CN101290866A - groove etching method - Google Patents
groove etching method Download PDFInfo
- Publication number
- CN101290866A CN101290866A CNA2007101996946A CN200710199694A CN101290866A CN 101290866 A CN101290866 A CN 101290866A CN A2007101996946 A CNA2007101996946 A CN A2007101996946A CN 200710199694 A CN200710199694 A CN 200710199694A CN 101290866 A CN101290866 A CN 101290866A
- Authority
- CN
- China
- Prior art keywords
- substrate
- etch
- plasma
- gas
- etch process
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
这里提供了用于凹槽蚀刻的方法,其利于改进横向与垂直蚀刻比值需求,由此能够在保持相对浅的垂直蚀刻深度的同时实现更深的凹槽蚀刻。这种增强横向蚀刻方法利于为限制横向与垂直蚀刻深度比值或需要形成凹槽或空腔的多种应用提供益处。在某些实施例中,凹槽蚀刻的方法包括提供具有在其上形成的结构的基片;使用第一蚀刻工艺在至少部分地位于结构下面的基片中形成凹槽;在基片上形成选择性钝化层;并且使用第二蚀刻工艺在基片中延伸凹槽。一般在基片中临近结构但一般不在凹槽内的区域上形成选择性钝化层。第一和第二蚀刻工艺可能是相同的或不同的工艺。
Provided herein are methods for recess etching that facilitate improved lateral to vertical etch ratio requirements, thereby enabling deeper recess etching while maintaining relatively shallow vertical etch depths. This enhanced lateral etch approach is advantageous for a variety of applications where the ratio of lateral to vertical etch depth is limited or where the formation of grooves or cavities is required. In some embodiments, a method of recess etching includes providing a substrate having a structure formed thereon; forming a recess in the substrate at least partially underlying the structure using a first etching process; forming a selector on the substrate. a permanent passivation layer; and extending grooves in the substrate using a second etch process. The selective passivation layer is generally formed on areas of the substrate adjacent to the structure but generally not within the recesses. The first and second etching processes may be the same or different processes.
Description
技术领域 technical field
本发明的实施例一般涉及半导体基片上的装置的制备,尤其涉及用于在制备这种装置期间的凹槽蚀刻方法。Embodiments of the present invention generally relate to the fabrication of devices on semiconductor substrates, and more particularly to recess etching methods for use during the fabrication of such devices.
背景技术 Background technique
大尺寸集成(ULSI)电路可能包括在诸如硅(Si)晶片的半导体晶片上形成的超过一百万个的电子装置(例如,晶体管),并且协作执行装置中的不同功能。典型地,ULSI电路中使用的晶体管是互补金属氧化物半导体(CMOS)场效应晶体管。CMOS晶体管通常具有源极区域、漏极区域,以及在源极和漏极之间的通道区域。为了控制源极和漏极之间的传导,在通道区域之上形成包括多硅栅极电极的栅极结构,并通过栅极绝缘体将其与通道区域分隔。A large scale integration (ULSI) circuit may include more than a million electronic devices (eg, transistors) formed on a semiconductor wafer, such as a silicon (Si) wafer, and cooperate to perform different functions in the device. Typically, the transistors used in ULSI circuits are complementary metal oxide semiconductor (CMOS) field effect transistors. CMOS transistors typically have a source region, a drain region, and a channel region between the source and drain. To control conduction between the source and drain, a gate structure including a polysilicon gate electrode is formed over the channel region and separated from the channel region by a gate insulator.
可以通过,例如,应变工程改进这种装置的性能。例如,可以给沉积材料的原子晶格施加应力,以便改进材料其自身的或由于可能增加诸如硅的半导体的载流子迁移率的应力沉积材料施加的压力而变形的下层或上层材料的电性能。这种增加迁移率由此增加掺杂硅半导体的饱和电流,以便由此改进它们的性能。在CMOS示例中,可以通过沉积具有内部压或拉应力的晶体管组分材料将局部晶格应变引入到晶体管的通道区域中。The performance of such devices can be improved by, for example, strain engineering. For example, stress can be applied to the atomic lattice of the deposited material in order to improve the electrical properties of the material itself or an underlying or overlying material deformed by the stress exerted by the stressed deposited material which may increase the carrier mobility of a semiconductor such as silicon . This increased mobility thereby increases the saturation current of doped silicon semiconductors in order thereby to improve their performance. In the CMOS example, local lattice strain can be introduced into the channel region of a transistor by depositing transistor constituent materials with internal compressive or tensile stress.
在某些实施例中,这是由部分地蚀刻去除在栅极结构之下的硅基片并且为了在装置中引入应变而在其上沉积硅-锗层而实现。通常,将在栅极结构之下的硅基片横向蚀刻到临近基片的通道区域的点,以便增强Si-Ge应变效应。然而,当技术节点连续缩短时,例如从65nm节点到45nm节点、甚至到32nm节点,在用于形成这些结构的蚀刻工艺上存在更紧的限制。例如,更浅的结点深度限制了硅基片可能的垂直蚀刻距离。同样,垂直与横向蚀刻距离的比值减小,由此不需要地限制用于制备这些结构的可能需要更大的垂直蚀刻与横向蚀刻的比值的传统蚀刻工艺。而且,由在基片上形成的结构的更紧密间距引起的微载效应进一步恶化由增加蚀刻工艺的垂直蚀刻与横向蚀刻需求引起的问题。In some embodiments, this is accomplished by partially etching away the silicon substrate beneath the gate structure and depositing a silicon-germanium layer thereon in order to introduce strain in the device. Typically, the silicon substrate below the gate structure is etched laterally to a point adjacent to the channel region of the substrate in order to enhance the Si-Ge strain effect. However, as technology nodes continue to shrink, such as from the 65nm node to the 45nm node, and even to the 32nm node, there are tighter constraints on the etch processes used to form these structures. For example, a shallower junction depth limits the possible vertical etch distance of a silicon substrate. Also, the ratio of vertical to lateral etch distances decreases, thereby unnecessarily limiting conventional etch processes used to fabricate these structures, which may require greater vertical to lateral etch ratios. Furthermore, the microloading effect caused by the tighter pitch of the structures formed on the substrate further exacerbates the problems caused by the increased vertical etch and lateral etch requirements of the etch process.
因此,需要用于凹槽蚀刻的改进蚀刻工艺。Therefore, there is a need for an improved etching process for recess etching.
发明内容 Contents of the invention
这里提供了用于凹槽蚀刻的方法,其利于改进横向与垂直蚀刻比值需求,因此在保持相对浅的垂直蚀刻深度的同时能够实现更深的凹槽蚀刻。这种增强横向蚀刻方法利于为横向与垂直蚀刻深度比值受限的或需要形成凹槽或空洞的多种应用提供益处。在某些实施例中,凹槽蚀刻方法包括提供具有在其上形成的结构的基片;使用第一蚀刻工艺在至少部分地位于该结构下方的基片中形成凹槽;在基片上形成选择性钝化层;并且使用第二蚀刻工艺在基片中延伸凹槽。一般在基片中临近该结构但一般不在凹槽中的区域上形成选择性钝化层。第一和第二蚀刻工艺可以是相同的或不同的工艺。Provided herein are methods for recess etching that facilitate improved lateral to vertical etch ratio requirements, thus enabling deeper recess etch while maintaining relatively shallow vertical etch depths. This enhanced lateral etch approach is advantageous for a variety of applications where the ratio of lateral to vertical etch depth is limited or where the formation of grooves or cavities is desired. In some embodiments, the recess etching method includes providing a substrate having a structure formed thereon; forming a recess in the substrate at least partially below the structure using a first etching process; a permanent passivation layer; and extending grooves in the substrate using a second etch process. The selective passivation layer is generally formed on regions of the substrate adjacent to the structure but generally not in the recesses. The first and second etching processes may be the same or different processes.
在某些实施例中,凹槽蚀刻方法包括提供具有在其上形成的定形掩模的基片;使用第一蚀刻工艺通过该定形掩模将特征蚀刻到基片中;在该特征的侧壁上形成保护层;去除该保护层的底部,以便暴露基片;并且使用第二蚀刻工艺将空腔蚀刻到基片中。In certain embodiments, a recess etching method includes providing a substrate having a shaped mask formed thereon; etching a feature into the substrate through the shaped mask using a first etch process; forming a protective layer over the protective layer; removing the bottom of the protective layer to expose the substrate; and etching a cavity into the substrate using a second etching process.
附图说明 Description of drawings
出于可以详细理解本发明特征的方式,参考在附图中部分示出的实施例给出上面概述的本发明的更加明确的描述。然而,需要指出的是,附图仅示出了本发明的典型实施例,由于本发明可能具有其它等效实施例,因此不能认为附图限制了本发明的范围。So that the manner in which the features of the invention may be understood in detail, a more specific description of the invention outlined above has been given by reference to embodiments which are partially shown in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, since the invention may have other equally effective embodiments.
图1A-1E示意描述了根据本发明的某些实施例的栅极电极的制备阶段。1A-1E schematically depict the stages of gate electrode preparation according to some embodiments of the present invention.
图2描述了根据本发明的如图1A-E所示的某些实施例的凹槽蚀刻方法。Figure 2 depicts a method of recess etching according to certain embodiments of the present invention as shown in Figures 1A-E.
图3A-3E示意描述了根据本发明的某些实施例的栅极电极的制备阶段。3A-3E schematically describe the stages of gate electrode preparation according to some embodiments of the present invention.
图4描述了根据本发明的如图3A-D所示的某些实施例的凹槽蚀刻方法。Figure 4 depicts a method of recess etching according to certain embodiments of the present invention as shown in Figures 3A-D.
图5描述了执行本发明方法一部分所用类型的示范等离子体加工装置的示意图。Figure 5 depicts a schematic diagram of an exemplary plasma processing apparatus of the type used to perform a portion of the method of the present invention.
为了便于理解,已经尽可能地使用相同参考数字表示附图中共用的相同元素。为了易于理解,简化了附图,而且没有按比例绘制。To facilitate understanding, identical reference numerals have been used wherever possible to refer to identical elements that are common to the drawings. The figures are simplified and not drawn to scale for ease of understanding.
具体实施方式 Detailed ways
图1A-E描述了根据本发明某些实施例的示范栅极结构的制备阶段。图2描述了根据本发明某些实施例的用于凹槽蚀刻的示范方法,并且下面参考图1A-E进行描述。适于使用这里公开的技术的适当反应器包括,例如,分立等离子体源ADVANTEDGETM反应器,或或蚀刻反应器,这些均由加利佛尼亚圣克拉拉的应用材料公司提供。ADVANTEDGETM、或反应器还可以用作同样由应用材料公司提供的集成半导体基片加工系统的加工模块。下面参考图5描述适当蚀刻反应器的示范实施例。1A-E depict stages in the fabrication of exemplary gate structures according to some embodiments of the present invention. Figure 2 depicts an exemplary method for recess etching according to some embodiments of the present invention, and is described below with reference to Figures 1A-E. Suitable reactors suitable for use with the techniques disclosed herein include, for example, discrete plasma sources ADVANTEDGETM reactor, or or etch reactors, these were supplied by Applied Materials, Santa Clara, CA. ADVANTEDGE™, or The reactor can also be used as a The processing module of the integrated semiconductor substrate processing system. An exemplary embodiment of a suitable etch reactor is described below with reference to FIG. 5 .
方法200在202处开始,其中在本发明的一个示范实施例中,可能提供具有在其上形成的示范栅极结构100的基片102(如图1A所示)。基片102可能是硅基片,虽然其它类型的基片可能也是适用的。示范栅极结构100可能包括具有在其上形成的栅极电极106的栅极绝缘体104和在栅极电极106顶上形成的硬掩模108。通常将衬垫110和隔板结构112放置在栅极结构100的每一侧上。在栅极结构100上还可能存在盖层114。The
形成示范栅极结构100的材料可能是适于在栅极结构中使用的任何材料。例如,栅极绝缘体104可能由二氧化铪(HfO2)、二氧化硅(SiO2)或相似材料制成。栅极电极106可能包括多硅或其它导电材料,诸如金属或含金属材料。硬掩模108可能包括高温氧化物(HTO)、四乙氧基硅烷(TEOS)氧化物、氮氧化硅(SiON)、氮化硅(SiN)或相似材料。衬垫110可能包括热氧化物(HTO)或相似材料。隔板结构112可能包括氮化硅。盖层114可能包括氧化硅。根据这里提供的训导,预期其它材料可能适于使用。The material forming
接下来,在204,为了在栅极结构100下面的基片中形成凹槽116(如图1B所示),使用第一蚀刻工艺。第一蚀刻工艺是各向同性蚀刻工艺,具有如将基片102蚀刻到垂直深度V所示的垂直蚀刻组分,以及将在栅极结构100下面的基片102横向地蚀刻到横向深度L1。凹槽116的替代描述可能包括测量凹槽116的内边与栅极电极106的临近边的垂直距离,如图1B中距离D1所示。Next, at 204, to form the
第一蚀刻工艺可能是任何适当的各向同性蚀刻工艺。在用于蚀刻硅基片的一个示范示例中,可能提供包含三氟化氮(NF3)的加工气体,可选地,至少结合氯气(Cl2)、氧气(O2)和诸如氩气(Ar)的惰性气体中的一种。可能使用在大约200-1000瓦之间的频率在大约13.56MHz的源功率从加工气体形成等离子体。为了便于在基片102上的全部方向(各向同性地)蚀刻,提供低的偏压功率,或者可选地没有偏压功率。The first etch process may be any suitable isotropic etch process. In an illustrative example for etching a silicon substrate, it is possible to provide a process gas comprising nitrogen trifluoride (NF3), optionally in combination with at least chlorine (Cl2), oxygen (O2) and a gas such as argon (Ar) One of the inert gases. It is possible to form a plasma from the process gas using a source power between about 200-1000 Watts at a frequency of about 13.56 MHz. To facilitate etching in all directions (isotropically) on the
在某些实施例中,可能执行第一蚀刻工艺,直到达到预期垂直蚀刻深度V。替代地,可能执行第一蚀刻工艺,直到凹槽116获得预期横向蚀刻深度L1。可能定时第一蚀刻工艺,以便在预期时期内执行。In some embodiments, the first etch process may be performed until the desired vertical etch depth V is reached. Alternatively, it is possible to perform the first etching process until the
接下来,在206,可能在基片102(如图1C和1D所示)上临近栅极结构100但不在栅极结构100下面(即不在凹槽116内)的区域内选择性地形成钝化层120(在一个实施例中是氧化层)。可能通过选择性地将基片102暴露于钝化气体(诸如氧化层示例中的含氧气体)的等离子体,在基片102上选择性地形成钝化层120。在某些实施例中,钝化气体可能包括诸如氧气(O2)或氡气-氧气(He-O2)的氧基气体;诸如二氟甲烷(CH2F2)或其它聚合物形式的气体的碳基气体;三氯化硼;或相似气体。还可能使用诸如一种或多种惰性气体(诸如氩气)的辅助加工气体。为了选择性形成钝化层120,可能通过使用如上所述的结合偏压功率的源功率,形成各向异性的等离子体(如图1C中箭头118所示)。替代地,可能仅使用偏压功率形成等离子体。在某些实施例中,偏压功率可能是在大约100-700瓦之间或大约200瓦的大约13.56MHz的信号。各向异性等离子体利于在基片102的暴露区域上但不在诸如凹槽116的基片120受保护区域内选择性地形成钝化层120。为了形成适当厚度(诸如几个纳米,或在大约1-10nm之间,或大约3nm)的钝化层120,可能在足够长的时期内形成等离子体。在某些实施例中,在几秒、或大约7秒、或足够形成适当等离子体所需的长时间内形成等离子体。Next, at 206, passivation may be selectively formed in regions of the substrate 102 (as shown in FIGS. 1C and 1D ) that are adjacent to the
接下来,在208,可能使用第二蚀刻工艺将凹槽116在栅极结构100下面延伸到预期横向深度L2(如图1E所示)。该最终横向深度L2通常取决于将要形成的特定结构或特定应用的需求。替代地,可能将延伸凹槽116描述为具有内边对栅极电极106的垂直距离D2(如图1E所示)。在一个非限制性示例中,在45nm技术节点栅极结构中-其具有根据国际半导体技术蓝图(ITRS)的例如大约320埃或更小的宽度,最终距离D2可能至少是大约150埃,取决于最终需求。Next, at 208 , the
第二蚀刻工艺可能与上述第一蚀刻工艺相同。有利地,钝化层120保护基片102不受额外非预期垂直蚀刻,由此基本保持在204期间基片已经蚀刻的垂直深度V。因此,延伸凹槽116的内边有利地靠近布置在栅极绝缘体104和栅极电极106下面的基片102的通道区域,由此能够基于在基片102顶上和凹槽106内的应变控制层(例如,Si-Ge层或Si-C层)的形成,实现对于PMOS的硅-锗(Si-Ge)应变效应(或对于NMOS的硅-碳化物(Si-C))的增强。另外,钝化层的形成有利于在栅极结构100顶上形成钝化层,其允许独立控制盖氧化物的开启、硬掩模(HM)和隔板的损耗,由此有利于拓宽用于控制硬掩模108、隔板层112和特征依赖微载的工艺窗口。The second etching process may be the same as the first etching process described above. Advantageously, the
在一步选择性钝化/横向蚀刻工艺的示例中,基于208的完成,该方法可能结束。替代地,为了实现更大的横向凹槽深度和预期特征轮廓,可能如多步工艺中所需的重复一个或多个204-208。在某些实施例中,为了增加横向蚀刻(增加凹槽深度)以及为了去除钝化层,可能控制208(第二凹槽步骤),以便为钝化层提供较低的选择性。替代地或结合地,在某些实施例中,为了在多步工艺期间控制钝化层的厚度,可能增加钝化层去除步骤。In an example of a one-step selective passivation/lateral etch process, upon completion of 208, the method may end. Alternatively, one or more of 204-208 may be repeated as required in a multi-step process in order to achieve greater lateral groove depths and desired feature profiles. In some embodiments, it is possible to control 208 (second recess step) to provide lower selectivity to the passivation layer for increased lateral etching (increased recess depth) and for removal of the passivation layer. Alternatively or in combination, in some embodiments, a passivation layer removal step may be added in order to control the thickness of the passivation layer during the multi-step process.
基于凹槽蚀刻方法的完成,可能去除任何残余的钝化层,诸如通过湿式清除工艺或用于残余钝化层类型和包括基片和栅极结构或在其上形成的其它特征的任何适当工艺。为了完成装置的制备,诸如在栅极结构示例中,基片顶上和凹槽内及相似位置的应变控制层的外延生长,具有在其上形成的特征的基片现在可能继续其它工艺。Upon completion of the recess etch process, any residual passivation layer may be removed, such as by a wet clean process or any suitable process for the type of residual passivation layer and including the substrate and gate structures or other features formed thereon . The substrate with the features formed thereon may now proceed to other processes in order to complete the fabrication of the device, such as in the gate structure example, epitaxial growth of the strain control layer on top of the substrate and within the recesses and similar locations.
虽然上述讨论涉及栅极结构的一个示范类型的制备,也可能使用这里公开的发明方法形成包括不同材料组合的其它类型栅极结构。另外,在制备序列期间可能使用凹槽蚀刻的集成电路中所用其它装置和结构的制备也可能从本发明获益。例如,在一个非限制性或示范示例中,发明凹槽蚀刻方法可能用于将闪光堆栈导向到WSix和多硅层之间的晶粒选择性。Although the above discussion relates to the fabrication of one exemplary type of gate structure, it is also possible to form other types of gate structures including different combinations of materials using the inventive methods disclosed herein. Additionally, the fabrication of other devices and structures used in integrated circuits that may use recess etching during the fabrication sequence may also benefit from the present invention. For example, in one non-limiting or exemplary example, the inventive recess etch method may be used to direct the flash stack to grain selectivity between the WSix and polysilicon layers.
在某些实施例中,以及如图3A-E和图4所示,可能利于制备球形凹槽式通道阵列晶体管(S-RCAT)。图3A-E描述根据本发明某些实施例的示范S-RCAT结构的制备阶段。图4描述根据本发明某些实施例的用于凹槽蚀刻的一个示范方法,并且在下面参考图3A-E描述。可能适于与这里公开的训导一起使用的适当反应器包括,例如,分立等离子体源ADVANTEDGETM反应器,或或蚀刻反应器。下面参考图5描述适当蚀刻反应器的示范实施例。In certain embodiments, and as shown in Figures 3A-E and Figure 4, it may be advantageous to fabricate spherical recessed channel array transistors (S-RCAT). Figures 3A-E depict stages in the preparation of exemplary S-RCAT structures according to certain embodiments of the invention. Figure 4 depicts one exemplary method for recess etching according to some embodiments of the present invention, and is described below with reference to Figures 3A-E. Suitable reactors that may be suitable for use with the teachings disclosed herein include, for example, discrete plasma sources ADVANTEDGETM reactor, or or etch reactor. An exemplary embodiment of a suitable etch reactor is described below with reference to FIG. 5 .
方法400在402开始,其中在本发明的一个示范实施例中,可能提供具有在其上形成的定形掩模层306的基片302。基片302可能是硅基片,虽然其它类型基片可能也适于使用。定形掩模层306一般至少具有在其中确定的一个特征308,并且可能是用于在如这里所述的定形基片302的任何适当掩模层,诸如光敏抗蚀剂层(例如,阳性或阴性光致抗蚀剂)或硬掩模(例如氮化硅(Si3N4)、氧化硅(SiO2)或相似物)。在某些实施例中,可能在定形掩模层306和基片302之间提供一个或多个介入层304。例如,在某些实施例中,介入层304可能包括衬垫氧化层、或氧化硅(SiO2)层。虽然参考如图3A-D所示的具有确定层的确定实施例描述,预期当根据这里公开的技术制备S-RCAT或其它结构时,在基片302上可能还存在其它层。
接下来,在404,使用第一蚀刻工艺将特征308蚀刻到基片302中,如图3B所示。第一蚀刻工艺可能是主要将特征308垂直蚀刻到基片302中的预期深度的任何适当蚀刻工艺。在用于蚀刻硅基片的一个示范示例中,可能提供至少一种含卤素气体,诸如三氟化氮(NF3)、六氟化硫(SF6)、溴化氢(HBr)或相似物。例如,在某些实施例中,可能提供达到大约100sccm的NF3、达到大约50sccm的SF6和/或达到大约400sccm的HBr。在某些实施例中,还可能至少提供氯气(Cl2)、氧气(O2)或氮气(N2)中的一种。例如,在某些实施例中,可能提供达到大约400sccm的Cl2、达到大约30sccm的O2,和/或达到大约50sccm的N2。Next, at 404, features 308 are etched into
可能使用在适当频率(诸如大约13.56MHz)的大约200-1200瓦之间的源功率从加工气体形成等离子体。还可能提供在适当频率(诸如大约2MHz)的大约150-300瓦之间的偏压功率。在某些实施例中,可能将加工室内的压力保持在大约4-70mTorr之间。可能执行第一蚀刻工艺,直到达到预期垂直蚀刻深度,例如,通过监控蚀刻工艺或通过以预定时期执行蚀刻工艺。It is possible to form a plasma from the process gas using a source power of between about 200-1200 watts at a suitable frequency, such as about 13.56 MHz. It is also possible to provide a bias power of between about 150-300 Watts at a suitable frequency, such as about 2 MHz. In certain embodiments, it is possible to maintain the pressure within the processing chamber between about 4-70 mTorr. It is possible to perform the first etch process until a desired vertical etch depth is reached, for example by monitoring the etch process or by performing the etch process at predetermined intervals.
接下来,在406,可能在特征308内形成防护层310(如图3C所示)。在某些实施例中,可能在离子增强氧化工艺中形成防护层310,诸如通过将基片102暴露于从诸如氧气(O2)的含氧气体和诸如氩气(Ar)的一种或多种惰性气体形成的等离子体,以便在特征308内和基片302上形成氧化物层。离子增强氧化工艺利于深度渗入到特征308的侧壁内,以便形成可以抵挡后续工艺的保护层310。Next, at 406 ,
在某些实施例中,可能将在大约100-500sccm之间的O2和在大约100-300sccm之间的Ar提供到加工室内。可能将加工室的压力保持在大约4-20mTorr之间。可能使用在适当频率(诸如大约13.56MHz)的在大约500-1500瓦之间的源功率从加工气体形成等离子体。还可能提供在适当频率(诸如大约2MHz)的在大约150-300瓦之间的偏压功率。可能保持等离子体,直到隔板结构310达到预期厚度,例如通过监控蚀刻工艺或通过以预定时期执行蚀刻工艺。In certain embodiments, it is possible to provide between about 100-500 seem of O2 and between about 100-300 seem of Ar into the processing chamber. It is possible to maintain the pressure of the process chamber between about 4-20 mTorr. It is possible to form a plasma from the process gas using a source power of between about 500-1500 Watts at a suitable frequency, such as about 13.56 MHz. It is also possible to provide a bias power of between about 150-300 Watts at a suitable frequency, such as about 2 MHz. It is possible to maintain the plasma until the
保护层310通常除了侧壁还沿特征308的底部312形成(如图4C所示)。同样地,在408,可能去除或开启保护层310的底部312,以便暴露基片302的表面314(如图4D所示)。可能通过用于以可以在去除布置在特征308的侧壁上的全部材料之前去除底部312的方式蚀刻形成保护层310的材料的任何适当工艺,开启保护层310的底部312。例如,在某些实施例中,其中保护层310包括氧,可能从诸如四氟化碳(CF4)的含氟气体形成等离子体。还可能提供惰性气体(诸如氩气(Ar))。在某些实施例中,可能提供在大约100-200sccm之间的CF4和在大约100-200sccm之间的Ar。A
可能将加工室的压力保持在大约4-20mTorr之间。可能使用在适当频率(诸如大约13.56MHz)的在大约200-1000瓦之间的源功率从加工气体形成等离子体。还可能提供在适当频率(诸如大约2MHz)的在大约150-300瓦之间的偏压功率。可能保持等离子体,直到完全地或大部分地去除保护层310的底部312,例如通过监控蚀刻工艺或通过以预定时期执行蚀刻工艺。在406使用的用于形成保护层310的离子增强氧化工艺可能利于在特征308的侧壁上提供强固深氧化层,其可以抵挡用于去除保护层310的底部312的蚀刻工艺。It is possible to maintain the pressure of the process chamber between about 4-20 mTorr. It is possible to form a plasma from the process gas using a source power of between about 200-1000 watts at a suitable frequency, such as about 13.56 MHz. It is also possible to provide a bias power of between about 150-300 Watts at a suitable frequency, such as about 2 MHz. It is possible to maintain the plasma until the
接下来,在410,可能在基片302中形成凹槽或空腔316。可能由第二蚀刻工艺形成空腔316。第二蚀刻工艺可能是将空腔316蚀刻到基片302中的预期尺寸的任何适当的各向同性蚀刻工艺。在用于蚀刻硅基片的一个示范示例中,可能至少提供诸如三氟化氮(NF3)、六氟化硫(SF6)或相似物的一种含氟加工气体。在某些实施例中,还可能至少提供氯气(Cl2)、氧气(O2)、氮气(N2)、氩气(Ar)或氦气(He)中的一种。例如,在某些实施例中,可能提供达到大约200sccm的Cl2、达到大约50sccm的O2、达到大约50sccm的N2、达到大约50sccm的Ar、和/或达到大约4000sccm的He。Next, at 410 , grooves or
可能使用在适当频率(诸如大约13.56MHz)的在大约200-1000瓦之间的源功率从加工气体形成等离子体。还可能提供在适当频率(诸如大约2MHz)的在大约150-300瓦之间的偏压功率。在某些实施例中,可能将加工室的压力保持在大约4-50mTorr之间。可能执行第二蚀刻工艺,直到达到空腔316的预期尺寸,例如通过监控蚀刻工艺或通过以预定时期执行蚀刻工艺。It is possible to form a plasma from the process gas using a source power of between about 200-1000 watts at a suitable frequency, such as about 13.56 MHz. It is also possible to provide a bias power of between about 150-300 Watts at a suitable frequency, such as about 2 MHz. In certain embodiments, it is possible to maintain the pressure of the processing chamber between about 4-50 mTorr. The second etch process may be performed until the desired size of the
可能在基片302中重复保护层310的形成和空腔316的蚀刻,直到形成预期尺寸的空腔316,虽然不利于加宽特征308。基于凹槽蚀刻方法的完成,可能去除任何残余氧化物层(例如,保护层310),诸如通过湿式清除工艺或用于残余层类型和包括基片和在其上形成的其它特征的其它材料的任何适当工艺。为了完成装置的制备,诸如在S-RCAT示例中,填充凹槽并且在基片顶上制备预期栅极结构,具有在其上形成的特征的基片现在可能继续其它工艺。It is possible to repeat the formation of
因此,根据参考图3A-E和图4的如上所述的本发明实施例,提供了用于蚀刻基片的方法,其可能包括提供具有在其上形成的定形掩模层的基片;使用第一蚀刻工艺通过定形掩模将特征蚀刻到基片中;在特征的侧壁上形成保护层;去除保护层的底部,以便暴露基片;和使用第二蚀刻工艺将空腔蚀刻到基片中。Thus, according to an embodiment of the invention as described above with reference to FIGS. 3A-E and FIG. 4 , there is provided a method for etching a substrate which may include providing a substrate having a shaped mask layer formed thereon; using A first etch process etches the feature into the substrate through the shaped mask; forms a protective layer on the sidewalls of the feature; removes the bottom of the protective layer so that the substrate is exposed; and etches the cavity into the substrate using a second etch process middle.
在上述示例的某些实施例中,定形掩模层至少是光致抗蚀剂或硬掩模中的一种。在某些实施例中,第一蚀刻工艺可能包括至少提供一种含卤素气体;并且使用在大约200-1200瓦之间的源功率从加工气体形成等离子体。在某些实施例中,形成保护层可能包括将基片暴露于从含氧气体和一种或多种惰性气体形成的等离子体,以便在特征内形成氧化物层。In some embodiments of the foregoing examples, the shape masking layer is at least one of a photoresist or a hard mask. In some embodiments, the first etch process may include providing at least one halogen-containing gas; and forming a plasma from the process gas using a source power of between about 200-1200 watts. In some embodiments, forming the protective layer may include exposing the substrate to a plasma formed from an oxygen-containing gas and one or more inert gases to form an oxide layer within the features.
在某些实施例中,形成保护层还可能包括提供在大约100-500sccm之间的O2和在大约100-300sccm之间的Ar;并且使用在大约500-1500瓦之间的源功率从加工气体形成等离子体。在某些实施例中,去除保护层的底部可能包括提供在大约100-200sccm之间的CF4和在大约100-200sccm之间的Ar;使用在大约200-1000瓦之间的源功率从加工气体形成等离子体;并且保持等离子体,直到基本去除保护层的底部,而没有从特征的侧壁去除保护层。In some embodiments, forming the protective layer may further include providing O2 between about 100-500 sccm and Ar between about 100-300 sccm; Plasma is formed. In some embodiments, removing the bottom of the protective layer may include providing CF4 between about 100-200 sccm and Ar between about 100-200 sccm; using a source power between about 200-1000 watts from the process gas A plasma is formed; and the plasma is maintained until substantially the bottom of the protective layer is removed without removing the protective layer from the sidewalls of the feature.
在某些实施例中,将空腔蚀刻到基片中可能包括形成将空腔蚀刻到基片中的预期尺寸的各向同性等离子体。在某些实施例中,将空腔蚀刻到基片中还可能包括至少提供一种含卤素加工气体;并且使用在大约200-1500瓦之间的源功率从加工气体形成等离子体。在某些实施例中,第二蚀刻工艺的加工气体还可能至少包括氯气(Cl2)、氧气(O2)、氮气(N2)、氩气(Ar)或氦气(He)中的一种。在某些实施例中,可能提供达到大约50sccm的NF3,、和/或达到大约50sccm的SF6。在某些实施例中,可能提供达到大约200sccm的Cl2、达到大约50sccm的O2、达到大约50sccm的N2、达到大约300sccm的Ar、和/或达到大约400sccm的He。In some embodiments, etching the cavity into the substrate may include forming an isotropic plasma of a desired dimension to etch the cavity into the substrate. In some embodiments, etching the cavity into the substrate may further include providing at least one halogen-containing process gas; and forming a plasma from the process gas using a source power of between about 200-1500 watts. In some embodiments, the processing gas of the second etching process may include at least one of chlorine (Cl2), oxygen (O2), nitrogen (N2), argon (Ar) or helium (He). In certain embodiments, it is possible to provide up to about 50 seem of NF3, and/or up to about 50 seem of SF6. In certain embodiments, Cl2 up to about 200 seem, O2 up to about 50 seem, N2 up to about 50 seem, Ar up to about 300 seem, and/or He up to about 400 seem may be provided.
图5描述了可能用于实现本发明的部分的示意蚀刻反应器500的示意图。反应器500包括在导电体(壁)530中的具有基片支撑基架516的加工室510和控制器540。FIG. 5 depicts a schematic diagram of a
室510配备了基本平坦的绝缘体顶板520。室510的其它实施例可能具有其它类型的顶板,诸如穹形顶板。至少包括一个感应线圈元件512的天线布置在顶板520之上(示出了两个共轴元件512)。通过第一匹配网络519将感应线圈元件512连接到等离子体功率源518。等离子体源518通常能够在从50kHz到13.56MHz范围内的可调频率产生达到3000W的功率。
通过第二匹配网络524将支撑基架(阴极)516连接到偏压功率源522。偏压源522一般能够在大约13.56MHz产生达到500W的功率。偏压功率可能是连续的或脉冲功率。在其它实施例中,偏压功率源522可能是DC或脉冲DC源。The support pedestal (cathode) 516 is connected to a
控制器540包括中央处理部件(CPU)544、存储器542、和用于CPU 544的支撑电路546,并且利于控制室510以及蚀刻工艺的组件,如上面详细描述的。
在运行期间,将半导体基片514放置在基架516上,并且通过进入舱口526从气体面板538施加加工气体并形成气体混合物550。通过从等离子体源518和偏压功率源522分别将功率施加到感应线圈元件512和阴极516,将气体混合物550在室510中引燃成等离子体555。使用节流阀527和真空泵536控制室510内部的压力。典型地,将室壁530连接到电接地534。使用贯穿壁530的含液体管道控制壁530的温度。During operation,
通过稳定支撑基架516的温度控制基片514的温度。在一个实施例中,通过气体管道549从气体源548将氦气提供到在基片下面的基架表面中形成的通道中(未示出)。氦气可能用于促进在基架516和基片514之间的热传导。在加工期间,可能通过在基架内的电阻加热器(未示出)将基架516加热到稳态温度,并且随后氦气利于基片514的均匀加热。使用这种热控制,使基片514的温度保持在大约20和80摄氏度之间。The temperature of the
本领域技术人员应该理解,其它蚀刻室可能适于实现本发明,包括具有远程等离子体源的室、电子回旋共振(ECR)等离子体室和相似物。Those skilled in the art will appreciate that other etch chambers may be suitable for practicing the invention, including chambers with remote plasma sources, electron cyclotron resonance (ECR) plasma chambers, and the like.
为了利于控制如上所述的加工室510,控制器540可能是任何形式的能够在工业设定中用于控制不同室和亚处理器的一种通用计算机处理器。CPU 544的存储器542或计算机可读介质可能是易于使用的一种或多种存储器,诸如随机存取存储器(RAM)、只读存储器(ROM)、软盘、硬盘、或任何其它形式的数字存储器,局部的或远程的。为了以传统方式支撑处理器,将支撑电路546连接到CPU 544。这些电路包括高速缓冲存储器、电源、时钟电路、输入/输出电路和亚系统及相似物。一般作为软件程序将发明方法存储在存储器542中,当其执行时,可能控制蚀刻反应器500,以便执行发明方法。还可能由与CPU 544控制的硬件远程放置的第二CPU(未示出)存储和/或执行软件程序。To facilitate control of
可能使用其它半导体基片加工系统实现本发明,其中为了达到令人满意的特征,可能由本领域技术人员通过使用这里公开的训导在不偏离本发明精神的情况下调整加工参数。The invention may be practiced using other semiconductor substrate processing systems in which processing parameters may be adjusted by those skilled in the art in order to achieve the desired characteristics without departing from the spirit of the invention by using the teachings disclosed herein.
因此,已经提供了用于凹槽蚀刻的方法,其利于改进横向与垂直蚀刻比值能力,由此能够在保持相对浅的垂直蚀刻深度的同时实现更深的横向凹槽蚀刻。这种增强横向蚀刻方法利于为限制垂直与横向蚀刻深度比值的多种应用(例如,需要更大的横向蚀刻和/或更小的垂直蚀刻的应用)提供益处。Accordingly, methods for recess etching have been provided that facilitate improved lateral to vertical etch ratio capability, thereby enabling deeper lateral recess etching while maintaining relatively shallow vertical etch depths. This enhanced lateral etch approach advantageously provides benefits for a variety of applications that limit the ratio of vertical to lateral etch depth (eg, applications that require greater lateral etch and/or less vertical etch).
虽然前面的描述定向于本发明的实施例,在不偏离本发明的基本范围的情况下,可能设计本发明的其它和额外实施例,本发明的范围由权利要求确定。Although the foregoing description is directed to an embodiment of the invention, other and additional embodiments of the invention may be devised without departing from the essential scope of the invention, which is defined by the claims.
Claims (15)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US86983206P | 2006-12-13 | 2006-12-13 | |
| US60/869,832 | 2006-12-13 | ||
| US11/954,981 | 2007-12-12 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN101290866A true CN101290866A (en) | 2008-10-22 |
Family
ID=40035059
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNA2007101996946A Pending CN101290866A (en) | 2006-12-13 | 2007-12-13 | groove etching method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101290866A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102201604A (en) * | 2011-04-22 | 2011-09-28 | 华南师范大学 | Electric core of capacitance battery and manufacturing method of electric core |
| CN101928941B (en) * | 2009-06-23 | 2014-09-03 | 中微半导体设备(上海)有限公司 | Reactive ion etching method for etching silicon |
| CN114664648A (en) * | 2022-03-15 | 2022-06-24 | 浙江大学 | Silicon etching method |
| CN116235283A (en) * | 2020-08-18 | 2023-06-06 | 应用材料公司 | Method of depositing a pre-etch protection layer |
-
2007
- 2007-12-13 CN CNA2007101996946A patent/CN101290866A/en active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101928941B (en) * | 2009-06-23 | 2014-09-03 | 中微半导体设备(上海)有限公司 | Reactive ion etching method for etching silicon |
| CN102201604A (en) * | 2011-04-22 | 2011-09-28 | 华南师范大学 | Electric core of capacitance battery and manufacturing method of electric core |
| CN116235283A (en) * | 2020-08-18 | 2023-06-06 | 应用材料公司 | Method of depositing a pre-etch protection layer |
| CN114664648A (en) * | 2022-03-15 | 2022-06-24 | 浙江大学 | Silicon etching method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1933375A2 (en) | Methods for Recess Etching | |
| CN104008994B (en) | Manufacturing method of semiconductor device | |
| US8658541B2 (en) | Method of controlling trench microloading using plasma pulsing | |
| US7303999B1 (en) | Multi-step method for etching strain gate recesses | |
| CN1273866C (en) | Corrosion technique of anisotropic nitride by inlay corrosion method | |
| US11164959B2 (en) | VFET devices with ILD protection | |
| US8367554B2 (en) | Methods for forming a gate and a shallow trench isolation region and for planarizing an etched surface of silicon substrate | |
| TW201921455A (en) | Method of making junctions and spacers for horizontal wraparound gate elements | |
| WO2019013949A1 (en) | Selective oxidation for fabricating nanowires for semiconductor applications | |
| CN105789129B (en) | Improve the method and method, semi-conductor device manufacturing method of grid curb wall pattern | |
| US6855643B2 (en) | Method for fabricating a gate structure | |
| US9064812B2 (en) | Aspect ratio dependent etch (ARDE) lag reduction process by selective oxidation with inert gas sputtering | |
| US20170154826A1 (en) | Method for forming spacers for a transitor gate | |
| US7910488B2 (en) | Alternative method for advanced CMOS logic gate etch applications | |
| CN104616979A (en) | Forming method of semiconductor device | |
| US9704720B2 (en) | Uniform, damage free nitride ETCH | |
| CN101288180A (en) | Formation method of semiconductor structure | |
| US9748111B2 (en) | Method of fabricating semiconductor structure using planarization process and cleaning process | |
| CN101290866A (en) | groove etching method | |
| US20160099313A1 (en) | Semiconductor structure for a transistor and method for fabricating the same | |
| US9627216B2 (en) | Method for forming features in a silicon containing layer | |
| CN113113308A (en) | Semiconductor device and method of forming the same | |
| US8093122B2 (en) | Method for fabricating vertical channel transistor | |
| US10886121B2 (en) | Methods of reducing silicon consumption, methods of forming a semiconductor structure, and methods of forming isolation structures | |
| US20150228503A1 (en) | Hardmask trimming in semiconductor fin patterning |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20081022 |