CN101483386B - DC to DC Converter - Google Patents
DC to DC Converter Download PDFInfo
- Publication number
- CN101483386B CN101483386B CN200910006822XA CN200910006822A CN101483386B CN 101483386 B CN101483386 B CN 101483386B CN 200910006822X A CN200910006822X A CN 200910006822XA CN 200910006822 A CN200910006822 A CN 200910006822A CN 101483386 B CN101483386 B CN 101483386B
- Authority
- CN
- China
- Prior art keywords
- signal
- voltage
- output voltage
- frequency
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域 technical field
本发明是有关于一种直流转直流变换器(DC-to-DC converter)且特别是有关于一种直流转直流变换器及其减小过冲现象(over shoot)的控制方法。 The present invention relates to a DC-to-DC converter, and in particular to a DC-to-DC converter and a control method for reducing overshoot. the
背景技术 Background technique
众所周知,直流转直流变换器(DC-to-DC converter)可将直流输入电压(DC input voltage)转换为大小相异的直流输出电压(DC outputvoltage)。 As we all know, a DC-to-DC converter (DC-to-DC converter) can convert a DC input voltage (DC input voltage) into a DC output voltage (DC output voltage) of different magnitudes. the
请参照图1,其所示为已知直流转直流变换器示意图。直流转直流变换器包括一控制电路10、一栅驱动电路(gate driver)20、一功率级电路(power stage)30。一般来说,控制电路10可接收功率级电路30所产生的直流输出电压(Vout),并根据直流输出电压(Vout)的变化产生相对应的脉波宽度调变信号(pulse width modulation signal,以下简称PWM信号)。再者,栅驱动电路20接收PWM信号并转换成为一第一驱动信号与一第二驱动信号至功率级电路30,而功率级电路30可根据第一驱动信号与第二驱动信号的变化将直流输入电压(Vin)转换成直流输出电压(Vout)。
Please refer to FIG. 1 , which is a schematic diagram of a known DC-to-DC converter. The DC-to-DC converter includes a
再者,栅驱动电路20包括一第一驱动器22与一第二驱动器24。第一驱动器22接收PWM信号并产生与PWM信号同相的第一驱动信号;而第二驱动器24接收PWM信号,并产生与PWM信号反相的第二驱动信号。
Furthermore, the
再者,功率级电路30包括一上功率晶体管(upper powertransistor)32、一下功率晶体管(lower power transistor)34、一输出电感器(Lo)、以及一输出电容器(Co)。上功率晶体管32漏极连接至直流输入电压(Vin),上功率晶体管32栅极接收第一驱动信号。下功率晶体管 34漏极连接至上功率晶体管32源极,下功率晶体管34栅极接收第二驱动信号,下功率晶体管34源极连接至接地端(GND)。而输出电感器(Lo)的第一端连接至上功率晶体管32源极,输出电感器(Lo)的第二端为功率级电路30的输出端可输出直流输出电压(Vout)。再者,输出电容器(Co)的二端分别连接至功率级电路30的输出端以及接地端(GND)之间。一般来说,当直流输入电压(Vin)大于直流输出电压(Vout)时,直流转直流变换器可视为降压式直流转直流变换器(Buck DC-to-DC converter)。
Moreover, the
以降压式直流转直流变换器来说,栅驱动电路20产生的第一驱动信号与第二驱动信号可分别开启(turn on)上功率晶体管32与下功率晶体管34,并且上功率晶体管32与下功率晶体管34无法同时被开启。也就是说,当上功率晶体管32开启时,下功率晶体管34是关闭(turn off)的,此时第二电流(I2)为零,功率级电路30的输出电流Iout是由开启上功率晶体管32所产生的第一电流(I1)所提供。反之,当下功率晶体管34开启时,上功率晶体管32是关闭的,此时第一电流(I1)为零,功率级电路30的输出电流Iout是由开启下功率晶体管34所产生的第二电流(I2)所提供。一般来说,当控制电路10接收的直流输出电压(Vout)低于默认值(例如3.3V)时,PWM信号的脉波宽度会变宽,因此,栅驱动电路20产生的第一驱动信号可控制上功率晶体管32开启较长的时间,而第二驱动信号控制下功率晶体管32关闭较长的时间。反之,当控制电路10接收的直流输出电压(Vout)高于默认值(例如3.3V)时,PWM信号的脉波宽度会变窄,因此,栅驱动电路20产生的第一驱动信号可控制上功率晶体管32开启较短的时间,而第二驱动信号可控制下功率晶体管32关闭较短的时间。
For a step-down DC-to-DC converter, the first drive signal and the second drive signal generated by the
再者,直流转直流变换器中的控制电路10有许多的控制模式(mode)。一般常见的有,电压控制模式(voltage mode)、电流控制模式(currentmode)以及固定开启时间控制模式(constant on-time mode)。以下详述此三种控制模式,而栅驱动电路20、与功率级电路30的结构皆相同,所以不再赘述。
Furthermore, the
请参照图2A,其所示为已知电压控制模式的直流转直流变换器示意图。电压控制模式的直流转直流变换器包括:一控制电路210、一栅驱动电路220、一功率级电路230。其中,控制电路210包括:一误差放大器 (error amplifier)212、一调变单元(modulator)214与一信号发生器(wave generator)216。误差放大器212接收直流输出电压(Vout)与一参考电压(Vref),并且误差放大器212可比较直流输出电压(Vout)并与参考电压(Vref)进而产生一补偿信号(comp)至调变单元214。
Please refer to FIG. 2A , which is a schematic diagram of a DC-to-DC converter with a known voltage control mode. The DC-to-DC converter in voltage control mode includes: a
再者,信号发生器216可输出一第一频率的锯齿波信号(ramp)至调变单元214,使得调变单元214可以根据补偿信号(comp)以及锯齿波信号(ramp)而产生PWM信号。当然,信号发生器216除了可输出锯齿波信号(ramp)之外,也可以输出其它形状信号,例如三角波信号(trianglesignal)。
Furthermore, the
请参照图2B,其所示为电压控制模式的直流转直流变换器中补偿信号(comp)、锯齿波信号(ramp)、PWM信号、第一信号、与第二信号示意图。当补偿信号(comp)大于锯齿波信号(ramp)时PWM信号即为高电平,反之,当补偿信号(comp)小于锯齿波信号(ramp)时PWM信号即为低电平。很明显地,当补偿信号(comp)在变化时,PWM信号的脉波宽度也会随之变化。再者,第一驱动信号与PWM信号同相,第二驱动信号与PWM信号反相。而PWM信号的频率和锯齿波信号的频率皆为第一频率。 Please refer to FIG. 2B , which is a schematic diagram of a compensation signal (comp), a sawtooth signal (ramp), a PWM signal, a first signal, and a second signal in a DC-DC converter in voltage control mode. When the compensation signal (comp) is greater than the sawtooth signal (ramp), the PWM signal is at high level; otherwise, when the compensation signal (comp) is less than the ramp signal, the PWM signal is at low level. Obviously, when the compensation signal (comp) is changing, the pulse width of the PWM signal will also change accordingly. Furthermore, the first driving signal is in phase with the PWM signal, and the second driving signal is in phase opposite to the PWM signal. Both the frequency of the PWM signal and the frequency of the sawtooth signal are the first frequency. the
请参照图3A,其所示为已知电流控制模式的直流转直流变换器。电流控制模式的直流转直流变换器包括:一控制电路310、一栅驱动电路320、一功率级电路330。其中,控制电路310包括:一误差放大器312、PWM比较器(PWM comparator)313、一信号发生器314、一电流感测放大器(current sense amplifier)315、一加法器(adder)316、与一SR锁存器(SR latch)317。误差放大器312接收直流输出电压(Vout)与一参考电压(Vref),并且误差放大器312可比较直流输出电压(Vout)并与参考电压(Vref)进而产生一补偿信号(comp)至PWM比较器313。
Please refer to FIG. 3A , which shows a DC-to-DC converter with a known current control mode. The DC-to-DC converter in current control mode includes: a
再者,电流感测放大器315可以侦测功率级电路330中流过上功率晶体管的第一电流(I1)或者是下功率晶体管的第二电流(I2)。举例来说,电流感测放大器315可将上功率晶体管的电流(I1)转换成为感测信号(Vsense)。
Furthermore, the
再者,信号发生器314可同时输出一锯齿波信号(ramp)与一时脉信号(CLK),且锯齿波信号(ramp)与时脉信号(CLK)具有相同的第一频率。锯齿 波信号(ramp)与感测信号(Vsense)经由加法器316迭加(superpose)之后成为加总信号(sum)。加总信号(sum)与补偿信号(comp)输入PWM比较器313。当加总信号(sum)大于补偿信号(comp)时,PWM比较器313会输出一脉波至SR锁存器317的重置端(reset terminal,R)。再者,时脉信号(CLK)会输入SR锁存器317的设定端(set terminal,S)。而根据SR锁存器317的重置端(R)与设定端(S)的信号变化即可产生PWM信号。当然,信号发生器216除了可输出锯齿波信号(ramp)之外,也可以输出其它形状信号,例如三角波信号(triangle signal)。
Furthermore, the
请参照图3B,其所示为电流控制模式的直流转直流变换器中的输出电流(Iout)、感测信号(Vsense)、锯齿波信号(ramp)、补偿信号(comp)、加总信号(sum)、SR锁存器的重置端(R)与设定端(S)的信号、PWM信号示意图。 Please refer to FIG. 3B, which shows the output current (Iout), the sense signal (Vsense), the sawtooth signal (ramp), the compensation signal (comp), and the sum signal ( sum), the reset terminal (R) and the set terminal (S) signal of the SR latch, and the schematic diagram of the PWM signal. the
其中,输出电流(Iout)上升的区域即为上功率晶体管的第一电流(I1),输出电流(Iout)下降的区域即为下功率晶体管的第二电流(I2)。因此,电流感测放大器315即可感测第一电流(I1)而产生感测信号(Vsense)。由图中可知,当SR锁存器的设定端(S)接收到一脉波时,PWM信号为高电平,当SR锁存器的重置端(R)收到一脉波时,PWM信号为低电平。因此,PWM信号的脉波宽度会随着第一电流(I1)大小而改变。
Wherein, the area where the output current (Iout) rises is the first current (I1) of the upper power transistor, and the area where the output current (Iout) drops is the second current (I2) of the lower power transistor. Therefore, the
请参照图4A,其所示为已知固定开启时间控制模式的直流转直流变换器。固定开启时间控制模式的直流转直流变换器包括:控制电路410、一栅驱动电路420、一功率级电路430。其中,控制电路410包括:一回路比较器(loop comparator)412、一SR锁存器(SR latch)414、一开启时间计时器(on-time timer)416。其中,开启时间计时器416是利用一定电流源(Ion)向一电容器(Con)进行充电动作,而充电电压(Vcharge)与定电流源(Ion)之间的关系为:
再者,回路比较器412接收直流输出电压(Vout)与一参考电压(Vref),并且当直流输出电压(Vout)小于参考电压(Vref)时,回路比较器412会输出一脉波至SR锁存器414的设定端(S)。而当回路比较器412输出脉波至SR锁存器414的设定端(S)时也会控制开启时间计时器416开始计时,并且于Ton时间之后输出一脉波至SR锁存器414的重置端(R)。而根据SR锁存器414的重置端(R)与设定端(S)的信号变化即可产生PWM信号。
Furthermore, the
请参照图4B,其所示为固定开启时间控制模式的直流转直流变换器中的输出电压(Vout)、SR锁存器的重置端(R)与设定端(S)的信号与PWM信号示意图。 Please refer to Figure 4B, which shows the output voltage (Vout), the reset terminal (R) and the set terminal (S) signal of the SR latch and the PWM Signal schematic. the
其中,当输出电压(Vout)小于参考电压时,SR锁存器的设定端(S)接收到脉波。而经过Ton的时间之后,开启时间计时器416产生一脉波至SR锁存器的重置端(R)。由图中可知,当SR锁存器的设定端(S)接收到一脉波时,PM信号为高电平,当SR锁存器的重置端(R)收到一脉波时,PM信号为低电平。
Wherein, when the output voltage (Vout) is lower than the reference voltage, the setting terminal (S) of the SR latch receives a pulse wave. After the time Ton elapses, the on-
众所周知,电脑系统中的中央处理器(CPU)、动态随机存取存储器(DRAM)、绘图芯片(graphic chip)、芯片组(chip set)所使用的操作电压皆不相同。因此,电脑系统中需要许多直流转直流变换器用以将电源供应器提供的直流输入压(例如19V)转换成为各元件所需的操作电压。然而,直流转直流变换器的暂态(transient)对于上述各元件的效率(performance)会产生极大的影响。 As we all know, the operating voltages used by the central processing unit (CPU), dynamic random access memory (DRAM), graphics chip (graphic chip), and chipset (chip set) in a computer system are all different. Therefore, many DC-to-DC converters are needed in the computer system to convert the DC input voltage (for example, 19V) provided by the power supply into the operating voltage required by each component. However, the transient of the DC-to-DC converter will have a great impact on the performance of the above components. the
当直流转直流变换器的负载(load)变化剧烈时,输出电流(Iout)会快速地变化。举例来说,当直流转直流变换器的输出电流(Iout)突然降低时,直流输出电压(Vout)会相对应地快速升高,此现象称为过冲现象(overshoot)。反之,当直流转直流变换器的输出电流(Iout)突然升高时,直流输出电压(Vout)会相对应地快速降低,此现象称为欠冲现象(undershoot)。 When the load (load) of the DC-to-DC converter changes drastically, the output current (Iout) will change rapidly. For example, when the output current (Iout) of the DC-to-DC converter suddenly decreases, the DC output voltage (Vout) will correspondingly increase rapidly, and this phenomenon is called overshoot. Conversely, when the output current (Iout) of the DC-to-DC converter suddenly increases, the DC output voltage (Vout) will decrease correspondingly and rapidly. This phenomenon is called undershoot. the
当过冲现象或者欠冲现象发生时,直流转直流变换器中的控制电路必须将过高或过低的直流输出电压回复至稳态(steady state)的电压。以过冲现象为例,当过冲现象发生的暂态,直流输出电压会高于稳态的直流输 出电压,而超出最大值即为过冲电压(overshoot voltage)。 When the overshoot or undershoot occurs, the control circuit in the DC-to-DC converter must restore the overhigh or underlow DC output voltage to a steady state voltage. Taking the overshoot phenomenon as an example, when the overshoot phenomenon occurs transiently, the DC output voltage will be higher than the steady-state DC output voltage, and the overshoot voltage is the overshoot voltage. the
如图5所示,以电压控制模式的直流转直流变换器的PWM信号的操作频率为200KHz而稳态的直流输出电压为1.26V为例,当输出电流由90A急剧降低至5A时,暂态的直流输出电压会增加至1.36V,亦即,过冲电压为100mV。如图6所示,以固定开启时间控制模式的直流转直流变换器的PWM信号的操作频率为276KHz而稳态的直流输出电压为1.96V为例,当输出电流由25A急剧降低至1.5 A时,暂态的直流输出电压会增加至2.04V,亦即,过冲电压为80mV。 As shown in Figure 5, taking the operating frequency of the PWM signal of the DC-to-DC converter in the voltage control mode as 200KHz and the steady-state DC output voltage as 1.26V as an example, when the output current drops sharply from 90A to 5A, the transient The DC output voltage will increase to 1.36V, that is, the overshoot voltage is 100mV. As shown in Figure 6, taking the PWM signal operating frequency of the DC-DC converter in the fixed on-time control mode as 276KHz and the steady-state DC output voltage as 1.96V as an example, when the output current drops sharply from 25A to 1.5A , the transient DC output voltage will increase to 2.04V, that is, the overshoot voltage is 80mV. the
因此,直流转直流变换器的设计者会针对过冲现象以及欠冲现象提出改善之道。然而,大多数的直流转直流变换器设计者皆是针对欠冲现象进行改善,而鲜少提出改善过冲现象。 Therefore, the designer of the DC-to-DC converter will propose ways to improve the overshoot and undershoot phenomena. However, most designers of DC-to-DC converters focus on improving the undershoot phenomenon, but rarely propose to improve the overshoot phenomenon. the
如美国专利US7157943提出一种软启动电压电平进行频率选择的切换模式功率转换器(Frequency selection of switch mode power convertersvia softstart voltage level)。此专利所提出的切换模式功率转换器宣称可降低过冲现象。然而,该专利中并未提及如何实践并降低过冲现象。 For example, U.S. Patent No. 7,157,943 proposes a switching mode power converter (Frequency selection of switch mode power converters via softstart voltage level) with soft start voltage level for frequency selection. The switch-mode power converter proposed in this patent claims to reduce overshoot. However, this patent does not mention how to practice and reduce the overshoot phenomenon. the
再者,中国台湾专利I251395提出一种利用输出电压回授迟滞电路自动改变输出频率的脉宽调变装置。很明显地,此专利是为了解决上功率晶体管或下功率晶体管的损耗而造成的影响。再者,此专利的PWM信号会不断地产生变化,因此,整个直流转直流变换器的稳定性会变差。 Furthermore, Chinese Taiwan patent I251395 proposes a pulse width modulation device that uses an output voltage feedback hysteresis circuit to automatically change the output frequency. Obviously, this patent is to solve the influence caused by the loss of the upper power transistor or the lower power transistor. Furthermore, the PWM signal of this patent will constantly change, so the stability of the entire DC-to-DC converter will deteriorate. the
发明内容 Contents of the invention
本发明提出一种直流转直流变换器,包括:一控制电路,接收并比较一直流输出电压,当直流输出电压未超过一第一临限电压时,输出一第一频率的一脉波宽度调变信号,且当直流输出电压超过第一临限电压时,输出一第二频率的脉波宽度调变信号,且第二频率大于第一频率;一栅驱动电路,接收脉波宽度调变信号并转换成为一第一驱动信号与一第二驱动信号;一功率级电路,根据第一驱动信号与第二驱动信号将一直流输入电压转换成直流输出电压。 The present invention proposes a DC-to-DC converter, including: a control circuit that receives and compares a DC output voltage, and outputs a pulse width modulation of a first frequency when the DC output voltage does not exceed a first threshold voltage. The signal is changed, and when the DC output voltage exceeds the first threshold voltage, a pulse width modulation signal of a second frequency is output, and the second frequency is greater than the first frequency; a grid driving circuit receives the pulse width modulation signal and converted into a first driving signal and a second driving signal; a power stage circuit converts a DC input voltage into a DC output voltage according to the first driving signal and the second driving signal. the
本发明更提出一种直流转直流变换器的控制方法,此直流转直流变换器包括,一控制电路、一栅驱动电路、与一功率级电路,且控制电路可接 收该功率级电路所产生的一直流输出电压,并根据直流输出电压的变化产生相对应的一脉波宽度调变信号,而栅驱动电路接收脉波宽度调变信号并转换成为一第一驱动信号与一第二驱动信号至功率级电路,使得功率级电路可根据第一驱动信号与第二驱动信号的变化将一直流输入电压转换成直流输出电压,此直流转直流变换器的控制方法包含下列步骤:持续地监测输出直流电压;当该直流输出电压未超过一第一临限电压时,切换该脉波宽度调变信号的操作频率至一第一频率;以及,当直流输出电压超过第一临限电压时,切换脉波宽度调变信号的操作频率至一第二频率,且第二频率大于第一频率。 The present invention further proposes a control method for a DC-to-DC converter. The DC-to-DC converter includes a control circuit, a gate drive circuit, and a power stage circuit, and the control circuit can receive the power generated by the power stage circuit. A DC output voltage, and a corresponding pulse width modulation signal is generated according to the change of the DC output voltage, and the gate drive circuit receives the pulse width modulation signal and converts it into a first driving signal and a second driving signal To the power stage circuit, so that the power stage circuit can convert a DC input voltage into a DC output voltage according to the change of the first driving signal and the second driving signal. The control method of the DC-to-DC converter includes the following steps: continuously monitor the output DC voltage; when the DC output voltage does not exceed a first threshold voltage, switch the operating frequency of the PWM signal to a first frequency; and, when the DC output voltage exceeds the first threshold voltage, switch The operating frequency of the PWM signal is adjusted to a second frequency, and the second frequency is greater than the first frequency. the
本发明还提出一种直流转直流变换器的控制方法,直流转直流变换器包括,一控制电路、一栅驱动电路、与一功率级电路,且控制电路可接收该功率级电路所产生的一直流输出电压,并根据直流输出电压的变化产生相对应的一脉波宽度调变信号,而栅驱动电路接收该脉波宽度调变信号并转换成为一第一驱动信号与一第二驱动信号至功率级电路,使得功率级电路可根据第一驱动信号与第二驱动信号的变化将一直流输入电压转换成直流输出电压与一输出电流流经一感测阻抗与一负载,直流转直流变换器的控制方法包含下列步骤:持续地监测输出电流流铜箔测阻抗所产生的一感测电压;当感测电压小于一偏补电压时,切换脉波宽度调变信号的操作频率至一第一频率;以及,当输出电流急剧下降导致感测电压增加时,切换脉波宽度调变信号的操作频率至一第二频率,且第二频率大于第一频率。 The present invention also proposes a control method for a DC-to-DC converter. The DC-to-DC converter includes a control circuit, a gate drive circuit, and a power stage circuit, and the control circuit can receive the constant voltage generated by the power stage circuit. DC output voltage, and generates a corresponding pulse width modulation signal according to the change of the DC output voltage, and the gate drive circuit receives the pulse width modulation signal and converts it into a first driving signal and a second driving signal to The power stage circuit, so that the power stage circuit can convert a DC input voltage into a DC output voltage and an output current through a sensing impedance and a load according to the change of the first driving signal and the second driving signal, and the DC to DC converter The control method includes the following steps: continuously monitoring a sensing voltage generated by the output current flowing through the copper foil measuring impedance; when the sensing voltage is less than a bias compensation voltage, switching the operating frequency of the pulse width modulation signal to a first frequency; and, when the sharp drop of the output current causes the sensing voltage to increase, switch the operating frequency of the PWM signal to a second frequency, and the second frequency is greater than the first frequency. the
因此,本发明的优点在于持续地监测直流输出电压(Vout),当直流输出电压超过第一临限电压时(例如,稳态直流输出电压的1.03倍),代表直流转直流变换器发生过冲现象。此时,控制电路提高PWM信号的操作频率。使得上功率晶体管以及下功率晶体管的切换速度增加,用以抑制过冲电压。当当直流输出电压低于第一临限电压时(例如,稳态直流输出电压的1.03倍),代表直流转直流变换器即将回复稳态。此时,控制电路回复PWM信号的正常操作频率。 Therefore, the advantage of the present invention is to continuously monitor the DC output voltage (Vout). When the DC output voltage exceeds the first threshold voltage (for example, 1.03 times the steady-state DC output voltage), it means that the DC-to-DC converter overshoots Phenomenon. At this time, the control circuit increases the operating frequency of the PWM signal. The switching speed of the upper power transistor and the lower power transistor is increased to suppress the overshoot voltage. When the DC output voltage is lower than the first threshold voltage (for example, 1.03 times of the steady-state DC output voltage), it means that the DC-to-DC converter is about to return to a steady state. At this time, the control circuit returns to the normal operating frequency of the PWM signal. the
附图说明 Description of drawings
为了使审查员能更进一步了解本发明特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所附附图仅提供参考与说明,并非用来对本发明加以限制,其中: In order for the examiner to further understand the characteristics and technical content of the present invention, please refer to the following detailed description and drawings of the present invention, but the attached drawings are only for reference and description, and are not used to limit the present invention, among which:
图1所示为已知直流转直流变换器示意图; Figure 1 shows a schematic diagram of a known DC-to-DC converter;
图2A所示为已知电压控制模式的直流转直流变换器; Figure 2A shows a DC-to-DC converter with a known voltage control mode;
图2B所示为电压控制模式的直流转直流变换器中补偿信号(comp)、锯齿波信号(ramp)、PWM信号、第一信号、与第二信号示意图; FIG. 2B is a schematic diagram of a compensation signal (comp), a sawtooth signal (ramp), a PWM signal, a first signal, and a second signal in a DC-to-DC converter in a voltage control mode;
图3A所示为已知电流控制模式的直流转直流变换器; Figure 3A shows a DC-to-DC converter with a known current control mode;
图3B所示为电流控制模式的直流转直流变换器中的输出电流(Iout)、感测信号(Vsense)、锯齿波信号(ramp)、补偿信号(comp)、加总信号(sum)、SR锁存器的重置端(R)与设定端(S)的信号、与PWM信号示意图; Figure 3B shows the output current (Iout), the sense signal (Vsense), the sawtooth signal (ramp), the compensation signal (comp), the sum signal (sum), and SR in the DC-DC converter in the current control mode Schematic diagram of the signals of the reset terminal (R) and the set terminal (S) of the latch, and the PWM signal;
图4A所示为已知固定开启时间控制模式的直流转直流变换器; Figure 4A shows a DC-to-DC converter with a known fixed on-time control mode;
图4B所示为固定开启时间控制模式的直流转直流变换器中的输出电压(Vout)、SR锁存器的重置端(R)与设定端(S)的信号、与PWM信号示意图; 4B is a schematic diagram of the output voltage (Vout), the signals of the reset terminal (R) and the set terminal (S) of the SR latch, and the PWM signal in the DC-to-DC converter in the fixed on-time control mode;
图5所示为已知电压控制模式的直流转直流变换器过充电压示意图; Figure 5 is a schematic diagram of the overcharge voltage of the DC-to-DC converter with a known voltage control mode;
图6所示为已知固定开启时间控制模式的直流转直流变换器过充电压示意图。 Fig. 6 is a schematic diagram of the overcharge voltage of the DC-DC converter with a known fixed on-time control mode. the
图7所示为本发明直流转直流变换器的控制方法流程图; Fig. 7 shows the flow chart of the control method of the DC-to-DC converter of the present invention;
图8A所示为本发明第一实施例的电压控制模式的直流转直流变换器; Figure 8A shows the DC-to-DC converter in the voltage control mode of the first embodiment of the present invention;
图8B所示为电压控制模式的直流转直流变换器中补偿信号(comp)、锯齿波信号(ramp)、与PWM信号示意图; FIG. 8B is a schematic diagram of the compensation signal (comp), the sawtooth signal (ramp), and the PWM signal in the DC-to-DC converter in the voltage control mode;
图9所示为本发明电压控制模式的直流转直流变换器过充电压示意图; Figure 9 is a schematic diagram of the overcharge voltage of the DC-to-DC converter in the voltage control mode of the present invention;
图10A所示为本发明第二实施例电流控制模式的直流转直流变换器。 FIG. 10A shows a DC-to-DC converter in current control mode according to the second embodiment of the present invention. the
图10B所示为电流控制模式的直流转直流变换器中的输出电流(Iout)、感测信号(Vsense)、锯齿波信号(ramp)、补偿信号(comp)、加总信号(sum)、SR锁存器的重置端(R)与设定端(S)的信号、与PWM信号示意图; Figure 10B shows the output current (Iout), sense signal (Vsense), sawtooth signal (ramp), compensation signal (comp), summation signal (sum), SR Schematic diagram of the signals of the reset terminal (R) and the set terminal (S) of the latch, and the PWM signal;
图11A所示为本发明第三实施例固定开启时间控制模式的直流转直流变换器; FIG. 11A shows a DC-to-DC converter in a fixed on-time control mode according to the third embodiment of the present invention;
图11B,其所示为固定开启时间控制模式的直流转直流变换器中的输出电压(Vout)、SR锁存器的重置端(R)与设定端(S)的信号、与PWM信号示意图; Figure 11B, which shows the output voltage (Vout), the reset terminal (R) and set terminal (S) signals of the SR latch, and the PWM signal in the DC-to-DC converter in the fixed on-time control mode schematic diagram;
图12所示为本发明固定开启时间控制模式的直流转直流变换器过充电压示意图; Figure 12 is a schematic diagram of the overcharge voltage of the DC-to-DC converter in the fixed on-time control mode of the present invention;
图13所示为电压控制模式的直流转直流变换器。 Figure 13 shows the DC-to-DC converter in voltage control mode. the
具体实施方式 Detailed ways
请参照图7,其所示为本发明直流转直流变换器的控制方法流程图。首先,持续地监测直流输出电压(步骤S10)。当直流输出电压小于第一临限电压时(步骤S12),则跳至步骤S10;反之,当直流输出电压大于第一临限电压时(步骤S12),则提高PWM信号的频率,亦即,由一第一频率提高至一第二频率(步骤S14)。接着,继续地监测直流输出电压(步骤S16)。当直流输出电压大于第一临限电压时(步骤S18),则跳至步骤S16;反之,当直流输出电压小于第一临限电压时(步骤S18),则恢复原PWM信号的频率,亦即,由第二频率降低至第一频率(步骤S20),并且跳至(步骤S10)。 Please refer to FIG. 7 , which is a flow chart of the control method of the DC-to-DC converter of the present invention. First, continuously monitor the DC output voltage (step S10). When the DC output voltage is less than the first threshold voltage (step S12), then jump to step S10; otherwise, when the DC output voltage is greater than the first threshold voltage (step S12), then increase the frequency of the PWM signal, that is, Increase from a first frequency to a second frequency (step S14). Next, continuously monitor the DC output voltage (step S16). When the DC output voltage is greater than the first threshold voltage (step S18), then jump to step S16; otherwise, when the DC output voltage is less than the first threshold voltage (step S18), then restore the frequency of the original PWM signal, that is , decrease from the second frequency to the first frequency (step S20), and skip to (step S10). the
根据本发明的实施例,直流输出电压会持续地被监测,当直流输出电压超过第一临限电压(Vth1)时(例如,Vth1=Vout+Delta,而Vout为稳态的直流输出电压,而Delta可设定为0.03Vout),代表直流转直流变换器发生过冲现象。此时,控制电路提高PWM信号的操作频率至第二频率。使得上功率晶体管以及下功率晶体管的切换速度增加,因此,可有效地抑制过冲电压。 According to an embodiment of the present invention, the DC output voltage will be continuously monitored, and when the DC output voltage exceeds the first threshold voltage (Vth1) (for example, Vth1=Vout+Delta, and Vout is the steady-state DC output voltage, and Delta can be set to 0.03Vout), which means that the DC-to-DC converter overshoots. At this time, the control circuit increases the operating frequency of the PWM signal to the second frequency. The switching speed of the upper power transistor and the lower power transistor is increased, therefore, the overshoot voltage can be effectively suppressed. the
再者,当直流输出电压低于第一临限电压时(例如,稳态直流输出电压的1.03倍),代表直流转直流变换器即将回复稳态。此时,控制电路回复PWM信号的操作频率至第一频率。 Furthermore, when the DC output voltage is lower than the first threshold voltage (for example, 1.03 times of the steady-state DC output voltage), it means that the DC-to-DC converter is about to return to a steady state. At this time, the control circuit restores the operating frequency of the PWM signal to the first frequency. the
以下详细介绍本发明的电压控制模式的直流转直流变换器、电流控制模式的直流转直流变换器、以及,固定开启时间控制模式的直流转直流变换器。 The DC-to-DC converter in the voltage control mode, the DC-to-DC converter in the current control mode, and the DC-to-DC converter in the fixed turn-on time control mode of the present invention will be introduced in detail below. the
请参照图8A,其所示为本发明第一实施例的电压控制模式的直流转直流变换器。电压控制模式的直流转直流变换器包括:一控制电路610、一 栅驱动电路620、一功率级电路630。其中,控制电路610包括:一误差放大器612、一调变单元614、与一信号发生器616、与一比较器618。
Please refer to FIG. 8A , which shows the DC-to-DC converter in voltage control mode according to the first embodiment of the present invention. The DC-to-DC converter in the voltage control mode includes: a
误差放大器612接收直流输出电压(Vout)与一参考电压(Vref),并且误差放大器612可比较直流输出电压(Vout)并与参考电压(Vref)进而产生一补偿信号(comp)至调变单元6 14。
The
再者,信号发生器616可选择性地输出第一频率(F1)或者第二频率(F2)的锯齿波信号(ramp)至调变单元614,使得调变单元614可以根据补偿信号(comp)以及锯齿波信号(ramp)而产生PWM信号。当然,信号发生器616除了可输出第一频率(F1)或者第二频率(F2)的锯齿波信号(ramp)之外,也可以输出第一频率(F1)或者第二频率(F2)的其它形状信号,例如三角波信号(triangle signal)。其中,第一频率(F1)小于第二频率(F2)。
Furthermore, the
再者,比较器618可接收第一临限电压(Vth1)以及直流输出电压(Vout)。当直流输出电压(Vout)小于第一临限电压(Vth1)时,比较器618可输出第一电平至信号发生器616,使得信号发生器616输出第一频率(F1)的锯齿波信号(ramp)至调变单元614。反之,当直流输出电压(Vout)大于第一临限电压(Vth1)时,比较器618可输出第二电平至信号发生器616,使得信号发生器616输出第二频率(F2)的锯齿波信号(ramp)至调变单元614。
Furthermore, the
请参照图8B,其所示为电压控制模式的直流转直流变换器中补偿信号(comp)、锯齿波信号(ramp)、与PWM信号示意图。当补偿信号(comp)大于锯齿波信号(ramp)时PWM信号即为高电平,反之当补偿信号(comp)小于锯齿波信号(ramp)时PWM信号即为低电平。很明显地,当锯齿波信号(ramp)在变化时,PWM信号的脉波宽度也会随之变化;再者,当锯齿波信号(ramp)为第一频率(F1)时,PWM信号操作于第一频率(F1);当锯齿波信号(ramp)为第二频率(F2)时,PWM信号操作于第二频率(F2)。因此,本发明的电压控制模式的直流转直流变换器可根据直流输出电压(Vout)的大小来控制PWM信号的操作频率。 Please refer to FIG. 8B , which is a schematic diagram of the compensation signal (comp), the sawtooth signal (ramp), and the PWM signal in the DC-DC converter in the voltage control mode. When the compensation signal (comp) is greater than the sawtooth signal (ramp), the PWM signal is at a high level; otherwise, when the compensation signal (comp) is smaller than the ramp signal, the PWM signal is at a low level. Obviously, when the sawtooth signal (ramp) is changing, the pulse width of the PWM signal will also change accordingly; moreover, when the sawtooth signal (ramp) is at the first frequency (F1), the PWM signal operates at The first frequency (F1); when the sawtooth signal (ramp) is at the second frequency (F2), the PWM signal operates at the second frequency (F2). Therefore, the DC-DC converter in the voltage control mode of the present invention can control the operating frequency of the PWM signal according to the magnitude of the DC output voltage (Vout). the
如图9所示,根据本发明的第一实施例,当电压控制模式的直流转直流变换器的PWM信号的第一频率为200KHz而稳态的直流输出电压为1.26V为例,当输出电流由90A急剧降低至5A时,将PWM信号调整为第二频率 (342KHz)会使得暂态的直流输出电压会增加至1.33V,亦即,过冲电压为70mV。因此能够有效地抑制过冲电压。 As shown in Figure 9, according to the first embodiment of the present invention, when the first frequency of the PWM signal of the DC-to-DC converter in the voltage control mode is 200KHz and the steady-state DC output voltage is 1.26V as an example, when the output current When sharply reducing from 90A to 5A, adjusting the PWM signal to the second frequency (342KHz) will increase the transient DC output voltage to 1.33V, that is, the overshoot voltage is 70mV. Therefore, the overshoot voltage can be effectively suppressed. the
请参照图10A,其所示为本发明第二实施例电流控制模式的直流转直流变换器。电流控制模式的直流转直流变换器包括:一控制电路710、一栅驱动电路720、一功率级电路730。其中,控制电路7 10包括:一误差放大器712、PWM比较器713、一信号发生器714、一电流感测放大器715、一加法器716、一SR锁存器717、与一比较器718。误差放大器712接收直流输出电压(Vout)与一参考电压(Vref),并且误差放大器712可比较直流输出电压(Vout)并与参考电压(Vref)进而产生一补偿信号(comp)至PWM比较器713。
Please refer to FIG. 10A , which shows a DC-to-DC converter in a current control mode according to a second embodiment of the present invention. The DC-to-DC converter in the current control mode includes: a
再者,电流感测放大器715可以侦测功率级电路730中流过上功率晶体管的第一电流(I1)或者是下功率晶体管的第二电流(I2)。举例来说,电流感测放大器715可将上功率晶体管的电流(I1)转换成为感测信号(Vsense)。
Furthermore, the
再者,信号发生器314可同时输出一锯齿波信号(ramp)与一时脉信号(CLK),且锯齿波信号(ramp)与时脉信号(CLK)可选择性地具有相同的第一频率(F1)或者第二频率(F2)。而锯齿波信号(ramp)与感测信号(Vsense)经由加法器716迭加(superpose)之后成为加总信号(sum)。其中,第一频率(F1)小于第二频率(F2)。
Moreover, the
而加总信号(sum)与补偿信号(comp)输入PWM比较器313,当加总信号(sum)大于补偿信号(comp)时,PWM比较器313会输出一脉波至SR锁存器317的重置端(reset terminal,R)。再者,时脉信号(CLK)会输入SR锁存器317的设定端(set terminal,S)。而根据SR锁存器317的重置端(R)与设定端(S)的信号变化即可产生PWM信号。当然,信号发生器216除了可输出锯齿波信号(ramp)之外,也可以输出三角波信号(trianglesignal)。
The sum signal (sum) and the compensation signal (comp) are input to the
再者,比较器718可接收第一临限电压(Vth1)以及直流输出电压(Vout)。当直流输出电压(Vout)小于第一临限电压(Vth1)时,比较器718可输出第一电平至信号发生器716,使得信号发生器714输出第一频率(F1)的锯齿波信号(ramp)与时脉信号(CLK)。反之,当直流输出电压(Vout)大 于第一临限电压(Vth1)时,比较器718可输出第二电平至信号发生器714,使得信号发生器714输出第二频率(F2)的锯齿波信号(ramp)与时脉信号(CLK)。
Furthermore, the
请参照图10B,其所示为电流控制模式的直流转直流变换器中的输出电流(Iout)、感测信号(Vsense)、锯齿波信号(ramp)、补偿信号(comp)、加总信号(sum)、SR锁存器的重置端(R)与设定端(S)的信号、与PM信号示意图。 Please refer to FIG. 10B, which shows the output current (Iout), the sense signal (Vsense), the sawtooth signal (ramp), the compensation signal (comp), and the sum signal ( sum), the reset terminal (R) and set terminal (S) signals of the SR latch, and the schematic diagram of the PM signal. the
其中,输出电流(Iout)上升的区域即为上功率晶体管的第一电流(I1),输出电流(Iout)下降的区域即为下功率晶体管的第二电流(I2)。因此,电流感测放大器315即可感测第一电流(I1)而产生感测信号(Vsense)。由图中可知,当SR锁存器的设定端(S)接收到一脉波时,PWM信号为高电平,当SR锁存器的重置端(R)收到一脉波时,PWM信号为低电平。因此,PWM信号的脉波宽度会随着第一电流(I1)大小而改变。再者,当锯齿波信号(ramp)与时脉信号(CLK)为第一频率(F1)时,PWM信号操作于第一频率(F1);当锯齿波信号(ramp)与时脉信号(CLK)为第二频率(F1)时,PWM信号操作于第二频率(F2)。因此,本发明的电流控制模式的直流转直流变换器可根据直流输出电压(Vout)的大小来控制PWM信号的操作频率。
Wherein, the area where the output current (Iout) rises is the first current (I1) of the upper power transistor, and the area where the output current (Iout) drops is the second current (I2) of the lower power transistor. Therefore, the
请参照图11A,其所示为本发明第三实施例固定开启时间控制模式的直流转直流变换器。固定开启时间控制模式的直流转直流变换器包括:控制电路810、一栅驱动电路820、一功率级电路830。其中,控制电路810包括:一回路比较器812、一SR锁存器814、一开启时间计时器816、与一比较器818。其中,开启时间计时器816系可利用一第一定电流源(Ion1)或者一第二定电流源(Ion2)向一电容器(Con)进行充电动作,其中第一定电流源(Ion1)小于第二定电流源(Ion2)。而充电电压(Vcharge)与第一定电流源(Ion1)之间的关系为:
再者,回路比较器812接收直流输出电压(Vout)与一参考电压(Vref),并且当直流输出电压(Vout)小于参考电压(Vref)时,回路比较器812会输出一脉波至SR锁存器814的设定端(S)。而当回路比较器812输出脉波至SR锁存器814的设定端(S)时也会控制开启时间计时器816开始计时,并且于Ton1或Ton2时间之后输出一脉波至SR锁存器814的重置端(R)。而根据SR锁存器814的重置端(R)与设定端(S)的信号变化即可产生PWM信号。
Moreover, the
再者,比较器818可接收第一临限电压(Vth1)以及直流输出电压(Vout)。当直流输出电压(Vout)小于第一临限电压(Vth1)时,比较器818可输出第一电平用以控制开关(SW),使得第一电流源(Ion1)可对电容器(Con)进行充电;反之,当直流输出电压(Vout)大于第一临限电压(Vth1)时,比较器818可输出第二电平用以控制开关(SW),使得第二电流源(Ion2)可对电容器(Con)进行充电。
Furthermore, the
请参照图11B,其所示为固定开启时间控制模式的直流转直流变换器中的输出电压(Vout)、SR锁存器的重置端(R)与设定端(S)的信号、与PWM信号示意图。 Please refer to FIG. 11B, which shows the output voltage (Vout), the signals of the reset terminal (R) and the set terminal (S) of the SR latch, and Schematic diagram of the PWM signal. the
其中,当输出电压(Vout)小于参考电压时,SR锁存器的设定端(S)接收到脉波。当开关(SW)切换至第一定电流源(Ion1)时,经过Ton1的时间之后,开启时间计时器816产生一脉波至SR锁存器的重置端(R);反之,当开关(SW)切换至第二定电流源(Ion2)时,经过Ton2的时间之后,开启时间计时器816产生一脉波至SR锁存器的重置端(R)。由图中可知,当SR锁存器的设定端(S)接收到一脉波时,PWM信号为高电平,当SR锁存器的重置端(R)收到一脉波时,PWM信号为低电平。很明显地,控制第一电流源(Ion1)或者第二电流源(Ion2)对电容器(Con)充电可以选择Ton1的固定开启时间或者Ton2的固定开启时间。而选择Ton1的固定开启时间时PWM信 号的频率较低;择Ton2的固定开启时间时PWM信号的频率较高。因此,本发明的固定开启时间控制模式的直流转直流变换器可根据直流输出电压(Vout)的大小来控制PWM信号的操作频率。
Wherein, when the output voltage (Vout) is lower than the reference voltage, the setting terminal (S) of the SR latch receives a pulse wave. When the switch (SW) is switched to the first constant current source (Ion1), after the time of Ton1, the on-
如图12所示,根据本发明的第三实施例,当固定开启时间控制模式的直流转直流变换器的PWM信号的操作频率为276KHz而稳态的直流输出电压为1.96V为例,当输出电流由25A急剧降低至1.5A时,将PWM信号调整为第二频率(342KHz)会使得暂态的直流输出电压会增加至2.01V,亦即,过冲电压为50mV。因此能够有效地抑制过冲电压。 As shown in Figure 12, according to the third embodiment of the present invention, when the operating frequency of the PWM signal of the DC-DC converter in the fixed on-time control mode is 276KHz and the steady-state DC output voltage is 1.96V as an example, when the output When the current drops sharply from 25A to 1.5A, adjusting the PWM signal to the second frequency (342KHz) will increase the transient DC output voltage to 2.01V, that is, the overshoot voltage is 50mV. Therefore, the overshoot voltage can be effectively suppressed. the
再者,除了利用直流输出电压(Vout)来调整PWM信号的频率之外,熟悉此记忆的设计者也可以根据输出电流(Iout)的变化情形来进行过充现象的判断,并降低过充电压。请参照图13,其所示为电压控制模式的直流转直流变换器。此电压控制模式的直流转直流变换器包括:一控制电路610、一栅驱动电路620、一功率级电路630、偏补电压(Voffset)、一感测阻抗642与一负载640。如图所示,控制电路610包括:一误差放大器612、一调变单元614、与一信号发生器616与一磁滞比较器(hysteresiscomparator)619。
Moreover, in addition to using the DC output voltage (Vout) to adjust the frequency of the PWM signal, designers who are familiar with this memory can also judge the overcharge phenomenon according to the change of the output current (Iout), and reduce the overcharge voltage. . Please refer to FIG. 13 , which shows a DC-to-DC converter in voltage control mode. The DC-DC converter in this voltage control mode includes: a
误差放大器612接收直流输出电压(Vout)与一参考电压(Vref),并且误差放大器612可比较直流输出电压(Vout)并与参考电压(Vref)进而产生一补偿信号(comp)至调变单元614。
The
再者,信号发生器616可选择性地输出第一频率(F1)或者第二频率(F2)的锯齿波信号(ramp)至调变单元614,使得调变单元614可以根据补偿信号(comp)以及锯齿波信号(ramp)而产生PWM信号。
Furthermore, the
根据此实施例,感测阻抗642可为一电感性阻抗。当输出电流当输出电流(Iout)急剧变小时,负载640端的负载电压(Vload)急剧下降。此时,由于感测阻抗642自身的阻抗效应会使得直流输出电压(Vout)不会立刻变化,因此,感测阻抗642上会产生感测电压(ΔV,sense voltage)。
According to this embodiment, the
当感测电压(ΔV)大于偏补电压(Voffset)时,代表此时会发生过充现象,而磁滞比较器619可控制信号发生器616由第一频率(F1)提高为第二频率(F2)。也就是说,当感测电压(ΔV)很小时,磁滞比较器6 19可输出第一电平至信号发生器616,使得信号发生器616输出第一频率(F1)的锯 齿波信号(ramp)至调变单元614。反之,当输出电流(Iout)急剧降低使得感测电压(ΔV)减去偏补电压(Voffset)的结果到达磁滞比较器619的电平变换点时,磁滞比较器619可输出第二电平至信号发生器616,使得信号发生器616输出第二频率(F2)的锯齿波信号(ramp)至调变单元614。
When the sensing voltage (ΔV) is greater than the offset voltage (Voffset), it means that overcharging will occur at this time, and the
再者,上述三个实施例中的比较器618、718、818也可使用磁滞比较器,用以防止直流输出电压的扰动,使得直流转直流变换器能够更稳定的操作。
Furthermore, the
综上所述,虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何熟习此技术者,在不脱离本发明的精神和范围内,当可作各种更动与润饰,因此本发明的保护范围当视权利要求书所界定的为准。 In summary, although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make various changes without departing from the spirit and scope of the present invention. and retouching, so the protection scope of the present invention should be defined by the claims. the
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200910006822XA CN101483386B (en) | 2009-02-27 | 2009-02-27 | DC to DC Converter |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200910006822XA CN101483386B (en) | 2009-02-27 | 2009-02-27 | DC to DC Converter |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101483386A CN101483386A (en) | 2009-07-15 |
| CN101483386B true CN101483386B (en) | 2012-04-25 |
Family
ID=40880361
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200910006822XA Active CN101483386B (en) | 2009-02-27 | 2009-02-27 | DC to DC Converter |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101483386B (en) |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101924469B (en) * | 2010-08-06 | 2012-10-24 | 东南大学 | Switching power supply with fast transient response |
| TWI449311B (en) * | 2010-12-31 | 2014-08-11 | Hanergy Technologies Inc | Methology of on-chip soft-start circuits for switching mode dc/dc converter |
| US8742741B2 (en) * | 2011-03-30 | 2014-06-03 | Fairchild Semiconductor Corporation | Apparatus and methods of soft-start in a hysteretic power converter |
| US9178417B2 (en) | 2011-07-27 | 2015-11-03 | Upi Semiconductor Corp. | DC-DC converter and voltage conversion method thereof |
| TWI477048B (en) * | 2011-07-27 | 2015-03-11 | Upi Semiconductor Corp | Dc-dc converter and voltage conversion method thereof |
| US9746868B2 (en) * | 2012-10-17 | 2017-08-29 | Texas Instruments Incorporated | Single inductor multiple output discontinuous mode DC-DC converter and process |
| US9973078B2 (en) * | 2016-09-13 | 2018-05-15 | Kabushiki Kaisha Toshiba | Power conversion apparatus and method of using the apparatus |
| CN108631575B (en) * | 2018-06-27 | 2023-11-28 | 裕太微电子股份有限公司 | Soft start circuit applied to switching power supply |
| WO2021253457A1 (en) * | 2020-06-20 | 2021-12-23 | 华为技术有限公司 | Apparatus for converting direct-current voltage, and electronic device |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6137275A (en) * | 1997-06-04 | 2000-10-24 | Sgs-Thomson Microelectronics S.A. | System for providing a regulated voltage during abrupt variations in current |
| JP2001095245A (en) * | 1999-09-24 | 2001-04-06 | Nichicon Corp | Switching power supply |
| CN1592060A (en) * | 2003-09-01 | 2005-03-09 | 株式会社理光 | DC power supply device,driving method and semiconductor integrated circuit device |
| CN101262174A (en) * | 2007-03-09 | 2008-09-10 | 凹凸科技(中国)有限公司 | DC/DC converter and conversion method |
-
2009
- 2009-02-27 CN CN200910006822XA patent/CN101483386B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6137275A (en) * | 1997-06-04 | 2000-10-24 | Sgs-Thomson Microelectronics S.A. | System for providing a regulated voltage during abrupt variations in current |
| JP2001095245A (en) * | 1999-09-24 | 2001-04-06 | Nichicon Corp | Switching power supply |
| CN1592060A (en) * | 2003-09-01 | 2005-03-09 | 株式会社理光 | DC power supply device,driving method and semiconductor integrated circuit device |
| CN101262174A (en) * | 2007-03-09 | 2008-09-10 | 凹凸科技(中国)有限公司 | DC/DC converter and conversion method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101483386A (en) | 2009-07-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI420796B (en) | Dc to dc conventor and method to reduce overshoot | |
| CN101483386B (en) | DC to DC Converter | |
| US9882485B2 (en) | Current metering for transitioning between operating modes in switching regulators | |
| US9312772B2 (en) | Current limiting scheme for a converter | |
| US9584019B2 (en) | Switching regulator and control method thereof | |
| US8513933B2 (en) | DC-DC converter with low side switch control | |
| US9991794B2 (en) | Hybrid capacitive-inductive voltage converter | |
| US8836307B2 (en) | Voltage regulator and pulse width modulation signal generation method thereof | |
| US20110127980A1 (en) | Voltage converting circuit and method thereof | |
| JP2010068671A (en) | Dc-dc converter | |
| JP2008079378A (en) | Electronics | |
| JP4548100B2 (en) | DC-DC converter | |
| JP2009225642A (en) | Power supply apparatus and semiconductor integrated circuit apparatus | |
| KR20230144897A (en) | Dc to dc converter with pulse skipping function and on-time control function, and electronic devices having the same | |
| US20250175081A1 (en) | Enhancing efficiency of a switching converter | |
| Huang et al. | Dithering skip modulator with a novel load sensor for ultra-wide-load high-efficiency DC-DC converters | |
| US12218590B2 (en) | Soft start for Buck converter | |
| JP2014017931A (en) | Dc-dc converter | |
| Chen et al. | An improved delta modulation technique for DC-DC buck converters |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| ASS | Succession or assignment of patent right |
Owner name: ASUS TECHNOLOGY (SUZHOU) CO., LTD. Effective date: 20120427 |
|
| C41 | Transfer of patent application or patent right or utility model | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20120427 Address after: Taipei City, Taiwan, China Co-patentee after: Huashuo Science and Technology (Suzhou) Co., Ltd. Patentee after: Huashuo Computer Co., Ltd. Address before: Taipei City, Taiwan, China Patentee before: Huashuo Computer Co., Ltd. |