CN101373380B - Humanoid robot control system and robot controlling method - Google Patents
Humanoid robot control system and robot controlling method Download PDFInfo
- Publication number
- CN101373380B CN101373380B CN2008100631501A CN200810063150A CN101373380B CN 101373380 B CN101373380 B CN 101373380B CN 2008100631501 A CN2008100631501 A CN 2008100631501A CN 200810063150 A CN200810063150 A CN 200810063150A CN 101373380 B CN101373380 B CN 101373380B
- Authority
- CN
- China
- Prior art keywords
- module
- control
- remote
- dsp
- robot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000016776 visual perception Effects 0.000 claims abstract description 19
- 238000005516 engineering process Methods 0.000 claims abstract description 10
- 230000004438 eyesight Effects 0.000 claims abstract description 7
- 230000005540 biological transmission Effects 0.000 claims abstract description 5
- 230000033001 locomotion Effects 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 3
- 238000004148 unit process Methods 0.000 claims description 3
- 230000008447 perception Effects 0.000 abstract description 6
- 238000012827 research and development Methods 0.000 abstract description 4
- 230000000007 visual effect Effects 0.000 abstract description 4
- 238000004422 calculation algorithm Methods 0.000 abstract description 3
- 238000005457 optimization Methods 0.000 abstract description 2
- 238000000926 separation method Methods 0.000 abstract description 2
- 238000011161 development Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Manipulator (AREA)
Abstract
本发明提供了一种基于视觉和无线技术的仿人机器人控制系统。它包括本地设备和远程设备,本地设备包括视觉感知模块、本地控制模块、网络模块、电机控制模块,所述远程设备包括远程遥控模块和远程调试模块。本发明还提供了一种上述仿人机器人控制系统的机器人操纵方法。它包括本地控制模式、远程遥控模式、远程调试控制模式。本发明发挥了DSP高性能运算的特性,采用视觉反馈和无线传输技术,具备自主实时任务规划执行和在线优化识别与控制算法的能力。系统构架中,在物理上分离的智能控制模组和感知及行为执行模组的特点使其能够实时完成高层控制,具有计算效率高、调试方便等特点。能够方便地进行机器人研究开发任务,提高研究开发效率。
The invention provides a humanoid robot control system based on vision and wireless technology. It includes a local device and a remote device, the local device includes a visual perception module, a local control module, a network module, and a motor control module, and the remote device includes a remote control module and a remote debugging module. The present invention also provides a robot manipulation method of the above-mentioned humanoid robot control system. It includes local control mode, remote control mode, and remote debugging control mode. The invention utilizes the characteristics of DSP high-performance computing, adopts visual feedback and wireless transmission technology, and has the ability of autonomous real-time task planning and execution and online optimization of recognition and control algorithms. In the system architecture, the physical separation of the intelligent control module and the perception and behavior execution module enables it to complete high-level control in real time, and has the characteristics of high computing efficiency and convenient debugging. It can conveniently carry out robot research and development tasks, and improve research and development efficiency.
Description
技术领域technical field
本发明属于机器人技术领域,具体涉及一种基于视觉和无线技术的仿人机器人控制系统。 The invention belongs to the technical field of robots, and in particular relates to a humanoid robot control system based on vision and wireless technology. the
背景技术Background technique
仿人机器人能够代替人类完成各种作业,并在很多方面可以扩展人类的能力,在服务、医疗、教育、娱乐等多个领域得到广泛应用。2000年本田公司推出的机器人ASIMO具有视觉和听觉的功能,能进行简单的人机交互,能平稳地行走和转弯、上下楼梯、在斜坡上行走、调整行走步调和步幅、改变行走速度、操作灯光开关和门把,甚至跳舞。 Humanoid robots can replace humans to complete various tasks, and can expand human capabilities in many ways, and are widely used in many fields such as services, medical care, education, and entertainment. The robot ASIMO launched by Honda in 2000 has visual and auditory functions, can perform simple human-computer interaction, can walk and turn smoothly, go up and down stairs, walk on slopes, adjust walking pace and stride, change walking speed, operate Light switches and doorknobs, even dancing. the
仿人机器人问题的研究涉及运动控制、环境感知、任务规划等,所有感知信息获取和控制信息执行都必须在机器人本体实现,大型的运算量要求机器人的主控芯片具有高速运算特性,在现有的仿人机器人中,DSP、ARM、PC104等嵌入式方案各有应用,其中DSP以其优异的浮点运算性能使机器人能实时处理视觉等传感器信息,应用前景广泛。然而在机器人开发过程中,DSP程序的修改调试操作极为频繁。DSP本身提供拖线仿真调试模式,但由于仿真不稳定的缺陷和机器人的运动范围广的特性,拖线仿真调试无法满足机器人开发需求;而直接对DSP内的程序进行擦除烧写,操作复杂并耗时严重,限制了DSP在机器人上的应用推广。 The research on humanoid robot problems involves motion control, environment perception, task planning, etc. All perception information acquisition and control information execution must be realized in the robot body. The large amount of calculation requires the main control chip of the robot to have high-speed calculation characteristics. Among the humanoid robots, embedded solutions such as DSP, ARM, and PC104 have their own applications. Among them, DSP enables the robot to process sensor information such as vision in real time with its excellent floating-point computing performance, and has a broad application prospect. However, during the robot development process, the modification and debugging operation of the DSP program is extremely frequent. The DSP itself provides a drag-line simulation debugging mode, but due to the unstable defect of the simulation and the wide range of motion of the robot, the drag-line simulation debugging cannot meet the needs of robot development; directly erasing and programming the program in the DSP is complicated to operate And it is time-consuming, which limits the application and popularization of DSP on robots. the
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种操控调试方便的基于视觉和无线技术的仿人机器人控制系统。为此,本发明采用以下技术方案:它包括本地设备和远程设备; The technical problem to be solved by the present invention is to provide a humanoid robot control system based on vision and wireless technology that is easy to operate and debug. For this reason, the present invention adopts following technical scheme: it comprises local equipment and remote equipment;
所述本地设备包括以下几个组成部分: The local device includes the following components:
1).视觉感知模块,该模块包括一个模拟视频摄像头、一个DSP视频采集单元,所述DSP视频采集单元完成视觉感知模块的信号采集并转换为数字信号,以未压缩或压缩图像格式存储; 1). Visual perception module, this module comprises an analog video camera, a DSP video acquisition unit, described DSP video acquisition unit completes the signal acquisition of visual perception module and converts into digital signal, stores with uncompressed or compressed image format;
2).本地控制模块:该模块包括一个DSP运算单元,所述DSP运算单元对图像进行处理计算,规划仿人机器人控制信息; 2). Local control module: This module includes a DSP operation unit, and the DSP operation unit processes and calculates the image and plans the control information of the humanoid robot;
3).网络模块:该模块包括一个DSP网络单元和一个无线模块,所述DSP网络单元通过无线模块与远程设备连接,实现远程设备与仿人机器人间的信息通讯; 3). Network module: this module includes a DSP network unit and a wireless module, and the DSP network unit is connected to the remote device through the wireless module to realize the information communication between the remote device and the humanoid robot;
4).电机控制模块,该模块包括一个DSP串口单元和一块单片机电机驱动单元,所述DSP串口单元发送控制指令至单片机电机驱动单元,驱动仿人机器人动作执行; 4). The motor control module, which includes a DSP serial port unit and a single-chip motor drive unit, and the DSP serial port unit sends control instructions to the single-chip motor drive unit to drive the humanoid robot to perform actions;
所述远程设备包括以下几个组成部分: The remote device includes the following components:
5).远程遥控模块,该模块包括一个无线遥控单元,所述无线遥控单元通过无线网络发送控制指令,遥控仿人机器人运动; 5). The remote control module, which includes a wireless remote control unit, and the wireless remote control unit sends control instructions through the wireless network to remotely control the movement of the humanoid robot;
6).远程调试模块,该模块包括一台远程计算机单元,所述远程计算机单元连接无线网络,所述远程计算机单元中设有以写有软件的固件或可装载软件的形式驻留在远程计算机单元中的图像处理模块和仿人机器人控制规划模块,图像和仿人机器人控制信息传送模块。 6). The remote debugging module, which includes a remote computer unit, the remote computer unit is connected to the wireless network, and the remote computer unit is provided with a firmware written with software or a form of loadable software that resides in the remote computer. The image processing module and the humanoid robot control planning module in the unit, and the image and humanoid robot control information transmission module. the
本发明另一个所要解决的技术问题是提供一种上述仿人机器人控制系统的机器人操纵方法。为此,本发明采用以下技术方案:它包括本地控制模式、远程遥控模式、远程调试控制模式。 Another technical problem to be solved by the present invention is to provide a robot manipulation method for the above-mentioned humanoid robot control system. For this reason, the present invention adopts the following technical solutions: it includes a local control mode, a remote control mode, and a remote debugging control mode. the
本地控制模式由视觉感知模块、本地控制模块和电机控制模块组成,所有模块均装载于机器人本体;控制模式包括以下步骤: The local control mode consists of a visual perception module, a local control module and a motor control module, all of which are loaded on the robot body; the control mode includes the following steps:
1).开启机器人; 1). Turn on the robot;
2).视觉感知模块采集图像,图像数据贮留于内存中; 2). The visual perception module collects images, and the image data is stored in the memory;
3).本地控制模块读取图像数据,对图像进行处理计算,规划仿人机器人控制信息,并发送控制指令到电机控制模块; 3). The local control module reads the image data, processes and calculates the image, plans the control information of the humanoid robot, and sends the control command to the motor control module;
4).电机控制模块将收么的控制指令解析,驱动仿人机器人动作执行; 4). The motor control module will analyze the control instructions received, and drive the humanoid robot to execute actions;
5).重复步骤2~4,实现仿人机器人全自主运动控制。 5). Repeat steps 2 to 4 to realize fully autonomous motion control of the humanoid robot. the
远程遥控模式由网络模块、电机控制模块和远程遥控模块组成,网络模块和电机控制模块装载于机器人本体,远程遥控模块装载于无线遥控工具中;控制模式包括以下步骤: The remote control mode consists of a network module, a motor control module and a remote control module. The network module and the motor control module are loaded on the robot body, and the remote control module is loaded in the wireless remote control tool; the control mode includes the following steps:
1).开启机器人; 1). Turn on the robot;
2).网络模块组建无线网络; 2). The network module builds a wireless network;
3).远程遥控模块通过无线网络将控制指令传送到电机控制模块; 3). The remote control module transmits the control command to the motor control module through the wireless network;
4).电机控制模块将收么的控制指令解析,驱动仿人机器人动作执行; 4). The motor control module will analyze the control instructions received, and drive the humanoid robot to execute actions;
5).重复步骤3~4,实现遥控仿人机器人运动控制。 5). Repeat steps 3-4 to realize the motion control of the remote-controlled humanoid robot. the
远程调试控制模式由视觉感知模块、网络模块、电机控制模块和远程调试模块组成,视觉感知模块、网络模块和电机控制模块装载于机器人本体,远程调试模块装载于远程计算机中;控制模式包括以下步骤: The remote debugging control mode consists of a visual perception module, a network module, a motor control module and a remote debugging module. The visual perception module, network module and motor control module are loaded on the robot body, and the remote debugging module is loaded on a remote computer; the control mode includes the following steps :
1).开启机器人; 1). Turn on the robot;
2).网络模块组建无线网络; 2). The network module builds a wireless network;
3).视觉感知模块采集图像,图像数据通过无线网络传送到远程调试模块; 3). The visual perception module collects images, and the image data is transmitted to the remote debugging module through the wireless network;
4).远程调试模块对图像进行处理计算,规划仿人机器人控制信息,并通过无线网络传送控制指令到电机控制模块; 4). The remote debugging module processes and calculates the image, plans the control information of the humanoid robot, and transmits the control command to the motor control module through the wireless network;
5).电机控制模块将收么的控制指令解析,驱动仿人机器人动作执行; 5). The motor control module will analyze the control instructions received, and drive the humanoid robot to execute actions;
6).重复步骤3~5,实现远程调试仿人机器人运动控制。 6). Repeat steps 3 to 5 to realize remote debugging of humanoid robot motion control. the
由于采用本发明的技术方案,本发明中的基于无线技术的机器人控制系统克服了背景技术中的缺陷,同时发挥了DSP高性能运算的特性,本发明采用视觉反馈和无线传输技术,具备自主实时任务规划执行和在线优化识别与控制算法的能力。系统构架中,在物理上分离的智能控制模组和感知及行为执行模组的特点使其能够实时完成高层控制,具有计算效率高、调试方便等特点。应用本发明中的机器人控制系统能够方便地进行机器人视觉信息处理、机器人智能任务处理、机器人控制、多机器人信息交互、多机器人全局信息融合等机器人研究开发任务,提高研究开发效率。 Due to the adoption of the technical solution of the present invention, the robot control system based on wireless technology in the present invention overcomes the defects in the background technology, and at the same time brings into play the characteristics of DSP high-performance computing. The present invention adopts visual feedback and wireless transmission technology, and has autonomous real-time The ability to execute mission planning and optimize recognition and control algorithms online. In the system architecture, the physical separation of the intelligent control module and the perception and behavior execution module enables it to complete high-level control in real time, and has the characteristics of high computing efficiency and convenient debugging. Applying the robot control system in the present invention can conveniently perform robot research and development tasks such as robot visual information processing, robot intelligent task processing, robot control, multi-robot information interaction, multi-robot global information fusion, and improve research and development efficiency. the
附图说明Description of drawings
图1为本发明所提供的仿人机器人控制系统的系统组成框图。 Fig. 1 is a system block diagram of the humanoid robot control system provided by the present invention. the
图2为本发明所提供的仿人机器人控制系统的机器人操纵方法中本地控制模式、远程遥控模式、远程调试控制模式的控制流程图。 Fig. 2 is a control flowchart of the local control mode, the remote control mode, and the remote debugging control mode in the robot manipulation method of the humanoid robot control system provided by the present invention. the
图3为本发明所提供的仿人机器人控制系统实现三种操控模式的分解组成框图。 Fig. 3 is a block diagram of the decomposition and composition of the three control modes of the humanoid robot control system provided by the present invention. the
图4为本发明所提供的仿人机器人控制系统的系统功能模组组成框图。 Fig. 4 is a block diagram of system function modules of the humanoid robot control system provided by the present invention. the
具体实施方式Detailed ways
参照附图1。本发明包括本地设备和远程设备,其中线框A内为本地设备,线框B内为远程设备。 Refer to accompanying drawing 1. The present invention includes local equipment and remote equipment, wherein the local equipment is in the line frame A, and the remote equipment is in the line frame B. the
所述本地设备包括以下几个组成部分: The local device includes the following components:
1).视觉感知模块,该模块包括一个模拟视频摄像头、一个DSP视频采集单元,所述DSP视频采集单元完成视觉感知模块的信号采集并转换为数字信号,以未压缩或压缩图像格式存储; 1). Visual perception module, this module comprises an analog video camera, a DSP video acquisition unit, described DSP video acquisition unit completes the signal acquisition of visual perception module and converts into digital signal, stores with uncompressed or compressed image format;
2).本地控制模块:该模块包括一个DSP运算单元,所述DSP运算单元对图像进行处理计算,规划仿人机器人控制信息; 2). Local control module: This module includes a DSP operation unit, and the DSP operation unit processes and calculates the image and plans the control information of the humanoid robot;
3).网络模块:该模块包括一个DSP网络单元和一个无线模块,所述DSP网络单元通过无线模块与远程设备连接,实现远程设备与仿人机器人间的信息通讯; 3). Network module: this module includes a DSP network unit and a wireless module, and the DSP network unit is connected to the remote device through the wireless module to realize the information communication between the remote device and the humanoid robot;
4).电机控制模块,该模块包括一个DSP串口单元和一块单片机电机驱动单元,所述DSP串口单元发送控制指令至单片机电机驱动单元,驱动仿人机器人动作执行; 4). The motor control module, which includes a DSP serial port unit and a single-chip motor drive unit, and the DSP serial port unit sends control instructions to the single-chip motor drive unit to drive the humanoid robot to perform actions;
所述远程设备包括以下几个组成部分: The remote device includes the following components:
5).远程遥控模块,该模块包括一个无线遥控单元,所述无线遥控单元通过无线网络发送控制指令,遥控仿人机器人运动; 5). The remote control module, which includes a wireless remote control unit, and the wireless remote control unit sends control instructions through the wireless network to remotely control the movement of the humanoid robot;
6).远程调试模块,该模块包括一台远程计算机单元,所述远程计算机单元连接无线网络,所述远程计算机单元中设有以写有软件的固件或可装载软件的形 式驻留在远程计算机单元中的图像处理模块和仿人机器人控制规划模块,图像和仿人机器人控制信息传送模块。 6). The remote debugging module, which includes a remote computer unit, the remote computer unit is connected to the wireless network, and the remote computer unit is provided with a remote computer in the form of firmware written with software or loadable software. The image processing module and the humanoid robot control planning module in the computer unit, and the image and humanoid robot control information transmission module. the
硬件上包括一块DSP电路板、一个模拟摄像头、一块无线模块、一个无线遥控工具和一台普通计算机,其中DSP电路板、模拟摄像头、无线模块安装于机器人本体,DSP电路板与摄像头通过模拟视频信号线相连,DSP电路板与无线模块通过RJ-45接口网线相连;DSP视频采集单元、DSP运算单元、DSP网络单元、DSP串口单元和单片机电机驱动单元以可装载软件的形式驻留在DSP电路板中,远程遥控模块以可装载软件的形式驻留在无线遥控工具中,远程调试模块以可装载软件的形式驻留在普通计算机中。 The hardware includes a DSP circuit board, an analog camera, a wireless module, a wireless remote control tool and an ordinary computer, wherein the DSP circuit board, analog camera, and wireless module are installed on the robot body, and the DSP circuit board and the camera pass through the analog video signal The DSP circuit board is connected with the wireless module through the RJ-45 interface network cable; the DSP video acquisition unit, DSP computing unit, DSP network unit, DSP serial port unit and single-chip motor drive unit reside on the DSP circuit board in the form of loadable software Among them, the remote control module resides in the wireless remote control tool in the form of loadable software, and the remote debugging module resides in the ordinary computer in the form of loadable software. the
参照附图4。视觉感知模块、网络模块和电机控制模块组成感知及行为执行模组F,本地控制模块、远程遥控模块和远程调试模块组成智能控制模组G,在物理上实现底层机械电路执行与高层算法控制的分离。 Refer to accompanying drawing 4. The visual perception module, network module and motor control module form the perception and behavior execution module F, and the local control module, remote control module and remote debugging module form the intelligent control module G, which physically realizes the connection between the execution of the underlying mechanical circuit and the control of the high-level algorithm. separate. the
本发明所提供的上述系统根据运行模式又可分为由能够运行于机器人本体的本地控制平台、运行于远程遥控单元的远程遥控平台和运行于远程计算机的远程调试控制平台构成的三平台机器人开发应用系统,可实现本地控制模式、远程遥控模式、远程调试控制模式等三种模式进行操控仿人机器人。从而实现系统的优化和有机组成。参照图3,其中,线框C内为上述本地控制平台,线框D为远程遥控平台,线框E内为远程调试控制平台 The above-mentioned system provided by the present invention can be divided into a three-platform robot development system consisting of a local control platform that can run on the robot body, a remote control platform that runs on a remote control unit, and a remote debugging control platform that runs on a remote computer according to the operation mode. The application system can realize three modes of local control mode, remote control mode, and remote debugging control mode to control the humanoid robot. So as to realize the optimization and organic composition of the system. Referring to Figure 3, in which, the above-mentioned local control platform is in the wire frame C, the remote control platform is in the wire frame D, and the remote debugging control platform is in the wire frame E
参照图3,在平台组成上,本地控制平台、远程遥控平台和远程监控平台共用感知及行为执行模组,本地控制平台采用智能控制模组中的本地控制模块实现本地应用控制模式,远程遥控平台采用智能控制模组中的远程遥控模块实现远程遥控模式,远程调试控制平台采用智能控制模组中的远程监控模块实现远程开发控制模式,三种模式通过机器人本体上的开关来控制切换,如图3所示;本地控制平台采用DSP本地应用控制模式:视觉感知模块获取图像,由本地控制模块进行处理规划后发送控制信息给电机控制模块,由电机控制模块驱动机器人执行 动作,最终实现机器人智能完成任务;远程遥控平台采用远程遥控模式:由人工控制远程遥控模块得到控制指令后通过无线网络传送控制信息返回机器人本体,由电机控制模块驱动机器人执行动作;远程调试控制平台采用DSP远程开发控制模式:视觉感知模块获取图像,通过无线网络传送图像到远程计算机,由远程计算机进行处理规划后通过无线网络传送控制信息返回机器人本体,由电机控制模块驱动机器人执行动作,最终实现机器人智能完成任务。 Referring to Figure 3, in terms of platform composition, the local control platform, remote control platform and remote monitoring platform share a perception and behavior execution module, the local control platform uses the local control module in the intelligent control module to realize the local application control mode, and the remote control platform The remote control module in the intelligent control module is used to realize the remote control mode, and the remote debugging control platform uses the remote monitoring module in the intelligent control module to realize the remote development control mode. The three modes are controlled and switched by the switch on the robot body, as shown in the figure As shown in 3; the local control platform adopts the DSP local application control mode: the visual perception module acquires images, and the local control module sends control information to the motor control module after processing and planning, and the motor control module drives the robot to perform actions, and finally realizes the intelligent completion of the robot Task; the remote control platform adopts the remote control mode: the manual control remote control module obtains the control command and then transmits the control information through the wireless network to return to the robot body, and the motor control module drives the robot to perform actions; the remote debugging control platform adopts the DSP remote development control mode: The visual perception module acquires images, and transmits the images to a remote computer through a wireless network. After the remote computer performs processing and planning, the control information is transmitted through the wireless network and returned to the robot body. The motor control module drives the robot to perform actions, and finally realizes the robot's intelligent completion of tasks. the
参照附图2。所述本地控制模式包括以下步骤: Refer to accompanying drawing 2. The local control mode comprises the following steps:
1).开启机器人; 1). Turn on the robot;
2).视觉感知模块采集图像,图像数据贮留于内存中; 2). The visual perception module collects images, and the image data is stored in the memory;
3).本地控制模块读取图像数据,对图像进行处理计算,规划仿人机器人控制信息,并发送控制指令到电机控制模块; 3). The local control module reads the image data, processes and calculates the image, plans the control information of the humanoid robot, and sends the control command to the motor control module;
4).电机控制模块将收么的控制指令解析,驱动仿人机器人动作执行; 4). The motor control module will analyze the control instructions received, and drive the humanoid robot to execute actions;
5).重复步骤2~4,实现仿人机器人全自主运动控制。 5). Repeat steps 2 to 4 to realize fully autonomous motion control of the humanoid robot. the
所述远程遥控模式包括以下步骤: Described remote control mode comprises the following steps:
1).开启机器人; 1). Turn on the robot;
2).网络模块组建无线网络; 2). The network module builds a wireless network;
3).远程遥控模块通过无线网络将控制指令传送到电机控制模块; 3). The remote control module transmits the control command to the motor control module through the wireless network;
4).电机控制模块将收么的控制指令解析,驱动仿人机器人动作执行; 4). The motor control module will analyze the control instructions received, and drive the humanoid robot to execute actions;
5).重复步骤3~4,实现遥控仿人机器人运动控制。 5). Repeat steps 3-4 to realize the motion control of the remote-controlled humanoid robot. the
所述远程调试控制模式包括以下步骤: The remote debugging control mode includes the following steps:
1).开启机器人; 1). Turn on the robot;
2).网络模块组建无线网络; 2). The network module builds a wireless network;
3).视觉感知模块采集图像,图像数据通过无线网络传送到远程调试模块; 3). The visual perception module collects images, and the image data is transmitted to the remote debugging module through the wireless network;
4).远程调试模块对图像进行处理计算,规划仿人机器人控制信息,并通过无线网络传送控制指令到电机控制模块; 4). The remote debugging module processes and calculates the image, plans the control information of the humanoid robot, and transmits the control command to the motor control module through the wireless network;
5).电机控制模块将收么的控制指令解析,驱动仿人机器人动作执行; 5). The motor control module will analyze the control instructions received, and drive the humanoid robot to execute actions;
6).重复步骤3~5,实现远程调试仿人机器人运动控制。 6). Repeat steps 3 to 5 to realize remote debugging of humanoid robot motion control. the
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2008100631501A CN101373380B (en) | 2008-07-14 | 2008-07-14 | Humanoid robot control system and robot controlling method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2008100631501A CN101373380B (en) | 2008-07-14 | 2008-07-14 | Humanoid robot control system and robot controlling method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101373380A CN101373380A (en) | 2009-02-25 |
| CN101373380B true CN101373380B (en) | 2011-06-15 |
Family
ID=40447580
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2008100631501A Expired - Fee Related CN101373380B (en) | 2008-07-14 | 2008-07-14 | Humanoid robot control system and robot controlling method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101373380B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110039556A (en) * | 2019-05-04 | 2019-07-23 | 北京鲲鹏神通科技有限公司 | A kind of unmanned sale thin pancake robot control system |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101618280B (en) * | 2009-06-30 | 2011-03-23 | 哈尔滨工业大学 | Humanoid-head robot device with human-computer interaction function and behavior control method thereof |
| CN102298375A (en) * | 2011-07-05 | 2011-12-28 | 浙江大学 | Real-time humanoid robot control system and method |
| CN103279949B (en) * | 2013-05-09 | 2015-10-07 | 浙江大学 | Based on the multi-camera parameter automatic calibration system operation method of self-align robot |
| CN103869773A (en) * | 2014-03-04 | 2014-06-18 | 南昌大学 | Master end machine-based method for correcting feedback force by force feedback controller |
| CN104057452B (en) * | 2014-06-30 | 2016-08-24 | 西北工业大学 | Humanoid robot general action adjustment method |
| WO2016011361A1 (en) * | 2014-07-18 | 2016-01-21 | Convida Wireless, Llc | M2m ontology management and semantics interoperability |
| WO2016011590A1 (en) * | 2014-07-21 | 2016-01-28 | 深圳市大疆创新科技有限公司 | Data processing method and device, and aircraft |
| CN104331075B (en) * | 2014-09-28 | 2017-02-08 | 哈尔滨工业大学 | Six-foot robot control system and control method thereof |
| CN104656676B (en) * | 2014-12-25 | 2017-11-07 | 北京理工大学 | A kind of servo-controlled apparatus and method of anthropomorphic robot hand leg eye |
| CN106313038B (en) * | 2015-06-30 | 2019-01-29 | 芋头科技(杭州)有限公司 | A kind of real-time control debugging system and adjustment method |
| CN111249748A (en) * | 2020-03-09 | 2020-06-09 | 深圳心颜科技有限责任公司 | Control method and device of toy driving device, toy driving device and system |
| CN112598940A (en) * | 2020-11-06 | 2021-04-02 | 嘉兴市木星机器人科技有限公司 | Artificial intelligence application learning development platform |
| CN114594701A (en) * | 2020-12-04 | 2022-06-07 | 国网山东省电力公司检修公司 | Transformer substation fire-fighting robot control system and robot |
| CN114161434B (en) * | 2021-11-03 | 2024-04-12 | 深圳市芯众云科技有限公司 | Humanoid robot control system based on vision and wireless technology |
| CN114598695A (en) * | 2022-03-10 | 2022-06-07 | 苏州蓝甲虫机器人科技有限公司 | An all-round machine vision recognition system |
| CN117037550A (en) * | 2023-07-05 | 2023-11-10 | 浙江大学 | Three-dimensional touch screen type remote control experiment system and method |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6232735B1 (en) * | 1998-11-24 | 2001-05-15 | Thames Co., Ltd. | Robot remote control system and robot image remote control processing system |
| CN1401292A (en) * | 2001-04-18 | 2003-03-12 | 三星光州电子株式会社 | Machine cleaner, system utilizing same, and method of reconnecting to external charging device |
| CN1513645A (en) * | 2002-12-31 | 2004-07-21 | 中国科学院自动化研究所 | Intelligent Autonomous Wheeled Mobile Robot |
| CN101004604A (en) * | 2006-01-18 | 2007-07-25 | 中国科学院自动化研究所 | Cooperation control system for multi-bionic robot |
-
2008
- 2008-07-14 CN CN2008100631501A patent/CN101373380B/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6232735B1 (en) * | 1998-11-24 | 2001-05-15 | Thames Co., Ltd. | Robot remote control system and robot image remote control processing system |
| CN1401292A (en) * | 2001-04-18 | 2003-03-12 | 三星光州电子株式会社 | Machine cleaner, system utilizing same, and method of reconnecting to external charging device |
| CN1513645A (en) * | 2002-12-31 | 2004-07-21 | 中国科学院自动化研究所 | Intelligent Autonomous Wheeled Mobile Robot |
| CN101004604A (en) * | 2006-01-18 | 2007-07-25 | 中国科学院自动化研究所 | Cooperation control system for multi-bionic robot |
Non-Patent Citations (2)
| Title |
|---|
| 涂刚毅等.基于多DSP的混合式结构自主移动机器人设计.《测控技术》.2007,第26卷(第12期),38-41. * |
| 许松清.基于DSP的半自主移动机器人远程控制系统.《单片机与嵌入式系统应用》.2005,(第8期),58-60,70. * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110039556A (en) * | 2019-05-04 | 2019-07-23 | 北京鲲鹏神通科技有限公司 | A kind of unmanned sale thin pancake robot control system |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101373380A (en) | 2009-02-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101373380B (en) | Humanoid robot control system and robot controlling method | |
| US9821457B1 (en) | Adaptive robotic interface apparatus and methods | |
| CN104057450B (en) | A kind of higher-dimension motion arm teleoperation method for service robot | |
| CN103926838B (en) | Cloud computing-based autonomous mental development cloud robot system | |
| CN106514667B (en) | Human-robot collaboration system based on Kinect bone tracking and calibration-free visual servoing | |
| CN101817182A (en) | Intelligent moving mechanical arm control system | |
| CN103895022A (en) | Wearable type somatosensory control mechanical arm | |
| CN214751405U (en) | Multi-scene universal edge vision motion control system | |
| CN118238147A (en) | Teleoperation-based bionic manipulator man-machine interaction system and method | |
| JP7487338B2 (en) | Distributed Robot Demonstration Learning | |
| CN114714358A (en) | Method and system for teleoperation of mechanical arm based on gesture protocol | |
| Raessa et al. | Teaching a robot to use electric tools with regrasp planning | |
| CN118744425A (en) | Industrial robot assembly method and system based on multimodal large model | |
| CN107214679A (en) | Mechanical arm man-machine interactive system based on body-sensing sensor | |
| CN116141303A (en) | A self-decision composite robot control system | |
| JP7746596B2 (en) | Electrical control system, method and apparatus for a humanoid robot | |
| CN106774178B (en) | Automatic control system and method and mechanical equipment | |
| CN107253215B (en) | A Robotic Intelligent Sensing Module Integrated with 2D, 3D Cameras and Lasers | |
| CN102126222A (en) | Control system for remote-controlled robot | |
| CN204883256U (en) | High real -time control system of robot framework | |
| CN118254187A (en) | An AGV robot control system based on ChatGPT | |
| CN117840968A (en) | Remote operation bidirectional control system and method for robot based on master-slave force feedback | |
| CN219161992U (en) | Intelligent plant monitoring robot | |
| Ramkumar et al. | A Cost Effective Methodology to Control Robotic Movements Based on Mobile Application and IoT Enabled Controller | |
| CN214751439U (en) | An AI-based remote intelligent vehicle experimental platform |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20090225 Assignee: Zhejiang Guozi Robot Technology Co., Ltd. Assignor: Zhejiang University Contract record no.: 2013330000081 Denomination of invention: Humanoid robot control system and robot controlling method Granted publication date: 20110615 License type: Exclusive License Record date: 20130422 |
|
| LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110615 Termination date: 20210714 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |