CN101447969B - A Channel Estimation Method for Multi-Band Orthogonal Frequency Division Multiplexing UWB System - Google Patents
A Channel Estimation Method for Multi-Band Orthogonal Frequency Division Multiplexing UWB System Download PDFInfo
- Publication number
- CN101447969B CN101447969B CN2008101642240A CN200810164224A CN101447969B CN 101447969 B CN101447969 B CN 101447969B CN 2008101642240 A CN2008101642240 A CN 2008101642240A CN 200810164224 A CN200810164224 A CN 200810164224A CN 101447969 B CN101447969 B CN 101447969B
- Authority
- CN
- China
- Prior art keywords
- matrix
- sequence
- channel
- cyclic prefix
- diagonal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Noise Elimination (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种信道估计方法,尤其是涉及一种多带正交频分复用超宽带系统的信道估计方法。The invention relates to a channel estimation method, in particular to a channel estimation method of a multi-band orthogonal frequency division multiplexing ultra-wideband system.
背景技术Background technique
超宽带(UWB,Ultra Wide Band)技术作为一种极具潜力的高速、近距离的无线个人通信技术,近年来在学术界和工业界都引起极大的关注,成为目前无线通信领域研究和开发的热点。超宽带技术结合多带正交频分复用(MB-OFDM,Multi-Band OrthogonalFrequency Division Multiplexing)技术构成多带正交频分复用超宽带(MB-OFDM UWB)技术,它能够有效地对抗多径衰落和各种窄带干扰以及对频谱资源的灵活利用等特点,成为超宽带技术主流实现方案之一。多带正交频分复用超宽带技术的应用前景非常诱人,如在高速无线个域网、无线以太接口链路、智能无线局域网、户外对等网络以及传感、定位和识别网络等众多领域都有着广泛的应用,尤其是在数字家庭电子类产品领域的应用。目前,众多公司都选择无线家庭电子类产品的应用作为多带正交频分复用超宽带技术的突破口。Ultra Wideband (UWB, Ultra Wide Band) technology, as a potential high-speed, short-distance wireless personal communication technology, has attracted great attention in both academia and industry in recent years, and has become the current research and development in the field of wireless communication. hotspots. UWB technology combined with multi-band orthogonal frequency division multiplexing (MB-OFDM, Multi-Band Orthogonal Frequency Division Multiplexing) technology constitutes multi-band orthogonal frequency division multiplexing ultra-wideband (MB-OFDM UWB) technology, which can effectively combat multiple Path fading, various narrowband interferences, and flexible use of spectrum resources have become one of the mainstream implementation solutions for ultra-wideband technology. The application prospect of multi-band OFDM ultra-wideband technology is very attractive, such as in high-speed wireless personal area network, wireless Ethernet interface link, intelligent wireless local area network, outdoor peer-to-peer network and sensing, positioning and identification network, etc. Fields have a wide range of applications, especially in the field of digital home electronics products. At present, many companies choose the application of wireless home electronic products as the breakthrough of multi-band OFDM ultra-wideband technology.
多带正交频分复用超宽带系统要获得理想的性能,就必需采用相干检测、解调、均衡等技术,这些技术都需要利用信道的信息,因此准确的信道估计信息对于确保多带正交频分复用超宽带通信环境中可靠的数据传输起着至关重要的作用。由于超宽带信号所占带宽大、信号持续时间短、传输速率高,这就对信道估计技术提出了估计精度高、计算复杂度低的要求。因此,在多带正交频分复用超宽带系统中如何进行快速有效的信道估计是目前多带正交频分复用超宽带技术所面临的一大挑战。In order to obtain the ideal performance of multi-band OFDM UWB system, technologies such as coherent detection, demodulation, and equalization must be used. Reliable data transmission plays a vital role in Cross-Frequency Division Multiplexing UWB communication environment. Due to the large bandwidth occupied by ultra-wideband signals, short signal duration, and high transmission rate, the channel estimation technology requires high estimation accuracy and low computational complexity. Therefore, how to perform fast and effective channel estimation in the multi-band OFDM ultra-wideband system is a major challenge faced by the current multi-band OFDM ultra-wideband technology.
多带正交频分复用超宽带系统,大都采用了频域导频频域信道估计的方法,即在频域插入导频,并在频域进行信道估计。这类信道估计方法包括以下步骤:首先,在发送端频域的适当位置插入导频,在接收端利用导频数据通过相应的信道估计准则得到导频位置的信道信息然后经过内插器,利用内插的方式对在整个频域内进行内插,以便得到整个信道估计值最后将信道估计值和接收数据送入均衡器,就可以对接收数据均衡得到原始发送数据的估计值。Most of the multi-band OFDM UWB systems adopt the channel estimation method of frequency domain pilot frequency domain, that is, insert pilot frequency in the frequency domain and perform channel estimation in the frequency domain. This type of channel estimation method includes the following steps: first, insert pilots at an appropriate position in the frequency domain at the sending end, and use the pilot data at the receiving end to obtain the channel information of the pilot position through the corresponding channel estimation criteria Then through the interpolator, use the interpolation method to Interpolate over the entire frequency domain to obtain the entire channel estimate Finally, the channel estimation value and the received data are sent to the equalizer, and the received data can be equalized to obtain the estimated value of the original transmitted data.
目前,针对上述导频位置的信道信息通常是基于最小二乘(LS,Least Squares)准则或者最小均方误差(MMSE,Minimum Mean Square Error)准则得到的。其中,基于最小二乘准则的频域导频频域信道估计方法计算过程简单且容易实现,但该方法没有考虑到噪声的影响,从而导致信道估计的精度不高。基于最小均方误差准则的频域导频频域信道估计方法由于利用了信道的频域自相关特性,所以可以获得很好的性能,但该方法的估计过程中涉及到矩阵求逆,增加了该方法的计算复杂度,导致该方法可实施性差。综上所述,现有的一些频域导频频域信道估计方法,存在计算复杂度高,很难用于实际,且因非导频位置的信道特性需要用到内插的方式,导致计算精度不高等问题。At present, the channel information for the above-mentioned pilot positions is usually obtained based on the least squares (LS, Least Squares) criterion or the minimum mean square error (MMSE, Minimum Mean Square Error) criterion. Among them, the frequency domain pilot frequency domain channel estimation method based on the least squares criterion has a simple calculation process and is easy to implement, but this method does not take into account the influence of noise, resulting in low channel estimation accuracy. The frequency-domain pilot-frequency-domain channel estimation method based on the minimum mean square error criterion can obtain good performance due to the use of the frequency-domain autocorrelation characteristics of the channel, but the estimation process of this method involves matrix inversion, which increases the The computational complexity of the method leads to poor implementability of the method. To sum up, some existing channel estimation methods in the frequency domain and pilot frequency domain have high computational complexity and are difficult to be used in practice, and because the channel characteristics of the non-pilot positions need to use interpolation, resulting in calculation accuracy No advanced question.
目前的时域信道估计方法主要有基于离散傅立叶(DFT,Discrete Fourier Transform)滤波法和最大似然准则(ML,Maximum Likelihood)的估计方法,这两类方法可在一定程度上减小信道估计的均方误差值,但缺点是信道长度(或信道的有限时延扩展)信息需要在信道估计前被准确获得,从而增加了信道估计过程的持续时间和计算复杂度,使得这两类方法在实际应用中受到限制。The current time-domain channel estimation methods mainly include estimation methods based on discrete Fourier (DFT, Discrete Fourier Transform) filtering method and maximum likelihood criterion (ML, Maximum Likelihood). These two methods can reduce the cost of channel estimation to a certain extent. The mean square error value, but the disadvantage is that the channel length (or channel finite delay extension) information needs to be accurately obtained before channel estimation, thus increasing the duration and computational complexity of the channel estimation process, making these two types of methods in practice application is limited.
Bowei Song等人提出了一种基于m序列的时域信道估计方法,应用该方法的多带正交频分复用超宽带系统的工作流程如图1所示。在发送端,输入的数据信号经正交相移调制(QPSK,Quadrature Phase Shift Keying)得到调制信号,调制信号通过串并转换、傅里叶逆变换(IFFT,Inverse Fast Fourier Transform)和并串转换处理后形成多个OFDM符号,每隔固定数量的OFDM符号,插入一个长度为LP的m序列s作为时域信道估计的训练序列,并根据信道特性的好坏添加长度为LC的循环前缀(CP,Cyclic Prefix),并假定多带正交频分复用超宽带系统是同步的,附加循环前缀后得到的训练序列和输入的数据信号一起经载波调制处理后通过超宽带信道进行传输;在接收端,首先去掉接收到的经信道衰落和高斯白噪声影响后的训练序列中的循环前缀,然后将去掉循环前缀的经信道衰落和高斯白噪声影响后的训练序列与m序列s循环右移i位后的m序列si作相关运算,
发明内容Contents of the invention
本发明所要解决的技术问题是针对现有技术存在的不足,提供一种低计算复杂度的适用于多带正交频分复用超宽带系统的信道估计方法。The technical problem to be solved by the present invention is to provide a channel estimation method suitable for multi-band OFDM ultra-wideband systems with low computational complexity for the deficiencies in the prior art.
本发明解决上述技术问题所采用的技术方案为:一种多带正交频分复用超宽带系统的信道估计方法,包括以下步骤:①在发送端,首先对输入的数据信号进行正交相移调制处理得到调制信号;②然后对调制信号依次进行串并转换、傅里叶逆变换和并串转换处理,形成多个OFDM符号;③再在形成的多个OFDM符号中,每隔设定数量的OFDM符号插入一个长度为LP的m序列s,将m序列s作为一个训练序列,并根据信道特性在训练序列前附加一个长度为LC的循环前缀,得到附加循环前缀后的训练序列,用x表示,x=[x(0),x(1),…x(LP+LC-1)];④最后将附加循环前缀后的训练序列x和形成的OFDM符号一起经载波调制处理后通过超宽带信道传输至接收端,在传输过程中附加循环前缀后的训练序列x和OFDM符号受到信道衰落和高斯白噪声的影响;⑤在接收端,定义接收端接收到的经信道衰落和高斯白噪声影响后的附加循环前缀的训练序列x为第一接收信号,定义接收端接收到的经信道衰落和高斯白噪声影响后的OFDM符号为第二接收信号,将第一接收信号用抽头延迟线模型表示为
所述的第一矩阵D为由所述的自相关矩阵CP的对角线元素组成的对角矩阵,所述的第二矩阵E为由所述的自相关矩阵CP的非对角线元素组成的非对角矩阵,将所述的对角矩阵记为D1,将所述的非对角矩阵记为E1,得到
所述的第一矩阵D为由所述的自相关矩阵CP的三对角元素组成的三对角矩阵,所述的第二矩阵E为由所述的自相关矩阵CP的除三对角元素以外的元素组成的非三对角矩阵,将所述的三对角矩阵记为D3,将所述的非三对角矩阵记为E3,得到
与现有技术相比,本发明的优点在于采用自相关特性较好的m序列作为时域训练序列,在接收端通过对去掉循环前缀的第一接收信号与训练序列作互相关运算和对各个训练序列作自相关运算来获得信道的冲激响应估计值,并利用m序列的自相关矩阵具有对角占优特性,首先分别通过对m序列的自相关矩阵进行一对角分解或三对角分解,然后采用一阶逆矩阵的逼近方法,有效的避免了复杂的求逆运算,使运算量降低了一个数量级,而性能逼近常规的时域信道估计方法,是一种超宽带系统的快速有效的信道估计方法,易于实现。Compared with the prior art, the advantage of the present invention is that the m-sequence with better autocorrelation characteristics is used as the time-domain training sequence, and at the receiving end, the cross-correlation operation is performed on the first received signal with the cyclic prefix removed and the training sequence and each The training sequence is used for autocorrelation operation to obtain the estimated value of the impulse response of the channel, and the autocorrelation matrix of the m-sequence is used to have a diagonal dominant characteristic. Decomposition, and then using the approximation method of the first-order inverse matrix, effectively avoiding the complex inversion operation, reducing the amount of calculation by an order of magnitude, and the performance is close to the conventional time-domain channel estimation method, which is a fast and effective method for ultra-wideband systems. The channel estimation method is easy to implement.
附图说明Description of drawings
图1为多带正交频分复用超宽带系统的工作流程示意图;Fig. 1 is a schematic diagram of the workflow of a multi-band OFDM ultra-wideband system;
图2为对应不同长度m序列的常规时域信道估计方法与LS算法的误比特率随信噪比变化的曲线图;Fig. 2 is the graph that the bit error rate of the conventional time-domain channel estimation method and the LS algorithm corresponding to different length m-sequences change with the signal-to-noise ratio;
图3为LP=31时LS算法、常规时域估计方法、本发明的一对角分解方法及三对角分解方法的性能比较图;Fig. 3 is the performance comparison figure of LS algorithm, conventional time-domain estimation method, a pair of angle decomposition method of the present invention and tri-diagonal decomposition method when LP =31;
图4为LP=15时常规时域估计方法、本发明的一对角分解方法及三对角分解方法的性能比较图。Fig. 4 is a performance comparison chart of the conventional time domain estimation method, the diagonal decomposition method and the tridiagonal decomposition method of the present invention when L P = 15.
具体实施方式Detailed ways
以下结合附图实施例对本发明作进一步详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
一种多带正交频分复用超宽带系统的信道估计方法,包括以下步骤:A channel estimation method for a multi-band OFDM ultra-wideband system, comprising the following steps:
①在发送端,首先采用现有的正交相移调制(QPSK)技术对输入的数据信号进行正交相移调制处理得到调制信号。① At the sending end, the existing quadrature phase shift modulation (QPSK) technology is first used to process the input data signal with quadrature phase shift modulation to obtain the modulated signal.
②然后对调制信号依次进行串并转换、傅里叶逆变换(IFFT)和并串转换处理,形成多个OFDM符号。本实施例中每个OFDM符号采用128个子载波,相邻子载波之间的频率间隔4.1254MHz,每个OFDM符号的持续时间为T0=242.4ns。② Then serial-to-parallel conversion, inverse Fourier transform (IFFT) and parallel-to-serial conversion are performed on the modulated signal in sequence to form multiple OFDM symbols. In this embodiment, each OFDM symbol uses 128 subcarriers, the frequency interval between adjacent subcarriers is 4.1254MHz, and the duration of each OFDM symbol is T 0 =242.4ns.
③再在形成的多个OFDM符号中,每隔设定数量的OFDM符号插入一个长度为LP的m序列s,将m序列s作为一个训练序列,并根据信道特性的好坏在训练序列前附加一个长度为LC的循环前缀(CP),得到附加循环前缀后的训练序列,该附加循环前缀后的训练序列用x表示,x=[x(0),x(1),…x(LP+LC-1)],其中,LP为m序列s即训练序列的长度,LC为循环前缀的长度。在本实施例中,选取的设定数量为4,即每隔4个OFDM符号插入一个长度为LP的m序列s。③In the formed multiple OFDM symbols, insert an m-sequence s with a length of L P at intervals of a set number of OFDM symbols, and use the m-sequence s as a training sequence. Add a cyclic prefix (CP) with a length of L C to obtain the training sequence after the additional cyclic prefix, the training sequence after the additional cyclic prefix is represented by x, x=[x(0), x(1),...x( L P +L C -1)], where L P is the length of the m-sequence s, which is the training sequence, and L C is the length of the cyclic prefix. In this embodiment, the set number selected is 4, that is, an m-sequence s of length L P is inserted every 4 OFDM symbols.
④最后将附加循环前缀后的训练序列x和形成的OFDM符号一起经载波调制处理后通过超宽带信道传输至接收端,在传输过程中附加循环前缀后的训练序列x和OFDM符号将受到信道衰落和高斯白噪声的影响。④Finally, the training sequence x after the cyclic prefix is added and the formed OFDM symbols are processed by the carrier modulation and then transmitted to the receiving end through the ultra-wideband channel. During the transmission process, the training sequence x and the OFDM symbols after the cyclic prefix will be subject to channel fading and Gaussian white noise.
⑤在接收端,定义接收端接收到的经信道衰落和高斯白噪声影响后的附加循环前缀的训练序列x为第一接收信号,定义接收端接收到的经信道衰落和高斯白噪声影响后的OFDM符号为第二接收信号,将第一接收信号用抽头延迟线模型表示为
⑥首先对第一接收信号r(k)进行去载波调制,并对去载波调制处理后的第一接收信号进行去循环前缀处理得到
⑦然后计算去循环前缀后的第一接收信号与m序列s循环右移i位后的m序列si的互相关矩阵C和各个训练序列s的自相关矩阵CP,C=[C(i,j)],C(i,j)为去循环前缀后的第一接收信号与m序列s循环右移i后的m序列si的归一化互相关系数,
⑧再根据去循环前缀后的第一接收信号与m序列s循环右移i位后的m序列si的互相关矩阵C和各个训练序列s的自相关矩阵CP,计算信道的冲激响应估计值
为了降低计算复杂度,本发明提出了两种求解CP逆矩阵的快速逼近方法:一对角分解方法和三对角分解方法。In order to reduce the computational complexity, the present invention proposes two fast approximation methods for solving the C P inverse matrix: a diagonal decomposition method and a tridiagonal decomposition method.
一对角分解方法:将自相关矩阵CP分解为由自相关矩阵CP的对角线元素组成的对角矩阵和由自相关矩阵CP的非对角线元素组成的非对角矩阵之和,将对角矩阵记为D1,将非对角矩阵记为E1,则CP=D1+E1,其中, LP为在发送端插入的训练序列的长度;由于自相关矩阵CP的对角占优性,
三对角分解方法:将自相关矩阵CP分解为由自相关矩阵CP的三对角元素组成的三对角矩阵和由自相关矩阵CP的除三对角元素以外的元素组成的非三对角矩阵之和,将三对角矩阵记为D3,将非三对角矩阵记为E3,则CP=D3+E3,其中, LP为在发送端插入的训练序列的长度;类似一对角分解方法,由于自相关矩阵CP的对角占优性,
表1列出了现有的基于m序列的时域信道估计方法(在表1中称为直接求逆方法)、本发明的一对角分解方法及三对角分解方法的计算复杂度的大小。Table 1 has listed the size of computational complexity of the existing m-sequence-based time-domain channel estimation method (referred to as the direct inversion method in Table 1), the diagonal decomposition method of the present invention and the tri-diagonal decomposition method .
表1计算复杂度比较表Table 1 Computational complexity comparison table
由表1可知,本发明提出的采用一对角分解和三对角分解的处理方法可以大大降低现有直接求逆方法的计算复杂度。It can be seen from Table 1 that the processing method of the present invention using the pair-diagonal decomposition and the tri-diagonal decomposition can greatly reduce the computational complexity of the existing direct inversion method.
本发明利用了特殊的训练序列即m序列的自相关矩阵的对角占优特性,首先通过对m序列的自相关矩阵进行一对角分解和三对角分解,然后采用一阶逆矩阵的逼近方法,和传统的时域信道估计方法相比,本发明提出的一对角分解方法和三对角分解方法的运算量降低了一个数量级,而性能却逼近传统的时域信道估计值。计算机仿真结果验证了本发明的有效性。The present invention utilizes the diagonal dominance characteristic of the autocorrelation matrix of the special training sequence, that is, the m-sequence. Firstly, the autocorrelation matrix of the m-sequence is decomposed into a pair of angles and tri-diagonals, and then the approximation of the first-order inverse matrix is adopted. method, compared with the traditional time-domain channel estimation method, the calculation amount of the diagonal decomposition method and the tri-diagonal decomposition method proposed by the present invention is reduced by an order of magnitude, but the performance is close to the traditional time-domain channel estimation value. The computer simulation results verify the effectiveness of the present invention.
每隔4个OFDM符号插入一个训练序列,分别插入LP=15、31、63、127四种不同长度的m序列。图2比较了对应不同长度m序列的常规时域信道估计方法(即直接求逆方法)与频域LS信道估计方法的误比特率随信噪比变化的曲线。从图2易知,在相同信噪比条件下,m序列长度越短,常规时域信道估计方法的误比特率越高,性能越差,而m序列长度越长,其误比特率越低,性能越好。图2仿真的目的是为了选取合适的训练序列的长度。但考虑到运算量及系统性能,实际中导频长度不宜过长。由于m序列长度分别取LP=31、LP=64时的性能相近,因此在实际中应考虑选取长度LP=31的m序列比较合适。A training sequence is inserted every 4 OFDM symbols, and m-sequences of four different lengths L P =15, 31, 63, and 127 are respectively inserted. Figure 2 compares the curves of bit error rate versus signal-to-noise ratio between the conventional time-domain channel estimation method (ie, the direct inversion method) and the frequency-domain LS channel estimation method corresponding to different lengths of m-sequences. It is easy to know from Figure 2 that under the same SNR condition, the shorter the length of the m-sequence, the higher the bit error rate and the worse the performance of the conventional time-domain channel estimation method, and the longer the length of the m-sequence, the lower the bit error rate , the better the performance. The purpose of the simulation in Fig. 2 is to select the appropriate length of the training sequence. However, considering the amount of computation and system performance, the pilot length should not be too long in practice. Since the performance of the m-sequence lengths L P = 31 and L P = 64 are similar, it should be considered that the m-sequence with the length L P = 31 is more appropriate in practice.
图3比较了m序列长度LP=31时,常规时域估计方法、一对角分解方法、三对角分解方法,以及频域LS信道估计方法的误比特率随信噪比的变化曲线。从图3可以看出,采用一对角分解和三对角分解方法与常规时域估计方法在性能上十分相近,但前两种方法的计算复杂度却降低了一个数量级。Fig. 3 compares the change curves of bit error rate and signal-to-noise ratio of conventional time-domain estimation method, pair-diagonal decomposition method, tri-diagonal decomposition method, and frequency-domain LS channel estimation method when m-sequence length L P =31. It can be seen from Fig. 3 that the performance of the pair-diagonal decomposition and tri-diagonal decomposition methods is very similar to the conventional time-domain estimation method, but the computational complexity of the first two methods is reduced by an order of magnitude.
为了进一步比较一对角分解和三对角分解方法的性能优劣,以及与常规时域估计方法的性能差异,图4给出了这三种方法在m序列自相关特性比较差的情况下(m序列长度LP=15时)的性能仿真。从图4看出,本发明提出对角分解方法的性能都略有下降,但三对角分解方法性能明显优于一对角分解方法。In order to further compare the performance of the pair-diagonal decomposition and tri-diagonal decomposition methods, as well as the performance difference with the conventional time-domain estimation method, Figure 4 shows the three methods in the case of poor m-sequence autocorrelation characteristics ( Performance simulation of m sequence length L P =15). It can be seen from FIG. 4 that the performances of the diagonal decomposition methods proposed by the present invention are slightly lowered, but the performance of the three-diagonal decomposition method is obviously better than that of the pair-diagonal decomposition method.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2008101642240A CN101447969B (en) | 2008-12-31 | 2008-12-31 | A Channel Estimation Method for Multi-Band Orthogonal Frequency Division Multiplexing UWB System |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2008101642240A CN101447969B (en) | 2008-12-31 | 2008-12-31 | A Channel Estimation Method for Multi-Band Orthogonal Frequency Division Multiplexing UWB System |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201010567151.7A Division CN102065035B (en) | 2008-12-31 | 2008-12-31 | Channel estimation method of multi-band orthogonal frequency-division multiplexing ultra-wideband system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101447969A CN101447969A (en) | 2009-06-03 |
| CN101447969B true CN101447969B (en) | 2011-04-20 |
Family
ID=40743372
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2008101642240A Expired - Fee Related CN101447969B (en) | 2008-12-31 | 2008-12-31 | A Channel Estimation Method for Multi-Band Orthogonal Frequency Division Multiplexing UWB System |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101447969B (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101958856B (en) * | 2009-07-13 | 2012-10-17 | 联芯科技有限公司 | Method and device for carrying out channel estimation by using cyclic prefix code |
| CN101789926B (en) * | 2010-01-29 | 2012-11-07 | 北京交通大学 | United carrier and sampling frequency offset estimation method for multiband-orthogonal frequency division multiplexing (OFDM) ultra wide band system |
| CN101945063B (en) * | 2010-09-21 | 2014-04-09 | 北京交通大学 | Method and system for estimating ultra-wideband channel of MB-OFDM (Multiband-Orthogonal Frequency Division Multiplexing) system |
| CN110944384B (en) * | 2019-12-09 | 2020-12-15 | 中国电子科技集团公司第五十四研究所 | An integrated method for indoor and outdoor high-precision positioning and communication |
| DE102020105840A1 (en) * | 2020-03-04 | 2021-09-09 | Eto Magnetic Gmbh | Traffic control device, traffic control system, traffic information system, retrofittable receiver module and method for managing traffic |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002067526A2 (en) * | 2001-02-22 | 2002-08-29 | Koninklijke Philips Electronics N.V. | Channel estimation in multicarrier transmission systems |
| CN1558576A (en) * | 2004-01-14 | 2004-12-29 | 北京邮电大学 | An Adaptive Channel Estimation Method Based on Two-Dimensional Least Mean Square Criterion |
| CN1595924A (en) * | 2004-06-25 | 2005-03-16 | 北京邮电大学 | Self-adaptive channel estimation method based on least squares criterion of two-dimensional iteration |
| CN101217288A (en) * | 2007-12-27 | 2008-07-09 | 复旦大学 | An estimation method of virtual pilot frequency assistant channel |
-
2008
- 2008-12-31 CN CN2008101642240A patent/CN101447969B/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002067526A2 (en) * | 2001-02-22 | 2002-08-29 | Koninklijke Philips Electronics N.V. | Channel estimation in multicarrier transmission systems |
| CN1558576A (en) * | 2004-01-14 | 2004-12-29 | 北京邮电大学 | An Adaptive Channel Estimation Method Based on Two-Dimensional Least Mean Square Criterion |
| CN1595924A (en) * | 2004-06-25 | 2005-03-16 | 北京邮电大学 | Self-adaptive channel estimation method based on least squares criterion of two-dimensional iteration |
| CN101217288A (en) * | 2007-12-27 | 2008-07-09 | 复旦大学 | An estimation method of virtual pilot frequency assistant channel |
Non-Patent Citations (2)
| Title |
|---|
| Bowei Song等."A Novel Method of Frequency-offset Estimation Using Time Domain PN sequences in OFDM Systems".《IEEE Transactions on Consumer Electronics》.2008,第54卷(第1期), |
| Bowei Song等."On channel estimation and equalization in TDS-OFDM based terrestrial HDTV broadcasting system".《IEEE Transactions on Consumer Electronics》.2005,第51卷(第3期), |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101447969A (en) | 2009-06-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101056302B (en) | Channel and Carrier Frequency Offset Estimation Method Based on UKF in OFDM System | |
| CN102932289B (en) | Cyclic shifting-based method for estimating shifting number and channel response in orthogonal frequency division multiplexing (OFDM) system | |
| CN103269321B (en) | Based on the channel estimation methods of unique word in single-carrier frequency domain equalization system | |
| CN113676289B (en) | OTFS modulation signal detection method based on transform domain maximum ratio combination | |
| CN109861939B (en) | OQPSK frequency domain equalization wireless data transmission method | |
| CN103685096B (en) | A kind of MIMO-OFDM system channel estimation method based on optimal pilot | |
| CN101860497B (en) | Method for realizing equalization of FBMC system by utilizing improved sphere decoding algorithm | |
| CN101242388A (en) | Channel Estimation Method for High Speed Single Carrier Frequency Domain Equalized UWB System | |
| CN103414678B (en) | The transform domain equalization methods of dual-selection channel based on Vector OFDM | |
| CN101534281B (en) | A Diversity Channel Estimation Method Based on Comb Pilot in OFDM System | |
| CN101505291A (en) | Hydroacoustic communication differential decoding method based on OFDM coding | |
| CN103428154A (en) | Transform domain reusing method of double selective channels based on Vector OFDM (orthogonal frequency division multiplexing) | |
| CN102664687A (en) | CHIRP-OFDM system frequency domain diversity receiving method | |
| CN103220242B (en) | Based on the channel estimation methods of pilot blocks in single-carrier frequency domain equalization system | |
| CN101447969B (en) | A Channel Estimation Method for Multi-Band Orthogonal Frequency Division Multiplexing UWB System | |
| CN101729479B (en) | A Blind Channel Estimation Method Based on Cyclostationary Characteristics of OFDM Signals | |
| CN108650005B (en) | Pilot structure and channel estimation method for MIMO-FBMC/OQAM system | |
| CN102065035B (en) | Channel estimation method of multi-band orthogonal frequency-division multiplexing ultra-wideband system | |
| CN102780656A (en) | Method and device for eliminating multi-symbol subcarrier jamming and performing channel estimation jointly | |
| CN102143116B (en) | Orthogonal frequency division multiplexing (OFDM) signal cyclostationarity-based blind signal to noise ratio estimation method | |
| CN102413080A (en) | Channel Estimation Method in High-Speed Mobile TDD-LTE Uplink | |
| CN103929395A (en) | OFDM System Frequency Offset Synchronization Method Based on Constant Envelope Modulation | |
| CN101330480A (en) | A Single Carrier Fractional Fourier Domain Equalization Technique | |
| CN102801662B (en) | Superimposed-pilot-based channel estimation method and device for multi-band ultra-wideband system | |
| CN105871764A (en) | Modulation identification and blind pseudo-code sequence estimation of MC-CDMA signals |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110420 Termination date: 20131231 |