CN101425799B - Protection circuit to prevent NMOS components from overvoltage - Google Patents
Protection circuit to prevent NMOS components from overvoltage Download PDFInfo
- Publication number
- CN101425799B CN101425799B CN200710166739XA CN200710166739A CN101425799B CN 101425799 B CN101425799 B CN 101425799B CN 200710166739X A CN200710166739X A CN 200710166739XA CN 200710166739 A CN200710166739 A CN 200710166739A CN 101425799 B CN101425799 B CN 101425799B
- Authority
- CN
- China
- Prior art keywords
- voltage
- source
- coupled
- pass transistor
- nmos pass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims 8
- 238000010586 diagram Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
本发明提供一种针对NMOS组件的保护电路,其中包含一串联NMOS晶体管和一调整电路。该串联NMOS晶体管串接于该NMOS组件与一外部电压源之间。该调整电路耦接至该外部电压源、一第一内部电压源,以及该串联NMOS晶体管的一闸极,并用以根据该外部电压源和该第一内部电压源的电压,调整该串联NMOS晶体管的该闸极的电压,借此保护该NMOS组件免于承受因该外部电压源造成的一过高电压。
The present invention provides a protection circuit for an NMOS component, comprising a series NMOS transistor and an adjustment circuit. The series NMOS transistor is connected in series between the NMOS component and an external voltage source. The adjustment circuit is coupled to the external voltage source, a first internal voltage source, and a gate of the series NMOS transistor, and is used to adjust the gate voltage of the series NMOS transistor according to the voltage of the external voltage source and the first internal voltage source, thereby protecting the NMOS component from an over-high voltage caused by the external voltage source.
Description
技术领域technical field
本发明涉及保护电路,特别涉及一种用以避免NMOS组件承受过高电压的保护电路。The invention relates to a protection circuit, in particular to a protection circuit for preventing NMOS components from being subjected to excessive high voltage.
背景技术Background technique
近年来由于集成电路技术的进步,CMOS晶体管组件的尺寸不断缩小。为了配合小尺寸组件的特性,并降低CMOS晶体管组件消耗的功率,供应给CMOS晶体管组件的电源电压通常也会随着组件的尺寸下降。Due to advances in integrated circuit technology in recent years, the dimensions of CMOS transistor components have continued to shrink. In order to match the characteristics of small-sized components and reduce the power consumed by the CMOS transistor components, the power supply voltage supplied to the CMOS transistor components generally also decreases with the size of the components.
然而,较早生产的集成电路芯片仍采用较高的供应电压(例如5V)。为了配合这些采用较高的供应电压的电路,采用较低的供应电压(例如3.3V或1.8V)的电路必须利用特殊的电路架构作为高低电压间的接口电路。请参阅图1,图1是现有技术中一接口电路的实施例。However, earlier IC chips still use higher supply voltages (eg, 5V). In order to cooperate with these circuits using higher supply voltages, circuits using lower supply voltages (such as 3.3V or 1.8V) must use special circuit architectures as interface circuits between high and low voltages. Please refer to FIG. 1 . FIG. 1 is an embodiment of an interface circuit in the prior art.
如图1所示,一串联NMOS晶体管NC串接于NMOS组件ND和一外部电压源VEXT之间。晶体管NC的栅极通常耦接至其所属的集成电路的内部电压源VINT。晶体管NC的作用在于提供其漏极和源极之间的跨压,以避免NMOS组件ND直接承受外部电压源VEXT可能造成的过高电压。As shown in FIG. 1 , a series NMOS transistor NC is connected in series between the NMOS element ND and an external voltage source VEXT. The gate of transistor NC is usually coupled to the internal voltage source VINT of the integrated circuit to which it belongs. The function of the transistor NC is to provide a cross voltage between its drain and source, so as to prevent the NMOS component ND from being directly subjected to the excessive voltage that may be caused by the external voltage source VEXT.
以外部电压源VEXT的电压为5V且内部电压源VINT的电压为3.3V为例。晶体管NC的源极电压通常低于栅极的电压,且其电压差为晶体管NC本身的临限电压(threshold voltage)。因此,当晶体管NC的栅极电压为3.3V,晶体管。NC的源极电压会约等于2.3V。在这个情况下,晶体管NC的漏极和源极间的跨压为2.7V。由于此跨压仍在晶体管NC能承受的范围内,晶体管NC并不会遭遇过高电压的问题,因此可发挥保护组件ND的功能。Take the voltage of the external voltage source VEXT as 5V and the voltage of the internal voltage source VINT as 3.3V as an example. The source voltage of the transistor NC is usually lower than the gate voltage, and the voltage difference is the threshold voltage of the transistor NC itself. Therefore, when the gate voltage of transistor NC is 3.3V, the transistor The source voltage of NC will be approximately equal to 2.3V. In this case, the voltage across the drain and source of transistor NC is 2.7V. Since the cross-voltage is still within the tolerance range of the transistor NC, the transistor NC will not encounter the problem of over-voltage, and thus can play the function of protecting the device ND.
然而,如果外部电压源VEXT的电压为5V,内部电压源VINT的电压降低为1.8V,晶体管NC的源极电压将约等于1V,晶体管NC的漏极和源极间的跨压则为4V。在这个情况下,晶体管NC就很可能因过高的电压受到破坏,并因而丧失保护组件ND的作用。However, if the voltage of the external voltage source VEXT is 5V and the voltage of the internal voltage source VINT is reduced to 1.8V, the source voltage of the transistor NC will be approximately equal to 1V, and the voltage across the drain and source of the transistor NC will be 4V. In this case, the transistor NC is likely to be damaged due to excessive voltage, and thus loses the function of protecting the device ND.
发明内容Contents of the invention
为解决上述问题,本发明提供一种保护电路。在本发明的保护电路中,供应至晶体管NC的栅极的电压与外部/内部电压源的电压相关。更明确说,该电压会随着外部/内部电压源的电压变化被适当地调整。借此,本发明的保护电路能够令晶体管NC维持在正常的工作状态,进而保护组件ND免于承受因外部电压源造成的过高电压。To solve the above problems, the present invention provides a protection circuit. In the protection circuit of the invention, the voltage supplied to the gate of transistor NC is related to the voltage of the external/internal voltage source. More specifically, the voltage will be appropriately adjusted with the voltage variation of the external/internal voltage source. Therefore, the protection circuit of the present invention can maintain the transistor NC in a normal working state, thereby protecting the device ND from overvoltage caused by an external voltage source.
本发明的一较佳实施例为一针对NMOS组件的保护电路,其中包含一串联NMOS晶体管和一调整电路。该串联NMOS晶体管串接于该NMOS组件与一外部电压源之间。该调整电路耦接至该外部电压源、一第一内部电压源,以及该串联NMOS晶体管的一栅极,并用以根据该外部电压源和该第一内部电压源的电压,调整该串联NMOS晶体管的该栅极的电压,借此保护该NMOS组件免于承受因该外部电压源造成的一过高电压。A preferred embodiment of the present invention is a protection circuit for NMOS devices, which includes a series-connected NMOS transistor and an adjustment circuit. The series NMOS transistor is connected in series between the NMOS element and an external voltage source. The adjusting circuit is coupled to the external voltage source, a first internal voltage source, and a gate of the series-connected NMOS transistor, and is used for adjusting the series-connected NMOS transistor according to voltages of the external voltage source and the first internal voltage source voltage of the gate, thereby protecting the NMOS device from an excessive voltage caused by the external voltage source.
附图说明Description of drawings
为了让本发明的上述和其它目的、特征和优点能更明显易懂,下面将结合附图对本发明的较佳实施例详细说明:In order to make the above-mentioned and other purposes, features and advantages of the present invention more obvious and understandable, preferred embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings:
图1是现有技术中一接口电路的实施例;Fig. 1 is the embodiment of an interface circuit in the prior art;
图2为本发明的保护电路的示意图;以及Fig. 2 is the schematic diagram of protection circuit of the present invention; And
图3A、图3B、图4以及图5是本发明的调整电路的较佳实施例。3A, 3B, 4 and 5 are preferred embodiments of the adjustment circuit of the present invention.
具体实施方式Detailed ways
本发明的一较佳实施例为一针对NMOS组件的保护电路。请参阅图2,图2为该保护电路的示意图。在此实施例中,保护电路20用以避免NMOS组件ND承受过高的电压,其包含一串联NMOS晶体管NC和一调整电路22。A preferred embodiment of the present invention is a protection circuit for NMOS devices. Please refer to FIG. 2, which is a schematic diagram of the protection circuit. In this embodiment, the
晶体管NC串接于组件ND与一外部电压源VEXT之间。调整电路22则耦接至该外部电压源VEXT、一第一内部电压源VINT,以及晶体管NC的栅极,并用以根据外部电压源VEXT和第一内部电压源VINT的电压,调整晶体管NC的栅极的电压。The transistor NC is connected in series between the device ND and an external voltage source VEXT. The adjustment circuit 22 is coupled to the external voltage source VEXT, a first internal voltage source VINT, and the gate of the transistor NC, and is used to adjust the gate of the transistor NC according to the voltages of the external voltage source VEXT and the first internal voltage source VINT. pole voltage.
根据本发明,当外部电压源VEXT的电压小于或等于第一内部电压源VINT的电压,调整电路22可令晶体管NC的栅极的电压约等于第一内部电压源VINT的电压。当外部电压源VEXT的电压高于第一内部电压源VINT的电压,调整电路22则可适度调高晶体管NC的栅极的电压,以缩小晶体管NC的漏极与源极间的跨压。借此,调整电路22可避免晶体管NC因过高电压受到破坏。保护电路20进而能够保护组件ND免于承受因外部电压源VEXT造成的过高电压。According to the present invention, when the voltage of the external voltage source VEXT is less than or equal to the voltage of the first internal voltage source VINT, the adjusting circuit 22 can make the voltage of the gate of the transistor NC approximately equal to the voltage of the first internal voltage source VINT. When the voltage of the external voltage source VEXT is higher than the voltage of the first internal voltage source VINT, the adjustment circuit 22 can moderately increase the gate voltage of the transistor NC to reduce the cross voltage between the drain and the source of the transistor NC. In this way, the adjustment circuit 22 can prevent the transistor NC from being damaged due to excessive voltage. The
以第一内部电压源VINT的电压为1.8V为例。若外部电压源VEXT的电压为0~1.8V,调整电路22可令晶体管NC的栅极的电压为1.8V。相对地,若外部电压源VEXT的电压为1.8~5V,则调整电路22可将供应给晶体管NC的栅极的电压提升为1.8V~3.3V,此时晶体管NC的栅极的电压和外部电压源VEXT的电压具有一比例关系。Take the voltage of the first internal voltage source VINT as 1.8V as an example. If the voltage of the external voltage source VEXT is 0-1.8V, the adjusting circuit 22 can make the voltage of the gate of the transistor NC be 1.8V. In contrast, if the voltage of the external voltage source VEXT is 1.8-5V, the adjustment circuit 22 can increase the voltage supplied to the gate of the transistor NC to 1.8V-3.3V. At this time, the voltage of the gate of the transistor NC is equal to the external voltage The voltage of source VEXT has a proportional relationship.
请参阅图3A,图3A是调整电路22的一较佳实施例。在此实施例中,第一内部电压源VINT的电压被假设为1.8V;调整电路22包含一分压器22A、一开关22B以及一第二PMOS晶体管P2。分压器22A耦接于外部电压源VEXT和一第二内部电压源(接地端)之间。此实施例中的分压器22A由MOS晶体管组成;在实际应用中,分压器22A的构成组件并不以此为限。此外,开关22B耦接于外部电压源VEXT和晶体管P2的栅极间。晶体管P2的源极和漏极则分别耦接至第一内部电压源VINT和晶体管NC的栅极。Please refer to FIG. 3A . FIG. 3A is a preferred embodiment of the adjustment circuit 22 . In this embodiment, the voltage of the first internal voltage source VINT is assumed to be 1.8V; the adjustment circuit 22 includes a
此实施例中的开关22B包含耦接为传输门(transmission gate)形式的一第三:PMOS晶体管P3和一第一NMOS晶体管N1。晶体管P3和晶体管N1的栅极皆耦接至第一内部电压源VINT。当外部电压源VEXT的电压在0~1.8V之间,晶体管P2的栅极的电压会略低于1.8V。由于晶体管P2的栅极和源极之间存在的小电压差,晶体管P2会处于线性状态或次临限(sub-threshold)状态;晶体管NC的栅极的电压因此会通过晶体管P2被充电至1.8V。由于外部电压源VEXT的电压并未高于1.8V,在这个情况下,晶体管NC并不会遭遇过高电压的问题,因此可发挥保护组件ND的功能。The
分压器22A提供给晶体管NC的栅极的分压会随着外部电压源VEXT的电压变化。通过适当地设计分压器22A中各组件的阻值,当外部电压源VEXT的电压为5V,分压器22A提供给晶体管NC的栅极的分压可被设定为3.3V。在这个情况下,晶体管NC的源极的电压会约等于2.3V,晶体管NC的漏极与源极间的跨压则约等于2.7V。由于此跨压值仍在晶体管NC所能承受的范围内,晶体管NC也可正常工作,发挥保护组件ND的功能。此外,当外部电压源VEXT的电压为5V,晶体管P2的栅极的电压也会约等于5V;晶体管P2会因此被关闭。The divided voltage provided by the
请参阅图3B,图3B是调整电路22的另一较佳实施例。在此实施例中,调整电路22进一步包含一第一PMOS晶体管P1和一静电防护电阻RESD。静电防护电阻RESD用以防止连接至外部电压源VEXT的电路受到静电电荷的破坏。Please refer to FIG. 3B , which is another preferred embodiment of the adjustment circuit 22 . In this embodiment, the adjustment circuit 22 further includes a first PMOS transistor P1 and an ESD protection resistor RESD. The electrostatic protection resistor RESD is used to prevent the circuit connected to the external voltage source VEXT from being damaged by electrostatic charges.
晶体管P1的栅极、源极和漏极分别耦接至第一内部电压源VINT、外部电压源VEXT,以及分压器22A。当外部电压源VEXT的电压在0~1.8V之间,晶体管P1会被关闭,因此当分压器22A为电阻实施例,且外部电压源VEXT为0时,可防止晶体管NC的栅极和外部电压源VEXT间产生漏电流路径,导致晶体管NC的栅极电压受到影响。The gate, source and drain of the transistor P1 are respectively coupled to the first internal voltage source VINT, the external voltage source VEXT, and the
请参阅图4,图4为调整电路22的另一较佳实施例。在此实施例中,分压器22A的两端分别外部电压源VEXT和第一内部电压源VINT之间。借此,当外部电压源VEXT的电压低于1.8V(亦即当晶体管P2为导通),分压器22A不会提供第一内部电压源VINT和原本接地端之间的漏电路径。Please refer to FIG. 4 , which is another preferred embodiment of the adjustment circuit 22 . In this embodiment, the two ends of the
在实际应用中,当第一内部电压源VINT的电压为1.8V,由于次临限电流的关系,晶体管P2的栅极的电压有可能会被充电至1.8V;晶体管P2可能因此被关闭并导致晶体管NC的栅极的电压进入不确定的状态。为防止这种情况发生,调整电路22可进一步包含一第二NMOS晶体管N2和一第三NMOS晶体管N3。请参阅图5,图5为此调整电路22相对应之示意图。晶体管N2和晶体管N3可在晶体管P2的栅极和接地端之间提供一个小漏电路径,令晶体管P2的栅极保持为略低于1.8V的状态,以解决上述晶体管P2可能被关闭的问题。In practical applications, when the voltage of the first internal voltage source VINT is 1.8V, due to the sub-threshold current, the gate voltage of the transistor P2 may be charged to 1.8V; the transistor P2 may therefore be turned off and cause The voltage at the gate of transistor NC enters an indeterminate state. To prevent this from happening, the adjustment circuit 22 may further include a second NMOS transistor N2 and a third NMOS transistor N3. Please refer to FIG. 5 , which is a schematic diagram corresponding to the adjustment circuit 22 . Transistors N2 and N3 provide a small leakage path between the gate of transistor P2 and ground, keeping the gate of transistor P2 at a state slightly lower than 1.8V to solve the above-mentioned problem that transistor P2 may be turned off.
如以上所述,在本发明的保护电路中,供应至晶体管NC的栅极的电压根据外部/内部电压源的电压被适性调整。借此,本发明的保护电路能够确保晶体管NC维持在正常的状态,以保护组件ND免于承受因外部电压源造成的过高电压。As described above, in the protection circuit of the present invention, the voltage supplied to the gate of the transistor NC is adaptively adjusted according to the voltage of the external/internal voltage source. Thereby, the protection circuit of the present invention can ensure that the transistor NC maintains a normal state, so as to protect the device ND from overvoltage caused by the external voltage source.
以上已对本发明的较佳实施例进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the described embodiments, and those skilled in the art can also make various equivalent modifications or replacements without departing from the spirit of the present invention. , these equivalent modifications or replacements are all included within the scope defined by the claims of the present application.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200710166739XA CN101425799B (en) | 2007-11-02 | 2007-11-02 | Protection circuit to prevent NMOS components from overvoltage |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200710166739XA CN101425799B (en) | 2007-11-02 | 2007-11-02 | Protection circuit to prevent NMOS components from overvoltage |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101425799A CN101425799A (en) | 2009-05-06 |
| CN101425799B true CN101425799B (en) | 2011-04-20 |
Family
ID=40616178
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200710166739XA Active CN101425799B (en) | 2007-11-02 | 2007-11-02 | Protection circuit to prevent NMOS components from overvoltage |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101425799B (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1655086A (en) * | 2005-02-25 | 2005-08-17 | 清华大学 | Bias Compensation Circuit for Adjusting Transistor Transconductance Variation Range in Load |
| CN1868104A (en) * | 2003-10-10 | 2006-11-22 | 飞思卡尔半导体公司 | Electrostatic discharge protection circuit and method of operation |
-
2007
- 2007-11-02 CN CN200710166739XA patent/CN101425799B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1868104A (en) * | 2003-10-10 | 2006-11-22 | 飞思卡尔半导体公司 | Electrostatic discharge protection circuit and method of operation |
| CN1655086A (en) * | 2005-02-25 | 2005-08-17 | 清华大学 | Bias Compensation Circuit for Adjusting Transistor Transconductance Variation Range in Load |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101425799A (en) | 2009-05-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111933638B (en) | Electrostatic discharge circuit | |
| US8395870B2 (en) | Input/output circuit | |
| US20130141825A1 (en) | Esd protection circuit | |
| US6424510B1 (en) | ESD structure for IC with over-voltage capability at pad in steady-state | |
| JP2014132717A (en) | Electrostatic discharge protection circuit and semiconductor circuit device | |
| US10591532B2 (en) | Semiconductor integrated circuit | |
| US10177135B2 (en) | Integrated circuit and electrostatic discharge protection circuit thereof | |
| CN102082146A (en) | Semiconductor apparatus | |
| EP3561872A1 (en) | Electrostatic discharge circuit | |
| US11621556B2 (en) | Protective circuit | |
| US20140152288A1 (en) | Reference Voltage Generator and Corresponding Integrated Circuit | |
| KR20080076411A (en) | Static electricity protection circuit | |
| US9548609B2 (en) | Driver circuit and impedance adjustment circuit | |
| US20090161273A1 (en) | High voltage tolerant electrostatic discharge protection circuit | |
| JP6784820B2 (en) | ESD protection circuit | |
| US10396068B2 (en) | Electrostatic discharge protection device | |
| US20180102642A1 (en) | Electrostatic discharge circuit | |
| US7965482B2 (en) | ESD protection circuit and semiconductor device | |
| CN101425799B (en) | Protection circuit to prevent NMOS components from overvoltage | |
| US20150062764A1 (en) | Esd protection circuit | |
| JP5403592B2 (en) | Current drive circuit | |
| CN101093984A (en) | Voltage clamping circuits using mos transistors and semiconductor chips and methods of clamping voltages | |
| JP6384223B2 (en) | ESD protection circuit and integrated circuit | |
| US10691151B2 (en) | Devices and methods for dynamic overvoltage protection in regulators | |
| US7154721B2 (en) | Electrostatic discharge input protection circuit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20191213 Address after: No.1, Duhang 1st Road, Hsinchu City, Hsinchu Science Park, Taiwan, China Patentee after: MediaTek.Inc Address before: Taiwan Hsinchu County Tai Yuan Street China jhubei City, No. 26 4 floor 1 Patentee before: MStar Semiconductor Co., Ltd. |
|
| TR01 | Transfer of patent right |