[go: up one dir, main page]

CN101483386B - DC to DC Converter - Google Patents

DC to DC Converter Download PDF

Info

Publication number
CN101483386B
CN101483386B CN200910006822XA CN200910006822A CN101483386B CN 101483386 B CN101483386 B CN 101483386B CN 200910006822X A CN200910006822X A CN 200910006822XA CN 200910006822 A CN200910006822 A CN 200910006822A CN 101483386 B CN101483386 B CN 101483386B
Authority
CN
China
Prior art keywords
signal
voltage
output voltage
frequency
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910006822XA
Other languages
Chinese (zh)
Other versions
CN101483386A (en
Inventor
韩伟
梁清吉
刘涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUASHUO SCIENCE AND TECHNOLOGY (SUZHOU) Co Ltd
Asustek Computer Inc
Original Assignee
Asustek Computer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asustek Computer Inc filed Critical Asustek Computer Inc
Priority to CN200910006822XA priority Critical patent/CN101483386B/en
Publication of CN101483386A publication Critical patent/CN101483386A/en
Application granted granted Critical
Publication of CN101483386B publication Critical patent/CN101483386B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A dc-to-dc converter comprising: the control circuit receives and compares the direct current output voltage, when the direct current output voltage does not exceed a first threshold voltage, the control circuit outputs a pulse width modulation signal with a first frequency, and when the direct current output voltage exceeds the first threshold voltage, the control circuit outputs a pulse width modulation signal with a second frequency, wherein the second frequency is greater than the first frequency; the gate driving circuit receives the pulse width modulation signal and converts the pulse width modulation signal into a first driving signal and a second driving signal; and the power level circuit converts the direct current input voltage into direct current output voltage according to the first driving signal and the second driving signal.

Description

直流转直流变换器DC to DC Converter

技术领域 technical field

本发明是有关于一种直流转直流变换器(DC-to-DC converter)且特别是有关于一种直流转直流变换器及其减小过冲现象(over shoot)的控制方法。  The present invention relates to a DC-to-DC converter, and in particular to a DC-to-DC converter and a control method for reducing overshoot. the

背景技术 Background technique

众所周知,直流转直流变换器(DC-to-DC converter)可将直流输入电压(DC input voltage)转换为大小相异的直流输出电压(DC outputvoltage)。  As we all know, a DC-to-DC converter (DC-to-DC converter) can convert a DC input voltage (DC input voltage) into a DC output voltage (DC output voltage) of different magnitudes. the

请参照图1,其所示为已知直流转直流变换器示意图。直流转直流变换器包括一控制电路10、一栅驱动电路(gate driver)20、一功率级电路(power stage)30。一般来说,控制电路10可接收功率级电路30所产生的直流输出电压(Vout),并根据直流输出电压(Vout)的变化产生相对应的脉波宽度调变信号(pulse width modulation signal,以下简称PWM信号)。再者,栅驱动电路20接收PWM信号并转换成为一第一驱动信号与一第二驱动信号至功率级电路30,而功率级电路30可根据第一驱动信号与第二驱动信号的变化将直流输入电压(Vin)转换成直流输出电压(Vout)。  Please refer to FIG. 1 , which is a schematic diagram of a known DC-to-DC converter. The DC-to-DC converter includes a control circuit 10 , a gate driver 20 , and a power stage 30 . Generally speaking, the control circuit 10 can receive the DC output voltage (Vout) generated by the power stage circuit 30, and generate a corresponding pulse width modulation signal (pulse width modulation signal, hereinafter) according to the change of the DC output voltage (Vout). Referred to as PWM signal). Moreover, the gate drive circuit 20 receives the PWM signal and converts it into a first drive signal and a second drive signal to the power stage circuit 30, and the power stage circuit 30 can convert DC The input voltage (Vin) is converted to a DC output voltage (Vout). the

再者,栅驱动电路20包括一第一驱动器22与一第二驱动器24。第一驱动器22接收PWM信号并产生与PWM信号同相的第一驱动信号;而第二驱动器24接收PWM信号,并产生与PWM信号反相的第二驱动信号。  Furthermore, the gate driving circuit 20 includes a first driver 22 and a second driver 24 . The first driver 22 receives the PWM signal and generates a first driving signal in phase with the PWM signal; and the second driver 24 receives the PWM signal and generates a second driving signal in phase opposite to the PWM signal. the

再者,功率级电路30包括一上功率晶体管(upper powertransistor)32、一下功率晶体管(lower power transistor)34、一输出电感器(Lo)、以及一输出电容器(Co)。上功率晶体管32漏极连接至直流输入电压(Vin),上功率晶体管32栅极接收第一驱动信号。下功率晶体管 34漏极连接至上功率晶体管32源极,下功率晶体管34栅极接收第二驱动信号,下功率晶体管34源极连接至接地端(GND)。而输出电感器(Lo)的第一端连接至上功率晶体管32源极,输出电感器(Lo)的第二端为功率级电路30的输出端可输出直流输出电压(Vout)。再者,输出电容器(Co)的二端分别连接至功率级电路30的输出端以及接地端(GND)之间。一般来说,当直流输入电压(Vin)大于直流输出电压(Vout)时,直流转直流变换器可视为降压式直流转直流变换器(Buck DC-to-DC converter)。  Moreover, the power stage circuit 30 includes an upper power transistor (upper power transistor) 32, a lower power transistor (lower power transistor) 34, an output inductor (Lo), and an output capacitor (Co). The drain of the upper power transistor 32 is connected to the DC input voltage (Vin), and the gate of the upper power transistor 32 receives the first driving signal. The drain of the lower power transistor 34 is connected to the source of the upper power transistor 32, the gate of the lower power transistor 34 receives the second driving signal, and the source of the lower power transistor 34 is connected to the ground terminal (GND). The first end of the output inductor (Lo) is connected to the source of the upper power transistor 32, and the second end of the output inductor (Lo) is the output end of the power stage circuit 30 for outputting a DC output voltage (Vout). Furthermore, two terminals of the output capacitor (Co) are respectively connected between the output terminal of the power stage circuit 30 and the ground terminal (GND). Generally speaking, when the DC input voltage (Vin) is greater than the DC output voltage (Vout), the DC-to-DC converter can be regarded as a step-down DC-to-DC converter (Buck DC-to-DC converter). the

以降压式直流转直流变换器来说,栅驱动电路20产生的第一驱动信号与第二驱动信号可分别开启(turn on)上功率晶体管32与下功率晶体管34,并且上功率晶体管32与下功率晶体管34无法同时被开启。也就是说,当上功率晶体管32开启时,下功率晶体管34是关闭(turn off)的,此时第二电流(I2)为零,功率级电路30的输出电流Iout是由开启上功率晶体管32所产生的第一电流(I1)所提供。反之,当下功率晶体管34开启时,上功率晶体管32是关闭的,此时第一电流(I1)为零,功率级电路30的输出电流Iout是由开启下功率晶体管34所产生的第二电流(I2)所提供。一般来说,当控制电路10接收的直流输出电压(Vout)低于默认值(例如3.3V)时,PWM信号的脉波宽度会变宽,因此,栅驱动电路20产生的第一驱动信号可控制上功率晶体管32开启较长的时间,而第二驱动信号控制下功率晶体管32关闭较长的时间。反之,当控制电路10接收的直流输出电压(Vout)高于默认值(例如3.3V)时,PWM信号的脉波宽度会变窄,因此,栅驱动电路20产生的第一驱动信号可控制上功率晶体管32开启较短的时间,而第二驱动信号可控制下功率晶体管32关闭较短的时间。  For a step-down DC-to-DC converter, the first drive signal and the second drive signal generated by the gate drive circuit 20 can turn on (turn on) the upper power transistor 32 and the lower power transistor 34 respectively, and the upper power transistor 32 and the lower power transistor 34 can be turned on respectively. The power transistors 34 cannot be turned on at the same time. That is to say, when the upper power transistor 32 is turned on, the lower power transistor 34 is closed (turn off), and at this moment the second current (I2) is zero, and the output current Iout of the power stage circuit 30 is caused by turning on the upper power transistor 32 The generated first current (I1) is provided. On the contrary, when the lower power transistor 34 is turned on, the upper power transistor 32 is closed, and now the first current (I1) is zero, and the output current Iout of the power stage circuit 30 is the second current ( I2) provided. Generally speaking, when the DC output voltage (Vout) received by the control circuit 10 is lower than a default value (for example, 3.3V), the pulse width of the PWM signal will become wider. Therefore, the first driving signal generated by the gate driving circuit 20 can be The upper power transistor 32 is controlled to be turned on for a longer time, and the second driving signal is used to control the lower power transistor 32 to be turned off for a longer time. Conversely, when the DC output voltage (Vout) received by the control circuit 10 is higher than the default value (for example, 3.3V), the pulse width of the PWM signal will be narrowed, so the first drive signal generated by the gate drive circuit 20 can control the upper The power transistor 32 is turned on for a short time, and the second driving signal can control the power transistor 32 to be turned off for a short time. the

再者,直流转直流变换器中的控制电路10有许多的控制模式(mode)。一般常见的有,电压控制模式(voltage mode)、电流控制模式(currentmode)以及固定开启时间控制模式(constant on-time mode)。以下详述此三种控制模式,而栅驱动电路20、与功率级电路30的结构皆相同,所以不再赘述。  Furthermore, the control circuit 10 in the DC-to-DC converter has many control modes. Generally, there are voltage control mode (voltage mode), current control mode (current mode) and constant on-time control mode (constant on-time mode). The three control modes will be described in detail below, and the structures of the gate driving circuit 20 and the power stage circuit 30 are the same, so they will not be described again. the

请参照图2A,其所示为已知电压控制模式的直流转直流变换器示意图。电压控制模式的直流转直流变换器包括:一控制电路210、一栅驱动电路220、一功率级电路230。其中,控制电路210包括:一误差放大器 (error amplifier)212、一调变单元(modulator)214与一信号发生器(wave generator)216。误差放大器212接收直流输出电压(Vout)与一参考电压(Vref),并且误差放大器212可比较直流输出电压(Vout)并与参考电压(Vref)进而产生一补偿信号(comp)至调变单元214。  Please refer to FIG. 2A , which is a schematic diagram of a DC-to-DC converter with a known voltage control mode. The DC-to-DC converter in voltage control mode includes: a control circuit 210 , a gate drive circuit 220 , and a power stage circuit 230 . Wherein, the control circuit 210 includes: an error amplifier (error amplifier) 212, a modulation unit (modulator) 214 and a signal generator (wave generator) 216. The error amplifier 212 receives the DC output voltage (Vout) and a reference voltage (Vref), and the error amplifier 212 can compare the DC output voltage (Vout) with the reference voltage (Vref) to generate a compensation signal (comp) to the modulation unit 214 . the

再者,信号发生器216可输出一第一频率的锯齿波信号(ramp)至调变单元214,使得调变单元214可以根据补偿信号(comp)以及锯齿波信号(ramp)而产生PWM信号。当然,信号发生器216除了可输出锯齿波信号(ramp)之外,也可以输出其它形状信号,例如三角波信号(trianglesignal)。  Furthermore, the signal generator 216 can output a sawtooth signal (ramp) of a first frequency to the modulation unit 214, so that the modulation unit 214 can generate a PWM signal according to the compensation signal (comp) and the ramp signal. Of course, the signal generator 216 can also output signals of other shapes, such as a triangle signal (triangle signal), in addition to the sawtooth signal (ramp). the

请参照图2B,其所示为电压控制模式的直流转直流变换器中补偿信号(comp)、锯齿波信号(ramp)、PWM信号、第一信号、与第二信号示意图。当补偿信号(comp)大于锯齿波信号(ramp)时PWM信号即为高电平,反之,当补偿信号(comp)小于锯齿波信号(ramp)时PWM信号即为低电平。很明显地,当补偿信号(comp)在变化时,PWM信号的脉波宽度也会随之变化。再者,第一驱动信号与PWM信号同相,第二驱动信号与PWM信号反相。而PWM信号的频率和锯齿波信号的频率皆为第一频率。  Please refer to FIG. 2B , which is a schematic diagram of a compensation signal (comp), a sawtooth signal (ramp), a PWM signal, a first signal, and a second signal in a DC-DC converter in voltage control mode. When the compensation signal (comp) is greater than the sawtooth signal (ramp), the PWM signal is at high level; otherwise, when the compensation signal (comp) is less than the ramp signal, the PWM signal is at low level. Obviously, when the compensation signal (comp) is changing, the pulse width of the PWM signal will also change accordingly. Furthermore, the first driving signal is in phase with the PWM signal, and the second driving signal is in phase opposite to the PWM signal. Both the frequency of the PWM signal and the frequency of the sawtooth signal are the first frequency. the

请参照图3A,其所示为已知电流控制模式的直流转直流变换器。电流控制模式的直流转直流变换器包括:一控制电路310、一栅驱动电路320、一功率级电路330。其中,控制电路310包括:一误差放大器312、PWM比较器(PWM comparator)313、一信号发生器314、一电流感测放大器(current sense amplifier)315、一加法器(adder)316、与一SR锁存器(SR latch)317。误差放大器312接收直流输出电压(Vout)与一参考电压(Vref),并且误差放大器312可比较直流输出电压(Vout)并与参考电压(Vref)进而产生一补偿信号(comp)至PWM比较器313。  Please refer to FIG. 3A , which shows a DC-to-DC converter with a known current control mode. The DC-to-DC converter in current control mode includes: a control circuit 310 , a gate drive circuit 320 , and a power stage circuit 330 . Wherein, the control circuit 310 includes: an error amplifier 312, a PWM comparator (PWM comparator) 313, a signal generator 314, a current sense amplifier (current sense amplifier) 315, an adder (adder) 316, and an SR Latch (SR latch) 317. The error amplifier 312 receives the DC output voltage (Vout) and a reference voltage (Vref), and the error amplifier 312 can compare the DC output voltage (Vout) with the reference voltage (Vref) to generate a compensation signal (comp) to the PWM comparator 313 . the

再者,电流感测放大器315可以侦测功率级电路330中流过上功率晶体管的第一电流(I1)或者是下功率晶体管的第二电流(I2)。举例来说,电流感测放大器315可将上功率晶体管的电流(I1)转换成为感测信号(Vsense)。  Furthermore, the current sense amplifier 315 can detect the first current ( I1 ) flowing through the upper power transistor or the second current ( I2 ) flowing through the lower power transistor in the power stage circuit 330 . For example, the current sense amplifier 315 can convert the current (I1) of the upper power transistor into a sense signal (Vsense). the

再者,信号发生器314可同时输出一锯齿波信号(ramp)与一时脉信号(CLK),且锯齿波信号(ramp)与时脉信号(CLK)具有相同的第一频率。锯齿 波信号(ramp)与感测信号(Vsense)经由加法器316迭加(superpose)之后成为加总信号(sum)。加总信号(sum)与补偿信号(comp)输入PWM比较器313。当加总信号(sum)大于补偿信号(comp)时,PWM比较器313会输出一脉波至SR锁存器317的重置端(reset terminal,R)。再者,时脉信号(CLK)会输入SR锁存器317的设定端(set terminal,S)。而根据SR锁存器317的重置端(R)与设定端(S)的信号变化即可产生PWM信号。当然,信号发生器216除了可输出锯齿波信号(ramp)之外,也可以输出其它形状信号,例如三角波信号(triangle signal)。  Furthermore, the signal generator 314 can simultaneously output a ramp signal (ramp) and a clock signal (CLK), and the ramp signal (ramp) and the clock signal (CLK) have the same first frequency. The ramp signal (ramp) and the sensing signal (Vsense) are superposed by the adder 316 to become a sum signal (sum). The sum signal (sum) and the compensation signal (comp) are input to the PWM comparator 313 . When the sum signal (sum) is greater than the compensation signal (comp), the PWM comparator 313 will output a pulse to the reset terminal (reset terminal, R) of the SR latch 317 . Furthermore, the clock signal (CLK) is input to the set terminal (S) of the SR latch 317 . The PWM signal can be generated according to the signal changes of the reset terminal (R) and the set terminal (S) of the SR latch 317 . Of course, the signal generator 216 can also output signals of other shapes, such as a triangle signal (triangle signal), in addition to the sawtooth signal (ramp). the

请参照图3B,其所示为电流控制模式的直流转直流变换器中的输出电流(Iout)、感测信号(Vsense)、锯齿波信号(ramp)、补偿信号(comp)、加总信号(sum)、SR锁存器的重置端(R)与设定端(S)的信号、PWM信号示意图。  Please refer to FIG. 3B, which shows the output current (Iout), the sense signal (Vsense), the sawtooth signal (ramp), the compensation signal (comp), and the sum signal ( sum), the reset terminal (R) and the set terminal (S) signal of the SR latch, and the schematic diagram of the PWM signal. the

其中,输出电流(Iout)上升的区域即为上功率晶体管的第一电流(I1),输出电流(Iout)下降的区域即为下功率晶体管的第二电流(I2)。因此,电流感测放大器315即可感测第一电流(I1)而产生感测信号(Vsense)。由图中可知,当SR锁存器的设定端(S)接收到一脉波时,PWM信号为高电平,当SR锁存器的重置端(R)收到一脉波时,PWM信号为低电平。因此,PWM信号的脉波宽度会随着第一电流(I1)大小而改变。  Wherein, the area where the output current (Iout) rises is the first current (I1) of the upper power transistor, and the area where the output current (Iout) drops is the second current (I2) of the lower power transistor. Therefore, the current sense amplifier 315 can sense the first current (I1) to generate a sense signal (Vsense). It can be seen from the figure that when the setting terminal (S) of the SR latch receives a pulse wave, the PWM signal is at a high level, and when the reset terminal (R) of the SR latch receives a pulse wave, The PWM signal is low. Therefore, the pulse width of the PWM signal changes with the magnitude of the first current ( I1 ). the

请参照图4A,其所示为已知固定开启时间控制模式的直流转直流变换器。固定开启时间控制模式的直流转直流变换器包括:控制电路410、一栅驱动电路420、一功率级电路430。其中,控制电路410包括:一回路比较器(loop comparator)412、一SR锁存器(SR latch)414、一开启时间计时器(on-time timer)416。其中,开启时间计时器416是利用一定电流源(Ion)向一电容器(Con)进行充电动作,而充电电压(Vcharge)与定电流源(Ion)之间的关系为: V ch arg e = 1 C ∫ I on dt . 也就是说,每一次开启时间计时器416启动时,开始进行充电动作,当充电电压到达一预定电压值(predetermined voltage)时,开启时间计时器416会输出一脉波至SR锁存器414的重置端(R)。由于定电流源(Ion)以及电容器(Con)皆为固定的数值,因此,每次充电电压(Vcharge)到达预定电压值的时间皆为Ton的 固定开启时间。  Please refer to FIG. 4A , which shows a DC-to-DC converter with a known fixed on-time control mode. The DC-to-DC converter in the fixed turn-on time control mode includes: a control circuit 410 , a gate drive circuit 420 , and a power stage circuit 430 . Wherein, the control circuit 410 includes: a loop comparator (loop comparator) 412 , an SR latch (SR latch) 414 , and an on-time timer (on-time timer) 416 . Wherein, the on-time timer 416 uses a constant current source (Ion) to charge a capacitor (Con), and the relationship between the charging voltage (Vcharge) and the constant current source (Ion) is: V ch arg e = 1 C ∫ I on dt . That is to say, each time the on-time timer 416 is activated, the charging operation starts, and when the charging voltage reaches a predetermined voltage, the on-time timer 416 will output a pulse to the SR latch 414 Reset terminal (R). Since both the constant current source (Ion) and the capacitor (Con) have fixed values, the time for each charging voltage (Vcharge) to reach a predetermined voltage value is the fixed turn-on time of Ton.

再者,回路比较器412接收直流输出电压(Vout)与一参考电压(Vref),并且当直流输出电压(Vout)小于参考电压(Vref)时,回路比较器412会输出一脉波至SR锁存器414的设定端(S)。而当回路比较器412输出脉波至SR锁存器414的设定端(S)时也会控制开启时间计时器416开始计时,并且于Ton时间之后输出一脉波至SR锁存器414的重置端(R)。而根据SR锁存器414的重置端(R)与设定端(S)的信号变化即可产生PWM信号。  Furthermore, the loop comparator 412 receives the DC output voltage (Vout) and a reference voltage (Vref), and when the DC output voltage (Vout) is lower than the reference voltage (Vref), the loop comparator 412 will output a pulse to the SR lock The setting terminal (S) of the register 414. When the loop comparator 412 outputs a pulse wave to the setting terminal (S) of the SR latch 414, it will also control the on-time timer 416 to start counting, and output a pulse wave to the SR latch 414 after the Ton time. Reset terminal (R). The PWM signal can be generated according to the signal changes of the reset terminal (R) and the set terminal (S) of the SR latch 414 . the

请参照图4B,其所示为固定开启时间控制模式的直流转直流变换器中的输出电压(Vout)、SR锁存器的重置端(R)与设定端(S)的信号与PWM信号示意图。  Please refer to Figure 4B, which shows the output voltage (Vout), the reset terminal (R) and the set terminal (S) signal of the SR latch and the PWM Signal schematic. the

其中,当输出电压(Vout)小于参考电压时,SR锁存器的设定端(S)接收到脉波。而经过Ton的时间之后,开启时间计时器416产生一脉波至SR锁存器的重置端(R)。由图中可知,当SR锁存器的设定端(S)接收到一脉波时,PM信号为高电平,当SR锁存器的重置端(R)收到一脉波时,PM信号为低电平。  Wherein, when the output voltage (Vout) is lower than the reference voltage, the setting terminal (S) of the SR latch receives a pulse wave. After the time Ton elapses, the on-time timer 416 generates a pulse to the reset terminal (R) of the SR latch. It can be seen from the figure that when the setting terminal (S) of the SR latch receives a pulse, the PM signal is at a high level, and when the reset terminal (R) of the SR latch receives a pulse, PM signal is low level. the

众所周知,电脑系统中的中央处理器(CPU)、动态随机存取存储器(DRAM)、绘图芯片(graphic chip)、芯片组(chip set)所使用的操作电压皆不相同。因此,电脑系统中需要许多直流转直流变换器用以将电源供应器提供的直流输入压(例如19V)转换成为各元件所需的操作电压。然而,直流转直流变换器的暂态(transient)对于上述各元件的效率(performance)会产生极大的影响。  As we all know, the operating voltages used by the central processing unit (CPU), dynamic random access memory (DRAM), graphics chip (graphic chip), and chipset (chip set) in a computer system are all different. Therefore, many DC-to-DC converters are needed in the computer system to convert the DC input voltage (for example, 19V) provided by the power supply into the operating voltage required by each component. However, the transient of the DC-to-DC converter will have a great impact on the performance of the above components. the

当直流转直流变换器的负载(load)变化剧烈时,输出电流(Iout)会快速地变化。举例来说,当直流转直流变换器的输出电流(Iout)突然降低时,直流输出电压(Vout)会相对应地快速升高,此现象称为过冲现象(overshoot)。反之,当直流转直流变换器的输出电流(Iout)突然升高时,直流输出电压(Vout)会相对应地快速降低,此现象称为欠冲现象(undershoot)。  When the load (load) of the DC-to-DC converter changes drastically, the output current (Iout) will change rapidly. For example, when the output current (Iout) of the DC-to-DC converter suddenly decreases, the DC output voltage (Vout) will correspondingly increase rapidly, and this phenomenon is called overshoot. Conversely, when the output current (Iout) of the DC-to-DC converter suddenly increases, the DC output voltage (Vout) will decrease correspondingly and rapidly. This phenomenon is called undershoot. the

当过冲现象或者欠冲现象发生时,直流转直流变换器中的控制电路必须将过高或过低的直流输出电压回复至稳态(steady state)的电压。以过冲现象为例,当过冲现象发生的暂态,直流输出电压会高于稳态的直流输 出电压,而超出最大值即为过冲电压(overshoot voltage)。  When the overshoot or undershoot occurs, the control circuit in the DC-to-DC converter must restore the overhigh or underlow DC output voltage to a steady state voltage. Taking the overshoot phenomenon as an example, when the overshoot phenomenon occurs transiently, the DC output voltage will be higher than the steady-state DC output voltage, and the overshoot voltage is the overshoot voltage. the

如图5所示,以电压控制模式的直流转直流变换器的PWM信号的操作频率为200KHz而稳态的直流输出电压为1.26V为例,当输出电流由90A急剧降低至5A时,暂态的直流输出电压会增加至1.36V,亦即,过冲电压为100mV。如图6所示,以固定开启时间控制模式的直流转直流变换器的PWM信号的操作频率为276KHz而稳态的直流输出电压为1.96V为例,当输出电流由25A急剧降低至1.5 A时,暂态的直流输出电压会增加至2.04V,亦即,过冲电压为80mV。  As shown in Figure 5, taking the operating frequency of the PWM signal of the DC-to-DC converter in the voltage control mode as 200KHz and the steady-state DC output voltage as 1.26V as an example, when the output current drops sharply from 90A to 5A, the transient The DC output voltage will increase to 1.36V, that is, the overshoot voltage is 100mV. As shown in Figure 6, taking the PWM signal operating frequency of the DC-DC converter in the fixed on-time control mode as 276KHz and the steady-state DC output voltage as 1.96V as an example, when the output current drops sharply from 25A to 1.5A , the transient DC output voltage will increase to 2.04V, that is, the overshoot voltage is 80mV. the

因此,直流转直流变换器的设计者会针对过冲现象以及欠冲现象提出改善之道。然而,大多数的直流转直流变换器设计者皆是针对欠冲现象进行改善,而鲜少提出改善过冲现象。  Therefore, the designer of the DC-to-DC converter will propose ways to improve the overshoot and undershoot phenomena. However, most designers of DC-to-DC converters focus on improving the undershoot phenomenon, but rarely propose to improve the overshoot phenomenon. the

如美国专利US7157943提出一种软启动电压电平进行频率选择的切换模式功率转换器(Frequency selection of switch mode power convertersvia softstart voltage level)。此专利所提出的切换模式功率转换器宣称可降低过冲现象。然而,该专利中并未提及如何实践并降低过冲现象。  For example, U.S. Patent No. 7,157,943 proposes a switching mode power converter (Frequency selection of switch mode power converters via softstart voltage level) with soft start voltage level for frequency selection. The switch-mode power converter proposed in this patent claims to reduce overshoot. However, this patent does not mention how to practice and reduce the overshoot phenomenon. the

再者,中国台湾专利I251395提出一种利用输出电压回授迟滞电路自动改变输出频率的脉宽调变装置。很明显地,此专利是为了解决上功率晶体管或下功率晶体管的损耗而造成的影响。再者,此专利的PWM信号会不断地产生变化,因此,整个直流转直流变换器的稳定性会变差。  Furthermore, Chinese Taiwan patent I251395 proposes a pulse width modulation device that uses an output voltage feedback hysteresis circuit to automatically change the output frequency. Obviously, this patent is to solve the influence caused by the loss of the upper power transistor or the lower power transistor. Furthermore, the PWM signal of this patent will constantly change, so the stability of the entire DC-to-DC converter will deteriorate. the

发明内容 Contents of the invention

本发明提出一种直流转直流变换器,包括:一控制电路,接收并比较一直流输出电压,当直流输出电压未超过一第一临限电压时,输出一第一频率的一脉波宽度调变信号,且当直流输出电压超过第一临限电压时,输出一第二频率的脉波宽度调变信号,且第二频率大于第一频率;一栅驱动电路,接收脉波宽度调变信号并转换成为一第一驱动信号与一第二驱动信号;一功率级电路,根据第一驱动信号与第二驱动信号将一直流输入电压转换成直流输出电压。  The present invention proposes a DC-to-DC converter, including: a control circuit that receives and compares a DC output voltage, and outputs a pulse width modulation of a first frequency when the DC output voltage does not exceed a first threshold voltage. The signal is changed, and when the DC output voltage exceeds the first threshold voltage, a pulse width modulation signal of a second frequency is output, and the second frequency is greater than the first frequency; a grid driving circuit receives the pulse width modulation signal and converted into a first driving signal and a second driving signal; a power stage circuit converts a DC input voltage into a DC output voltage according to the first driving signal and the second driving signal. the

本发明更提出一种直流转直流变换器的控制方法,此直流转直流变换器包括,一控制电路、一栅驱动电路、与一功率级电路,且控制电路可接 收该功率级电路所产生的一直流输出电压,并根据直流输出电压的变化产生相对应的一脉波宽度调变信号,而栅驱动电路接收脉波宽度调变信号并转换成为一第一驱动信号与一第二驱动信号至功率级电路,使得功率级电路可根据第一驱动信号与第二驱动信号的变化将一直流输入电压转换成直流输出电压,此直流转直流变换器的控制方法包含下列步骤:持续地监测输出直流电压;当该直流输出电压未超过一第一临限电压时,切换该脉波宽度调变信号的操作频率至一第一频率;以及,当直流输出电压超过第一临限电压时,切换脉波宽度调变信号的操作频率至一第二频率,且第二频率大于第一频率。  The present invention further proposes a control method for a DC-to-DC converter. The DC-to-DC converter includes a control circuit, a gate drive circuit, and a power stage circuit, and the control circuit can receive the power generated by the power stage circuit. A DC output voltage, and a corresponding pulse width modulation signal is generated according to the change of the DC output voltage, and the gate drive circuit receives the pulse width modulation signal and converts it into a first driving signal and a second driving signal To the power stage circuit, so that the power stage circuit can convert a DC input voltage into a DC output voltage according to the change of the first driving signal and the second driving signal. The control method of the DC-to-DC converter includes the following steps: continuously monitor the output DC voltage; when the DC output voltage does not exceed a first threshold voltage, switch the operating frequency of the PWM signal to a first frequency; and, when the DC output voltage exceeds the first threshold voltage, switch The operating frequency of the PWM signal is adjusted to a second frequency, and the second frequency is greater than the first frequency. the

本发明还提出一种直流转直流变换器的控制方法,直流转直流变换器包括,一控制电路、一栅驱动电路、与一功率级电路,且控制电路可接收该功率级电路所产生的一直流输出电压,并根据直流输出电压的变化产生相对应的一脉波宽度调变信号,而栅驱动电路接收该脉波宽度调变信号并转换成为一第一驱动信号与一第二驱动信号至功率级电路,使得功率级电路可根据第一驱动信号与第二驱动信号的变化将一直流输入电压转换成直流输出电压与一输出电流流经一感测阻抗与一负载,直流转直流变换器的控制方法包含下列步骤:持续地监测输出电流流铜箔测阻抗所产生的一感测电压;当感测电压小于一偏补电压时,切换脉波宽度调变信号的操作频率至一第一频率;以及,当输出电流急剧下降导致感测电压增加时,切换脉波宽度调变信号的操作频率至一第二频率,且第二频率大于第一频率。  The present invention also proposes a control method for a DC-to-DC converter. The DC-to-DC converter includes a control circuit, a gate drive circuit, and a power stage circuit, and the control circuit can receive the constant voltage generated by the power stage circuit. DC output voltage, and generates a corresponding pulse width modulation signal according to the change of the DC output voltage, and the gate drive circuit receives the pulse width modulation signal and converts it into a first driving signal and a second driving signal to The power stage circuit, so that the power stage circuit can convert a DC input voltage into a DC output voltage and an output current through a sensing impedance and a load according to the change of the first driving signal and the second driving signal, and the DC to DC converter The control method includes the following steps: continuously monitoring a sensing voltage generated by the output current flowing through the copper foil measuring impedance; when the sensing voltage is less than a bias compensation voltage, switching the operating frequency of the pulse width modulation signal to a first frequency; and, when the sharp drop of the output current causes the sensing voltage to increase, switch the operating frequency of the PWM signal to a second frequency, and the second frequency is greater than the first frequency. the

因此,本发明的优点在于持续地监测直流输出电压(Vout),当直流输出电压超过第一临限电压时(例如,稳态直流输出电压的1.03倍),代表直流转直流变换器发生过冲现象。此时,控制电路提高PWM信号的操作频率。使得上功率晶体管以及下功率晶体管的切换速度增加,用以抑制过冲电压。当当直流输出电压低于第一临限电压时(例如,稳态直流输出电压的1.03倍),代表直流转直流变换器即将回复稳态。此时,控制电路回复PWM信号的正常操作频率。  Therefore, the advantage of the present invention is to continuously monitor the DC output voltage (Vout). When the DC output voltage exceeds the first threshold voltage (for example, 1.03 times the steady-state DC output voltage), it means that the DC-to-DC converter overshoots Phenomenon. At this time, the control circuit increases the operating frequency of the PWM signal. The switching speed of the upper power transistor and the lower power transistor is increased to suppress the overshoot voltage. When the DC output voltage is lower than the first threshold voltage (for example, 1.03 times of the steady-state DC output voltage), it means that the DC-to-DC converter is about to return to a steady state. At this time, the control circuit returns to the normal operating frequency of the PWM signal. the

附图说明  Description of drawings

为了使审查员能更进一步了解本发明特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所附附图仅提供参考与说明,并非用来对本发明加以限制,其中:  In order for the examiner to further understand the characteristics and technical content of the present invention, please refer to the following detailed description and drawings of the present invention, but the attached drawings are only for reference and description, and are not used to limit the present invention, among which:

图1所示为已知直流转直流变换器示意图;  Figure 1 shows a schematic diagram of a known DC-to-DC converter;

图2A所示为已知电压控制模式的直流转直流变换器;  Figure 2A shows a DC-to-DC converter with a known voltage control mode;

图2B所示为电压控制模式的直流转直流变换器中补偿信号(comp)、锯齿波信号(ramp)、PWM信号、第一信号、与第二信号示意图;  FIG. 2B is a schematic diagram of a compensation signal (comp), a sawtooth signal (ramp), a PWM signal, a first signal, and a second signal in a DC-to-DC converter in a voltage control mode;

图3A所示为已知电流控制模式的直流转直流变换器;  Figure 3A shows a DC-to-DC converter with a known current control mode;

图3B所示为电流控制模式的直流转直流变换器中的输出电流(Iout)、感测信号(Vsense)、锯齿波信号(ramp)、补偿信号(comp)、加总信号(sum)、SR锁存器的重置端(R)与设定端(S)的信号、与PWM信号示意图;  Figure 3B shows the output current (Iout), the sense signal (Vsense), the sawtooth signal (ramp), the compensation signal (comp), the sum signal (sum), and SR in the DC-DC converter in the current control mode Schematic diagram of the signals of the reset terminal (R) and the set terminal (S) of the latch, and the PWM signal;

图4A所示为已知固定开启时间控制模式的直流转直流变换器;  Figure 4A shows a DC-to-DC converter with a known fixed on-time control mode;

图4B所示为固定开启时间控制模式的直流转直流变换器中的输出电压(Vout)、SR锁存器的重置端(R)与设定端(S)的信号、与PWM信号示意图;  4B is a schematic diagram of the output voltage (Vout), the signals of the reset terminal (R) and the set terminal (S) of the SR latch, and the PWM signal in the DC-to-DC converter in the fixed on-time control mode;

图5所示为已知电压控制模式的直流转直流变换器过充电压示意图;  Figure 5 is a schematic diagram of the overcharge voltage of the DC-to-DC converter with a known voltage control mode;

图6所示为已知固定开启时间控制模式的直流转直流变换器过充电压示意图。  Fig. 6 is a schematic diagram of the overcharge voltage of the DC-DC converter with a known fixed on-time control mode. the

图7所示为本发明直流转直流变换器的控制方法流程图;  Fig. 7 shows the flow chart of the control method of the DC-to-DC converter of the present invention;

图8A所示为本发明第一实施例的电压控制模式的直流转直流变换器;  Figure 8A shows the DC-to-DC converter in the voltage control mode of the first embodiment of the present invention;

图8B所示为电压控制模式的直流转直流变换器中补偿信号(comp)、锯齿波信号(ramp)、与PWM信号示意图;  FIG. 8B is a schematic diagram of the compensation signal (comp), the sawtooth signal (ramp), and the PWM signal in the DC-to-DC converter in the voltage control mode;

图9所示为本发明电压控制模式的直流转直流变换器过充电压示意图;  Figure 9 is a schematic diagram of the overcharge voltage of the DC-to-DC converter in the voltage control mode of the present invention;

图10A所示为本发明第二实施例电流控制模式的直流转直流变换器。  FIG. 10A shows a DC-to-DC converter in current control mode according to the second embodiment of the present invention. the

图10B所示为电流控制模式的直流转直流变换器中的输出电流(Iout)、感测信号(Vsense)、锯齿波信号(ramp)、补偿信号(comp)、加总信号(sum)、SR锁存器的重置端(R)与设定端(S)的信号、与PWM信号示意图;  Figure 10B shows the output current (Iout), sense signal (Vsense), sawtooth signal (ramp), compensation signal (comp), summation signal (sum), SR Schematic diagram of the signals of the reset terminal (R) and the set terminal (S) of the latch, and the PWM signal;

图11A所示为本发明第三实施例固定开启时间控制模式的直流转直流变换器;  FIG. 11A shows a DC-to-DC converter in a fixed on-time control mode according to the third embodiment of the present invention;

图11B,其所示为固定开启时间控制模式的直流转直流变换器中的输出电压(Vout)、SR锁存器的重置端(R)与设定端(S)的信号、与PWM信号示意图;  Figure 11B, which shows the output voltage (Vout), the reset terminal (R) and set terminal (S) signals of the SR latch, and the PWM signal in the DC-to-DC converter in the fixed on-time control mode schematic diagram;

图12所示为本发明固定开启时间控制模式的直流转直流变换器过充电压示意图;  Figure 12 is a schematic diagram of the overcharge voltage of the DC-to-DC converter in the fixed on-time control mode of the present invention;

图13所示为电压控制模式的直流转直流变换器。  Figure 13 shows the DC-to-DC converter in voltage control mode. the

具体实施方式 Detailed ways

请参照图7,其所示为本发明直流转直流变换器的控制方法流程图。首先,持续地监测直流输出电压(步骤S10)。当直流输出电压小于第一临限电压时(步骤S12),则跳至步骤S10;反之,当直流输出电压大于第一临限电压时(步骤S12),则提高PWM信号的频率,亦即,由一第一频率提高至一第二频率(步骤S14)。接着,继续地监测直流输出电压(步骤S16)。当直流输出电压大于第一临限电压时(步骤S18),则跳至步骤S16;反之,当直流输出电压小于第一临限电压时(步骤S18),则恢复原PWM信号的频率,亦即,由第二频率降低至第一频率(步骤S20),并且跳至(步骤S10)。  Please refer to FIG. 7 , which is a flow chart of the control method of the DC-to-DC converter of the present invention. First, continuously monitor the DC output voltage (step S10). When the DC output voltage is less than the first threshold voltage (step S12), then jump to step S10; otherwise, when the DC output voltage is greater than the first threshold voltage (step S12), then increase the frequency of the PWM signal, that is, Increase from a first frequency to a second frequency (step S14). Next, continuously monitor the DC output voltage (step S16). When the DC output voltage is greater than the first threshold voltage (step S18), then jump to step S16; otherwise, when the DC output voltage is less than the first threshold voltage (step S18), then restore the frequency of the original PWM signal, that is , decrease from the second frequency to the first frequency (step S20), and skip to (step S10). the

根据本发明的实施例,直流输出电压会持续地被监测,当直流输出电压超过第一临限电压(Vth1)时(例如,Vth1=Vout+Delta,而Vout为稳态的直流输出电压,而Delta可设定为0.03Vout),代表直流转直流变换器发生过冲现象。此时,控制电路提高PWM信号的操作频率至第二频率。使得上功率晶体管以及下功率晶体管的切换速度增加,因此,可有效地抑制过冲电压。  According to an embodiment of the present invention, the DC output voltage will be continuously monitored, and when the DC output voltage exceeds the first threshold voltage (Vth1) (for example, Vth1=Vout+Delta, and Vout is the steady-state DC output voltage, and Delta can be set to 0.03Vout), which means that the DC-to-DC converter overshoots. At this time, the control circuit increases the operating frequency of the PWM signal to the second frequency. The switching speed of the upper power transistor and the lower power transistor is increased, therefore, the overshoot voltage can be effectively suppressed. the

再者,当直流输出电压低于第一临限电压时(例如,稳态直流输出电压的1.03倍),代表直流转直流变换器即将回复稳态。此时,控制电路回复PWM信号的操作频率至第一频率。  Furthermore, when the DC output voltage is lower than the first threshold voltage (for example, 1.03 times of the steady-state DC output voltage), it means that the DC-to-DC converter is about to return to a steady state. At this time, the control circuit restores the operating frequency of the PWM signal to the first frequency. the

以下详细介绍本发明的电压控制模式的直流转直流变换器、电流控制模式的直流转直流变换器、以及,固定开启时间控制模式的直流转直流变换器。  The DC-to-DC converter in the voltage control mode, the DC-to-DC converter in the current control mode, and the DC-to-DC converter in the fixed turn-on time control mode of the present invention will be introduced in detail below. the

请参照图8A,其所示为本发明第一实施例的电压控制模式的直流转直流变换器。电压控制模式的直流转直流变换器包括:一控制电路610、一 栅驱动电路620、一功率级电路630。其中,控制电路610包括:一误差放大器612、一调变单元614、与一信号发生器616、与一比较器618。  Please refer to FIG. 8A , which shows the DC-to-DC converter in voltage control mode according to the first embodiment of the present invention. The DC-to-DC converter in the voltage control mode includes: a control circuit 610, a gate drive circuit 620, and a power stage circuit 630. Wherein, the control circuit 610 includes: an error amplifier 612 , a modulation unit 614 , a signal generator 616 , and a comparator 618 . the

误差放大器612接收直流输出电压(Vout)与一参考电压(Vref),并且误差放大器612可比较直流输出电压(Vout)并与参考电压(Vref)进而产生一补偿信号(comp)至调变单元6 14。  The error amplifier 612 receives the DC output voltage (Vout) and a reference voltage (Vref), and the error amplifier 612 can compare the DC output voltage (Vout) with the reference voltage (Vref) to generate a compensation signal (comp) to the modulation unit 6 14. the

再者,信号发生器616可选择性地输出第一频率(F1)或者第二频率(F2)的锯齿波信号(ramp)至调变单元614,使得调变单元614可以根据补偿信号(comp)以及锯齿波信号(ramp)而产生PWM信号。当然,信号发生器616除了可输出第一频率(F1)或者第二频率(F2)的锯齿波信号(ramp)之外,也可以输出第一频率(F1)或者第二频率(F2)的其它形状信号,例如三角波信号(triangle signal)。其中,第一频率(F1)小于第二频率(F2)。  Furthermore, the signal generator 616 can selectively output the sawtooth wave signal (ramp) of the first frequency (F1) or the second frequency (F2) to the modulation unit 614, so that the modulation unit 614 can And a sawtooth signal (ramp) to generate a PWM signal. Of course, the signal generator 616 can output the sawtooth wave signal (ramp) of the first frequency (F1) or the second frequency (F2), and other signals of the first frequency (F1) or the second frequency (F2). A shape signal, such as a triangle signal. Wherein, the first frequency (F1) is smaller than the second frequency (F2). the

再者,比较器618可接收第一临限电压(Vth1)以及直流输出电压(Vout)。当直流输出电压(Vout)小于第一临限电压(Vth1)时,比较器618可输出第一电平至信号发生器616,使得信号发生器616输出第一频率(F1)的锯齿波信号(ramp)至调变单元614。反之,当直流输出电压(Vout)大于第一临限电压(Vth1)时,比较器618可输出第二电平至信号发生器616,使得信号发生器616输出第二频率(F2)的锯齿波信号(ramp)至调变单元614。  Furthermore, the comparator 618 can receive the first threshold voltage ( Vth1 ) and the DC output voltage ( Vout ). When the DC output voltage (Vout) is less than the first threshold voltage (Vth1), the comparator 618 can output the first level to the signal generator 616, so that the signal generator 616 outputs a sawtooth signal of the first frequency (F1) ( ramp) to the modulation unit 614. Conversely, when the DC output voltage (Vout) is greater than the first threshold voltage (Vth1), the comparator 618 can output a second level to the signal generator 616, so that the signal generator 616 outputs a sawtooth wave with a second frequency (F2) The signal (ramp) is sent to the modulation unit 614 . the

请参照图8B,其所示为电压控制模式的直流转直流变换器中补偿信号(comp)、锯齿波信号(ramp)、与PWM信号示意图。当补偿信号(comp)大于锯齿波信号(ramp)时PWM信号即为高电平,反之当补偿信号(comp)小于锯齿波信号(ramp)时PWM信号即为低电平。很明显地,当锯齿波信号(ramp)在变化时,PWM信号的脉波宽度也会随之变化;再者,当锯齿波信号(ramp)为第一频率(F1)时,PWM信号操作于第一频率(F1);当锯齿波信号(ramp)为第二频率(F2)时,PWM信号操作于第二频率(F2)。因此,本发明的电压控制模式的直流转直流变换器可根据直流输出电压(Vout)的大小来控制PWM信号的操作频率。  Please refer to FIG. 8B , which is a schematic diagram of the compensation signal (comp), the sawtooth signal (ramp), and the PWM signal in the DC-DC converter in the voltage control mode. When the compensation signal (comp) is greater than the sawtooth signal (ramp), the PWM signal is at a high level; otherwise, when the compensation signal (comp) is smaller than the ramp signal, the PWM signal is at a low level. Obviously, when the sawtooth signal (ramp) is changing, the pulse width of the PWM signal will also change accordingly; moreover, when the sawtooth signal (ramp) is at the first frequency (F1), the PWM signal operates at The first frequency (F1); when the sawtooth signal (ramp) is at the second frequency (F2), the PWM signal operates at the second frequency (F2). Therefore, the DC-DC converter in the voltage control mode of the present invention can control the operating frequency of the PWM signal according to the magnitude of the DC output voltage (Vout). the

如图9所示,根据本发明的第一实施例,当电压控制模式的直流转直流变换器的PWM信号的第一频率为200KHz而稳态的直流输出电压为1.26V为例,当输出电流由90A急剧降低至5A时,将PWM信号调整为第二频率 (342KHz)会使得暂态的直流输出电压会增加至1.33V,亦即,过冲电压为70mV。因此能够有效地抑制过冲电压。  As shown in Figure 9, according to the first embodiment of the present invention, when the first frequency of the PWM signal of the DC-to-DC converter in the voltage control mode is 200KHz and the steady-state DC output voltage is 1.26V as an example, when the output current When sharply reducing from 90A to 5A, adjusting the PWM signal to the second frequency (342KHz) will increase the transient DC output voltage to 1.33V, that is, the overshoot voltage is 70mV. Therefore, the overshoot voltage can be effectively suppressed. the

请参照图10A,其所示为本发明第二实施例电流控制模式的直流转直流变换器。电流控制模式的直流转直流变换器包括:一控制电路710、一栅驱动电路720、一功率级电路730。其中,控制电路7 10包括:一误差放大器712、PWM比较器713、一信号发生器714、一电流感测放大器715、一加法器716、一SR锁存器717、与一比较器718。误差放大器712接收直流输出电压(Vout)与一参考电压(Vref),并且误差放大器712可比较直流输出电压(Vout)并与参考电压(Vref)进而产生一补偿信号(comp)至PWM比较器713。  Please refer to FIG. 10A , which shows a DC-to-DC converter in a current control mode according to a second embodiment of the present invention. The DC-to-DC converter in the current control mode includes: a control circuit 710 , a gate drive circuit 720 , and a power stage circuit 730 . Wherein, the control circuit 710 includes: an error amplifier 712, a PWM comparator 713, a signal generator 714, a current sense amplifier 715, an adder 716, an SR latch 717, and a comparator 718. The error amplifier 712 receives the DC output voltage (Vout) and a reference voltage (Vref), and the error amplifier 712 can compare the DC output voltage (Vout) with the reference voltage (Vref) to generate a compensation signal (comp) to the PWM comparator 713 . the

再者,电流感测放大器715可以侦测功率级电路730中流过上功率晶体管的第一电流(I1)或者是下功率晶体管的第二电流(I2)。举例来说,电流感测放大器715可将上功率晶体管的电流(I1)转换成为感测信号(Vsense)。  Furthermore, the current sense amplifier 715 can detect the first current ( I1 ) flowing through the upper power transistor or the second current ( I2 ) flowing through the lower power transistor in the power stage circuit 730 . For example, the current sense amplifier 715 can convert the current (I1) of the upper power transistor into a sense signal (Vsense). the

再者,信号发生器314可同时输出一锯齿波信号(ramp)与一时脉信号(CLK),且锯齿波信号(ramp)与时脉信号(CLK)可选择性地具有相同的第一频率(F1)或者第二频率(F2)。而锯齿波信号(ramp)与感测信号(Vsense)经由加法器716迭加(superpose)之后成为加总信号(sum)。其中,第一频率(F1)小于第二频率(F2)。  Moreover, the signal generator 314 can simultaneously output a ramp signal (ramp) and a clock signal (CLK), and the ramp signal (ramp) and the clock signal (CLK) can selectively have the same first frequency ( F1) or the second frequency (F2). The sawtooth signal (ramp) and the sensing signal (Vsense) are superposed by the adder 716 to become a sum signal (sum). Wherein, the first frequency (F1) is smaller than the second frequency (F2). the

而加总信号(sum)与补偿信号(comp)输入PWM比较器313,当加总信号(sum)大于补偿信号(comp)时,PWM比较器313会输出一脉波至SR锁存器317的重置端(reset terminal,R)。再者,时脉信号(CLK)会输入SR锁存器317的设定端(set terminal,S)。而根据SR锁存器317的重置端(R)与设定端(S)的信号变化即可产生PWM信号。当然,信号发生器216除了可输出锯齿波信号(ramp)之外,也可以输出三角波信号(trianglesignal)。  The sum signal (sum) and the compensation signal (comp) are input to the PWM comparator 313. When the sum signal (sum) is greater than the compensation signal (comp), the PWM comparator 313 will output a pulse to the SR latch 317. Reset terminal (reset terminal, R). Furthermore, the clock signal (CLK) is input to the set terminal (S) of the SR latch 317 . The PWM signal can be generated according to the signal changes of the reset terminal (R) and the set terminal (S) of the SR latch 317 . Of course, the signal generator 216 can also output a triangle signal (triangle signal) in addition to the ramp signal. the

再者,比较器718可接收第一临限电压(Vth1)以及直流输出电压(Vout)。当直流输出电压(Vout)小于第一临限电压(Vth1)时,比较器718可输出第一电平至信号发生器716,使得信号发生器714输出第一频率(F1)的锯齿波信号(ramp)与时脉信号(CLK)。反之,当直流输出电压(Vout)大 于第一临限电压(Vth1)时,比较器718可输出第二电平至信号发生器714,使得信号发生器714输出第二频率(F2)的锯齿波信号(ramp)与时脉信号(CLK)。  Furthermore, the comparator 718 can receive the first threshold voltage ( Vth1 ) and the DC output voltage ( Vout ). When the DC output voltage (Vout) is less than the first threshold voltage (Vth1), the comparator 718 can output the first level to the signal generator 716, so that the signal generator 714 outputs a sawtooth signal of the first frequency (F1) ( ramp) and clock signal (CLK). Conversely, when the DC output voltage (Vout) is greater than the first threshold voltage (Vth1), the comparator 718 can output a second level to the signal generator 714, so that the signal generator 714 outputs a sawtooth signal with a second frequency (F2). Wave signal (ramp) and clock signal (CLK). the

请参照图10B,其所示为电流控制模式的直流转直流变换器中的输出电流(Iout)、感测信号(Vsense)、锯齿波信号(ramp)、补偿信号(comp)、加总信号(sum)、SR锁存器的重置端(R)与设定端(S)的信号、与PM信号示意图。  Please refer to FIG. 10B, which shows the output current (Iout), the sense signal (Vsense), the sawtooth signal (ramp), the compensation signal (comp), and the sum signal ( sum), the reset terminal (R) and set terminal (S) signals of the SR latch, and the schematic diagram of the PM signal. the

其中,输出电流(Iout)上升的区域即为上功率晶体管的第一电流(I1),输出电流(Iout)下降的区域即为下功率晶体管的第二电流(I2)。因此,电流感测放大器315即可感测第一电流(I1)而产生感测信号(Vsense)。由图中可知,当SR锁存器的设定端(S)接收到一脉波时,PWM信号为高电平,当SR锁存器的重置端(R)收到一脉波时,PWM信号为低电平。因此,PWM信号的脉波宽度会随着第一电流(I1)大小而改变。再者,当锯齿波信号(ramp)与时脉信号(CLK)为第一频率(F1)时,PWM信号操作于第一频率(F1);当锯齿波信号(ramp)与时脉信号(CLK)为第二频率(F1)时,PWM信号操作于第二频率(F2)。因此,本发明的电流控制模式的直流转直流变换器可根据直流输出电压(Vout)的大小来控制PWM信号的操作频率。  Wherein, the area where the output current (Iout) rises is the first current (I1) of the upper power transistor, and the area where the output current (Iout) drops is the second current (I2) of the lower power transistor. Therefore, the current sense amplifier 315 can sense the first current (I1) to generate a sense signal (Vsense). It can be seen from the figure that when the setting terminal (S) of the SR latch receives a pulse wave, the PWM signal is at a high level, and when the reset terminal (R) of the SR latch receives a pulse wave, The PWM signal is low. Therefore, the pulse width of the PWM signal changes with the magnitude of the first current ( I1 ). Furthermore, when the ramp signal (ramp) and the clock signal (CLK) are at the first frequency (F1), the PWM signal operates at the first frequency (F1); when the ramp signal (ramp) and the clock signal (CLK ) is the second frequency (F1), the PWM signal operates at the second frequency (F2). Therefore, the current control mode DC-DC converter of the present invention can control the operating frequency of the PWM signal according to the magnitude of the DC output voltage (Vout). the

请参照图11A,其所示为本发明第三实施例固定开启时间控制模式的直流转直流变换器。固定开启时间控制模式的直流转直流变换器包括:控制电路810、一栅驱动电路820、一功率级电路830。其中,控制电路810包括:一回路比较器812、一SR锁存器814、一开启时间计时器816、与一比较器818。其中,开启时间计时器816系可利用一第一定电流源(Ion1)或者一第二定电流源(Ion2)向一电容器(Con)进行充电动作,其中第一定电流源(Ion1)小于第二定电流源(Ion2)。而充电电压(Vcharge)与第一定电流源(Ion1)之间的关系为: V ch arg e = 1 C ∫ I on 1 dt ; 充电电压(Vcharge)与第二定电流源(Ion2)之间的关系为: V ch arg e = 1 C ∫ I on 2 dt . 也就是说,每一次开启时间计时器816启动时,可利用第一定电流源(Ion1)或第二定电流源(Ion2)来对一电容器(Con)开始进行充电动作,当充电电压到达一预定电 压值(predetermined voltage)时,开启时间计时器816会输出一脉波至SR锁存器814的重置端(R)。很明显地,由第一定电流源(Ion1)进行充电时,充电电压(Vcharge)到达预定电压值的时间皆为Ton1的固定开启时间;同理,由第二定电流源(Ion2)进行充电时,充电电压(Vcharge)到达预定电压值的时间皆为Ton2的固定开启时间。  Please refer to FIG. 11A , which shows a DC-to-DC converter in a fixed on-time control mode according to a third embodiment of the present invention. The DC-to-DC converter in the fixed on-time control mode includes: a control circuit 810 , a gate drive circuit 820 , and a power stage circuit 830 . Wherein, the control circuit 810 includes: a loop comparator 812 , an SR latch 814 , an on-time timer 816 , and a comparator 818 . Wherein, the on-time timer 816 can use a first constant current source (Ion1) or a second constant current source (Ion2) to charge a capacitor (Con), wherein the first constant current source (Ion1) is smaller than the first constant current source (Ion1) Two constant current sources (Ion2). The relationship between the charging voltage (Vcharge) and the first constant current source (Ion1) is: V ch arg e = 1 C ∫ I on 1 dt ; The relationship between the charging voltage (Vcharge) and the second constant current source (Ion2) is: V ch arg e = 1 C ∫ I on 2 dt . That is to say, each time the on-time timer 816 starts, the first constant current source (Ion1) or the second constant current source (Ion2) can be used to start charging a capacitor (Con). When the charging voltage reaches a certain When the predetermined voltage is reached, the on-time timer 816 outputs a pulse to the reset terminal (R) of the SR latch 814 . Obviously, when charging by the first constant current source (Ion1), the time for the charging voltage (Vcharge) to reach the predetermined voltage value is the fixed turn-on time of Ton1; similarly, charging by the second constant current source (Ion2) , the time for the charging voltage (Vcharge) to reach the predetermined voltage value is the fixed turn-on time of Ton2.

再者,回路比较器812接收直流输出电压(Vout)与一参考电压(Vref),并且当直流输出电压(Vout)小于参考电压(Vref)时,回路比较器812会输出一脉波至SR锁存器814的设定端(S)。而当回路比较器812输出脉波至SR锁存器814的设定端(S)时也会控制开启时间计时器816开始计时,并且于Ton1或Ton2时间之后输出一脉波至SR锁存器814的重置端(R)。而根据SR锁存器814的重置端(R)与设定端(S)的信号变化即可产生PWM信号。  Moreover, the loop comparator 812 receives the DC output voltage (Vout) and a reference voltage (Vref), and when the DC output voltage (Vout) is lower than the reference voltage (Vref), the loop comparator 812 will output a pulse to the SR lock The setting terminal (S) of the register 814. And when the loop comparator 812 outputs the pulse wave to the setting terminal (S) of the SR latch 814, it will also control the on-time timer 816 to start counting, and output a pulse wave to the SR latch after Ton1 or Ton2 time 814 reset terminal (R). The PWM signal can be generated according to the signal changes of the reset terminal (R) and the set terminal (S) of the SR latch 814 . the

再者,比较器818可接收第一临限电压(Vth1)以及直流输出电压(Vout)。当直流输出电压(Vout)小于第一临限电压(Vth1)时,比较器818可输出第一电平用以控制开关(SW),使得第一电流源(Ion1)可对电容器(Con)进行充电;反之,当直流输出电压(Vout)大于第一临限电压(Vth1)时,比较器818可输出第二电平用以控制开关(SW),使得第二电流源(Ion2)可对电容器(Con)进行充电。  Furthermore, the comparator 818 can receive the first threshold voltage ( Vth1 ) and the DC output voltage ( Vout ). When the DC output voltage (Vout) is less than the first threshold voltage (Vth1), the comparator 818 can output the first level to control the switch (SW), so that the first current source (Ion1) can conduct the capacitor (Con) Conversely, when the DC output voltage (Vout) is greater than the first threshold voltage (Vth1), the comparator 818 can output a second level to control the switch (SW), so that the second current source (Ion2) can charge the capacitor (Con) to charge. the

请参照图11B,其所示为固定开启时间控制模式的直流转直流变换器中的输出电压(Vout)、SR锁存器的重置端(R)与设定端(S)的信号、与PWM信号示意图。  Please refer to FIG. 11B, which shows the output voltage (Vout), the signals of the reset terminal (R) and the set terminal (S) of the SR latch, and Schematic diagram of the PWM signal. the

其中,当输出电压(Vout)小于参考电压时,SR锁存器的设定端(S)接收到脉波。当开关(SW)切换至第一定电流源(Ion1)时,经过Ton1的时间之后,开启时间计时器816产生一脉波至SR锁存器的重置端(R);反之,当开关(SW)切换至第二定电流源(Ion2)时,经过Ton2的时间之后,开启时间计时器816产生一脉波至SR锁存器的重置端(R)。由图中可知,当SR锁存器的设定端(S)接收到一脉波时,PWM信号为高电平,当SR锁存器的重置端(R)收到一脉波时,PWM信号为低电平。很明显地,控制第一电流源(Ion1)或者第二电流源(Ion2)对电容器(Con)充电可以选择Ton1的固定开启时间或者Ton2的固定开启时间。而选择Ton1的固定开启时间时PWM信 号的频率较低;择Ton2的固定开启时间时PWM信号的频率较高。因此,本发明的固定开启时间控制模式的直流转直流变换器可根据直流输出电压(Vout)的大小来控制PWM信号的操作频率。  Wherein, when the output voltage (Vout) is lower than the reference voltage, the setting terminal (S) of the SR latch receives a pulse wave. When the switch (SW) is switched to the first constant current source (Ion1), after the time of Ton1, the on-time timer 816 generates a pulse wave to the reset terminal (R) of the SR latch; otherwise, when the switch ( When SW) is switched to the second constant current source (Ion2), after the time Ton2 elapses, the on-time timer 816 generates a pulse to the reset terminal (R) of the SR latch. It can be seen from the figure that when the setting terminal (S) of the SR latch receives a pulse wave, the PWM signal is at a high level, and when the reset terminal (R) of the SR latch receives a pulse wave, The PWM signal is low. Obviously, controlling the first current source ( Ion1 ) or the second current source ( Ion2 ) to charge the capacitor ( Con ) can select a fixed turn-on time of Ton1 or a fixed turn-on time of Ton2 . The frequency of the PWM signal is lower when the fixed turn-on time of Ton1 is selected; the frequency of the PWM signal is higher when the fixed turn-on time of Ton2 is selected. Therefore, the DC-DC converter in the fixed on-time control mode of the present invention can control the operating frequency of the PWM signal according to the magnitude of the DC output voltage (Vout). the

如图12所示,根据本发明的第三实施例,当固定开启时间控制模式的直流转直流变换器的PWM信号的操作频率为276KHz而稳态的直流输出电压为1.96V为例,当输出电流由25A急剧降低至1.5A时,将PWM信号调整为第二频率(342KHz)会使得暂态的直流输出电压会增加至2.01V,亦即,过冲电压为50mV。因此能够有效地抑制过冲电压。  As shown in Figure 12, according to the third embodiment of the present invention, when the operating frequency of the PWM signal of the DC-DC converter in the fixed on-time control mode is 276KHz and the steady-state DC output voltage is 1.96V as an example, when the output When the current drops sharply from 25A to 1.5A, adjusting the PWM signal to the second frequency (342KHz) will increase the transient DC output voltage to 2.01V, that is, the overshoot voltage is 50mV. Therefore, the overshoot voltage can be effectively suppressed. the

再者,除了利用直流输出电压(Vout)来调整PWM信号的频率之外,熟悉此记忆的设计者也可以根据输出电流(Iout)的变化情形来进行过充现象的判断,并降低过充电压。请参照图13,其所示为电压控制模式的直流转直流变换器。此电压控制模式的直流转直流变换器包括:一控制电路610、一栅驱动电路620、一功率级电路630、偏补电压(Voffset)、一感测阻抗642与一负载640。如图所示,控制电路610包括:一误差放大器612、一调变单元614、与一信号发生器616与一磁滞比较器(hysteresiscomparator)619。  Moreover, in addition to using the DC output voltage (Vout) to adjust the frequency of the PWM signal, designers who are familiar with this memory can also judge the overcharge phenomenon according to the change of the output current (Iout), and reduce the overcharge voltage. . Please refer to FIG. 13 , which shows a DC-to-DC converter in voltage control mode. The DC-DC converter in this voltage control mode includes: a control circuit 610 , a gate driving circuit 620 , a power stage circuit 630 , offset voltage (Voffset), a sensing impedance 642 and a load 640 . As shown in the figure, the control circuit 610 includes: an error amplifier 612 , a modulation unit 614 , a signal generator 616 and a hysteresis comparator (hysteresis comparator) 619 . the

误差放大器612接收直流输出电压(Vout)与一参考电压(Vref),并且误差放大器612可比较直流输出电压(Vout)并与参考电压(Vref)进而产生一补偿信号(comp)至调变单元614。  The error amplifier 612 receives the DC output voltage (Vout) and a reference voltage (Vref), and the error amplifier 612 can compare the DC output voltage (Vout) with the reference voltage (Vref) to generate a compensation signal (comp) to the modulation unit 614 . the

再者,信号发生器616可选择性地输出第一频率(F1)或者第二频率(F2)的锯齿波信号(ramp)至调变单元614,使得调变单元614可以根据补偿信号(comp)以及锯齿波信号(ramp)而产生PWM信号。  Furthermore, the signal generator 616 can selectively output the sawtooth wave signal (ramp) of the first frequency (F1) or the second frequency (F2) to the modulation unit 614, so that the modulation unit 614 can And a sawtooth signal (ramp) to generate a PWM signal. the

根据此实施例,感测阻抗642可为一电感性阻抗。当输出电流当输出电流(Iout)急剧变小时,负载640端的负载电压(Vload)急剧下降。此时,由于感测阻抗642自身的阻抗效应会使得直流输出电压(Vout)不会立刻变化,因此,感测阻抗642上会产生感测电压(ΔV,sense voltage)。  According to this embodiment, the sensing impedance 642 can be an inductive impedance. When the output current (Iout) decreases sharply, the load voltage (Vload) at the end of the load 640 drops sharply. At this time, due to the impedance effect of the sensing impedance 642 itself, the direct current output voltage (Vout) will not change immediately, therefore, a sensing voltage (ΔV, sense voltage) will be generated on the sensing impedance 642 . the

当感测电压(ΔV)大于偏补电压(Voffset)时,代表此时会发生过充现象,而磁滞比较器619可控制信号发生器616由第一频率(F1)提高为第二频率(F2)。也就是说,当感测电压(ΔV)很小时,磁滞比较器6 19可输出第一电平至信号发生器616,使得信号发生器616输出第一频率(F1)的锯 齿波信号(ramp)至调变单元614。反之,当输出电流(Iout)急剧降低使得感测电压(ΔV)减去偏补电压(Voffset)的结果到达磁滞比较器619的电平变换点时,磁滞比较器619可输出第二电平至信号发生器616,使得信号发生器616输出第二频率(F2)的锯齿波信号(ramp)至调变单元614。  When the sensing voltage (ΔV) is greater than the offset voltage (Voffset), it means that overcharging will occur at this time, and the hysteresis comparator 619 can control the signal generator 616 to increase from the first frequency (F1) to the second frequency ( F2). That is to say, when the sensing voltage (ΔV) is very small, the hysteresis comparator 619 can output the first level to the signal generator 616, so that the signal generator 616 outputs a sawtooth wave signal ( ramp) to the modulation unit 614. Conversely, when the output current (Iout) drops sharply so that the result of subtracting the offset voltage (Voffset) from the sensing voltage (ΔV) reaches the level change point of the hysteresis comparator 619, the hysteresis comparator 619 can output a second voltage. level to the signal generator 616 , so that the signal generator 616 outputs a sawtooth signal (ramp) of the second frequency ( F2 ) to the modulation unit 614 . the

再者,上述三个实施例中的比较器618、718、818也可使用磁滞比较器,用以防止直流输出电压的扰动,使得直流转直流变换器能够更稳定的操作。  Furthermore, the comparators 618 , 718 , and 818 in the above three embodiments can also use hysteresis comparators to prevent the disturbance of the DC output voltage, so that the DC-to-DC converter can operate more stably. the

综上所述,虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何熟习此技术者,在不脱离本发明的精神和范围内,当可作各种更动与润饰,因此本发明的保护范围当视权利要求书所界定的为准。  In summary, although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make various changes without departing from the spirit and scope of the present invention. and retouching, so the protection scope of the present invention should be defined by the claims. the

Claims (3)

1.一种直流转直流变换器,其特征在于,包括:1. A DC-to-DC converter, characterized in that, comprising: 控制电路,接收并比较直流输出电压,当上述直流输出电压未超过第一临限电压时,输出第一频率的脉波宽度调变信号,且当上述直流输出电压超过上述第一临限电压时,输出第二频率的上述脉波宽度调变信号,且上述第二频率大于上述第一频率;The control circuit receives and compares the DC output voltage, and outputs a pulse width modulation signal with a first frequency when the DC output voltage does not exceed the first threshold voltage, and when the DC output voltage exceeds the first threshold voltage , outputting the above-mentioned pulse width modulation signal of a second frequency, and the above-mentioned second frequency is greater than the above-mentioned first frequency; 栅驱动电路,接收上述脉波宽度调变信号并转换成为第一驱动信号与第二驱动信号;以及a gate drive circuit, receiving the pulse width modulation signal and converting it into a first drive signal and a second drive signal; and 功率级电路,根据上述第一驱动信号与上述第二驱动信号将直流输入电压转换成上述直流输出电压,the power stage circuit converts the DC input voltage into the DC output voltage according to the first driving signal and the second driving signal, 其中上述控制电路包括:Wherein the above-mentioned control circuit includes: 回路比较器,接收上述直流输出电压与参考电压,并且产生第一脉波;a loop comparator, receiving the above-mentioned DC output voltage and the reference voltage, and generating the first pulse wave; 比较器,接收上述第一临限电压以及上述直流输出电压,当上述直流输出电压小于上述第一临限电压时,上述比较器输出第一电平,当上述直流输出电压大于上述第一临限电压时,上述比较器输出第二电平;a comparator, receiving the first threshold voltage and the DC output voltage; when the DC output voltage is less than the first threshold voltage, the comparator outputs a first level; when the DC output voltage is greater than the first threshold voltage, the comparator outputs the second level; 开启时间计时器,于上述比较器输出上述第一电平时,产生第二脉波,且第一脉波与上述第二脉波相差第一开启时间,且于上述比较器输出上述第二电平时,产生第三脉波,且第一脉波与上述第三脉波相差第二开启时间,且上述第一开启时间大于上述第二开启时间;以及Turn on the time timer to generate a second pulse wave when the comparator outputs the first level, and the difference between the first pulse wave and the second pulse wave is the first turn-on time, and when the comparator outputs the second level , generating a third pulse wave, and the difference between the first pulse wave and the third pulse wave is a second turn-on time, and the first turn-on time is greater than the second turn-on time; and SR锁存器,根据上述第一脉波以及上述第二脉波产生上述脉波宽度调变信号,或者根据上述第一脉波以及上述第三脉波产生上述脉波宽度调变信号。The SR latch generates the pulse width modulation signal according to the first pulse wave and the second pulse wave, or generates the pulse width modulation signal according to the first pulse wave and the third pulse wave. 2.根据权利要求1所述的直流转直流变换器,其特征在于,其中上述开启时间计时器利用第一定电流源与第二定电流源充电于电容器而获得上述第一开启时间与上述第二开启时间,且上述第一定电流源小于上述第二定电流源。2. The DC-to-DC converter according to claim 1, wherein the on-time timer uses the first constant current source and the second constant current source to charge the capacitor to obtain the first on-time and the second 2. Turn on time, and the above-mentioned first constant current source is smaller than the above-mentioned second constant current source. 3.根据权利要求1所述的直流转直流变换器,其特征在于,其中上述比较器为磁滞比较器。3. The DC-to-DC converter according to claim 1, wherein the comparator is a hysteresis comparator.
CN200910006822XA 2009-02-27 2009-02-27 DC to DC Converter Active CN101483386B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910006822XA CN101483386B (en) 2009-02-27 2009-02-27 DC to DC Converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910006822XA CN101483386B (en) 2009-02-27 2009-02-27 DC to DC Converter

Publications (2)

Publication Number Publication Date
CN101483386A CN101483386A (en) 2009-07-15
CN101483386B true CN101483386B (en) 2012-04-25

Family

ID=40880361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910006822XA Active CN101483386B (en) 2009-02-27 2009-02-27 DC to DC Converter

Country Status (1)

Country Link
CN (1) CN101483386B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924469B (en) * 2010-08-06 2012-10-24 东南大学 Switching power supply with fast transient response
TWI449311B (en) * 2010-12-31 2014-08-11 Hanergy Technologies Inc Methology of on-chip soft-start circuits for switching mode dc/dc converter
US8742741B2 (en) * 2011-03-30 2014-06-03 Fairchild Semiconductor Corporation Apparatus and methods of soft-start in a hysteretic power converter
US9178417B2 (en) 2011-07-27 2015-11-03 Upi Semiconductor Corp. DC-DC converter and voltage conversion method thereof
TWI477048B (en) * 2011-07-27 2015-03-11 Upi Semiconductor Corp Dc-dc converter and voltage conversion method thereof
US9746868B2 (en) * 2012-10-17 2017-08-29 Texas Instruments Incorporated Single inductor multiple output discontinuous mode DC-DC converter and process
US9973078B2 (en) * 2016-09-13 2018-05-15 Kabushiki Kaisha Toshiba Power conversion apparatus and method of using the apparatus
CN108631575B (en) * 2018-06-27 2023-11-28 裕太微电子股份有限公司 Soft start circuit applied to switching power supply
WO2021253457A1 (en) * 2020-06-20 2021-12-23 华为技术有限公司 Apparatus for converting direct-current voltage, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137275A (en) * 1997-06-04 2000-10-24 Sgs-Thomson Microelectronics S.A. System for providing a regulated voltage during abrupt variations in current
JP2001095245A (en) * 1999-09-24 2001-04-06 Nichicon Corp Switching power supply
CN1592060A (en) * 2003-09-01 2005-03-09 株式会社理光 DC power supply device,driving method and semiconductor integrated circuit device
CN101262174A (en) * 2007-03-09 2008-09-10 凹凸科技(中国)有限公司 DC/DC converter and conversion method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137275A (en) * 1997-06-04 2000-10-24 Sgs-Thomson Microelectronics S.A. System for providing a regulated voltage during abrupt variations in current
JP2001095245A (en) * 1999-09-24 2001-04-06 Nichicon Corp Switching power supply
CN1592060A (en) * 2003-09-01 2005-03-09 株式会社理光 DC power supply device,driving method and semiconductor integrated circuit device
CN101262174A (en) * 2007-03-09 2008-09-10 凹凸科技(中国)有限公司 DC/DC converter and conversion method

Also Published As

Publication number Publication date
CN101483386A (en) 2009-07-15

Similar Documents

Publication Publication Date Title
TWI420796B (en) Dc to dc conventor and method to reduce overshoot
CN101483386B (en) DC to DC Converter
US9882485B2 (en) Current metering for transitioning between operating modes in switching regulators
US9312772B2 (en) Current limiting scheme for a converter
US9584019B2 (en) Switching regulator and control method thereof
US8513933B2 (en) DC-DC converter with low side switch control
US9991794B2 (en) Hybrid capacitive-inductive voltage converter
US8836307B2 (en) Voltage regulator and pulse width modulation signal generation method thereof
US20110127980A1 (en) Voltage converting circuit and method thereof
JP2010068671A (en) Dc-dc converter
JP2008079378A (en) Electronics
JP4548100B2 (en) DC-DC converter
JP2009225642A (en) Power supply apparatus and semiconductor integrated circuit apparatus
KR20230144897A (en) Dc to dc converter with pulse skipping function and on-time control function, and electronic devices having the same
US20250175081A1 (en) Enhancing efficiency of a switching converter
Huang et al. Dithering skip modulator with a novel load sensor for ultra-wide-load high-efficiency DC-DC converters
US12218590B2 (en) Soft start for Buck converter
JP2014017931A (en) Dc-dc converter
Chen et al. An improved delta modulation technique for DC-DC buck converters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: ASUS TECHNOLOGY (SUZHOU) CO., LTD.

Effective date: 20120427

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20120427

Address after: Taipei City, Taiwan, China

Co-patentee after: Huashuo Science and Technology (Suzhou) Co., Ltd.

Patentee after: Huashuo Computer Co., Ltd.

Address before: Taipei City, Taiwan, China

Patentee before: Huashuo Computer Co., Ltd.