asia, East Asia and Oceania, etc.), the satellite is located at east longitude 120.0 ° above. If it covers the whole world, for example, the three GEO satellites in the multi-layer satellite network proposed in this paper are located at 0.0°, 120.0° and 240.0° east longitude. Table 1 gives the structural parameters of the multi-layer satellite network, and the spatial structure diagram of MLSN is shown in Fig. 6, the schematic diagram of the mathematical model for calculating the satellite inter-satellite link.

每颗MEO卫星在MEO层内有4条永久性ISLs,两条轨道内ISLs几何参数固定,两条轨道间永久性ISLs几何参数时变。其它MEO卫星的ISL情况同MEO卫星11相似,初始相位有差异。MEO卫星层内共含有24条ISLs。同样每颗LEO卫星在层内有4条永久性ISLs,两条轨道内的和两条轨道间的。LEO卫星层内共含有96条ISLs。Each MEO satellite has four permanent ISLs in the MEO layer, the geometric parameters of the ISLs in the two orbits are fixed, and the geometric parameters of the permanent ISLs between the two orbits are time-varying. The ISL conditions of other MEO satellites are similar to those of MEO satellite 11, but the initial phases are different. A total of 24 ISLs are contained in the MEO satellite layer. Also each LEO satellite has 4 permanent ISLs within the layer, two intra-orbital and two inter-orbital. A total of 96 ISLs are contained in the LEO satellite layer.

对于层间链路,虽然每颗LEO卫星同时可见多颗MEO和GEO卫星,但为了简化结构和考虑实际通信需求,每颗LEO卫星选择一颗MEO卫星、每颗MEO卫星也只同一颗GEO卫星建立一条链路。LEO/MEO卫星轨道间ISLs几何参数结算结果如表2,以卫星11为例。For the interlayer link, although each LEO satellite can see multiple MEO and GEO satellites at the same time, in order to simplify the structure and consider the actual communication needs, each LEO satellite selects one MEO satellite, and each MEO satellite only has one GEO satellite Create a link. The calculation results of geometric parameters of ISLs between LEO/MEO satellite orbits are shown in Table 2, taking satellite 11 as an example.

卫星ISL计算数学模型如图7卫星星间链路计算数学模型示意图所示,而多层卫星网络中平均时延与ISL的关系如图8多层卫星网络中平均时延与星间链路数目的关系示意图所示。平均时延与路径上ISL数量几乎呈线性关系,可以看出,GEO卫星不适宜传输话音业务,因为话音业务要求时延小于200ms,而MEO网络如果传输话音业务,时延要求路径最多一条ISL,当然,LEO网络中如果路径包含6条以上ISL平均时延也大于200ms。对于CCITT建议的400ms传输时延,LEO和MEO网络都能够满足。The mathematical model for calculating the satellite ISL is shown in Figure 7. The schematic diagram of the mathematical model for calculating the satellite inter-satellite link is shown. The relationship between the average delay and ISL in the multi-layer satellite network is shown in Figure 8. The average delay and the number of inter-satellite links in the multi-layer satellite network The schematic diagram of the relationship is shown. The average delay is almost linear with the number of ISLs on the path. It can be seen that GEO satellites are not suitable for transmitting voice services, because the voice service requires a delay of less than 200ms, and if the MEO network transmits voice services, the delay requires at most one ISL on the path. Of course, if the path contains more than 6 ISLs in the LEO network, the average delay is also greater than 200ms. Both LEO and MEO networks can meet the 400ms transmission delay recommended by CCITT.

表2Table 2

Figure A20081006614000141
Figure A20081006614000141

路由计算采用Bellman-Ford后向算法,最优路径的判则为该路径的综合权重(TPW:Total path weight),TPW表示了一条路径的时延和带宽占用综合性能,考虑的也是有效和可靠综合性能。TPW有三部分组成,上行链路时延Du,下行链路时延Dd和路径上每个ISLwi的链路权重表示路径上ISL的集合W={w1,w2...wi...wns-1},|W|=ns-1表示该条路径包含ns-1条ISL,ns为该路径上的卫星数量(包括源卫星和目标卫星)。其中地面源和目标位置确定之后,采用仰角最大接入方案选定源卫星和目标卫星,以便构成一条端到端链路。The routing calculation adopts the Bellman-Ford backward algorithm, and the judgment of the optimal path is the comprehensive weight of the path (TPW: Total path weight). TPW represents the comprehensive performance of a path's delay and bandwidth occupation, and it is also effective and reliable. Comprehensive performance. TPW consists of three parts, the uplink delay D u , the downlink delay D d and the link weight of each ISLw i on the path Indicates the set of ISLs on the path W={w 1 , w 2 ...w i ...w ns-1 }, |W|=n s -1 means that the path contains n s -1 ISLs, n s is the number of satellites on the path (including source satellites and target satellites). After the ground source and target positions are determined, the source satellite and target satellite are selected using the maximum elevation angle access scheme to form an end-to-end link.

TPWTPW == &Sigma;&Sigma; ww ii &Element;&Element; WW LWLW ww ii ++ DD. uu ++ DD. dd -- -- -- (( 77 ))

其中in

LWLW ww ii == DD. ww ii ++ ff &CenterDot;&Center Dot; WW ww ii -- -- -- (( 88 ))

Figure A20081006614000153
表示
Figure A20081006614000154
的传输时延,
Figure A20081006614000155
表示平均等待时延,f是信息量权重参数。Du、Dd
Figure A20081006614000156
的求解只需知道卫星空间位置坐标,用链路长度除以传输速度即可,无需冗述。
Figure A20081006614000153
express
Figure A20081006614000154
the transmission delay,
Figure A20081006614000155
Indicates the average waiting delay, and f is the weight parameter of the amount of information. D u , D d and
Figure A20081006614000156
To solve it, we only need to know the coordinates of the satellite space position, and divide the link length by the transmission speed, so there is no need to elaborate.

根据Jackson原理,可以将每条ISL看成单服务窗混合制排队模型M/M/l/m,数据包到来的间隔时间服从负指数分布,参数为β;服务时间是参数为μ为负指数分布;每条ISL有m个排队容量。当系统中已有m个数据包时,新来的数据包将被转移到其它卫星进行处理。According to the Jackson principle, each ISL can be regarded as a single service window mixed queuing model M/M/l/m, and the interval between arrivals of data packets obeys a negative exponential distribution, and the parameter is β; the service time is a parameter whose μ is a negative exponent Distribution; each ISL has m queuing capacity. When there are m data packets in the system, the new incoming data packets will be transferred to other satellites for processing.

have

ρ=β/μ                                 (9)ρ=β/μ (9)

数据包的平均等待时延为The average waiting time of packets is

WW == 11 &mu;&mu; &CenterDot;&CenterDot; (( 11 -- &rho;&rho; )) -- mm &CenterDot;&CenterDot; &rho;&rho; mm &mu;&mu; &CenterDot;&Center Dot; (( 11 -- &rho;&rho; mm )) -- -- -- (( 1010 ))

多层卫星网络自适应IP路由策略具有如下特征:业务通过LEO源卫星和目标卫星接入卫星系统,根据QoS需要和网络状态选择传输该业务的卫星层,如果LEO层网络资源不能满足该业务要求,就将该业务转到MEO层传输,甚至GEO层传输。对于地面源/目标直接接入MEO或GEO卫星情况,因为路由算法实现简单,所以未作详细分析。另外根据图8多层卫星网络中平均时延与星间链路数目的关系示意图和仿真结果所示,LEO层的路径如果包含6条或7条ISLs,时延将大于200ms,这时如果将该业务转移到MEO,传输时间更短,占用星上资源更少。而且,如果地面源和目标位置被同一MEO或GEO卫星覆盖,这是就将该业务转到MEO和GEO传输,以减少星上资源的占用。该策略考虑时延指标和ISL带宽占用状况,最优路径选择兼顾卫星系统有效性和可靠性。在算法计算过程中需要的其他参数参数设定如下表3。呼叫源一目标区域之间的呼叫百分比如表4。The multi-layer satellite network adaptive IP routing strategy has the following characteristics: services are connected to the satellite system through LEO source satellites and target satellites, and the satellite layer for transmitting the services is selected according to the QoS requirements and network status. If the network resources of the LEO layer cannot meet the service requirements , transfer the service to MEO layer transmission, or even GEO layer transmission. For the situation where the ground source/target is directly connected to MEO or GEO satellites, because the routing algorithm is simple to implement, it is not analyzed in detail. In addition, according to the schematic diagram and simulation results of the relationship between the average delay and the number of inter-satellite links in the multi-layer satellite network in Figure 8, if the path of the LEO layer contains 6 or 7 ISLs, the delay will be greater than 200ms. The business is transferred to MEO, the transmission time is shorter, and the on-board resources are occupied less. Moreover, if the ground source and the target position are covered by the same MEO or GEO satellite, this service is transferred to MEO and GEO transmission to reduce the occupancy of on-board resources. The strategy considers the delay index and ISL bandwidth occupation status, and the optimal path selection takes into account the effectiveness and reliability of the satellite system. Other parameters required in the calculation process of the algorithm are set as shown in Table 3. Table 4 shows the call percentage between call source and target area.

表3table 3

  参数 parameters   数值 value

 ISL信道容量(Kbps) ISL channel capacity (Kbps)  400~10,000 400~10,000  网络总通信量(packets/s) Total network traffic (packets/s)  2000~100,000 2000~100,000  数据包平均长度(bytes) Average packet length (bytes)  200~20,000 200~20,000  数据包长度均方差值(bytes) Packet length mean square error value (bytes)  30~3,000 30~3,000  仿真时间(min) Simulation time (min)  114/360 114/360  信息量权重参数f Information weight parameter f  {0,1,10,100} {0, 1, 10, 100}  ISL缓冲区(packets) ISL buffer (packets)  25 25  ISL_LEO门限 ISL_LEO Threshold  5 5  ISL_MEO门限 ISL_MEO Threshold  2 2

表4Table 4

Figure A20081006614000161
Figure A20081006614000161

多层结构有效的分担了网络负载,在其它相关参数都相同情况下,能够减少TPW,如图9多层卫星网络归一化链路负载随星间链路信道容量变化示意图所示,不论同LEO网络还是MEO网络比较,MLSN的路径TPW均小于单层卫星网络。Walker delta星座构成的多层卫星网络拥有永久性ISL,能够保证卫星网络的有效性,而且较单层卫星网络具有更高的可靠性,在卫星节点或通信链路损毁的情况下,具有更多的备选路径,不会造成服务性能大幅下降。统计分布业务模型下自适应IP路由策略考虑网络中所有ISL的信息负载变化情况,自适应地选择最优路径。多层卫星网络能够满足各种业务的不同的服务质量要求,特别是在不增加传输时延和时延抖动的情况下,获得较小的综合路径权重,降低丢包概率,适合构成服务质量需求差异较大的多种业务综合性网络和优先级不同军事卫星通信网络。The multi-layer structure effectively shares the network load, and can reduce TPW when other relevant parameters are the same, as shown in Figure 9. Compared with LEO network or MEO network, the path TPW of MLSN is smaller than that of single-layer satellite network. The multi-layer satellite network composed of the Walker delta constellation has permanent ISL, which can ensure the effectiveness of the satellite network, and has higher reliability than the single-layer satellite network. In the case of damage to satellite nodes or communication links, more The alternative path will not cause a significant drop in service performance. The adaptive IP routing strategy under the statistical distribution business model considers the information load changes of all ISLs in the network, and adaptively selects the optimal path. The multi-layer satellite network can meet the different service quality requirements of various businesses, especially without increasing the transmission delay and delay jitter, obtain a smaller comprehensive path weight, reduce the probability of packet loss, and is suitable for forming service quality requirements A variety of business comprehensive networks with large differences and military satellite communication networks with different priorities.

本发明所述技术相对于传统的静止轨道卫星,由低轨和中轨卫星构成了全球覆盖的网络,传输延时小,有效性高。卫星具有星上处理和交换能力,星间具有微波或光学链路,能够为全球范围内的用户提供宽带的综合业务,有效的保证了服务质量,而且路径选择更加灵活,可替换链路多,抗毁性能更强。Compared with traditional geostationary orbit satellites, the technology described in the present invention consists of low-orbit and middle-orbit satellites to form a global coverage network, with small transmission delay and high effectiveness. Satellites have on-board processing and switching capabilities, and inter-satellite microwave or optical links can provide broadband integrated services to users around the world, effectively guaranteeing service quality, and the path selection is more flexible, and there are many replaceable links. The anti-destroy performance is stronger.

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some deduction or replacement can be made, which should be regarded as belonging to the protection scope of the present invention.

Claims (8)

1.一种多层卫星网络系统路由设定方法,其特征在于:所述路由设定方法包括步骤:1. A multi-layer satellite network system routing setting method is characterized in that: the routing setting method comprises steps: A:设定参数,进行网络初始化;A: Set parameters and perform network initialization; B:固定一时刻tk,在该时间区间Δt,求解卫星轨道参量,计算卫星位置坐标和星间链路长度,建立网络拓扑结构;B: Fix a time t k , in this time interval Δt, solve the satellite orbit parameters, calculate the satellite position coordinates and the length of the inter-satellite link, and establish the network topology; C:按照设定的业务模型,计算所述多层卫星网络的星间链路负载;C: Calculate the inter-satellite link load of the multi-layer satellite network according to the set business model; D:根据排队理论计算星上处理和交换的时延;D: Calculate the delay of on-board processing and switching according to the queuing theory; E:根据地面源目标位置,寻找每个卫星层中源卫星和目标卫星;E: Find the source satellite and target satellite in each satellite layer according to the position of the ground source target; F:根据通信服务指令需求和网络状态选择传输业务的卫星层,按照路由算法,寻找最优路径。F: Select the satellite layer of the transmission service according to the communication service instruction requirements and the network status, and find the optimal path according to the routing algorithm. 2.根据权利要求1所述多层卫星网络系统路由设定方法,其特征在于:所述步骤A中设定的参数包括:多层卫星网络层数、各层中卫星数目、星间链路条数、各颗卫星轨道类型、轨道高度、轨道倾角和轨道数目。2. according to the described multi-layer satellite network system route setting method of claim 1, it is characterized in that: the parameter setting in the described step A comprises: multi-layer satellite network layer number, satellite number in each layer, inter-satellite link Number of satellites, orbit type of each satellite, orbit height, orbit inclination and number of orbits. 3.根据权利要求1所述多层卫星网络系统路由设定方法,其特征在于:所述步骤C进一步包括子步骤:3. according to the described multi-layer satellite network system route setting method of claim 1, it is characterized in that: described step C further comprises sub-step: C1:在非均匀分布模型下,将人口密度分为5个等级,用数字表示每个区域内的人口密度;C1: Under the non-uniform distribution model, the population density is divided into 5 levels, and the population density in each area is represented by numbers; C2:将地球表面分成48而部分,采用平行于纬线,倾斜于经线的划分方法,8条斜线与纬线呈52度,将经度360度平均分成8份,纬度均分成6份;在每个区域内设一个地面站,地面站位于南北纬15度、45度和68度,数目为48个;采用仰角最大接入方案进行接入;C2: Divide the earth's surface into 48 parts, adopt the method of dividing parallel to the latitude and inclined to the longitude, and the 8 oblique lines form 52 degrees with the latitude, divide the longitude 360 degrees into 8 parts, and the latitude into 6 parts; There is one ground station in the area, and the ground stations are located at 15 degrees, 45 degrees and 68 degrees north and south latitude, and the number is 48; the access scheme with the largest elevation angle is used for access; C3:在统计分布模型下,考虑用户的分布密度的差异、呼叫的源和目标所在位置及密度差异,得出网络中每条星间链路的信道占用情况。C3: Under the statistical distribution model, consider the difference in user distribution density, the location and density difference of the source and target of the call, and obtain the channel occupancy of each inter-satellite link in the network. 4.根据权利要求1所述多层卫星网络系统路由设定方法,其特征在于:所述步骤D进一步包括子步骤:4. according to the said multi-layer satellite network system routing setting method of claim 1, it is characterized in that: said step D further comprises sub-steps: D1:根据排队理论,将每条星间链路看成单服务窗混合制排队模型M/Ml/m,每条星间链路只含单个服务窗口,“顾客”到来的间隔时间服从负指数分布,参数为β;服务时间是参数为μ为负指数分布;每条星间链路有m个排队容量,当系统中已有m个数据包时,新来的数据包不再进入排队,有:ρ=β/μ;D1: According to the queuing theory, each inter-satellite link is regarded as a single service window mixed queuing model M/Ml/m, each inter-satellite link only contains a single service window, and the interval between the arrival of "customers" obeys a negative index distribution, the parameter is β; the service time is a negative exponential distribution with the parameter μ; each inter-satellite link has m queuing capacity, when there are m data packets in the system, the new data packets will no longer enter the queue, There is: ρ=β/μ; D2:数据包的平均等待时延为 W = 1 &mu; &CenterDot; ( 1 - &rho; ) - m &CenterDot; &rho; m &mu; &CenterDot; ( 1 - &rho; m ) . D2: The average waiting delay of data packets is W = 1 &mu; &CenterDot; ( 1 - &rho; ) - m &Center Dot; &rho; m &mu; &Center Dot; ( 1 - &rho; m ) . 5.根据权利要求1所述多层卫星网络系统路由设定方法,其特征在于:所述步骤F中的路由算法为FBellman-Ford路由算法。5. The multi-layer satellite network system routing setting method according to claim 1, characterized in that: the routing algorithm in the step F is the FBellman-Ford routing algorithm. 6.根据权利要求1或5所述多层卫星网络系统路由设定方法,其特征在于:所述步骤F具体包括子步骤:6. according to claim 1 or 5 described multi-layer satellite network system route setting method, it is characterized in that: described step F specifically comprises sub-step: F1:缺省的业务在所述多层卫星网络系统为低轨层,如果中轨源卫星、目标卫星相同,且低轨源卫星、目标卫星不同,执行步骤F4;如果静止轨道源卫星、目标卫星相同,且低轨和中轨源卫星、目标卫星不同,执行步骤F5;否则,执行步骤F2;F1: The default service in the multi-layer satellite network system is the low-orbit layer. If the medium-orbit source satellite and target satellite are the same, and the low-orbit source satellite and target satellite are different, perform step F4; if the geostationary orbit source satellite and target If the satellites are the same, and the low-orbit and medium-orbit source satellites and target satellites are different, go to step F5; otherwise, go to step F2; F2:如果该低轨层路径包含星间链路数量小于或等于星间链路低轨门限,执行步骤F3;如果所述低轨层路径包含星间链路数量大于星间链路低轨门限,且中轨层路径包含星间链路数量小于或等于星间链路中轨门限,执行步骤F4;否则,执行步骤F5;F2: If the number of inter-satellite links included in the low-orbit layer path is less than or equal to the low-orbit threshold of inter-satellite links, perform step F3; if the number of inter-satellite links contained in the low-orbit layer path is greater than the low-orbit threshold of inter-satellite links , and the number of inter-satellite links included in the mid-orbit path is less than or equal to the inter-satellite link mid-orbit threshold, execute step F4; otherwise, execute step F5; F3:建立低轨卫星层最优通信路径,完成传输任务;F3: Establish the optimal communication path at the low-orbit satellite layer and complete the transmission task; F4:建立中轨卫星层最优通信路径,完成传输任务;F4: Establish the optimal communication path at the mid-orbit satellite layer and complete the transmission task; F5:建立静止轨道卫星层最优通信路径,完成传输任务;F5: Establish the optimal communication path at the geostationary satellite layer and complete the transmission task; F6:统计所述多层卫星网络系统中多层网络的特征参量,分析网络性能;F6: counting the characteristic parameters of the multi-layer network in the multi-layer satellite network system, and analyzing the network performance; F7:更新时间区间,完成新路由表计算并完成卫星越区切换。F7: Update the time interval, complete the calculation of the new routing table and complete the satellite handover. 7.根据权利要6所述多层卫星网络系统路由设定方法,其特征在于:所述步骤F3、F4和F5应用到的所述Bellman-Ford路由算法,该算法包括子步骤:7. according to claim 6 described multi-layer satellite network system routing setting method, it is characterized in that: the described Bellman-Ford routing algorithm that described step F3, F4 and F5 are applied to, this algorithm comprises substep: 步骤1:令网络中所有非始节点的T标号值为∞,即T(i)=∞;令始节点的P标号为0,即P(s)=0;Step 1: Let the T label value of all non-initial nodes in the network be ∞, that is, T(i)=∞; make the P label of the initial node be 0, that is, P(s)=0; 步骤2:以新的所述P标号为始节点i,检查以i为始节点的边的每一个终点j是否存在[P(i)+d(i,j)]<P(j)或者[P(i)+d(i,j)]<T(j),如果存在,执行步骤3,否则保留原标号;Step 2: With the new P label as the starting node i, check whether there is [P(i)+d(i, j)]<P(j) or [ P(i)+d(i, j)]<T(j), if it exists, go to step 3, otherwise keep the original label; 步骤3:将j点处的T标号或P标号改为新的T标号T(j)=P(i)+d(i,j)或者T(i)+d(i,j)。取网络中现有的T标号点的最小值,定为新的P标号点,重复执行所述步骤2;Step 3: Change the T label or P label at point j to a new T label T(j)=P(i)+d(i,j) or T(i)+d(i,j). Get the minimum value of the existing T label points in the network, set it as a new P label point, and repeat step 2; 步骤4:当网络所有节点都是P标号点时,算法结束。Step 4: When all nodes in the network are P-labeled points, the algorithm ends. 8.根据权利要6所述多层卫星网络系统路由设定方法,其特征在于:所述步骤F6中需要进行统计的特征参量包括:各卫星节点的存储器占用百分比、星间链路长度和阻塞概率。8. according to claim 6 said multi-layer satellite network system route setting method, it is characterized in that: the characteristic parameter that needs to carry out statistics in the described step F6 comprises: the memory occupation percentage of each satellite node, inter-satellite link length and blocking probability.
CNA2008100661403A 2008-03-21 2008-03-21 Method for setting multilayer satellite network system route Pending CN101299713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008100661403A CN101299713A (en) 2008-03-21 2008-03-21 Method for setting multilayer satellite network system route

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100661403A CN101299713A (en) 2008-03-21 2008-03-21 Method for setting multilayer satellite network system route

Publications (1)

Publication Number Publication Date
CN101299713A true CN101299713A (en) 2008-11-05

Family

ID=40079405

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100661403A Pending CN101299713A (en) 2008-03-21 2008-03-21 Method for setting multilayer satellite network system route

Country Status (1)

Country Link
CN (1) CN101299713A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102413535A (en) * 2011-12-28 2012-04-11 南京邮电大学 A Cognitive Routing Method for Interstellar Links in Multi-level Satellite Communication System
CN102821433A (en) * 2012-07-20 2012-12-12 西安空间无线电技术研究所 Method for updating satellite network routing information
CN103905306A (en) * 2014-04-02 2014-07-02 中国人民解放军西安通信学院 Route exchange method suitable for GEO/LEO double layered constellation network
CN104038272A (en) * 2014-06-10 2014-09-10 哈尔滨工业大学 Medium earth orbit (MEO) global coverage constellation under limit of illumination
CN104506230A (en) * 2014-12-19 2015-04-08 南京邮电大学 Multipath parallel and reliable transmission method applicable to satellite network
CN104734770A (en) * 2015-04-07 2015-06-24 苏州大学 Distributed constellation network routing method based on context
CN104767559A (en) * 2015-04-07 2015-07-08 苏州大学 A Routing Method in Temporary Networking Scenario of Distributed Constellation Network
CN105471734A (en) * 2015-12-24 2016-04-06 哈尔滨工业大学 Optimizing method of LED/MEO double-layer satellite DTN (delay and disruption tolerant network) network distributed route based on time slot
CN106452555A (en) * 2016-08-31 2017-02-22 华东师范大学 Multi-path optimization algorithm planning method based on medium and low earth orbit satellite network
CN107920375A (en) * 2017-12-15 2018-04-17 中国人民解放军32039部队 Data service switching method, apparatus and system in spatial isomerism integrated network
CN108141277A (en) * 2015-10-13 2018-06-08 高通股份有限公司 For the method and apparatus of the inter-satellite switching in Low Earth Orbit (LEO) satellite system
CN108429577A (en) * 2018-03-21 2018-08-21 大连大学 A Satellite QoS Routing Algorithm Based on PROMETHEE Method
CN109155669A (en) * 2016-04-14 2019-01-04 加拿大卫星公司 Double LEO satellite system and method for Global coverage
CN109302329A (en) * 2018-12-25 2019-02-01 长沙天仪空间科技研究院有限公司 A kind of optimal reconfiguration method and system of satellite communication routed path
CN109495160A (en) * 2018-12-04 2019-03-19 航天科工空间工程发展有限公司 A kind of low rail communication satellite constellation is connected to planing method with gateway station
CN109586785A (en) * 2019-01-07 2019-04-05 南京邮电大学 Low-track satellite network routing policy based on K shortest path first
CN110138437A (en) * 2019-04-03 2019-08-16 西安建筑科技大学 Satellite communication network critical link sequence detecting method based on delay performance
CN110224937A (en) * 2019-07-23 2019-09-10 中国联合网络通信集团有限公司 A kind of satellite network method for routing, equipment and device
CN110291727A (en) * 2017-02-10 2019-09-27 空中客车防务与航天有限公司 Ultralow delay telecommunication system
CN110556841A (en) * 2019-08-29 2019-12-10 天津大学 island microgrid frequency controller design method considering wireless communication time delay
CN111092818A (en) * 2019-11-28 2020-05-01 中国空间技术研究院 Multilayer multi-domain satellite network topology abstraction method based on service time delay
CN111177948A (en) * 2020-01-15 2020-05-19 东方红卫星移动通信有限公司 Typical Walker constellation mathematical model described by using orbit elements
CN112118039A (en) * 2020-07-28 2020-12-22 北京邮电大学 Service transmission method, device, electronic device and storage medium of satellite network
CN112596119A (en) * 2020-11-20 2021-04-02 中国电波传播研究所(中国电子科技集团公司第二十二研究所) Ionosphere detection small satellite network planning method
CN113098590A (en) * 2021-04-19 2021-07-09 西安电子科技大学 Satellite constellation configuration parameter optimization method facing non-uniform service coverage
CN114095067A (en) * 2021-06-17 2022-02-25 北京邮电大学 Multilayer satellite network dynamic routing method and system
CN114124201A (en) * 2022-01-25 2022-03-01 青岛国数信息科技有限公司 Self-adaptive global communication system based on Beidou GEO satellite
CN114422370A (en) * 2021-12-22 2022-04-29 上海交通大学 Time slice-based network topology construction method and system of LEO satellite constellation
CN114422011A (en) * 2021-12-22 2022-04-29 中国空间技术研究院 A low-orbit satellite constellation network capacity measurement method
CN114531191A (en) * 2021-12-10 2022-05-24 广州爱浦路网络技术有限公司 Low-orbit satellite switching method, system, device and storage medium
CN114640387A (en) * 2022-03-21 2022-06-17 桂林电子科技大学 Improved laser-microwave hybrid inter-satellite routing method
CN114884565A (en) * 2022-05-30 2022-08-09 南京大学 Communication performance constraint-based large-scale low-orbit satellite network topology optimization method
CN115002790A (en) * 2022-05-31 2022-09-02 中电信数智科技有限公司 6G-based air base station signal enhancement and intelligent on-demand coverage optimization method
CN115242291A (en) * 2022-06-30 2022-10-25 北京邮电大学 Parameter setting method of 6G low-orbit satellite network based on time correlation
CN116418735A (en) * 2023-05-05 2023-07-11 中国人民解放军国防科技大学 Method and system for rapidly solving shortest path between satellites in low-orbit satellite network
CN117176618A (en) * 2023-11-03 2023-12-05 中国西安卫星测控中心 Performance evaluation method for network data exchange software system
CN115085789B (en) * 2019-01-23 2024-03-01 长沙天仪空间科技研究院有限公司 Inter-satellite link management unit based on inter-satellite communication system
CN117674961A (en) * 2023-11-20 2024-03-08 航天恒星科技有限公司 Low orbit satellite network delay prediction method based on spatiotemporal feature learning

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102413535B (en) * 2011-12-28 2014-04-16 南京邮电大学 Route cognizing method of interstellar links of multi-level satellite communication system
CN102413535A (en) * 2011-12-28 2012-04-11 南京邮电大学 A Cognitive Routing Method for Interstellar Links in Multi-level Satellite Communication System
CN102821433B (en) * 2012-07-20 2015-07-08 西安空间无线电技术研究所 Method for updating satellite network routing information
CN102821433A (en) * 2012-07-20 2012-12-12 西安空间无线电技术研究所 Method for updating satellite network routing information
CN103905306A (en) * 2014-04-02 2014-07-02 中国人民解放军西安通信学院 Route exchange method suitable for GEO/LEO double layered constellation network
CN103905306B (en) * 2014-04-02 2017-03-15 中国人民解放军西安通信学院 A kind of route exchanging method suitable for GEO/LEO bilayer Constellation Networks
CN104038272A (en) * 2014-06-10 2014-09-10 哈尔滨工业大学 Medium earth orbit (MEO) global coverage constellation under limit of illumination
CN104038272B (en) * 2014-06-10 2017-04-26 哈尔滨工业大学 Medium earth orbit (MEO) global coverage constellation under limit of illumination
CN104506230A (en) * 2014-12-19 2015-04-08 南京邮电大学 Multipath parallel and reliable transmission method applicable to satellite network
CN104506230B (en) * 2014-12-19 2017-08-01 南京邮电大学 A Multipath Parallel Reliable Transmission Method Applicable to Satellite Networks
CN104734770A (en) * 2015-04-07 2015-06-24 苏州大学 Distributed constellation network routing method based on context
CN104767559A (en) * 2015-04-07 2015-07-08 苏州大学 A Routing Method in Temporary Networking Scenario of Distributed Constellation Network
CN104734770B (en) * 2015-04-07 2017-11-21 苏州大学 A kind of distributed group of stars network route method based on context
CN108141277A (en) * 2015-10-13 2018-06-08 高通股份有限公司 For the method and apparatus of the inter-satellite switching in Low Earth Orbit (LEO) satellite system
CN105471734B (en) * 2015-12-24 2018-10-09 哈尔滨工业大学 A kind of optimization method of timeslot-based LEO/MEO double-layer satellites DTN network distribution types routing
CN105471734A (en) * 2015-12-24 2016-04-06 哈尔滨工业大学 Optimizing method of LED/MEO double-layer satellite DTN (delay and disruption tolerant network) network distributed route based on time slot
CN109155669A (en) * 2016-04-14 2019-01-04 加拿大卫星公司 Double LEO satellite system and method for Global coverage
CN106452555A (en) * 2016-08-31 2017-02-22 华东师范大学 Multi-path optimization algorithm planning method based on medium and low earth orbit satellite network
CN110291727A (en) * 2017-02-10 2019-09-27 空中客车防务与航天有限公司 Ultralow delay telecommunication system
CN110291727B (en) * 2017-02-10 2022-08-09 空中客车防务与航天有限公司 Ultra low delay telecommunications system
US11424820B2 (en) 2017-02-10 2022-08-23 Airbus Defence And Space Limited Ultra-low latency telecommunications satellite
CN107920375A (en) * 2017-12-15 2018-04-17 中国人民解放军32039部队 Data service switching method, apparatus and system in spatial isomerism integrated network
CN107920375B (en) * 2017-12-15 2020-07-31 中国人民解放军32039部队 Data service switching method, device and system in spatial heterogeneous integrated network
CN108429577A (en) * 2018-03-21 2018-08-21 大连大学 A Satellite QoS Routing Algorithm Based on PROMETHEE Method
CN109495160A (en) * 2018-12-04 2019-03-19 航天科工空间工程发展有限公司 A kind of low rail communication satellite constellation is connected to planing method with gateway station
CN109495160B (en) * 2018-12-04 2021-04-02 航天科工空间工程发展有限公司 Low-earth-orbit communication satellite constellation and gateway station communication planning method
CN109302329A (en) * 2018-12-25 2019-02-01 长沙天仪空间科技研究院有限公司 A kind of optimal reconfiguration method and system of satellite communication routed path
CN109302329B (en) * 2018-12-25 2019-04-02 长沙天仪空间科技研究院有限公司 A kind of optimal reconfiguration method and system of satellite communication routed path
CN109586785A (en) * 2019-01-07 2019-04-05 南京邮电大学 Low-track satellite network routing policy based on K shortest path first
CN109586785B (en) * 2019-01-07 2021-08-03 南京邮电大学 Routing strategy for low-orbit satellite network based on K shortest path algorithm
CN115085789B (en) * 2019-01-23 2024-03-01 长沙天仪空间科技研究院有限公司 Inter-satellite link management unit based on inter-satellite communication system
CN110138437A (en) * 2019-04-03 2019-08-16 西安建筑科技大学 Satellite communication network critical link sequence detecting method based on delay performance
CN110138437B (en) * 2019-04-03 2021-04-20 西安建筑科技大学 Sequence detection method of critical links in satellite communication network based on delay performance
CN110224937A (en) * 2019-07-23 2019-09-10 中国联合网络通信集团有限公司 A kind of satellite network method for routing, equipment and device
CN110556841A (en) * 2019-08-29 2019-12-10 天津大学 island microgrid frequency controller design method considering wireless communication time delay
CN110556841B (en) * 2019-08-29 2022-11-04 天津大学 Island microgrid frequency controller design method considering wireless communication time delay
CN111092818A (en) * 2019-11-28 2020-05-01 中国空间技术研究院 Multilayer multi-domain satellite network topology abstraction method based on service time delay
CN111092818B (en) * 2019-11-28 2022-03-04 中国空间技术研究院 Topology abstraction method of multi-layer multi-domain satellite network based on service delay
CN111177948A (en) * 2020-01-15 2020-05-19 东方红卫星移动通信有限公司 Typical Walker constellation mathematical model described by using orbit elements
CN112118039A (en) * 2020-07-28 2020-12-22 北京邮电大学 Service transmission method, device, electronic device and storage medium of satellite network
CN112596119A (en) * 2020-11-20 2021-04-02 中国电波传播研究所(中国电子科技集团公司第二十二研究所) Ionosphere detection small satellite network planning method
CN113098590B (en) * 2021-04-19 2022-03-04 西安电子科技大学 Optimization method of satellite constellation configuration parameters for non-uniform service coverage
CN113098590A (en) * 2021-04-19 2021-07-09 西安电子科技大学 Satellite constellation configuration parameter optimization method facing non-uniform service coverage
CN114095067A (en) * 2021-06-17 2022-02-25 北京邮电大学 Multilayer satellite network dynamic routing method and system
CN114531191A (en) * 2021-12-10 2022-05-24 广州爱浦路网络技术有限公司 Low-orbit satellite switching method, system, device and storage medium
CN114531191B (en) * 2021-12-10 2022-09-13 广州爱浦路网络技术有限公司 Low-orbit satellite switching method, system, device and storage medium
CN114422011B (en) * 2021-12-22 2024-05-31 中国空间技术研究院 A method for calculating the network capacity of low-orbit satellite constellation
CN114422370A (en) * 2021-12-22 2022-04-29 上海交通大学 Time slice-based network topology construction method and system of LEO satellite constellation
CN114422011A (en) * 2021-12-22 2022-04-29 中国空间技术研究院 A low-orbit satellite constellation network capacity measurement method
CN114422370B (en) * 2021-12-22 2023-03-28 上海交通大学 Time slice-based network topology construction method and system of LEO satellite constellation
CN114124201A (en) * 2022-01-25 2022-03-01 青岛国数信息科技有限公司 Self-adaptive global communication system based on Beidou GEO satellite
CN114640387B (en) * 2022-03-21 2024-06-11 桂林电子科技大学 Improved laser-microwave mixed inter-satellite routing method
CN114640387A (en) * 2022-03-21 2022-06-17 桂林电子科技大学 Improved laser-microwave hybrid inter-satellite routing method
CN114884565A (en) * 2022-05-30 2022-08-09 南京大学 Communication performance constraint-based large-scale low-orbit satellite network topology optimization method
CN115002790B (en) * 2022-05-31 2023-11-17 中电信数智科技有限公司 6G-based air base station signal enhancement and intelligent on-demand coverage optimization method
CN115002790A (en) * 2022-05-31 2022-09-02 中电信数智科技有限公司 6G-based air base station signal enhancement and intelligent on-demand coverage optimization method
CN115242291B (en) * 2022-06-30 2023-06-30 北京邮电大学 6G LEO Satellite Network Parameter Setting Method Based on Time Correlation
CN115242291A (en) * 2022-06-30 2022-10-25 北京邮电大学 Parameter setting method of 6G low-orbit satellite network based on time correlation
CN116418735A (en) * 2023-05-05 2023-07-11 中国人民解放军国防科技大学 Method and system for rapidly solving shortest path between satellites in low-orbit satellite network
CN117176618A (en) * 2023-11-03 2023-12-05 中国西安卫星测控中心 Performance evaluation method for network data exchange software system
CN117176618B (en) * 2023-11-03 2024-01-09 中国西安卫星测控中心 Performance evaluation method for network data exchange software system
CN117674961A (en) * 2023-11-20 2024-03-08 航天恒星科技有限公司 Low orbit satellite network delay prediction method based on spatiotemporal feature learning
CN117674961B (en) * 2023-11-20 2024-05-28 航天恒星科技有限公司 Low orbit satellite network time delay prediction method based on space-time feature learning

Similar Documents

Publication Publication Date Title
CN101299713A (en) Method for setting multilayer satellite network system route
Bhattacherjee et al. Gearing up for the 21st century space race
Kawamoto et al. A traffic distribution technique to minimize packet delivery delay in multilayered satellite networks
Liu et al. Space-air-ground integrated network: A survey
Nishiyama et al. Load balancing and QoS provisioning based on congestion prediction for GEO/LEO hybrid satellite networks
CN106230719B (en) A LEO satellite network link switching management method based on link remaining time
CN102413535B (en) Route cognizing method of interstellar links of multi-level satellite communication system
CN105227483A (en) Based on the low complex degree Load Balance Routing Algorithms of LEO satellite network
Mao et al. On a hierarchical content caching and asynchronous updating scheme for non-terrestrial network-assisted connected automated vehicles
CN105228209B (en) A kind of distributed GEO/LEO hybrid networks method for routing based on dummy node
CN111294108B (en) An Efficient Routing Method for Orthogonal Circular Orbit Configuration Satellite Constellation
Yang Low earth orbit (LEO) mega constellations-satellite and terrestrial integrated communication networks.
CN106452555A (en) Multi-path optimization algorithm planning method based on medium and low earth orbit satellite network
CN113422636A (en) On-satellite routing optimization method
CN104244356A (en) Orientation ant colony route optimization method based on evolution graph full route forecasting
Roth et al. Distributed sdn-based load-balanced routing for low earth orbit satellite constellation networks
Ngo et al. Timeliness of information in 5G nonterrestrial networks: A survey
Lee et al. Satellite over satellite (SOS) network: a novel concept of hierarchical architecture and routing in satellite network
Kim et al. Performance analysis of satellite server mobile edge computing architecture
US12245080B2 (en) Adaptive load balancing in a satellite network
Zhang et al. Local search resource allocation algorithm for space-based backbone network in Deep Reinforcement Learning method
Feng et al. A novel distributed routing algorithm based on data-driven in GEO/LEO hybrid satellite network
Zhang et al. Noncooperative dynamic routing with bandwidth constraint in intermittently connected deep space information networks under scheduled contacts
Kawamoto et al. Assessing packet delivery delay in multi-layered satellite networks
Tao et al. Time-varying graph model for LEO satellite network routing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20081105