[go: up one dir, main page]

CN101471388A - Optoelectronic semiconductor device - Google Patents

Optoelectronic semiconductor device Download PDF

Info

Publication number
CN101471388A
CN101471388A CN 200710306612 CN200710306612A CN101471388A CN 101471388 A CN101471388 A CN 101471388A CN 200710306612 CN200710306612 CN 200710306612 CN 200710306612 A CN200710306612 A CN 200710306612A CN 101471388 A CN101471388 A CN 101471388A
Authority
CN
China
Prior art keywords
semiconductor device
semiconductor system
optoelectronic semiconductor
electrical contact
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200710306612
Other languages
Chinese (zh)
Inventor
吕志强
三晓蕙
彭韦智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to CN 200710306612 priority Critical patent/CN101471388A/en
Priority to CN201310085002.0A priority patent/CN103219415B/en
Publication of CN101471388A publication Critical patent/CN101471388A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Led Devices (AREA)

Abstract

本发明的一个实施例揭露一种光电半导体装置,其包含可以在光能与电能间进行转换的半导体系统、形成于此半导体系统的至少二个表面上的界面层、导电体、及将半导体系统与导电体电连接的电性接点。

Figure 200710306612

One embodiment of the present invention discloses an optoelectronic semiconductor device, which includes a semiconductor system capable of converting light energy into electrical energy, an interface layer formed on at least two surfaces of the semiconductor system, a conductor, and an electrical contact electrically connecting the semiconductor system and the conductor.

Figure 200710306612

Description

光电半导体装置 Optoelectronic semiconductor device

技术领域 technical field

本发明关于一种光电半导体装置及其制作方法,尤其关于一种具有以导体与非导体为材料所形成的结合构造的光电半导体装置。The present invention relates to an optoelectronic semiconductor device and its manufacturing method, in particular to an optoelectronic semiconductor device with a combined structure formed of conductors and non-conductors.

背景技术 Background technique

习知发光二极管的一种通常结构包含成长基板、n型半导体层、p型半导体层、与位于此二半导体层间的发光层。用以反射源自于发光层光线的反射层也会选择性地形成于此结构中。于某些状况下,为提高发光二极管的光学、电学、及力学特性的至少其一,一种经适当选择后的材料会用以替代成长基板以作为承载除成长基板外的其他结构的载体,例如:金属或硅会用于取代成长氮化物的蓝宝石基板。成长基板可使用蚀刻、研磨、或激光移除等方式移除。此外,透光氧化物亦可用于发光二极管结构中以提升电流分散表现。A common structure of a conventional LED includes a growth substrate, an n-type semiconductor layer, a p-type semiconductor layer, and a light-emitting layer between the two semiconductor layers. A reflective layer for reflecting light from the light-emitting layer is also optionally formed in the structure. In some cases, in order to improve at least one of the optical, electrical, and mechanical properties of the light-emitting diode, an appropriately selected material will be used to replace the growth substrate as a carrier for carrying other structures except the growth substrate, For example: metal or silicon will be used to replace the sapphire substrate on which the nitride is grown. The growth substrate can be removed by etching, grinding, or laser removal. In addition, light-transmitting oxides can also be used in LED structures to improve current spreading performance.

用以取代的载体有数种方式与形成于成长基板上的结构形成欧姆接触。其中一种相关资料可以参考E.Fred Schubert,“Light-Emitting Diodes”,第9.6章,2006年。此外,发光二极管成品自晶片上切割后形成。在切割过程中如何使用适当方式保护半导体层亦为一项受到关注的议题。在切割前于半导体层的侧表面形成保护层(Passivation Layer)为一种常见的防护方式。然而,用以形成保护层的相关步骤通常必须仔细控制以避免对二极管性能造成负面影响。There are several ways for the substituting carrier to make ohmic contact with the structures formed on the growth substrate. One of the related materials can refer to E. Fred Schubert, "Light-Emitting Diodes", Chapter 9.6, 2006. In addition, finished LEDs are formed after dicing from wafers. How to use appropriate methods to protect the semiconductor layer during the dicing process is also an issue of concern. It is a common protection method to form a passivation layer on the side surface of the semiconductor layer before cutting. However, the associated steps to form the protective layer must generally be carefully controlled to avoid negatively affecting diode performance.

发明内容 Contents of the invention

依照本发明一实施例的光电半导体装置包含一可以在光能与电能间进行转换的半导体系统、一形成于此半导体系统的至少二个表面上的界面层、一导电体、及一电性接点。An optoelectronic semiconductor device according to an embodiment of the present invention includes a semiconductor system capable of converting light energy to electrical energy, an interface layer formed on at least two surfaces of the semiconductor system, an electrical conductor, and an electrical contact .

此外,本发明的光电半导体装置更具有如下数个较佳实施例。前述的至少二个表面包含一个侧表面以及一个面向导电体的表面。导电体较佳地具有足以支撑半导体系统的强度,例如:导电体的厚度或刚性大于半导体系统。更佳地,导电体为非半导体材料。再者,电性接点穿过该界面层,并使半导体系统与导电体电连接。界面层的折射系数介于半导体系统与环境介质之间。In addition, the optoelectronic semiconductor device of the present invention has several preferred embodiments as follows. The aforementioned at least two surfaces include a side surface and a surface facing the conductor. The conductive body preferably has sufficient strength to support the semiconductor system, for example, the thickness or rigidity of the conductive body is greater than that of the semiconductor system. More preferably, the conductor is a non-semiconductor material. Furthermore, electrical contacts pass through the interface layer and electrically connect the semiconductor system with the electrical conductor. The interface layer has a refractive index between the semiconductor system and the ambient medium.

此外,于本发明的另数个实施例中,光电半导体装置更可有以下数种变形:一反射体可形成于半导体系统与导电体间,并可反射源自于半导体系统的光线。一第一接合层与一第二接合层可分别形成于电性接点的相反侧,并彼此电连接。一第一接合层与半导体系统电连接,且至少部份电性接点穿入第一接合层。一第一接合层与半导体系统电连接并反射源自于半导体系统的光线。In addition, in several other embodiments of the present invention, the optoelectronic semiconductor device can have several modifications as follows: a reflector can be formed between the semiconductor system and the conductor, and can reflect light from the semiconductor system. A first bonding layer and a second bonding layer can be respectively formed on opposite sides of the electrical contacts and electrically connected to each other. A first bonding layer is electrically connected to the semiconductor system, and at least part of the electrical contacts penetrate the first bonding layer. A first bonding layer is electrically connected with the semiconductor system and reflects light from the semiconductor system.

于另二个实施例中,其一,本发明的光电半导体装置更包含一第一接合层,是与半导体系统电连接;及一反射体,位于第一接合层与半导体系统之间,并反射源自于半导体系统的光线。其二,光电半导体装置包含一反射体,是位于电性接点与半导体系统之间,且电性接点与反射体接触。In another two embodiments, one, the optoelectronic semiconductor device of the present invention further comprises a first bonding layer, which is electrically connected to the semiconductor system; and a reflector, which is located between the first bonding layer and the semiconductor system, and reflects Light originating from semiconductor systems. Second, the optoelectronic semiconductor device includes a reflector, which is located between the electrical contact and the semiconductor system, and the electrical contact is in contact with the reflector.

上述光电半导体装置的各实施例中,电性接点间的间距变化规则选自由定周期性、变周期性、拟周期性、等比级数、及无规则性所构成的组。此外。电性接点的形状选自由矩形、圆形、椭圆形、三角形、六角形、不规则形、及以上形状的组合。再者,电性接点更可包含一粗糙面。In each embodiment of the optoelectronic semiconductor device described above, the variation rule of the spacing between the electrical contacts is selected from the group consisting of definite periodicity, variable periodicity, quasi-periodicity, proportional series, and randomness. also. The shape of the electrical contact is selected from rectangle, circle, ellipse, triangle, hexagon, irregular shape, and the combination of the above shapes. Furthermore, the electrical contact can further include a rough surface.

于本发明的又数个实施例中更揭露以下数种变化。光电半导体装置更包含一第一中介层,与半导体系统电连接;及一第二中介层,形成于电性接点之上,并位于第一中介层与该电性接点之间。光电半导体装置更包含一电极,形成于半导体系统之上;及一绝缘区,相应于电极的位置,且大体上与电性接点位于同一水平面。此绝缘区亦可视需要形成于与电性接点不同的水平面。The following changes are further disclosed in several embodiments of the present invention. The optoelectronic semiconductor device further includes a first interposer electrically connected with the semiconductor system; and a second interposer formed on the electrical contact and between the first interposer and the electrical contact. The optoelectronic semiconductor device further includes an electrode formed on the semiconductor system; and an insulating region corresponding to the position of the electrode and substantially on the same level as the electrical contact. The insulating region can also be formed on a different level from the electrical contact as required.

本申请案尚揭露其他数个实施例。其一,于光电半导体装置中,界面层包含一波长转换材料。其二,光电半导体装置包含一无源发光层,形成于半导体系统相对于电性接点的一表面,其中无源发光层可发出一输出光以回应产自于半导体系统的一输入光,且输出光与输入光具有相异的波长或频谱。其三,光电半导体装置包含一光摘出面,其形成于光电半导体装置的一主要出光面之上,此光摘出面选自由粗糙面、规则性的凸出与凹陷结构、不规则性的凸出与凹陷结构、与光子晶体构成的组。This application still discloses several other embodiments. First, in an optoelectronic semiconductor device, the interface layer includes a wavelength conversion material. Second, the optoelectronic semiconductor device includes a passive light-emitting layer formed on a surface of the semiconductor system opposite to the electrical contact, wherein the passive light-emitting layer can emit an output light in response to an input light generated from the semiconductor system, and output The light has a different wavelength or spectrum than the input light. Third, the optoelectronic semiconductor device includes a light extraction surface, which is formed on a main light output surface of the optoelectronic semiconductor device, and the light extraction surface is selected from rough surfaces, regular protrusions and depressions, and irregular protrusions. A group consisting of a concave structure and a photonic crystal.

附图说明 Description of drawings

图1A~1C显示依据本发明一实施例的光电半导体装置的制造流程;1A-1C show the manufacturing process of an optoelectronic semiconductor device according to an embodiment of the present invention;

图2A~2D显示依据本发明另一实施例的光电半导体装置的剖面图;2A to 2D show cross-sectional views of an optoelectronic semiconductor device according to another embodiment of the present invention;

图3A与3B显示依据本发明一实施例的光电半导体装置;3A and 3B show an optoelectronic semiconductor device according to an embodiment of the present invention;

图4A与4B显示依据本发明另一实施例具有绝缘区的光电半导体装置;4A and 4B show an optoelectronic semiconductor device with insulating regions according to another embodiment of the present invention;

图5显示依据本发明一实施例具有绝缘区的光电半导体装置;5 shows an optoelectronic semiconductor device with insulating regions according to an embodiment of the invention;

图6A~6C显示依据本发明再一实施例的光电半导体装置;6A-6C show an optoelectronic semiconductor device according to yet another embodiment of the present invention;

图7显示依据本发明一实施例具有无源发光层的光电半导体装置;7 shows an optoelectronic semiconductor device with a passive light-emitting layer according to an embodiment of the present invention;

图8显示依据本发明一实施例具有双反射体的光电半导体装置;FIG. 8 shows an optoelectronic semiconductor device with double reflectors according to an embodiment of the invention;

图9显示依据本发明一实施例具有结构化出光面的光电半导体装置;FIG. 9 shows an optoelectronic semiconductor device with a structured light-emitting surface according to an embodiment of the present invention;

图10显示依据本发明一实施例的光电半导体装置;以及Figure 10 shows an optoelectronic semiconductor device according to an embodiment of the present invention; and

图11显示依据本发明另一实施例的光电半导体装置。FIG. 11 shows an optoelectronic semiconductor device according to another embodiment of the invention.

附图标记说明Explanation of reference signs

10  光电半导体装置           17      第二接合层10 Opto-semiconductor device 17 Second bonding layer

11  暂时基板                 18      电性接点11 Temporary substrate 18 Electrical contacts

12  半导体系统               18’    电性接点12 Semiconductor system 18’ electrical contacts

13  反射体                   19A     绝缘区13 reflector 19A insulation area

13A 下反射体                 19B     绝缘区13A Lower reflector 19B Insulation area

13B 上反射体                 20A     第一中介层13B Upper reflector 20A First interposer

14  第一接合层               20B     第二中介层14 1st bonding layer 20B 2nd intermediary layer

15  界面层                   21      波长转换材料15 Interface layer 21 Wavelength conversion material

15A 上界面层                 21A     波长转换材料15A upper interface layer 21A wavelength conversion material

151 无源发光层               21B     波长转换材料151 Passive light-emitting layer 21B Wavelength conversion material

152 连接层                   22      上电极152 Connection layer 22 Upper electrode

153 空区                     23      下电极153 Empty area 23 Lower electrode

16  导电体                   24      电性接点16 conductors 24 electrical contacts

具体实施方式 Detailed ways

以下配合附图说明本发明的实施例。Embodiments of the present invention are described below with reference to the accompanying drawings.

如图1A所示,首先形成半导体系统12于暂时基板11上,半导体系统12是例如发光二极管(Light-Emitting Diode;LED)、激光二极管(Laser Diode;LD)、太阳能电池(Solar Cell)等可以进行光电能转换的半导体装置。然而,于本说明书中“半导体系统”一词并不表示该系统内所有次系统或单元皆为半导体材料,其他非半导体的材料,例如:金属、氧化物、绝缘体等皆可视需要整合于此半导体系统之中。As shown in FIG. 1A, firstly, a semiconductor system 12 is formed on a temporary substrate 11. The semiconductor system 12 is, for example, a light-emitting diode (Light-Emitting Diode; LED), a laser diode (Laser Diode; LD), a solar cell (Solar Cell), etc. A semiconductor device that converts photoelectric energy. However, the term "semiconductor system" in this specification does not mean that all subsystems or units in the system are semiconductor materials, and other non-semiconductor materials, such as metals, oxides, insulators, etc., can be integrated here as needed in semiconductor systems.

以发光二极管为例,其结构包括至少二层具有相异电性、极性或掺杂的半导体层、以及位于此二半导体层间的发光层(Light-Emitting Layer),或称为有源层(Active Layer)。发光二极管的发光频谱可以藉由改变构成材料的成分进行调整。目前一般使用的材料是如磷化铝镓铟(AlGaInP)系列、氮化铝镓铟(AlGaInN)系列、氧化锌(ZnO)系列等。此外,发光层结构是如:单异质结构(single heterostructure;SH)、双异质结构(doubleheterostructure;DH)、双侧双异质结构(double-side double heterostructure;DDH)、或多层量子井(multi-quantum well;MQW),再者,调整量子井的对数亦可以改变发光波长。暂时基板11用以成长或承载半导体系统12,适用的材料包含但不限于锗(Ge)、砷化镓(GaAs)、铟化磷(InP)、蓝宝石(Sapphire)、碳化硅(SiC)、硅(Si)、铝酸锂(LiAlO2)、氧化锌(ZnO)、氮化镓(GaN)、玻璃、复合材料(Composite)、钻石、CVD钻石、与类金刚石碳(Diamond-Like Carbon;DLC)等。Taking a light-emitting diode as an example, its structure includes at least two semiconductor layers with different electrical properties, polarity or doping, and a light-emitting layer (Light-Emitting Layer) between the two semiconductor layers, or called an active layer. (Active Layer). The emission spectrum of LEDs can be adjusted by changing the composition of the constituent materials. Materials generally used at present are such as aluminum gallium indium phosphide (AlGaInP) series, aluminum gallium indium nitride (AlGaInN) series, zinc oxide (ZnO) series, and the like. In addition, the light-emitting layer structure is such as: single heterostructure (single heterostructure; SH), double heterostructure (double heterostructure; DH), double-side double heterostructure (double-side double heterostructure; DDH), or multilayer quantum wells (multi-quantum well; MQW), moreover, adjusting the logarithm of the quantum well can also change the emission wavelength. The temporary substrate 11 is used to grow or carry the semiconductor system 12. Applicable materials include but not limited to germanium (Ge), gallium arsenide (GaAs), indium phosphorus (InP), sapphire (Sapphire), silicon carbide (SiC), silicon (Si), lithium aluminate (LiAlO 2 ), zinc oxide (ZnO), gallium nitride (GaN), glass, composite material (Composite), diamond, CVD diamond, and diamond-like carbon (Diamond-Like Carbon; DLC) wait.

于暂时基板11上形成半导体系统12后,可以选择性地形成反射体13以反射直接或间接来自于发光层的光线朝向特定方向。反射体13是如银(Ag)、铝(Al)、金(Au)、铜(Cu)、钛(Ti)等金属、或分散式布拉格反射层(Distributed Bragg Reflector;DBR)。反射体13可以覆盖半导体系统12表面的全部或部分。After the semiconductor system 12 is formed on the temporary substrate 11, the reflector 13 can be selectively formed to reflect light directly or indirectly from the light-emitting layer toward a specific direction. The reflector 13 is metal such as silver (Ag), aluminum (Al), gold (Au), copper (Cu), titanium (Ti), or a distributed Bragg reflector (Distributed Bragg Reflector; DBR). The reflector 13 may cover all or part of the surface of the semiconductor system 12 .

形成反射体13后形成第一接合层14用以与后述的装置或结构相接。第一接合层14的材料或结构取决于采用的结合技术。若使用金属接合(MetalBonding)技术,第一接合层14的材料可采用铟(In)、钯(Pd)、金(Au)、铬(Cr)、或前述材料的合金;若使用胶合(Glue Bonding)技术,第一接合层14的材料可采用环氧树脂(Epoxy)、苯并环丁烯(benzocyclobutene;BCB)、SU-8光致抗蚀剂;若使用共熔接合(Eutectic Bonding),第一接合层14的材料包含但不限于金(Au)、锡(Sn)、铟(In)、锗(Ge)、锌(Zn)、铍(Be)、与硅(Si)。After the reflector 13 is formed, the first bonding layer 14 is formed to connect with devices or structures described later. The material or structure of the first bonding layer 14 depends on the bonding technique employed. If metal bonding (Metal Bonding) technology is used, the material of the first bonding layer 14 can be indium (In), palladium (Pd), gold (Au), chromium (Cr), or an alloy of the aforementioned materials; ) technology, the material of the first bonding layer 14 can be epoxy resin (Epoxy), benzocyclobutene (benzocyclobutene; BCB), SU-8 photoresist; if using eutectic bonding (Eutectic Bonding), the first A material of the bonding layer 14 includes but not limited to gold (Au), tin (Sn), indium (In), germanium (Ge), zinc (Zn), beryllium (Be), and silicon (Si).

接着,使用感应耦合等离子体(Inductively Coupled Plasma;ICP)或其他适用的干蚀刻技术蚀刻半导体系统12以及其上所覆盖的层直至暴露暂时基板11的部分,例如移除图1A中半导体系统12及上方叠层13与14的周缘部分;或者,至少蚀刻至发光二极管中发光层的位置。再使用旋涂法(SpinCoating)形成一界面层(Interfacial Layer)15覆盖于半导体系统12与其上所覆盖的层。例如,于图1A中,界面层15覆盖于半导体系统12、反射体13与第一接合层14侧表面、以及第一接合层14的上表面。界面层15介于半导体系统12与环境介质之间,其可选用的材料如:环氧树脂(Epoxy)与苯并环丁烯(benzocyclobutene;BCB)等绝缘材料。Next, use Inductively Coupled Plasma (Inductively Coupled Plasma; ICP) or other applicable dry etching techniques to etch the semiconductor system 12 and the layers covered thereon until a portion of the temporary substrate 11 is exposed, such as removing the semiconductor system 12 and the semiconductor system 12 in FIG. 1A Peripheral portions of the upper stacks 13 and 14; or, at least etched to the position of the light-emitting layer in the LED. Spin coating is then used to form an interfacial layer (Interfacial Layer) 15 covering the semiconductor system 12 and the layers covered thereon. For example, in FIG. 1A , the interface layer 15 covers the semiconductor system 12 , the side surfaces of the reflector 13 and the first bonding layer 14 , and the upper surface of the first bonding layer 14 . The interfacial layer 15 is between the semiconductor system 12 and the environment medium, and the material for the interface layer 15 may be insulating materials such as epoxy resin (Epoxy) and benzocyclobutene (benzocyclobutene; BCB).

另准备导电体16,并于其上形成第二接合层17以及电性接点18。导电体16用以承载半导体系统12并作为电流通道,通常其应具有足够的强度以形成稳固的结构,其材料是如锗(Ge)、砷化镓(GaAs)、铟化磷(InP)、碳化硅(SiC)、硅(Si)、铝酸锂(LiAlO2)、氧化锌(ZnO)、氮化镓(GaN)、铜(Cu)、与铝(Al)等导电材料。导电体16部分可如图1A所示般为一个独立结构,并与半导体系统12相关结构以特定方式结合之。另一方面,导电体16亦可以于电性接点18在半导体系统12部分上完成后再以电镀法、接合法、或沉积法等形成之。In addition, the conductor 16 is prepared, and the second bonding layer 17 and the electrical contacts 18 are formed thereon. The conductor 16 is used to carry the semiconductor system 12 and serve as a current channel. Generally, it should have sufficient strength to form a stable structure. The material is such as germanium (Ge), gallium arsenide (GaAs), indium phosphorus (InP), Conductive materials such as silicon carbide (SiC), silicon (Si), lithium aluminate (LiAlO 2 ), zinc oxide (ZnO), gallium nitride (GaN), copper (Cu), and aluminum (Al). The portion of the conductor 16 can be an independent structure as shown in FIG. 1A , and can be combined with related structures of the semiconductor system 12 in a specific manner. On the other hand, the conductor 16 can also be formed by electroplating, bonding, or deposition after the electrical contact 18 is completed on the semiconductor system 12 .

第二接合层17的材料选择可以参照上述第一接合层14的材料,再者,第一接合层14与第二接合层17的材料可以相异亦可以相同。此外,除各附图中的态样,第一接合层14与第二接合层17亦可择一使用。电性接点18的材料为如铟(In)、锡(Sn)、铝(Al)、银(Ag)、金(Au)、金/铍(Au/Be)、金/锗(Au/Ge)、金/锌(Au/Zn)、镍(Ni)、铅(Pb)、铅/锡(Pb/Sn)、钯(Pd)、铂(Pt)、锌(Zn)、锗(Ge)、钛(Ti)、铜(Cu)、铬(Cr)等。此外,若单一种材料或结构即可以满足导电体16、第二接合层17、与电性接点18中三者或任二者的规格需求,则此些相应部份可以整合为单一单元。The material selection of the second bonding layer 17 can refer to the material of the above-mentioned first bonding layer 14 , and the materials of the first bonding layer 14 and the second bonding layer 17 can be different or the same. In addition, in addition to the aspects shown in the drawings, the first bonding layer 14 and the second bonding layer 17 can also be used alternatively. The material of the electrical contact 18 is such as indium (In), tin (Sn), aluminum (Al), silver (Ag), gold (Au), gold/beryllium (Au/Be), gold/germanium (Au/Ge) , Gold/Zinc (Au/Zn), Nickel (Ni), Lead (Pb), Lead/Tin (Pb/Sn), Palladium (Pd), Platinum (Pt), Zinc (Zn), Germanium (Ge), Titanium (Ti), copper (Cu), chromium (Cr), etc. In addition, if a single material or structure can meet the specification requirements of three or any two of the conductor 16 , the second bonding layer 17 , and the electrical contact 18 , then these corresponding parts can be integrated into a single unit.

完成上述准备后,使界面层15与第二接合层17相接。此时,电性接点18会挤压并穿入界面层15,并至少有部分电性接点18会穿过界面层15后与第一接合层14电接触,如图1B所示。After the above preparations are completed, the interface layer 15 is brought into contact with the second bonding layer 17 . At this time, the electrical contact 18 will press and penetrate the interface layer 15 , and at least part of the electrical contact 18 will pass through the interface layer 15 and make electrical contact with the first bonding layer 14 , as shown in FIG. 1B .

接着,使用湿蚀刻、干蚀刻、机械研磨、或激光移除等方式移除暂时基板11。之后,分别形成上电极22与下电极23于半导体系统12与导电体16之上。然而,下电极23亦可以于半导体系统12与导电体16结合前形成在导电体16之上。此外,导电体16若具备做为电极的必要特性,其本身亦可充作电极,如此,装置10则不需另形成一独立的下电极23。倘若光电半导体装置10尚属晶片(Wafer)等级,则晶片需要经过切割后方形成单一的光电半导体装置10。上述多个步骤所产生的结构如图1C所示。形成电极22与电极23的至少一种材料可以分别为铟(In)、锡(Sn)、铝(Al)、银(Ag)、金(Au)、金/铍(Au/Be)叠层、金/锗(Au/Ge)叠层、金/锌(Au/Zn)叠层、镍(Ni)、钯(Pd)、铂(Pt)、锌(Zn)、锗(Ge)、钛(Ti)、铜(Cu)、铬(Cr)等。Next, the temporary substrate 11 is removed by wet etching, dry etching, mechanical grinding, or laser removal. After that, the upper electrode 22 and the lower electrode 23 are respectively formed on the semiconductor system 12 and the conductor 16 . However, the lower electrode 23 can also be formed on the conductor 16 before the semiconductor system 12 is combined with the conductor 16 . In addition, if the conductor 16 has the necessary characteristics as an electrode, it can also serve as an electrode. In this way, the device 10 does not need to form an independent lower electrode 23 . If the optoelectronic semiconductor device 10 is at the wafer level, the wafer needs to be diced to form a single optoelectronic semiconductor device 10 . The structure resulting from the multiple steps described above is shown in Figure 1C. At least one material forming the electrode 22 and the electrode 23 can be indium (In), tin (Sn), aluminum (Al), silver (Ag), gold (Au), gold/beryllium (Au/Be) laminated layers, Gold/germanium (Au/Ge) stack, gold/zinc (Au/Zn) stack, nickel (Ni), palladium (Pd), platinum (Pt), zinc (Zn), germanium (Ge), titanium (Ti ), copper (Cu), chromium (Cr), etc.

界面层15除介入第一接合层14与第二接合层17间提供结合功能外,尚覆盖半导体系统12的侧表面,而可以保护系统12在后续工艺中不被损伤。此外,若界面层15的材料的折射系数介于半导体系统12与环境介质间,源自于半导体系统12的光线将较因此不易因折射系数间的大幅变化遭遇严重的全反射。The interface layer 15 not only intervenes between the first bonding layer 14 and the second bonding layer 17 to provide a bonding function, but also covers the side surface of the semiconductor system 12 to protect the system 12 from being damaged in subsequent processes. In addition, if the refractive index of the material of the interface layer 15 is between the semiconductor system 12 and the ambient medium, the light originating from the semiconductor system 12 will be less likely to encounter severe total reflection due to large changes in the refractive index.

于其他实施例中,藉由增加电性接点18的长度或挤压界面层15以缩减其厚度,使电性接点18可进一步穿入第一接合层14中。如图2A所示,电性接点18已贯穿界面层15并深入第一接合层14内,但尚未触及反射体13,并且第一接合层14与第二接合层17间仍存在有界面层15。此时,若电性接点18与第一接合层14皆采用适当的材料,其二者可以形成金属接合或共熔接合。In other embodiments, the electrical contact 18 can further penetrate into the first bonding layer 14 by increasing the length of the electrical contact 18 or compressing the interface layer 15 to reduce its thickness. As shown in FIG. 2A, the electrical contact 18 has penetrated the interface layer 15 and penetrated into the first bonding layer 14, but has not yet touched the reflector 13, and there is still an interface layer 15 between the first bonding layer 14 and the second bonding layer 17. . At this time, if both the electrical contact 18 and the first bonding layer 14 are made of appropriate materials, the two can form a metal bond or a eutectic bond.

如图2B所示,电性接点18已贯穿界面层15并深入第一接合层14内,但尚未触及反射体13,并且第一接合层14与第二接合层17藉由推挤界面层15而彼此接触。此时,若第一接合层14与第二接合层17皆采用适当的材料,其二者可以形成金属接合或共熔接合;而若电性接点18与第一接合层14也皆采用适当的材料,其二者亦可以形成金属接合或共熔接合。As shown in FIG. 2B , the electrical contacts 18 have penetrated the interface layer 15 and penetrated into the first bonding layer 14, but have not yet touched the reflector 13, and the first bonding layer 14 and the second bonding layer 17 push the interface layer 15 while touching each other. At this time, if both the first bonding layer 14 and the second bonding layer 17 are made of appropriate materials, the two can form metal bonding or eutectic bonding; and if the electrical contacts 18 and the first bonding layer 14 are also made of appropriate materials, both of which can also form a metal bond or eutectic bond.

如图2C所示,电性接点18已贯穿界面层15并深入第一接合层14内,且触及导电性的反射体13。另一方面,第一接合层14与第二接合层17则藉由推挤界面层15而彼此接触。此时,若第一接合层14与第二接合层17皆采用适当的材料,其二者可以形成金属接合或共熔接合;而若电性接点18与第一接合层14也皆采用适当的材料,其二者亦可以形成金属接合或共熔接合。此外,于本实施例中,由于电性接点18已与反射体13形成电接触,因此,第一接合层14可以采用适于胶合技术的绝缘材料。As shown in FIG. 2C , the electrical contact 18 has penetrated the interface layer 15 and penetrated into the first bonding layer 14 , and touches the conductive reflector 13 . On the other hand, the first bonding layer 14 and the second bonding layer 17 contact each other by pushing the interface layer 15 . At this time, if both the first bonding layer 14 and the second bonding layer 17 are made of appropriate materials, the two can form metal bonding or eutectic bonding; and if the electrical contacts 18 and the first bonding layer 14 are also made of appropriate materials, both of which can also form a metal bond or eutectic bond. In addition, in this embodiment, since the electrical contacts 18 have formed electrical contact with the reflector 13 , the first bonding layer 14 can be made of an insulating material suitable for gluing technology.

如图2D所示的另一实施例,其中电性接点18已贯穿界面层15并深入第一接合层14内,且触及导电性的反射体13。但是,在本例中,第一接合层14与第二接合层17间因为存在有界面层15而未直接接触。此时,若电性接点18与第一接合层14皆采用适当的材料,其二者可以形成金属接合或共熔接合。此外,于本实施例中,由于电性接点18已与反射体13形成电接触,因此,第一接合层14亦可以采用适于胶合技术的绝缘材料。图2A~2D中的各种变形经过适当的调整可以应用于本发明的各个实施例中。As another embodiment shown in FIG. 2D , the electrical contact 18 has penetrated the interface layer 15 and penetrated into the first bonding layer 14 , and touches the conductive reflector 13 . However, in this example, there is no direct contact between the first bonding layer 14 and the second bonding layer 17 due to the presence of the interface layer 15 . At this time, if both the electrical contact 18 and the first bonding layer 14 are made of appropriate materials, the two can form a metal bond or a eutectic bond. In addition, in this embodiment, since the electrical contacts 18 have formed electrical contact with the reflector 13 , the first bonding layer 14 can also use an insulating material suitable for gluing technology. Various modifications in FIGS. 2A-2D can be applied to various embodiments of the present invention after appropriate adjustments.

此外,上述各实施例中的第一接合层14若选用反射性材料,例如:金(Au)与银(Ag),则反射体13于装置10中即非必要。此时,反射功能与接合功能便由单一结构,例如第一接合层提供。In addition, if the first bonding layer 14 in the above-mentioned embodiments is made of reflective materials, such as gold (Au) and silver (Ag), the reflector 13 is unnecessary in the device 10 . In this case, the reflective function and bonding function are provided by a single structure, such as the first bonding layer.

配置电性接点18的其中一个考量点是如何在半导体系统12内形成均匀的电流密度。一般情况下,电流是自电极22注入半导体系统12内,并依循最短的电路径由电极23流出,因此,位于电极22下方的半导体系统12的区域通常具有较高的电流密度,而形成所谓电流拥挤(Current Crowding)效应。换言之,电极22下方的区域将产生较多的光子。然而,这些光子通常为电极22所吸收、反射、或散射而无法有效利用。因此,如图3A所示的光电半导体装置10,于电极22下方并不配置电性接点18而形成绝缘区19A。藉由绝缘区19A导致的电流阻挡(current blocking)效应,来自于电极22的电流得以于半导体系统12内避开电极22下方区域而向外分散后再流入电性接点18内。所以,半导体系统12内将有更多区域得以进行光电转换。绝缘区19A的材料可以与界面层15相同或相异,并且,其构成并不需全为绝缘材料,只要其结构可以阻绝电流流过绝缘区19A或形成大于电性接点18的电阻即可,例如:使相应于电极22位置处的电性接点18高度低于其他电性接点的高度、或形成一绝缘层于相应于电极22位置处的电性接点18与上方导电材料之间。One of the considerations for configuring the electrical contact 18 is how to form a uniform current density in the semiconductor system 12 . Generally, current is injected into the semiconductor system 12 from the electrode 22, and flows out from the electrode 23 along the shortest electrical path. Therefore, the region of the semiconductor system 12 located below the electrode 22 usually has a higher current density, forming a so-called current Crowding (Current Crowding) effect. In other words, the area below the electrode 22 will generate more photons. However, these photons are usually absorbed, reflected, or scattered by the electrodes 22 and cannot be effectively utilized. Therefore, in the optoelectronic semiconductor device 10 shown in FIG. 3A , no electrical contact 18 is disposed under the electrode 22 and an insulating region 19A is formed. Due to the current blocking effect caused by the insulating region 19A, the current from the electrode 22 can avoid the area below the electrode 22 in the semiconductor system 12 and spread outwards before flowing into the electrical contact 18 . Therefore, more areas within the semiconductor system 12 are available for photoelectric conversion. The material of the insulating region 19A can be the same as or different from the interface layer 15, and its composition does not need to be all insulating materials, as long as its structure can prevent current from flowing through the insulating region 19A or form a resistance greater than that of the electrical contact 18. For example: make the height of the electrical contact 18 corresponding to the electrode 22 lower than that of other electrical contacts, or form an insulating layer between the electrical contact 18 corresponding to the electrode 22 and the upper conductive material.

图3B是图3A中AA线段的断面图。于本图中,除绝缘区19A外,电性接点18以阵列形式排列于界面层15内,并且,各个电性接点18间的间距可以调整为相同、相异、呈等比级数变化、无规则性变化、变周期性变化、定周期性变化、或拟周期性(quasi-periodicity)变化。绝缘区19A的位置与形状相应于电极22的位置与形状,其面积可以小于、等于、或大于电极22的面积。电性接点18的形状并不限于矩形,亦可以为圆形、椭圆形、三角形、六角形、不规则形、或以上形状的组合。Fig. 3B is a cross-sectional view of line AA in Fig. 3A. In this figure, in addition to the insulating region 19A, the electrical contacts 18 are arranged in an array in the interface layer 15, and the spacing between the electrical contacts 18 can be adjusted to be the same, different, or proportional to the series change, Random changes, variable periodic changes, fixed periodic changes, or quasi-periodicity changes. The location and shape of the insulating region 19A correspond to the location and shape of the electrode 22 , and its area may be smaller than, equal to, or larger than that of the electrode 22 . The shape of the electrical contact 18 is not limited to a rectangle, and may also be a circle, an ellipse, a triangle, a hexagon, an irregular shape, or a combination of the above shapes.

再者,于本发明的另一实施例中,如图4A与图4B所示,电性接点18’亦可以为连续形式,其中图4B是图4A中BB线段的断面图。在与前述实施例相同的考量下,绝缘区19A形成于电性接点18’中相应于电极22的位置。于本实施例中,连续式电性接点18’与第一接合层14相接的面积大于分散式电性接点18与第一接合层14相接的面积,换言之,在本例中,电性接点18’与第一接合层14间将存在较少量的界面层15材料。Moreover, in another embodiment of the present invention, as shown in FIG. 4A and FIG. 4B, the electrical contact 18' can also be in a continuous form, wherein FIG. 4B is a cross-sectional view of line BB in FIG. 4A. Under the same consideration as the previous embodiment, the insulating region 19A is formed at the position corresponding to the electrode 22 in the electrical contact 18'. In this embodiment, the area where the continuous electrical contacts 18 ′ contact the first bonding layer 14 is greater than the area where the distributed electrical contacts 18 ′ contact the first bonding layer 14 . There will be a lesser amount of interfacial layer 15 material between the contact 18 ′ and the first bonding layer 14 .

于图3A~图4B中,绝缘区19A虽与电性接点18形成于大致相同的水平面,然而本发明并不限于此。于电极22与电极23间、或电极22与导电体16间,相应于电极22位置的任一高度皆可以形成一个可以造成电流阻挡效应的结构。In FIGS. 3A-4B , although the insulating region 19A and the electrical contact 18 are formed on substantially the same level, the present invention is not limited thereto. Between the electrode 22 and the electrode 23 , or between the electrode 22 and the conductor 16 , any height corresponding to the position of the electrode 22 can form a structure capable of causing a current blocking effect.

于本发明的另一实施例中,为形成较佳的电流分散表现,一绝缘区19B更形成于绝缘区19A上方的反射体13与半导体系统12之间。绝缘区19B可以与界面层15相同或相异,并且,其构成并不需全为绝缘材料,只要其结构可以阻绝或减少电流流过该区域即可。此外,绝缘区19A于本例中并不需与绝缘区19B一同存在,亦即绝缘区19B下方仍可以存在电性接点18。再者,绝缘区19B的上表面并不限于平面、粗造面、或结构化表面,亦可如图5中的脊型面。若此脊型面具有反射性,则来自于半导体系统12的光线将被脊形面向外反射,因此,光线被电极22吸收的几率将降低。In another embodiment of the present invention, an insulating region 19B is further formed between the reflector 13 and the semiconductor system 12 above the insulating region 19A for better current spreading performance. The insulating region 19B can be the same as or different from the interface layer 15, and its composition does not need to be all insulating materials, as long as its structure can block or reduce the current flowing through this region. In addition, the insulating region 19A does not need to exist together with the insulating region 19B in this example, that is, the electrical contact 18 can still exist under the insulating region 19B. Furthermore, the upper surface of the insulating region 19B is not limited to a flat, rough surface, or structured surface, and may also be a ridge-shaped surface as shown in FIG. 5 . If the ridge-shaped surface is reflective, the light from the semiconductor system 12 will be reflected outward by the ridge-shaped surface, and therefore, the probability of light being absorbed by the electrode 22 will be reduced.

本发明的另数个实施例如图6A~图6C所示。如图6A所示的光电半导体装置10的界面层15中混入波长转换材料21。波长转换材料21可以回应半导体系统12所产生的具有一种波长的电磁波而产生另一种波长的电磁波,其成分是如萤光粉或染料。萤光粉需具有适当的颗粒直径以达到较佳的发光表现,较佳的颗粒直径约5μm以下,相关专利请参阅美国专利第6,245,259号。若将可产生蓝光波长范围光线的半导体系统12搭配钇铝石榴石(Yttriumaluminium garnet;YAG)、铽铝石榴石(Terbium Aluminum Garnet;TAG)、硅酸盐类(Silicate-based)、或氮氧化物(oxynitride)等萤光粉,可以使光电半导体装置10产生白光。Several other embodiments of the present invention are shown in FIGS. 6A-6C . The wavelength conversion material 21 is mixed in the interface layer 15 of the optoelectronic semiconductor device 10 shown in FIG. 6A . The wavelength converting material 21 can generate electromagnetic waves of another wavelength in response to the electromagnetic waves of one wavelength generated by the semiconductor system 12 , and its components are phosphors or dyes. Phosphor powder needs to have an appropriate particle diameter to achieve better luminous performance, and the preferred particle diameter is about 5 μm or less. For related patents, please refer to US Patent No. 6,245,259. If the semiconductor system 12 that can generate light in the blue wavelength range is combined with yttrium aluminum garnet (Yttriumaluminium garnet; YAG), terbium aluminum garnet (Terbium Aluminum Garnet; TAG), silicate (Silicate-based), or nitrogen oxide Phosphor powder such as (oxynitride) can make the optoelectronic semiconductor device 10 generate white light.

如图6B所示,一混有波长转换材料21的上界面层15A形成于半导体系统12之上。上界面层15A的材料可参考上述界面层15所使用的材料。如图6C所示,覆盖半导体系统12外围的界面层15与上界面层15A内皆混有波长转换材料21,且此二层内的波长转换材料21可以相同或相异。再者,上界面层15A可以具有特定图案以界定波长转换材料的分布范围。如图所示的空区153即为具有与上界面层15A相异材料的区域,其中可能为空气、绝缘物、其它种类萤光粉、或如氧化铟锡(indium tin oxide;ITO)等的透明导体。空区153中的导体若与电极22相连将有助于电流均匀分散至半导体系统22。As shown in FIG. 6B , an upper interface layer 15A mixed with a wavelength conversion material 21 is formed on the semiconductor system 12 . For the material of the upper interface layer 15A, reference may be made to the materials used for the above interface layer 15 . As shown in FIG. 6C , both the interface layer 15 covering the periphery of the semiconductor system 12 and the upper interface layer 15A are mixed with wavelength conversion materials 21 , and the wavelength conversion materials 21 in the two layers can be the same or different. Furthermore, the upper interface layer 15A may have a specific pattern to define the distribution range of the wavelength conversion material. The empty area 153 as shown in the figure is a region with a material different from that of the upper interface layer 15A, which may be air, insulators, other types of phosphors, or such as indium tin oxide (indium tin oxide; ITO) and the like. transparent conductor. Conductors in the voids 153 that are connected to the electrodes 22 will help to spread the current evenly to the semiconductor system 22 .

如图7所示的光电半导体装置10的上界面层15A至少包含一无源发光层151与一连接层152。无源发光层151是如块状萤光粉体、III-V族半导体层、与II-VI族半导体层等。连接层152的材料是至少包含聚酰亚胺(PI)、苯并环丁烯、过氟环丁烯(PFCB)、与环氧树酯(Epoxy)等有机材料。无源发光层151可因半导体系统12的输入光而产生输出光,且此输入光与输出光间具有不同的波长或频谱。As shown in FIG. 7 , the upper interface layer 15A of the optoelectronic semiconductor device 10 at least includes a passive light-emitting layer 151 and a connection layer 152 . The passive light-emitting layer 151 is, for example, a bulk phosphor, a III-V semiconductor layer, and a II-VI semiconductor layer. The material of the connection layer 152 at least includes organic materials such as polyimide (PI), benzocyclobutene, perfluorocyclobutene (PFCB), and epoxy resin (Epoxy). The passive light-emitting layer 151 can generate output light due to the input light of the semiconductor system 12 , and the input light and the output light have different wavelengths or spectra.

于本发明的另一实施例中,如图8所示,光电半导体装置10中包含一下反射体13A与一上反射体13B。此二反射体的材料可以分别参照上述反射体13的材料。半导体系统12产生的光线可为此二反射体所反射而射向界面层15。此外,射出光电半导体装置10的光线若被其他外界物体反射朝向半导体系统12的上表面则有机会被上反射体13B向外反射。In another embodiment of the present invention, as shown in FIG. 8 , the optoelectronic semiconductor device 10 includes a lower reflector 13A and an upper reflector 13B. The materials of the two reflectors can refer to the material of the above reflector 13 respectively. The light generated by the semiconductor system 12 can be reflected by the two reflectors and directed toward the interface layer 15 . In addition, if the light emitted from the optoelectronic semiconductor device 10 is reflected by other external objects toward the upper surface of the semiconductor system 12 , it may be reflected outward by the upper reflector 13B.

如图9所示的另一实施例的光电半导体装置10具有结构化或粗糙的外表面。此结构化或粗糙的外表面有破坏光线在结构与环境介质界面处全反射的功能,进而得以增加光电半导体装置10的光摘出效率。结构化或粗糙的外表面可以形成在半导体系统12、界面层15、或其二者的外表面。粗糙面的粗糙度应以可以达到提高光摘出效率的程度为佳。结构化表面可为规则性或不规则性的凸出与凹陷结构或光子晶体(Photonic Crystal)结构。A further exemplary embodiment of an optoelectronic semiconductor device 10 as shown in FIG. 9 has a structured or roughened outer surface. The structured or rough outer surface has the function of destroying the total reflection of light at the interface between the structure and the environment medium, thereby increasing the light extraction efficiency of the optoelectronic semiconductor device 10 . A structured or roughened outer surface may be formed on the outer surface of semiconductor system 12, interface layer 15, or both. The roughness of the rough surface should preferably be such that the light extraction efficiency can be improved. The structured surface can be a regular or irregular protrusion and depression structure or a photonic crystal (Photonic Crystal) structure.

本发明的又一实施例如图10所示。本例的光电半导体装置10中的半导体系统12与导电体16间藉由第一中介层20A、电性接点18、与第二中介层20B电相连。在制造过程当中,电性接点18可预先覆盖第二中介层20B后再与形成有第一中介层20A的半导体系统12相连接。第一中介层20A与第二中介层20B将藉由挤压界面层15而彼此接触。构成界面层15的材料有机会残留在电性接点18间的沟渠之中。第一中介层20A与第二中介层20B不仅形成欧姆接触更形成稳固的物理性接触。此二中介层的材料分别为钛(Ti)或铬(Cr)。Yet another embodiment of the present invention is shown in FIG. 10 . The semiconductor system 12 in the optoelectronic semiconductor device 10 of this example is electrically connected to the conductor 16 through the first interposer 20A, the electrical contacts 18 , and the second interposer 20B. During the manufacturing process, the electrical contacts 18 may cover the second interposer 20B in advance and then be connected to the semiconductor system 12 formed with the first interposer 20A. The first interposer 20A and the second interposer 20B will contact each other by pressing the interface layer 15 . The material forming the interface layer 15 may remain in the trenches between the electrical contacts 18 . The first interposer 20A and the second interposer 20B not only form an ohmic contact but also form a stable physical contact. The materials of the two intermediate layers are respectively titanium (Ti) or chromium (Cr).

本发明的一实施例如图11所示。本例的光电半导体装置10中的电性接点24为一个如粗糙面等的不规则结构。第一中介层20A与第二中介层20B的材料如前述。本例中,第二中介层20B覆盖于电性接点24之上并且未将其完全平坦化。第二中介层20B的至少部分突出处将穿过界面层15而与第一中介层20A接触。构成界面层15的材料有机会残留在粗糙性的电性接点24间的低凹处中而有助于第一中介层20A与第二中介层20B的连接。An embodiment of the present invention is shown in FIG. 11 . The electrical contact 24 in the optoelectronic semiconductor device 10 of this example is an irregular structure such as a rough surface. The materials of the first interposer 20A and the second interposer 20B are as mentioned above. In this example, the second interposer 20B covers the electrical contact 24 without completely planarizing it. At least a portion of the second interposer 20B protrudes through the interface layer 15 to contact the first interposer 20A. The material constituting the interface layer 15 may remain in the depressions between the rough electrical contacts 24 to help the connection between the first interposer 20A and the second interposer 20B.

虽然本发明已说明如上,但是其并非用以限制本发明的范围、实施顺序、或使用的材料与工艺方法。对于本发明所作的各种修饰与变更,皆不脱离本发明的精神与范围。Although the present invention has been described above, it is not intended to limit the scope, implementation sequence, or used materials and process methods of the present invention. Various modifications and changes made to the present invention do not depart from the spirit and scope of the present invention.

Claims (20)

1.一种光电半导体装置,包含:1. An optoelectronic semiconductor device comprising: 一半导体系统,可以进行光能与电能间的转换;A semiconductor system capable of converting light energy to electrical energy; 一界面层,形成于该半导体系统的至少二个表面;an interfacial layer formed on at least two surfaces of the semiconductor system; 一导电体,承载该半导体系统;及an electrical conductor carrying the semiconductor system; and 一电性接点,穿过该界面层,并电连接该半导体系统及该导电体。An electrical contact passes through the interface layer and electrically connects the semiconductor system and the conductor. 2.如权利要求1所述的光电半导体装置,其中光电半导体系统包含一发光二极管。2. The optoelectronic semiconductor device as claimed in claim 1, wherein the optoelectronic semiconductor system comprises a light emitting diode. 3.如权利要求1所述的光电半导体装置,其中该界面层形成于该半导体系统与该导电体之间。3. The optoelectronic semiconductor device according to claim 1, wherein the interface layer is formed between the semiconductor system and the electrical conductor. 4.如权利要求1所述的光电半导体装置,其中该界面层至少覆盖该半导体系统的一侧表面。4. The optoelectronic semiconductor device as claimed in claim 1, wherein the interface layer covers at least one side surface of the semiconductor system. 5.如权利要求1所述的光电半导体装置,其中该界面层的折射系数介于该半导体系统与一环境介质之间。5. The optoelectronic semiconductor device of claim 1, wherein the interface layer has a refractive index between the semiconductor system and an ambient medium. 6.如权利要求1所述的光电半导体装置,还包含:6. The optoelectronic semiconductor device of claim 1, further comprising: 一反射体,位于该半导体系统与该导电体间,并可反射源自于该半导体系统的光线。A reflector is located between the semiconductor system and the conductor, and can reflect light from the semiconductor system. 7.如权利要求1所述的光电半导体装置,还包含:7. The optoelectronic semiconductor device of claim 1, further comprising: 一第一接合层与一第二接合层,分别位于该电性接点的相反侧,并彼此电连接。A first bonding layer and a second bonding layer are respectively located on opposite sides of the electrical contact, and are electrically connected to each other. 8.如权利要求1所述的光电半导体装置,还包含:8. The optoelectronic semiconductor device of claim 1, further comprising: 一第一接合层,与该半导体系统电连接,且至少该电性接点的部分穿入该第一接合层。A first bonding layer is electrically connected with the semiconductor system, and at least part of the electrical contact penetrates through the first bonding layer. 9.如权利要求1所述的光电半导体装置,还包含:9. The optoelectronic semiconductor device of claim 1, further comprising: 一第一接合层,与该半导体系统电连接并反射源自于该半导体系统的光线。A first bonding layer is electrically connected with the semiconductor system and reflects light from the semiconductor system. 10.如权利要求1所述的光电半导体装置,还包含:10. The optoelectronic semiconductor device of claim 1, further comprising: 一第一接合层,与该半导体系统电连接;及a first bonding layer electrically connected to the semiconductor system; and 一反射体,位于该第一接合层与该半导体系统之间,并反射源自于该半导体系统的光线。A reflector is located between the first bonding layer and the semiconductor system, and reflects light from the semiconductor system. 11.如权利要求1所述的光电半导体装置,还包含:11. The optoelectronic semiconductor device of claim 1, further comprising: 一反射体,位于该电性接点与该半导体系统之间,且该电性接点与该反射体接触。A reflector is located between the electrical contact and the semiconductor system, and the electrical contact is in contact with the reflector. 12.如权利要求1所述的光电半导体装置,其中该电性接点间的间距变化规则选自由定周期性、变周期性、拟周期性、等比级数、及无规则性所构成的组。12. The optoelectronic semiconductor device as claimed in claim 1, wherein the spacing variation rule between the electrical contacts is selected from the group consisting of fixed periodicity, variable periodicity, quasi-periodicity, proportional series, and irregularity . 13.如权利要求1所述的光电半导体装置,其中该电性接点的形状选自由矩形、圆形、椭圆形、三角形、六角形、不规则形、及以上形状的组合。13. The optoelectronic semiconductor device as claimed in claim 1, wherein the shape of the electrical contact is selected from the group consisting of rectangle, circle, ellipse, triangle, hexagon, irregular shape, and combinations thereof. 14.如权利要求1所述的光电半导体装置,其中该电性接点包含一粗糙面。14. The optoelectronic semiconductor device of claim 1, wherein the electrical contact comprises a rough surface. 15.如权利要求1所述的光电半导体装置,还包含:15. The optoelectronic semiconductor device of claim 1, further comprising: 一第一中介层,与该半导体系统电连接;及a first interposer electrically connected to the semiconductor system; and 一第二中介层,形成于该电性接点之上,并位于该第一中介层与该电性接点之间。A second intermediary layer is formed on the electrical contact and between the first intermediary layer and the electrical contact. 16.如权利要求1所述的光电半导体装置,还包含:16. The optoelectronic semiconductor device of claim 1, further comprising: 一电极,形成于该半导体系统之上;及an electrode formed over the semiconductor system; and 一绝缘区,相应于该电极的位置,且大体上与该电性接点位于同一水平面。An insulating area corresponds to the position of the electrode and is generally located on the same level as the electrical contact. 17.如权利要求1所述的光电半导体装置,还包含:17. The optoelectronic semiconductor device of claim 1, further comprising: 一电极,形成于该半导体系统之上;及an electrode formed over the semiconductor system; and 一绝缘区,相应于该电极的位置,且位于与该电性接点不同的水平面。An insulating area corresponds to the position of the electrode and is located at a different level from the electrical contact. 18.如权利要求1所述的光电半导体装置,其中该界面层包含一波长转换材料。18. The optoelectronic semiconductor device of claim 1, wherein the interface layer comprises a wavelength conversion material. 19.如权利要求1所述的光电半导体装置,还包含:19. The optoelectronic semiconductor device of claim 1, further comprising: 一无源发光层,形成于该半导体系统相对于该电性接点的一表面,其中该无源发光层可发出一输出光以回应源自于该半导体系统的一输入光,且该输出光与该输入光具有相异的波长。A passive light-emitting layer formed on a surface of the semiconductor system opposite to the electrical contact, wherein the passive light-emitting layer can emit an output light in response to an input light from the semiconductor system, and the output light and The input light has different wavelengths. 20.如权利要求1所述的光电半导体装置,还包含:20. The optoelectronic semiconductor device of claim 1, further comprising: 一光摘出面,形成于该光电半导体装置的一主要出光面之上,该光摘出面选自由粗糙面、规则性的凸出与凹陷结构、不规则性的凸出与凹陷结构、与光子晶体构成的组。A light extraction surface formed on a main light output surface of the optoelectronic semiconductor device, the light extraction surface is selected from rough surfaces, regular protrusion and depression structures, irregular protrusion and depression structures, and photonic crystals formed group.
CN 200710306612 2007-12-28 2007-12-28 Optoelectronic semiconductor device Pending CN101471388A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN 200710306612 CN101471388A (en) 2007-12-28 2007-12-28 Optoelectronic semiconductor device
CN201310085002.0A CN103219415B (en) 2007-12-28 2007-12-28 Optoelectronic semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710306612 CN101471388A (en) 2007-12-28 2007-12-28 Optoelectronic semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201310085002.0A Division CN103219415B (en) 2007-12-28 2007-12-28 Optoelectronic semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN101471388A true CN101471388A (en) 2009-07-01

Family

ID=40828630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710306612 Pending CN101471388A (en) 2007-12-28 2007-12-28 Optoelectronic semiconductor device

Country Status (1)

Country Link
CN (1) CN101471388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116316055A (en) * 2023-05-16 2023-06-23 苏州长光华芯光电技术股份有限公司 Semiconductor laser contact electrode and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116316055A (en) * 2023-05-16 2023-06-23 苏州长光华芯光电技术股份有限公司 Semiconductor laser contact electrode and preparation method thereof
CN116316055B (en) * 2023-05-16 2023-09-01 苏州长光华芯光电技术股份有限公司 Semiconductor laser contact electrode and preparation method thereof

Similar Documents

Publication Publication Date Title
US11245060B2 (en) Optoelectronic semiconductor device
US10403796B2 (en) Light emitting device and method of fabricating the same
CN101976718B (en) Optoelectronic semiconductor chip
US7842547B2 (en) Laser lift-off of sapphire from a nitride flip-chip
CN103222073B (en) Light-emitting diode chip, light-emitting diode package structure, and method for forming the above
CN111613708B (en) Method for manufacturing a top-emitting semiconductor light emitting device
US20110049546A1 (en) high reflectivity mirrors and method for making same
EP2973755B1 (en) Semiconductor structure comprising a porous reflective contact
CN101868866A (en) Improved Light Emitting Diode Structure
CN107078195B (en) Light emitting device on submount with reflective layer
CN103985800B (en) Semiconductor light emitting device
US20100051970A1 (en) Planarized led with optical extractor
CN101436635A (en) Light emitting device and method for manufacturing the same
US8384099B2 (en) GaN based LED having reduced thickness and method for making the same
CN210897328U (en) LED chip and light-emitting module
KR100530986B1 (en) Light emitting diode having vertical electrode structure, manufacturing method of the same and etching method of sapphire substrate
US8829560B2 (en) Optoelectronic semiconductor chip and method for fabricating an optoelectronic semiconductor chip
CN103219415B (en) Optoelectronic semiconductor device and manufacturing method thereof
CN101471388A (en) Optoelectronic semiconductor device
KR100629929B1 (en) Light Emitting Diode Having Vertical Electrode Structure
US20100051971A1 (en) High efficiency light emitting articles and methods of forming the same
KR100557855B1 (en) Light emitting diodes, manufacturing method thereof and etching method of sapphire substrate
KR20060134490A (en) Flip Chip Nitride Semiconductor Light Emitting Diode and Manufacturing Method Thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20090701