CN101471388A - Optoelectronic semiconductor device - Google Patents
Optoelectronic semiconductor device Download PDFInfo
- Publication number
- CN101471388A CN101471388A CN 200710306612 CN200710306612A CN101471388A CN 101471388 A CN101471388 A CN 101471388A CN 200710306612 CN200710306612 CN 200710306612 CN 200710306612 A CN200710306612 A CN 200710306612A CN 101471388 A CN101471388 A CN 101471388A
- Authority
- CN
- China
- Prior art keywords
- semiconductor device
- semiconductor system
- optoelectronic semiconductor
- electrical contact
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Led Devices (AREA)
Abstract
本发明的一个实施例揭露一种光电半导体装置,其包含可以在光能与电能间进行转换的半导体系统、形成于此半导体系统的至少二个表面上的界面层、导电体、及将半导体系统与导电体电连接的电性接点。
One embodiment of the present invention discloses an optoelectronic semiconductor device, which includes a semiconductor system capable of converting light energy into electrical energy, an interface layer formed on at least two surfaces of the semiconductor system, a conductor, and an electrical contact electrically connecting the semiconductor system and the conductor.
Description
技术领域 technical field
本发明关于一种光电半导体装置及其制作方法,尤其关于一种具有以导体与非导体为材料所形成的结合构造的光电半导体装置。The present invention relates to an optoelectronic semiconductor device and its manufacturing method, in particular to an optoelectronic semiconductor device with a combined structure formed of conductors and non-conductors.
背景技术 Background technique
习知发光二极管的一种通常结构包含成长基板、n型半导体层、p型半导体层、与位于此二半导体层间的发光层。用以反射源自于发光层光线的反射层也会选择性地形成于此结构中。于某些状况下,为提高发光二极管的光学、电学、及力学特性的至少其一,一种经适当选择后的材料会用以替代成长基板以作为承载除成长基板外的其他结构的载体,例如:金属或硅会用于取代成长氮化物的蓝宝石基板。成长基板可使用蚀刻、研磨、或激光移除等方式移除。此外,透光氧化物亦可用于发光二极管结构中以提升电流分散表现。A common structure of a conventional LED includes a growth substrate, an n-type semiconductor layer, a p-type semiconductor layer, and a light-emitting layer between the two semiconductor layers. A reflective layer for reflecting light from the light-emitting layer is also optionally formed in the structure. In some cases, in order to improve at least one of the optical, electrical, and mechanical properties of the light-emitting diode, an appropriately selected material will be used to replace the growth substrate as a carrier for carrying other structures except the growth substrate, For example: metal or silicon will be used to replace the sapphire substrate on which the nitride is grown. The growth substrate can be removed by etching, grinding, or laser removal. In addition, light-transmitting oxides can also be used in LED structures to improve current spreading performance.
用以取代的载体有数种方式与形成于成长基板上的结构形成欧姆接触。其中一种相关资料可以参考E.Fred Schubert,“Light-Emitting Diodes”,第9.6章,2006年。此外,发光二极管成品自晶片上切割后形成。在切割过程中如何使用适当方式保护半导体层亦为一项受到关注的议题。在切割前于半导体层的侧表面形成保护层(Passivation Layer)为一种常见的防护方式。然而,用以形成保护层的相关步骤通常必须仔细控制以避免对二极管性能造成负面影响。There are several ways for the substituting carrier to make ohmic contact with the structures formed on the growth substrate. One of the related materials can refer to E. Fred Schubert, "Light-Emitting Diodes", Chapter 9.6, 2006. In addition, finished LEDs are formed after dicing from wafers. How to use appropriate methods to protect the semiconductor layer during the dicing process is also an issue of concern. It is a common protection method to form a passivation layer on the side surface of the semiconductor layer before cutting. However, the associated steps to form the protective layer must generally be carefully controlled to avoid negatively affecting diode performance.
发明内容 Contents of the invention
依照本发明一实施例的光电半导体装置包含一可以在光能与电能间进行转换的半导体系统、一形成于此半导体系统的至少二个表面上的界面层、一导电体、及一电性接点。An optoelectronic semiconductor device according to an embodiment of the present invention includes a semiconductor system capable of converting light energy to electrical energy, an interface layer formed on at least two surfaces of the semiconductor system, an electrical conductor, and an electrical contact .
此外,本发明的光电半导体装置更具有如下数个较佳实施例。前述的至少二个表面包含一个侧表面以及一个面向导电体的表面。导电体较佳地具有足以支撑半导体系统的强度,例如:导电体的厚度或刚性大于半导体系统。更佳地,导电体为非半导体材料。再者,电性接点穿过该界面层,并使半导体系统与导电体电连接。界面层的折射系数介于半导体系统与环境介质之间。In addition, the optoelectronic semiconductor device of the present invention has several preferred embodiments as follows. The aforementioned at least two surfaces include a side surface and a surface facing the conductor. The conductive body preferably has sufficient strength to support the semiconductor system, for example, the thickness or rigidity of the conductive body is greater than that of the semiconductor system. More preferably, the conductor is a non-semiconductor material. Furthermore, electrical contacts pass through the interface layer and electrically connect the semiconductor system with the electrical conductor. The interface layer has a refractive index between the semiconductor system and the ambient medium.
此外,于本发明的另数个实施例中,光电半导体装置更可有以下数种变形:一反射体可形成于半导体系统与导电体间,并可反射源自于半导体系统的光线。一第一接合层与一第二接合层可分别形成于电性接点的相反侧,并彼此电连接。一第一接合层与半导体系统电连接,且至少部份电性接点穿入第一接合层。一第一接合层与半导体系统电连接并反射源自于半导体系统的光线。In addition, in several other embodiments of the present invention, the optoelectronic semiconductor device can have several modifications as follows: a reflector can be formed between the semiconductor system and the conductor, and can reflect light from the semiconductor system. A first bonding layer and a second bonding layer can be respectively formed on opposite sides of the electrical contacts and electrically connected to each other. A first bonding layer is electrically connected to the semiconductor system, and at least part of the electrical contacts penetrate the first bonding layer. A first bonding layer is electrically connected with the semiconductor system and reflects light from the semiconductor system.
于另二个实施例中,其一,本发明的光电半导体装置更包含一第一接合层,是与半导体系统电连接;及一反射体,位于第一接合层与半导体系统之间,并反射源自于半导体系统的光线。其二,光电半导体装置包含一反射体,是位于电性接点与半导体系统之间,且电性接点与反射体接触。In another two embodiments, one, the optoelectronic semiconductor device of the present invention further comprises a first bonding layer, which is electrically connected to the semiconductor system; and a reflector, which is located between the first bonding layer and the semiconductor system, and reflects Light originating from semiconductor systems. Second, the optoelectronic semiconductor device includes a reflector, which is located between the electrical contact and the semiconductor system, and the electrical contact is in contact with the reflector.
上述光电半导体装置的各实施例中,电性接点间的间距变化规则选自由定周期性、变周期性、拟周期性、等比级数、及无规则性所构成的组。此外。电性接点的形状选自由矩形、圆形、椭圆形、三角形、六角形、不规则形、及以上形状的组合。再者,电性接点更可包含一粗糙面。In each embodiment of the optoelectronic semiconductor device described above, the variation rule of the spacing between the electrical contacts is selected from the group consisting of definite periodicity, variable periodicity, quasi-periodicity, proportional series, and randomness. also. The shape of the electrical contact is selected from rectangle, circle, ellipse, triangle, hexagon, irregular shape, and the combination of the above shapes. Furthermore, the electrical contact can further include a rough surface.
于本发明的又数个实施例中更揭露以下数种变化。光电半导体装置更包含一第一中介层,与半导体系统电连接;及一第二中介层,形成于电性接点之上,并位于第一中介层与该电性接点之间。光电半导体装置更包含一电极,形成于半导体系统之上;及一绝缘区,相应于电极的位置,且大体上与电性接点位于同一水平面。此绝缘区亦可视需要形成于与电性接点不同的水平面。The following changes are further disclosed in several embodiments of the present invention. The optoelectronic semiconductor device further includes a first interposer electrically connected with the semiconductor system; and a second interposer formed on the electrical contact and between the first interposer and the electrical contact. The optoelectronic semiconductor device further includes an electrode formed on the semiconductor system; and an insulating region corresponding to the position of the electrode and substantially on the same level as the electrical contact. The insulating region can also be formed on a different level from the electrical contact as required.
本申请案尚揭露其他数个实施例。其一,于光电半导体装置中,界面层包含一波长转换材料。其二,光电半导体装置包含一无源发光层,形成于半导体系统相对于电性接点的一表面,其中无源发光层可发出一输出光以回应产自于半导体系统的一输入光,且输出光与输入光具有相异的波长或频谱。其三,光电半导体装置包含一光摘出面,其形成于光电半导体装置的一主要出光面之上,此光摘出面选自由粗糙面、规则性的凸出与凹陷结构、不规则性的凸出与凹陷结构、与光子晶体构成的组。This application still discloses several other embodiments. First, in an optoelectronic semiconductor device, the interface layer includes a wavelength conversion material. Second, the optoelectronic semiconductor device includes a passive light-emitting layer formed on a surface of the semiconductor system opposite to the electrical contact, wherein the passive light-emitting layer can emit an output light in response to an input light generated from the semiconductor system, and output The light has a different wavelength or spectrum than the input light. Third, the optoelectronic semiconductor device includes a light extraction surface, which is formed on a main light output surface of the optoelectronic semiconductor device, and the light extraction surface is selected from rough surfaces, regular protrusions and depressions, and irregular protrusions. A group consisting of a concave structure and a photonic crystal.
附图说明 Description of drawings
图1A~1C显示依据本发明一实施例的光电半导体装置的制造流程;1A-1C show the manufacturing process of an optoelectronic semiconductor device according to an embodiment of the present invention;
图2A~2D显示依据本发明另一实施例的光电半导体装置的剖面图;2A to 2D show cross-sectional views of an optoelectronic semiconductor device according to another embodiment of the present invention;
图3A与3B显示依据本发明一实施例的光电半导体装置;3A and 3B show an optoelectronic semiconductor device according to an embodiment of the present invention;
图4A与4B显示依据本发明另一实施例具有绝缘区的光电半导体装置;4A and 4B show an optoelectronic semiconductor device with insulating regions according to another embodiment of the present invention;
图5显示依据本发明一实施例具有绝缘区的光电半导体装置;5 shows an optoelectronic semiconductor device with insulating regions according to an embodiment of the invention;
图6A~6C显示依据本发明再一实施例的光电半导体装置;6A-6C show an optoelectronic semiconductor device according to yet another embodiment of the present invention;
图7显示依据本发明一实施例具有无源发光层的光电半导体装置;7 shows an optoelectronic semiconductor device with a passive light-emitting layer according to an embodiment of the present invention;
图8显示依据本发明一实施例具有双反射体的光电半导体装置;FIG. 8 shows an optoelectronic semiconductor device with double reflectors according to an embodiment of the invention;
图9显示依据本发明一实施例具有结构化出光面的光电半导体装置;FIG. 9 shows an optoelectronic semiconductor device with a structured light-emitting surface according to an embodiment of the present invention;
图10显示依据本发明一实施例的光电半导体装置;以及Figure 10 shows an optoelectronic semiconductor device according to an embodiment of the present invention; and
图11显示依据本发明另一实施例的光电半导体装置。FIG. 11 shows an optoelectronic semiconductor device according to another embodiment of the invention.
附图标记说明Explanation of reference signs
10 光电半导体装置 17 第二接合层10 Opto-
11 暂时基板 18 电性接点11
12 半导体系统 18’ 电性接点12 Semiconductor system 18’ electrical contacts
13 反射体 19A 绝缘区13
13A 下反射体 19B 绝缘区13A
13B 上反射体 20A 第一中介层13B
14 第一接合层 20B 第二中介层14
15 界面层 21 波长转换材料15
15A 上界面层 21A 波长转换材料15A
151 无源发光层 21B 波长转换材料151 Passive light-emitting
152 连接层 22 上电极152
153 空区 23 下电极153
16 导电体 24 电性接点16
具体实施方式 Detailed ways
以下配合附图说明本发明的实施例。Embodiments of the present invention are described below with reference to the accompanying drawings.
如图1A所示,首先形成半导体系统12于暂时基板11上,半导体系统12是例如发光二极管(Light-Emitting Diode;LED)、激光二极管(Laser Diode;LD)、太阳能电池(Solar Cell)等可以进行光电能转换的半导体装置。然而,于本说明书中“半导体系统”一词并不表示该系统内所有次系统或单元皆为半导体材料,其他非半导体的材料,例如:金属、氧化物、绝缘体等皆可视需要整合于此半导体系统之中。As shown in FIG. 1A, firstly, a
以发光二极管为例,其结构包括至少二层具有相异电性、极性或掺杂的半导体层、以及位于此二半导体层间的发光层(Light-Emitting Layer),或称为有源层(Active Layer)。发光二极管的发光频谱可以藉由改变构成材料的成分进行调整。目前一般使用的材料是如磷化铝镓铟(AlGaInP)系列、氮化铝镓铟(AlGaInN)系列、氧化锌(ZnO)系列等。此外,发光层结构是如:单异质结构(single heterostructure;SH)、双异质结构(doubleheterostructure;DH)、双侧双异质结构(double-side double heterostructure;DDH)、或多层量子井(multi-quantum well;MQW),再者,调整量子井的对数亦可以改变发光波长。暂时基板11用以成长或承载半导体系统12,适用的材料包含但不限于锗(Ge)、砷化镓(GaAs)、铟化磷(InP)、蓝宝石(Sapphire)、碳化硅(SiC)、硅(Si)、铝酸锂(LiAlO2)、氧化锌(ZnO)、氮化镓(GaN)、玻璃、复合材料(Composite)、钻石、CVD钻石、与类金刚石碳(Diamond-Like Carbon;DLC)等。Taking a light-emitting diode as an example, its structure includes at least two semiconductor layers with different electrical properties, polarity or doping, and a light-emitting layer (Light-Emitting Layer) between the two semiconductor layers, or called an active layer. (Active Layer). The emission spectrum of LEDs can be adjusted by changing the composition of the constituent materials. Materials generally used at present are such as aluminum gallium indium phosphide (AlGaInP) series, aluminum gallium indium nitride (AlGaInN) series, zinc oxide (ZnO) series, and the like. In addition, the light-emitting layer structure is such as: single heterostructure (single heterostructure; SH), double heterostructure (double heterostructure; DH), double-side double heterostructure (double-side double heterostructure; DDH), or multilayer quantum wells (multi-quantum well; MQW), moreover, adjusting the logarithm of the quantum well can also change the emission wavelength. The
于暂时基板11上形成半导体系统12后,可以选择性地形成反射体13以反射直接或间接来自于发光层的光线朝向特定方向。反射体13是如银(Ag)、铝(Al)、金(Au)、铜(Cu)、钛(Ti)等金属、或分散式布拉格反射层(Distributed Bragg Reflector;DBR)。反射体13可以覆盖半导体系统12表面的全部或部分。After the
形成反射体13后形成第一接合层14用以与后述的装置或结构相接。第一接合层14的材料或结构取决于采用的结合技术。若使用金属接合(MetalBonding)技术,第一接合层14的材料可采用铟(In)、钯(Pd)、金(Au)、铬(Cr)、或前述材料的合金;若使用胶合(Glue Bonding)技术,第一接合层14的材料可采用环氧树脂(Epoxy)、苯并环丁烯(benzocyclobutene;BCB)、SU-8光致抗蚀剂;若使用共熔接合(Eutectic Bonding),第一接合层14的材料包含但不限于金(Au)、锡(Sn)、铟(In)、锗(Ge)、锌(Zn)、铍(Be)、与硅(Si)。After the
接着,使用感应耦合等离子体(Inductively Coupled Plasma;ICP)或其他适用的干蚀刻技术蚀刻半导体系统12以及其上所覆盖的层直至暴露暂时基板11的部分,例如移除图1A中半导体系统12及上方叠层13与14的周缘部分;或者,至少蚀刻至发光二极管中发光层的位置。再使用旋涂法(SpinCoating)形成一界面层(Interfacial Layer)15覆盖于半导体系统12与其上所覆盖的层。例如,于图1A中,界面层15覆盖于半导体系统12、反射体13与第一接合层14侧表面、以及第一接合层14的上表面。界面层15介于半导体系统12与环境介质之间,其可选用的材料如:环氧树脂(Epoxy)与苯并环丁烯(benzocyclobutene;BCB)等绝缘材料。Next, use Inductively Coupled Plasma (Inductively Coupled Plasma; ICP) or other applicable dry etching techniques to etch the
另准备导电体16,并于其上形成第二接合层17以及电性接点18。导电体16用以承载半导体系统12并作为电流通道,通常其应具有足够的强度以形成稳固的结构,其材料是如锗(Ge)、砷化镓(GaAs)、铟化磷(InP)、碳化硅(SiC)、硅(Si)、铝酸锂(LiAlO2)、氧化锌(ZnO)、氮化镓(GaN)、铜(Cu)、与铝(Al)等导电材料。导电体16部分可如图1A所示般为一个独立结构,并与半导体系统12相关结构以特定方式结合之。另一方面,导电体16亦可以于电性接点18在半导体系统12部分上完成后再以电镀法、接合法、或沉积法等形成之。In addition, the
第二接合层17的材料选择可以参照上述第一接合层14的材料,再者,第一接合层14与第二接合层17的材料可以相异亦可以相同。此外,除各附图中的态样,第一接合层14与第二接合层17亦可择一使用。电性接点18的材料为如铟(In)、锡(Sn)、铝(Al)、银(Ag)、金(Au)、金/铍(Au/Be)、金/锗(Au/Ge)、金/锌(Au/Zn)、镍(Ni)、铅(Pb)、铅/锡(Pb/Sn)、钯(Pd)、铂(Pt)、锌(Zn)、锗(Ge)、钛(Ti)、铜(Cu)、铬(Cr)等。此外,若单一种材料或结构即可以满足导电体16、第二接合层17、与电性接点18中三者或任二者的规格需求,则此些相应部份可以整合为单一单元。The material selection of the
完成上述准备后,使界面层15与第二接合层17相接。此时,电性接点18会挤压并穿入界面层15,并至少有部分电性接点18会穿过界面层15后与第一接合层14电接触,如图1B所示。After the above preparations are completed, the
接着,使用湿蚀刻、干蚀刻、机械研磨、或激光移除等方式移除暂时基板11。之后,分别形成上电极22与下电极23于半导体系统12与导电体16之上。然而,下电极23亦可以于半导体系统12与导电体16结合前形成在导电体16之上。此外,导电体16若具备做为电极的必要特性,其本身亦可充作电极,如此,装置10则不需另形成一独立的下电极23。倘若光电半导体装置10尚属晶片(Wafer)等级,则晶片需要经过切割后方形成单一的光电半导体装置10。上述多个步骤所产生的结构如图1C所示。形成电极22与电极23的至少一种材料可以分别为铟(In)、锡(Sn)、铝(Al)、银(Ag)、金(Au)、金/铍(Au/Be)叠层、金/锗(Au/Ge)叠层、金/锌(Au/Zn)叠层、镍(Ni)、钯(Pd)、铂(Pt)、锌(Zn)、锗(Ge)、钛(Ti)、铜(Cu)、铬(Cr)等。Next, the
界面层15除介入第一接合层14与第二接合层17间提供结合功能外,尚覆盖半导体系统12的侧表面,而可以保护系统12在后续工艺中不被损伤。此外,若界面层15的材料的折射系数介于半导体系统12与环境介质间,源自于半导体系统12的光线将较因此不易因折射系数间的大幅变化遭遇严重的全反射。The
于其他实施例中,藉由增加电性接点18的长度或挤压界面层15以缩减其厚度,使电性接点18可进一步穿入第一接合层14中。如图2A所示,电性接点18已贯穿界面层15并深入第一接合层14内,但尚未触及反射体13,并且第一接合层14与第二接合层17间仍存在有界面层15。此时,若电性接点18与第一接合层14皆采用适当的材料,其二者可以形成金属接合或共熔接合。In other embodiments, the
如图2B所示,电性接点18已贯穿界面层15并深入第一接合层14内,但尚未触及反射体13,并且第一接合层14与第二接合层17藉由推挤界面层15而彼此接触。此时,若第一接合层14与第二接合层17皆采用适当的材料,其二者可以形成金属接合或共熔接合;而若电性接点18与第一接合层14也皆采用适当的材料,其二者亦可以形成金属接合或共熔接合。As shown in FIG. 2B , the
如图2C所示,电性接点18已贯穿界面层15并深入第一接合层14内,且触及导电性的反射体13。另一方面,第一接合层14与第二接合层17则藉由推挤界面层15而彼此接触。此时,若第一接合层14与第二接合层17皆采用适当的材料,其二者可以形成金属接合或共熔接合;而若电性接点18与第一接合层14也皆采用适当的材料,其二者亦可以形成金属接合或共熔接合。此外,于本实施例中,由于电性接点18已与反射体13形成电接触,因此,第一接合层14可以采用适于胶合技术的绝缘材料。As shown in FIG. 2C , the
如图2D所示的另一实施例,其中电性接点18已贯穿界面层15并深入第一接合层14内,且触及导电性的反射体13。但是,在本例中,第一接合层14与第二接合层17间因为存在有界面层15而未直接接触。此时,若电性接点18与第一接合层14皆采用适当的材料,其二者可以形成金属接合或共熔接合。此外,于本实施例中,由于电性接点18已与反射体13形成电接触,因此,第一接合层14亦可以采用适于胶合技术的绝缘材料。图2A~2D中的各种变形经过适当的调整可以应用于本发明的各个实施例中。As another embodiment shown in FIG. 2D , the
此外,上述各实施例中的第一接合层14若选用反射性材料,例如:金(Au)与银(Ag),则反射体13于装置10中即非必要。此时,反射功能与接合功能便由单一结构,例如第一接合层提供。In addition, if the
配置电性接点18的其中一个考量点是如何在半导体系统12内形成均匀的电流密度。一般情况下,电流是自电极22注入半导体系统12内,并依循最短的电路径由电极23流出,因此,位于电极22下方的半导体系统12的区域通常具有较高的电流密度,而形成所谓电流拥挤(Current Crowding)效应。换言之,电极22下方的区域将产生较多的光子。然而,这些光子通常为电极22所吸收、反射、或散射而无法有效利用。因此,如图3A所示的光电半导体装置10,于电极22下方并不配置电性接点18而形成绝缘区19A。藉由绝缘区19A导致的电流阻挡(current blocking)效应,来自于电极22的电流得以于半导体系统12内避开电极22下方区域而向外分散后再流入电性接点18内。所以,半导体系统12内将有更多区域得以进行光电转换。绝缘区19A的材料可以与界面层15相同或相异,并且,其构成并不需全为绝缘材料,只要其结构可以阻绝电流流过绝缘区19A或形成大于电性接点18的电阻即可,例如:使相应于电极22位置处的电性接点18高度低于其他电性接点的高度、或形成一绝缘层于相应于电极22位置处的电性接点18与上方导电材料之间。One of the considerations for configuring the
图3B是图3A中AA线段的断面图。于本图中,除绝缘区19A外,电性接点18以阵列形式排列于界面层15内,并且,各个电性接点18间的间距可以调整为相同、相异、呈等比级数变化、无规则性变化、变周期性变化、定周期性变化、或拟周期性(quasi-periodicity)变化。绝缘区19A的位置与形状相应于电极22的位置与形状,其面积可以小于、等于、或大于电极22的面积。电性接点18的形状并不限于矩形,亦可以为圆形、椭圆形、三角形、六角形、不规则形、或以上形状的组合。Fig. 3B is a cross-sectional view of line AA in Fig. 3A. In this figure, in addition to the
再者,于本发明的另一实施例中,如图4A与图4B所示,电性接点18’亦可以为连续形式,其中图4B是图4A中BB线段的断面图。在与前述实施例相同的考量下,绝缘区19A形成于电性接点18’中相应于电极22的位置。于本实施例中,连续式电性接点18’与第一接合层14相接的面积大于分散式电性接点18与第一接合层14相接的面积,换言之,在本例中,电性接点18’与第一接合层14间将存在较少量的界面层15材料。Moreover, in another embodiment of the present invention, as shown in FIG. 4A and FIG. 4B, the electrical contact 18' can also be in a continuous form, wherein FIG. 4B is a cross-sectional view of line BB in FIG. 4A. Under the same consideration as the previous embodiment, the
于图3A~图4B中,绝缘区19A虽与电性接点18形成于大致相同的水平面,然而本发明并不限于此。于电极22与电极23间、或电极22与导电体16间,相应于电极22位置的任一高度皆可以形成一个可以造成电流阻挡效应的结构。In FIGS. 3A-4B , although the
于本发明的另一实施例中,为形成较佳的电流分散表现,一绝缘区19B更形成于绝缘区19A上方的反射体13与半导体系统12之间。绝缘区19B可以与界面层15相同或相异,并且,其构成并不需全为绝缘材料,只要其结构可以阻绝或减少电流流过该区域即可。此外,绝缘区19A于本例中并不需与绝缘区19B一同存在,亦即绝缘区19B下方仍可以存在电性接点18。再者,绝缘区19B的上表面并不限于平面、粗造面、或结构化表面,亦可如图5中的脊型面。若此脊型面具有反射性,则来自于半导体系统12的光线将被脊形面向外反射,因此,光线被电极22吸收的几率将降低。In another embodiment of the present invention, an
本发明的另数个实施例如图6A~图6C所示。如图6A所示的光电半导体装置10的界面层15中混入波长转换材料21。波长转换材料21可以回应半导体系统12所产生的具有一种波长的电磁波而产生另一种波长的电磁波,其成分是如萤光粉或染料。萤光粉需具有适当的颗粒直径以达到较佳的发光表现,较佳的颗粒直径约5μm以下,相关专利请参阅美国专利第6,245,259号。若将可产生蓝光波长范围光线的半导体系统12搭配钇铝石榴石(Yttriumaluminium garnet;YAG)、铽铝石榴石(Terbium Aluminum Garnet;TAG)、硅酸盐类(Silicate-based)、或氮氧化物(oxynitride)等萤光粉,可以使光电半导体装置10产生白光。Several other embodiments of the present invention are shown in FIGS. 6A-6C . The
如图6B所示,一混有波长转换材料21的上界面层15A形成于半导体系统12之上。上界面层15A的材料可参考上述界面层15所使用的材料。如图6C所示,覆盖半导体系统12外围的界面层15与上界面层15A内皆混有波长转换材料21,且此二层内的波长转换材料21可以相同或相异。再者,上界面层15A可以具有特定图案以界定波长转换材料的分布范围。如图所示的空区153即为具有与上界面层15A相异材料的区域,其中可能为空气、绝缘物、其它种类萤光粉、或如氧化铟锡(indium tin oxide;ITO)等的透明导体。空区153中的导体若与电极22相连将有助于电流均匀分散至半导体系统22。As shown in FIG. 6B , an
如图7所示的光电半导体装置10的上界面层15A至少包含一无源发光层151与一连接层152。无源发光层151是如块状萤光粉体、III-V族半导体层、与II-VI族半导体层等。连接层152的材料是至少包含聚酰亚胺(PI)、苯并环丁烯、过氟环丁烯(PFCB)、与环氧树酯(Epoxy)等有机材料。无源发光层151可因半导体系统12的输入光而产生输出光,且此输入光与输出光间具有不同的波长或频谱。As shown in FIG. 7 , the
于本发明的另一实施例中,如图8所示,光电半导体装置10中包含一下反射体13A与一上反射体13B。此二反射体的材料可以分别参照上述反射体13的材料。半导体系统12产生的光线可为此二反射体所反射而射向界面层15。此外,射出光电半导体装置10的光线若被其他外界物体反射朝向半导体系统12的上表面则有机会被上反射体13B向外反射。In another embodiment of the present invention, as shown in FIG. 8 , the
如图9所示的另一实施例的光电半导体装置10具有结构化或粗糙的外表面。此结构化或粗糙的外表面有破坏光线在结构与环境介质界面处全反射的功能,进而得以增加光电半导体装置10的光摘出效率。结构化或粗糙的外表面可以形成在半导体系统12、界面层15、或其二者的外表面。粗糙面的粗糙度应以可以达到提高光摘出效率的程度为佳。结构化表面可为规则性或不规则性的凸出与凹陷结构或光子晶体(Photonic Crystal)结构。A further exemplary embodiment of an
本发明的又一实施例如图10所示。本例的光电半导体装置10中的半导体系统12与导电体16间藉由第一中介层20A、电性接点18、与第二中介层20B电相连。在制造过程当中,电性接点18可预先覆盖第二中介层20B后再与形成有第一中介层20A的半导体系统12相连接。第一中介层20A与第二中介层20B将藉由挤压界面层15而彼此接触。构成界面层15的材料有机会残留在电性接点18间的沟渠之中。第一中介层20A与第二中介层20B不仅形成欧姆接触更形成稳固的物理性接触。此二中介层的材料分别为钛(Ti)或铬(Cr)。Yet another embodiment of the present invention is shown in FIG. 10 . The
本发明的一实施例如图11所示。本例的光电半导体装置10中的电性接点24为一个如粗糙面等的不规则结构。第一中介层20A与第二中介层20B的材料如前述。本例中,第二中介层20B覆盖于电性接点24之上并且未将其完全平坦化。第二中介层20B的至少部分突出处将穿过界面层15而与第一中介层20A接触。构成界面层15的材料有机会残留在粗糙性的电性接点24间的低凹处中而有助于第一中介层20A与第二中介层20B的连接。An embodiment of the present invention is shown in FIG. 11 . The
虽然本发明已说明如上,但是其并非用以限制本发明的范围、实施顺序、或使用的材料与工艺方法。对于本发明所作的各种修饰与变更,皆不脱离本发明的精神与范围。Although the present invention has been described above, it is not intended to limit the scope, implementation sequence, or used materials and process methods of the present invention. Various modifications and changes made to the present invention do not depart from the spirit and scope of the present invention.
Claims (20)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 200710306612 CN101471388A (en) | 2007-12-28 | 2007-12-28 | Optoelectronic semiconductor device |
| CN201310085002.0A CN103219415B (en) | 2007-12-28 | 2007-12-28 | Optoelectronic semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 200710306612 CN101471388A (en) | 2007-12-28 | 2007-12-28 | Optoelectronic semiconductor device |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310085002.0A Division CN103219415B (en) | 2007-12-28 | 2007-12-28 | Optoelectronic semiconductor device and manufacturing method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN101471388A true CN101471388A (en) | 2009-07-01 |
Family
ID=40828630
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 200710306612 Pending CN101471388A (en) | 2007-12-28 | 2007-12-28 | Optoelectronic semiconductor device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101471388A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116316055A (en) * | 2023-05-16 | 2023-06-23 | 苏州长光华芯光电技术股份有限公司 | Semiconductor laser contact electrode and preparation method thereof |
-
2007
- 2007-12-28 CN CN 200710306612 patent/CN101471388A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116316055A (en) * | 2023-05-16 | 2023-06-23 | 苏州长光华芯光电技术股份有限公司 | Semiconductor laser contact electrode and preparation method thereof |
| CN116316055B (en) * | 2023-05-16 | 2023-09-01 | 苏州长光华芯光电技术股份有限公司 | Semiconductor laser contact electrode and preparation method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11245060B2 (en) | Optoelectronic semiconductor device | |
| US10403796B2 (en) | Light emitting device and method of fabricating the same | |
| CN101976718B (en) | Optoelectronic semiconductor chip | |
| US7842547B2 (en) | Laser lift-off of sapphire from a nitride flip-chip | |
| CN103222073B (en) | Light-emitting diode chip, light-emitting diode package structure, and method for forming the above | |
| CN111613708B (en) | Method for manufacturing a top-emitting semiconductor light emitting device | |
| US20110049546A1 (en) | high reflectivity mirrors and method for making same | |
| EP2973755B1 (en) | Semiconductor structure comprising a porous reflective contact | |
| CN101868866A (en) | Improved Light Emitting Diode Structure | |
| CN107078195B (en) | Light emitting device on submount with reflective layer | |
| CN103985800B (en) | Semiconductor light emitting device | |
| US20100051970A1 (en) | Planarized led with optical extractor | |
| CN101436635A (en) | Light emitting device and method for manufacturing the same | |
| US8384099B2 (en) | GaN based LED having reduced thickness and method for making the same | |
| CN210897328U (en) | LED chip and light-emitting module | |
| KR100530986B1 (en) | Light emitting diode having vertical electrode structure, manufacturing method of the same and etching method of sapphire substrate | |
| US8829560B2 (en) | Optoelectronic semiconductor chip and method for fabricating an optoelectronic semiconductor chip | |
| CN103219415B (en) | Optoelectronic semiconductor device and manufacturing method thereof | |
| CN101471388A (en) | Optoelectronic semiconductor device | |
| KR100629929B1 (en) | Light Emitting Diode Having Vertical Electrode Structure | |
| US20100051971A1 (en) | High efficiency light emitting articles and methods of forming the same | |
| KR100557855B1 (en) | Light emitting diodes, manufacturing method thereof and etching method of sapphire substrate | |
| KR20060134490A (en) | Flip Chip Nitride Semiconductor Light Emitting Diode and Manufacturing Method Thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20090701 |