CN101494501A - Multi-code type light transmitter and method for generating optical signal - Google Patents
Multi-code type light transmitter and method for generating optical signal Download PDFInfo
- Publication number
- CN101494501A CN101494501A CNA200810000885XA CN200810000885A CN101494501A CN 101494501 A CN101494501 A CN 101494501A CN A200810000885X A CNA200810000885X A CN A200810000885XA CN 200810000885 A CN200810000885 A CN 200810000885A CN 101494501 A CN101494501 A CN 101494501A
- Authority
- CN
- China
- Prior art keywords
- data
- optical signal
- encoded data
- output
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Optical Communication System (AREA)
Abstract
本发明公开了一种多码型光发射机和光信号产生的方法,属于光通信领域。所述发射机包括:预编码处理模块和调制器。所述方法包括:对待发送的数据进行差分编码,生成两路编码数据;对所述两路编码数据进行调制,将所述两路编码数据调制到光信号上,产生CSRZ光信号或APRZ光信号。本发明通过对待发送的数据进行预编码,然后对编码后的数据进行调制,既能够产生CSRZ光信号,也能够产生APRZ光信号;同时,所产生的APRZ光信号的质量高;并且实现简单,在降低实现复杂度的同时,有效地降低了实现成本。
The invention discloses a multi-code type optical transmitter and a method for generating optical signals, belonging to the field of optical communication. The transmitter includes: a precoding processing module and a modulator. The method includes: performing differential encoding on the data to be sent to generate two coded data; modulating the two coded data, and modulating the two coded data onto an optical signal to generate a CSRZ optical signal or an APRZ optical signal . In the present invention, by precoding the data to be sent and then modulating the coded data, both CSRZ optical signals and APRZ optical signals can be generated; at the same time, the quality of the generated APRZ optical signals is high; and the implementation is simple, While reducing the implementation complexity, the implementation cost is effectively reduced.
Description
技术领域 technical field
本发明涉及光通信领域,特别涉及一种多码型光发射机和光信号产生的方法。The invention relates to the field of optical communication, in particular to a multi-code type optical transmitter and a method for generating optical signals.
背景技术 Background technique
随着通信容量的增加,尤其是高速以太网的普及和多媒体业务的发展,高速光纤通信系统正成为研究和商用的热点,40Gb/s的系统已经开始商用,更高速率的通信系统,如100Gb/s的以太网也已经开始进入标准化阶段。随着信道速率的提高,系统信道内的一些非线性损伤,如SPM(Self-Phase Modulation,自相位调制)、IXPM(Intra-channel Cross-Phase Modulation,信道内交叉相位调制)和IFWM(Intra-channel Four Wave Mixing,信道内四波混频)等的影响变得比较明显,逐渐成为限制系统性能的主要因素。SPM能够使信号的频谱和脉冲得到展宽,使DWDM(Dense Wavelength Division Multiplexing,密集波分复用)系统中相邻信道的频谱发生交叠;IXPM使得信号在时间上发生抖动,但其对相位不敏感,通过适当的色散管理可以有效地加以抑制;与IXPM不同,IFWM对相位很敏感,能够使信号的幅度发生抖动,并产生异常脉冲。With the increase of communication capacity, especially the popularity of high-speed Ethernet and the development of multimedia services, high-speed optical fiber communication systems are becoming a research and commercial hotspot, and 40Gb/s systems have begun commercial use. Higher-speed communication systems, such as 100Gb /s Ethernet has also begun to enter the standardization stage. As the channel rate increases, some nonlinear impairments in the system channel, such as SPM (Self-Phase Modulation, self-phase modulation), IXPM (Intra-channel Cross-Phase Modulation, intra-channel cross-phase modulation) and IFWM (Intra- The influence of channel Four Wave Mixing, four-wave mixing in the channel, etc. has become more obvious, and has gradually become the main factor limiting system performance. SPM can broaden the spectrum and pulse of the signal, and overlap the frequency spectrum of adjacent channels in the DWDM (Dense Wavelength Division Multiplexing) system; IXPM makes the signal jitter in time, but its phase is not Sensitive, which can be effectively suppressed through proper dispersion management; unlike IXPM, IFWM is sensitive to phase, which can cause the amplitude of the signal to jitter and generate abnormal pulses.
而CSRZ(Carrier Suppressed Return-to-Zero,载波抑制归零码)光信号抗SPM的性能比较好,而且具有较高的色散容限;APRZ(Alternating Phase RZ,相位变化归零码)光信号能够有效地抑制IFWM带来的影响,为了将发出的数据源调制成CSRZ光信号或APRZ光信号,现有技术中出现了几种光发射机,简单介绍如下:The CSRZ (Carrier Suppressed Return-to-Zero, carrier suppressed return-to-zero code) optical signal has better performance against SPM, and has a higher dispersion tolerance; APRZ (Alternating Phase RZ, phase change return-to-zero code) optical signal can To effectively suppress the impact of IFWM, in order to modulate the transmitted data source into a CSRZ optical signal or APRZ optical signal, several optical transmitters have appeared in the prior art, which are briefly introduced as follows:
一、CSRZ光信号发射机1. CSRZ Optical Signal Transmitter
参见图1所示的CSRZ光信号发射机,该发射机中有两个串联的MZM(Mach-ZenderModulator,马赫-曾德调制器),分别为MZM1和MZM2,CSRZ光信号的产生过程如下:Referring to the CSRZ optical signal transmitter shown in Figure 1, there are two series-connected MZMs (Mach-Zender Modulator, Mach-Zender Modulator) in the transmitter, which are MZM1 and MZM2 respectively. The generation process of the CSRZ optical signal is as follows:
首先,激光器输出的连续光通过MZM 1调制,输出频率为f的光脉冲信号,并且相邻脉冲之间的相位存在0、π的反转;First, the continuous light output by the laser is modulated by
其中,该MZM1的驱动信号为一个射频时钟信号,该射频时钟信号的频率为数据源提供数据的速率(f)的1/2,该MZM1的偏置电压设在MZM1传输曲线的最低点,当所加的时钟信号的幅度为Vπ时,其中,Vπ为调制器的半波电压,产生的光脉冲的占空比为67%。Wherein, the driving signal of the MZM1 is a radio frequency clock signal, the frequency of the radio frequency clock signal is 1/2 of the data rate (f) provided by the data source, the bias voltage of the MZM1 is set at the lowest point of the MZM1 transmission curve, when the When the amplitude of the added clock signal is V π , where V π is the half-wave voltage of the modulator, the duty cycle of the generated light pulse is 67%.
然后,光脉冲信号通过MZM 2,MZM 2通过调节电可调延迟线,将所要传输的数据调制到该光脉冲信号上,从而产生相邻比特相位反转为π的CSRZ光信号。Then, the optical pulse signal passes through the
二、APRZ光信号发射机2. APRZ Optical Signal Transmitter
参见图2所示的APRZ光信号发射机,该发射机主要由三个串联的调制器组成,分别为强度调制器1(脉冲信号发生器)、强度调制器2(数据调制器)和相位调制器,APRZ光信号的产生过程如下:Referring to the APRZ optical signal transmitter shown in Figure 2, the transmitter is mainly composed of three series-connected modulators, namely intensity modulator 1 (pulse signal generator), intensity modulator 2 (data modulator) and phase modulator device, the generation process of the APRZ optical signal is as follows:
1)激光器产生的连续光通过强度调制器1调制为脉冲信号;1) The continuous light generated by the laser is modulated into a pulse signal by the
其中,强度调制器1的驱动信号为时钟源1产生的频率为f的时钟信号,经过强度调制器1后,连续光变成周期性重复的脉冲信号,该脉冲信号的频率f与数据源发送的数据的速率f相同。根据需要,可以改变脉冲的脉宽,进而确定最终生成的APRZ光信号的占空比。Wherein, the driving signal of the
2)脉冲信号在经过强度调制器2,被数据源发送的数据调制,该数据信号的速率为f,输出带有信息的RZ(Return-to-Zero,归零码)光信号;2) The pulse signal is modulated by the data sent by the data source through the
其中,脉冲信号与数据信号之间的同步通过调节电可调延迟线1来实现,这样强度调制器2输出带有信息的RZ光信号,信号的波形由强度调制器1产生的脉冲的形状所决定,RZ光信号的幅度由数据源所要发送的数据的幅度所决定,当发送‘1’时,幅度为高电平,有光脉冲;当发送‘0’时,幅度为低电平,无光脉冲,RZ信号的相位没有变化,为一个常量。Among them, the synchronization between the pulse signal and the data signal is realized by adjusting the electrically
3)相位调制器通过时钟源2产生的时钟信号对输入的RZ光信号的相位进行调制。3) The phase modulator modulates the phase of the input RZ optical signal through the clock signal generated by the
该时钟信号的频率为数据速率的一半,即为f/2。通过调节电可调延迟线2,将时钟信号幅度的最大值和最小值与数据信号对齐,这样数据信号的相位被调制,并做周期性变化,周期为2个信号比特,相邻比特的相位不同,有一个相位差Δφ,如图3所示。通过改变相位调制器驱动信号(时钟信号)的幅度,可以使Δφ的值为π/2,产生APRZ光信号。The frequency of this clock signal is half the data rate, which is f/2. By adjusting the electrically
发明人在实现本发明的过程中,发现现有的发射机至少存在以下问题:In the process of realizing the present invention, the inventor finds that the existing transmitter has at least the following problems:
现有的光信号发射机只能产生一种光信号,并且结构比较复杂,使用的光器件比较多,系统成本较大,同时产生的APRZ光信号抑制非线性变化的能力也比较差。Existing optical signal transmitters can only generate one type of optical signal, and the structure is relatively complex, using more optical devices, the system cost is relatively high, and the APRZ optical signal generated at the same time has poor ability to suppress nonlinear changes.
发明内容 Contents of the invention
本发明实施例提供了一种多码型光发射机和光信号产生的方法,可以简化APRZ和CSRZ光信号发射机的结构,并抑制APRZ光信号的非线性损伤。所述技术方案如下:Embodiments of the present invention provide a multi-code type optical transmitter and a method for generating optical signals, which can simplify the structures of APRZ and CSRZ optical signal transmitters and suppress nonlinear damage of APRZ optical signals. Described technical scheme is as follows:
一种多码型光发射机,所述发射机包括:A kind of multicode type optical transmitter, described transmitter comprises:
预编码处理模块,用于对待发送的数据进行差分编码,生成编码数据,分两路输出所述编码数据;The pre-coding processing module is used to perform differential coding on the data to be sent, generate coded data, and output the coded data in two ways;
调制器,用于接收输入光信号和所述预编码处理模块输出的两路编码数据,对所述两路编码数据进行调制,将所述两路编码数据调制到所述光信号上,产生并输出载波抑制归零码光信号或相位变化归零码光信号。a modulator, configured to receive an input optical signal and two channels of coded data output by the pre-coding processing module, modulate the two channels of coded data, modulate the two channels of coded data onto the optical signal, generate and Output carrier-suppressed return-to-zero code optical signal or phase change return-to-zero code optical signal.
进一步地,本发明实施例还提供了一种光信号产生的方法,所述方法包括:Further, an embodiment of the present invention also provides a method for generating an optical signal, the method comprising:
对待发送的数据进行差分编码,生成两路编码数据;Perform differential encoding on the data to be sent to generate two channels of encoded data;
对所述两路编码数据进行调制,将所述两路编码数据调制到光信号上,产生载波抑制归零码光信号或相位变化归零码光信号。The two channels of coded data are modulated, and the two channels of coded data are modulated onto an optical signal to generate a carrier suppression return-to-zero code optical signal or a phase change return-to-zero code optical signal.
通过本实施例提供的方法通过对待发送的数据进行预编码,然后对编码后的数据进行调制,既能够产生CSRZ光信号,也能够产生APRZ光信号;同时,所产生的APRZ光信号的质量高,并且实现简单,在降低实现复杂度的同时,有效地降低了实现成本。Through the method provided in this embodiment, by precoding the data to be sent and then modulating the coded data, both CSRZ optical signals and APRZ optical signals can be generated; at the same time, the quality of the generated APRZ optical signals is high , and the implementation is simple, and the implementation cost is effectively reduced while reducing the implementation complexity.
附图说明 Description of drawings
图1是现有技术提供的CSRZ光信号发射机的结构示意图;Fig. 1 is the structural representation of the CSRZ optical signal transmitter that prior art provides;
图2是现有技术提供的APRZ光信号发射机的结构示意图;Fig. 2 is a schematic structural diagram of an APRZ optical signal transmitter provided by the prior art;
图3是现有技术提供的APRZ光信号波形及相位示意图;FIG. 3 is a schematic diagram of the APRZ optical signal waveform and phase provided by the prior art;
图4是本发明实施例1提供的多码型光发射机结构示意图;4 is a schematic structural diagram of a multi-code optical transmitter provided in
图5是本发明实施例2提供的另一种多码型光发射机结构示意图;FIG. 5 is a schematic structural diagram of another multi-code optical transmitter provided in
图6是本发明实施例2提供的SSB调制器的结构示意图;FIG. 6 is a schematic structural diagram of an SSB modulator provided in
图7是本发明实施例2提供的NRZ电信号转换为RZ光信号的示意图;7 is a schematic diagram of converting an NRZ electrical signal into an RZ optical signal according to
图8是本发明实施例3提供的光信号产生的方法流程图;FIG. 8 is a flow chart of a method for generating an optical signal according to Embodiment 3 of the present invention;
图9是本发明实施例3提供的SSB调制器的结构示意图。FIG. 9 is a schematic structural diagram of an SSB modulator provided in Embodiment 3 of the present invention.
具体实施方式 Detailed ways
下面将结合附图对本发明实施方式作进一步地详细描述。The embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings.
本发明实施例通过对待发送的数据进行差分编码,生成两路编码数据;然后对两路编码数据进行调制,将两路编码数据调制到光信号上,产生CSRZ光信号或APRZ光信号,所产生的APRZ光信号的质量高;并且实现简单,在降低实现复杂度的同时,有效地降低了实现成本。In the embodiment of the present invention, two channels of coded data are generated by performing differential encoding on the data to be transmitted; then the two channels of coded data are modulated, and the two channels of coded data are modulated onto the optical signal to generate a CSRZ optical signal or an APRZ optical signal, and the generated The quality of the APRZ optical signal is high; the implementation is simple, and the implementation cost is effectively reduced while reducing the implementation complexity.
实施例1Example 1
参见图4,本发明实施例提供了一种多码型光发射机,该发射机包括:Referring to Fig. 4, an embodiment of the present invention provides a multi-code optical transmitter, which includes:
预编码处理模块100,用于对待发送的数据进行差分编码,生成编码数据,分两路输出编码数据;The precoding processing module 100 is configured to differentially encode the data to be transmitted, generate encoded data, and output the encoded data in two ways;
调制器200,用于接收输入的光信号和预编码处理模块100输出的两路编码数据,对两路编码数据进行调制,将两路编码数据调制到光信号上,产生并输出CSRZ光信号或APRZ光信号。The
其中,本实施例中的两路编码数据的产生方式为先将待发送的数据分成两路,然后对两路数据分别进行编码,如图4所示,这种方式的预编码处理模块100包括:Wherein, the generation method of the two-way encoded data in this embodiment is to divide the data to be sent into two ways first, and then encode the two-way data respectively, as shown in FIG. 4 , the precoding processing module 100 in this way includes :
解复用器100a,用于通过串并转换将待发送的数据转换成两路数据,分别输出两路数据;The
第一预编码器100b,用于接收解复用器100a输出的一路数据,对一路数据进行差分编码,生成一路编码数据,输出一路编码数据;The first precoder 100b is configured to receive one path of data output by the
第二预编码器100c,用于接收解复用器100a输出的另一路数据,对另一路数据进行差分编码,生成另一路编码数据,输出另一路编码数据。The second precoder 100c is configured to receive another path of data output by the
其中,预编码处理模块100对待发送的数据进行差分编码是在电域上实现的,编码前的数据和编码后的数据都是NRZ(Non Return-to-Zero,非归零码)形式,差分编码与DPSK(Differential Phase-shift Keying,差分移相键控)的编码机制类似,该编码方法的原理是,编码前的原比特信息由编码后的前后两个比特幅度的变化来表示,即:当原信息为‘0’时,编码后对应的后一比特的幅度与前一比特的幅度相同,例如,若前一比特为‘0’,后一比特为仍为‘0’;若前一比特为‘1’,则后一比特仍为‘1’。当原信息为‘1’时,编码后对应的后一比特的幅度与前一比特的不同,即若前一比特为‘0’,则后一比特为‘1’;若前一比特为‘1’,则后一比特为‘0’。编码后的数据速率保持不变,且为NRZ信号,所占带宽没有变化;Among them, the differential encoding of the data to be sent by the precoding processing module 100 is realized in the electrical domain. Encoding is similar to the encoding mechanism of DPSK (Differential Phase-shift Keying, differential phase-shift keying). The principle of this encoding method is that the original bit information before encoding is represented by the change of the two bit amplitudes before and after encoding, namely: When the original information is '0', the amplitude of the corresponding next bit after encoding is the same as that of the previous bit, for example, if the previous bit is '0', the next bit is still '0'; if the previous bit bit is '1', the next bit is still '1'. When the original information is '1', the magnitude of the corresponding next bit after encoding is different from that of the previous bit, that is, if the previous bit is '0', the next bit is '1'; if the previous bit is ' 1', the next bit is '0'. The encoded data rate remains unchanged, and it is an NRZ signal, and the bandwidth occupied does not change;
上述解复用器100a和普通意义的解复用器是一样的,即将一路高速信号,通过串并转换,转换为2路低速的信号。The above-mentioned
本实施例提供的发射机通过对待发送的数据进行预编码,然后对编码后的数据进行调制,既能够产生CSRZ光信号,也能够产生APRZ光信号;The transmitter provided in this embodiment can generate both a CSRZ optical signal and an APRZ optical signal by precoding the data to be transmitted and then modulating the encoded data;
同时,产生的APRZ光信号相邻比特的相位差是突变形式的,所以产生的APRZ光信号的质量高。At the same time, the phase difference between adjacent bits of the generated APRZ optical signal is abrupt, so the quality of the generated APRZ optical signal is high.
并且,本实施例使用的光电器件少,结构紧凑,实现简单,在减小系统体积、降低实现复杂度的同时,有效地降低了发射机的成本。In addition, this embodiment uses fewer optoelectronic devices, has a compact structure, and is simple to implement, which effectively reduces the cost of the transmitter while reducing the volume of the system and the complexity of implementation.
实施例2Example 2
参见图5,本发明实施例提供了另一种多码型光发射机,该发射机包括:预编码处理模块100和调制器200,本实施例中的预编码处理模块100采用先对待发送的数据进行编码,然后将编码后的数据分成两路,该预编码处理模块100具体包括:Referring to Fig. 5, the embodiment of the present invention provides another multi-code type optical transmitter, the transmitter includes: a precoding processing module 100 and a
预编码器100d,用于对待发送的数据进行差分编码,生成编码数据,输出编码数据;The precoder 100d is configured to differentially encode data to be transmitted, generate encoded data, and output encoded data;
解复用器100e,用于接收预编码器100d输出的编码数据,通过串并转换将编码数据转换成两路,并分别输出两路编码数据;The demultiplexer 100e is used to receive the encoded data output by the precoder 100d, convert the encoded data into two paths through serial-to-parallel conversion, and output the two paths of encoded data respectively;
解复用器100e有两个输出端口,分别为第一输出端口和第二输出端口,用于输出两路编码数据;The demultiplexer 100e has two output ports, respectively a first output port and a second output port, for outputting two coded data;
调制器200,用于接收输入的光信号和预编码处理模块100输出的两路编码数据,对两路编码数据进行调制,将两路编码数据调制到光信号上,产生并输出CSRZ光信号或APRZ光信号。The
其中,预编码器100d进行差分编码的原理与实施例1相同,这里不再详述。Wherein, the principle of differential encoding performed by the precoder 100d is the same as that in
进一步地,上述实施例1和实施例2中的预编码处理模块100还包括:Further, the precoding processing module 100 in the above-mentioned
放大器,用于对生成的编码数据进行信号放大,并输出信号放大后的编码数据;an amplifier, configured to amplify the generated encoded data, and output the amplified encoded data;
如果预编码处理模块100为图4所示的结构,两个放大器分别设置在第一预编码器100b与调制器200和第二预编码器100c与调制器200之间,用于将放大后的编码数据发送给调制器200;如果预编码处理模块100为图5所示的结构,则两个放大器分别设置在解复用器100e的第一输出端口与调制器200和解复用器100e的第二输出端口与调制器200之间,或者在预编码器100d和解复用器100e之间设置一个放大器。If the precoding processing module 100 has the structure shown in FIG. 4, two amplifiers are respectively arranged between the first precoder 100b and the
进一步地,实施例1和实施例2中提供的调制器200可以是SSB(Single Sideband,单边带)调制器,参见图6,本实施例中的SSB调制器包括:Further, the
上述SSB调制器,也可替换为DQPSK(Differential Quadrature Phase Shift Keying,差分四相相移键控)调制器,正交调制器或矢量调制器等。The above-mentioned SSB modulator can also be replaced by a DQPSK (Differential Quadrature Phase Shift Keying, differential quadrature phase shift keying) modulator, quadrature modulator or vector modulator, etc.
光信号输入端口200a,用于接收光信号,并将光信号分成两路;The optical signal input port 200a is used to receive the optical signal and divide the optical signal into two paths;
第一子调制器200b,用于接收光信号输入端口200a的一路光信号和预编码处理模块100输出的一路编码数据,在第一偏置电压的作用下将所述一路编码数据调制到上述一路光信号上,产生第一路归零码信号,输出第一路归零码信号;The first sub-modulator 200b is configured to receive one path of optical signal from the optical signal input port 200a and one path of coded data output by the precoding processing module 100, and modulate the one path of coded data to the above path under the action of the first bias voltage On the optical signal, generate the first return-to-zero signal and output the first return-to-zero signal;
电可调延迟线模块200c,用于接收预编码处理模块100输出的另一路编码数据,对另一路编码数据进行时延,使所述另一路编码数据与所述一路编码数据产生预设长度的时延,输出时延后的编码数据;其中,预设长度的时延可以为使输入到第二子调制器200d的编码数据较输入到第一子调制器200b的编码数据延迟T/2,其中,T为一个比特所占的时间;The electrically adjustable delay line module 200c is configured to receive another path of coded data output by the precoding processing module 100, and to delay another path of coded data, so that the other path of coded data and the one path of coded data generate a predetermined length Time delay, the coded data after the output time delay; wherein, the time delay of the preset length can be T/2 that the coded data input to the second sub-modulator 200d is delayed compared with the coded data input to the first sub-modulator 200b, Wherein, T is the time occupied by one bit;
第二子调制器200d,用于接收光信号输入端口200a的另一路光信号和电可调延迟线模块200c输出的时延后的编码数据,在第二偏置电压的作用下将时延后的编码数据调制到另一路光信号上,产生第二路归零码信号,输出第二路归零码信号;The second sub-modulator 200d is used to receive another optical signal from the optical signal input port 200a and the time-delayed encoded data output by the electrically adjustable delay line module 200c, and delay the time under the action of the second bias voltage Modulate the encoded data to another optical signal, generate the second return-to-zero code signal, and output the second return-to-zero code signal;
合路模块200e,用于接收第一子调制器200b输出的第一路归零码信号和第二子调制器200d输出的第二路归零码信号,在第三偏置电压的作用下使第一路归零码信号和第二路归零码信号合路后产生CSRZ光信号或APRZ光信号。The combining module 200e is configured to receive the first return-to-zero code signal output by the first sub-modulator 200b and the second return-to-zero code signal output by the second sub-modulator 200d, and make The first return-to-zero code signal and the second return-to-zero code signal are combined to generate a CSRZ optical signal or an APRZ optical signal.
上述第一子调制器200b和第二子调制器200d可以通过MZM实现,第一子调制器200b和第二子调制器200d通过其上的射频信号输入端口接收编码后的数据。这两个子调制器的性能与单驱动MZM完全相同,通过设置偏置电压,可以使其工作在不同的工作状态。例如,当偏置电压在传输曲线的最高点时,产生占空比接近30%的RZ光信号;当偏置电压在最低点时,产生移相键控信号;当偏置电压在正交点(中间点)时,产生NRZ电信号。本发明实施例中,将上述第一子调制器200b和第二子调制器200d的射频输入端口信号的幅度设置为2Vπ,其中Vπ为该SSB调制器的半波电压,第一偏置电压和第二偏置电压设置在传输曲线的最高点,使第一子调制器和第二子调制器产生RZ光信号,此RZ光信号包含的信息为编码之前的数据信息,即在自动实现NRZ电信号到RZ光信号转换的同时,在光域上实现了解码;The above-mentioned first sub-modulator 200b and second sub-modulator 200d can be realized by MZM, and the first sub-modulator 200b and the second sub-modulator 200d receive coded data through the radio frequency signal input ports thereon. The performance of these two sub-modulators is exactly the same as that of the single-driver MZM, and it can work in different working states by setting the bias voltage. For example, when the bias voltage is at the highest point of the transmission curve, an RZ optical signal with a duty cycle close to 30% is generated; when the bias voltage is at the lowest point, a phase-shift keying signal is generated; when the bias voltage is at the quadrature point (middle point), an NRZ electrical signal is generated. In the embodiment of the present invention, the amplitudes of the radio frequency input port signals of the first sub-modulator 200b and the second sub-modulator 200d are set to 2V π , where V π is the half-wave voltage of the SSB modulator, and the first bias The voltage and the second bias voltage are set at the highest point of the transmission curve, so that the first sub-modulator and the second sub-modulator generate an RZ optical signal, and the information contained in this RZ optical signal is the data information before encoding, that is, in the automatic realization While converting NRZ electrical signals to RZ optical signals, decoding is realized in the optical domain;
第一子调制器200b和第二子调制器200d产生的两路RZ光信号在调制器的合路模块200e内以时分复用的形式实现合路,合路后输出的数据速率为2f,占空比接近60%;The two RZ optical signals generated by the first sub-modulator 200b and the second sub-modulator 200d are combined in the form of time-division multiplexing in the combination module 200e of the modulator, and the output data rate after the combination is 2f, accounting for The empty ratio is close to 60%;
通过调制器的第三偏置电压可以精确地控制第一子调制器200b和第二子调制器200e输出的两个支路上光信号的相位差,使输出信号的相邻比特保持一个恒定的相位差,如π、π/2等,从而产生所需的CSRZ光信号或者APRZ光信号。The phase difference of the optical signals on the two branches output by the first sub-modulator 200b and the second sub-modulator 200e can be precisely controlled by the third bias voltage of the modulator, so that the adjacent bits of the output signal can maintain a constant phase Differences, such as π, π/2, etc., to generate the required CSRZ optical signal or APRZ optical signal.
参见图7,编码后产生的NRZ电信号经过电放大器,使输出信号的幅度在2Vπ左右,其中Vπ为该SSB调制器的半波电压。这时如果将MZM的偏置点设在传输曲线最高点,那么经过MZM后,输出占空比约为30%的RZ光信号。且RZ光信号的内容与编码前的NRZ电信号一一对应。假设编码前的比特信息为‘01110100’,其编码后的比特信息为‘01011000’,调制后生成的比特信息为‘01110100,。Referring to Figure 7, the NRZ electrical signal generated after encoding passes through an electrical amplifier, so that the amplitude of the output signal is about 2V π , where V π is the half-wave voltage of the SSB modulator. At this time, if the bias point of the MZM is set at the highest point of the transmission curve, then after passing through the MZM, an RZ optical signal with a duty cycle of about 30% is output. In addition, the content of the RZ optical signal is in one-to-one correspondence with the NRZ electrical signal before encoding. Assume that the bit information before encoding is '01110100', the bit information after encoding is '01011000', and the bit information generated after modulation is '01110100'.
本实施例通过图6提供的调制器,预编码处理模块100的编码数据分别以较低的速率(例如20Gb/s)加载到第一子调制器200b和第二子调制器200d上,其中一路编码数据经过一个电可调延迟线模块200c,使两路数据有一个T/2的相对时延,T为一个比特所占的时间,例如:20Gb/s数据的一个比特周期。经调制后,两个MZM分别产生占空比为30%的20Gb/s RZ光信号,信号的相位分别为φ1和φ2,通过在时间上的合路后,生成占空比为60%的40Gb/s RZ光信号。通过设置第三偏置电压的大小,可以使两路20Gb/s的RZ光信号相位之间有一个相位差,从而使生成的40Gb/s的信号相邻比特之间始终保持一个恒定的相位差Δφ,如π,π/2等,从而产生所需要的CSRZ光信号或者APRZ光信号。In this embodiment, through the modulator provided in FIG. 6 , the coded data of the precoding processing module 100 are respectively loaded to the first sub-modulator 200b and the second sub-modulator 200d at a lower rate (for example, 20Gb/s), wherein one The encoded data passes through an electrically adjustable delay line module 200c, so that the two channels of data have a relative time delay of T/2, where T is the time occupied by one bit, for example: one bit period of 20Gb/s data. After modulation, the two MZMs respectively generate 20Gb/s RZ optical signals with a duty ratio of 30%. The phases of the signals are φ 1 and φ 2 respectively. After combining in time, the generated duty ratio is 60%. 40Gb/s RZ optical signal. By setting the size of the third bias voltage, there is a phase difference between the phases of the two 20Gb/s RZ optical signals, so that the generated 40Gb/s signal always maintains a constant phase difference between adjacent bits Δφ, such as π, π/2, etc., so as to generate the required CSRZ optical signal or APRZ optical signal.
本实施例提供的光发射机通过对待发送的数据进行预编码,然后对编码后的数据进行调制,既能够产生CSRZ光信号,也能够产生APRZ光信号;而现有技术中的CSRZ光信号发射机只能产生CSRZ光信号,而不能产生APRZ光信号;The optical transmitter provided in this embodiment can generate both a CSRZ optical signal and an APRZ optical signal by precoding the data to be sent and then modulating the encoded data; while the CSRZ optical signal transmission in the prior art The machine can only generate CSRZ optical signals, but not APRZ optical signals;
同时,产生的APRZ光信号相邻比特的相位差是突变形式的,所以产生的APRZ光信号的质量高;而现有的APRZ光信号发射机产生的APRZ光信号相邻比特的相位以正弦方式变化,变化过程缓慢,为正弦APRZ光信号,而不是严格意义上的APRZ光信号,从而降低了信号抑制非线性变化的能力。At the same time, the phase difference between the adjacent bits of the generated APRZ optical signal is abrupt, so the quality of the generated APRZ optical signal is high; while the phase of the adjacent bits of the APRZ optical signal generated by the existing APRZ optical signal transmitter is in a sinusoidal manner Change, the change process is slow, it is a sinusoidal APRZ optical signal, not an APRZ optical signal in the strict sense, thus reducing the ability of the signal to suppress nonlinear changes.
并且,本实施例提供的光发射机使用的光电器件少,结构紧凑,实现简单,在减小系统体积、降低实现复杂度的同时,有效地降低了发射机的成本;而现有技术中的APRZ光信号发射机的实现方案普遍比较复杂,使用的光电器件多,系统成本大;例如图2中所示的APRZ发射机,使用了三个调制器,分别用来产生光脉冲信号、调制数据和调制相位,为了实现调制的同步,需要使用两个电可调延迟线,而且需要一个分频器(或者倍频器)来产生两个不同频率的时钟信号。Moreover, the optical transmitter provided by this embodiment uses fewer optoelectronic devices, has a compact structure, and is simple to implement. While reducing the system volume and implementation complexity, it effectively reduces the cost of the transmitter; while the optical transmitter in the prior art The implementation scheme of APRZ optical signal transmitter is generally more complicated, using many optoelectronic devices, and the system cost is high; for example, the APRZ transmitter shown in Figure 2 uses three modulators, which are used to generate optical pulse signals and modulate data respectively. And the modulation phase, in order to realize the synchronization of the modulation, two electrically adjustable delay lines need to be used, and a frequency divider (or frequency multiplier) is needed to generate two clock signals of different frequencies.
实施例3Example 3
本实施例提供了一种光信号产生的方法,该方法对待发送的数据进行差分编码,生成两路编码数据;然后分别对两路编码数据进行调制,将两路编码数据调制到光信号上,产生CSRZ光信号或APRZ光信号;参见图8,该方法具体包括:This embodiment provides a method for generating an optical signal. The method performs differential encoding on the data to be sent to generate two channels of encoded data; then modulates the two channels of encoded data respectively, and modulates the two channels of encoded data onto the optical signal. Generate a CSRZ optical signal or an APRZ optical signal; referring to Figure 8, the method specifically includes:
步骤101:对待发送的数据进行差分编码,生成两路编码数据;Step 101: Perform differential encoding on the data to be sent to generate two channels of encoded data;
其中,生成两路编码数据可以通过两种方式实现:Among them, generating two-way encoded data can be achieved in two ways:
1)通过串并转换将待发送的数据转换成两路数据,然后分别对两路数据进行差分编码,生成两路编码数据;1) Convert the data to be sent into two channels of data through serial-to-parallel conversion, and then differentially encode the two channels of data to generate two channels of encoded data;
2)对待发送的数据进行差分编码,生成编码数据,然后通过串并转换将编码数据转换成两路,得到两路编码数据;2) Perform differential encoding on the data to be sent to generate encoded data, and then convert the encoded data into two channels through serial-to-parallel conversion to obtain two encoded data;
进一步地,生成的两路编码数据根据需要可以作适当的放大处理。Further, the generated two-way coded data can be appropriately amplified as required.
步骤102:在调制数据之前,使输入到调制器的一路编码数据经过一个电可调延迟线,调节该延迟线,使输入到调制器的两路编码数据之间产生T/2的时延,其中T为一个比特所占的时间。Step 102: Before modulating the data, make one channel of encoded data input to the modulator pass through an electrically adjustable delay line, and adjust the delay line so that a time delay of T/2 is generated between the two channels of encoded data input to the modulator, Where T is the time occupied by one bit.
步骤103:调制器将接收的光信号分成两路,分别输出给第一子调制器和第二子调制器;Step 103: the modulator divides the received optical signal into two paths, and outputs them to the first sub-modulator and the second sub-modulator respectively;
其中,调制器由两个并行放置的子调制器组成,用于分别将编码数据调制在两路光信号上。Wherein, the modulator is composed of two sub-modulators placed in parallel, and is used to modulate the coded data on the two optical signals respectively.
步骤104:第一子调制器在第一偏置电压的作用下将一路编码数据调制到一路光信号上,产生第一路归零码信号。Step 104: The first sub-modulator modulates one channel of coded data onto one channel of optical signal under the action of the first bias voltage to generate a first channel of return-to-zero code signal.
步骤105:第二子调制器在第二偏置电压的作用下将时延后的编码数据调制到另一路光信号上,产生第二路归零码信号。Step 105: The second sub-modulator modulates the time-delayed coded data onto another optical signal under the action of the second bias voltage to generate a second return-to-zero signal.
步骤106:调制器在第三偏置电压的作用下使第一路归零码信号和第二路归零码信号合路后产生CSRZ光信号或APRZ光信号。Step 106: The modulator combines the first return-to-zero code signal and the second return-to-zero code signal under the action of the third bias voltage to generate a CSRZ optical signal or an APRZ optical signal.
上述方法的步骤前后顺序没有严格的限制,只是为了描述方便而作的标记,例如,步骤104和步骤105的前后顺序是可以交换的。The order of the steps in the above method is not strictly limited, but is just marked for convenience of description, for example, the order of
本实施例中的调制器以SSB调制器为例,参见图9,该SSB调制器与上述图6所提供的SSB调制器类似,由两个MZM组成,分别为MZMA和MZMB,偏置电压分别为A和B,整个SSB调制器的偏置电压设置为C,通过调节偏置电压C,可以改变MZMA和MZMB输出的光信号之间的相位差。本实施例的数据源以20Gb/s的编码数据为例,通过电可调延迟线使输入MZMA和MZMB的编码数据之间产生预设长度的时延,调制数据时,分别将偏置电压A和B设置在MZMA和MZMB传输曲线的最高点,调制后每个MZM输出的光信号为一个RZ光信号,占空比约为30%,数据速率为f。MZMA和MZMB产生的两路RZ信号在SSB调制器内部以时分复用的形式实现合路,合路后输出的数据率为2f,占空比接近60%。通过设置偏置电压C,可以使输出信号的相邻比特保持一个恒定的相位差,如π、π/2等,从而产生所需的CSRZ光信号或者APRZ光信号。The modulator in this embodiment takes the SSB modulator as an example. Referring to FIG. 9, the SSB modulator is similar to the SSB modulator provided in FIG. For A and B, the bias voltage of the whole SSB modulator is set to C, by adjusting the bias voltage C, the phase difference between the optical signals output by MZMA and MZMB can be changed. The data source of this embodiment takes the coded data of 20Gb/s as an example, and the time delay of preset length is generated between the coded data input into MZMA and MZMB through the electrically adjustable delay line. When modulating the data, the bias voltage A and B are set at the highest point of the MZMA and MZMB transmission curves, the optical signal output by each MZM after modulation is an RZ optical signal, the duty cycle is about 30%, and the data rate is f. The two RZ signals generated by MZMA and MZMB are combined in the form of time division multiplexing inside the SSB modulator. After the combination, the output data rate is 2f, and the duty cycle is close to 60%. By setting the bias voltage C, the adjacent bits of the output signal can maintain a constant phase difference, such as π, π/2, etc., so as to generate the required CSRZ optical signal or APRZ optical signal.
本实施例提供的方法通过对待发送的数据进行预编码,然后对编码后的数据进行调制,既能够产生CSRZ光信号,也能够产生APRZ光信号;The method provided in this embodiment can generate both CSRZ optical signals and APRZ optical signals by precoding the data to be transmitted and then modulating the encoded data;
同时,产生的APRZ光信号相邻比特的相位差是突变形式的,所以产生的APRZ光信号的质量高;At the same time, the phase difference between the adjacent bits of the generated APRZ optical signal is in the form of a sudden change, so the quality of the generated APRZ optical signal is high;
并且,本实施例实现简单,在降低实现复杂度的同时,有效地降低了实现成本。Moreover, the implementation of this embodiment is simple, and while reducing the implementation complexity, the implementation cost is effectively reduced.
以上实施例提供的技术方案中的全部或部分内容可以通过软件编程实现,其软件程序存储在可读取的存储介质中,存储介质例如:计算机中的硬盘、光盘或软盘。All or part of the technical solutions provided by the above embodiments can be realized by software programming, and the software program is stored in a readable storage medium, such as a hard disk, an optical disk or a floppy disk in a computer.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200810000885XA CN101494501B (en) | 2008-01-25 | 2008-01-25 | Multi-code type light transmitter and method for generating optical signal |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200810000885XA CN101494501B (en) | 2008-01-25 | 2008-01-25 | Multi-code type light transmitter and method for generating optical signal |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101494501A true CN101494501A (en) | 2009-07-29 |
| CN101494501B CN101494501B (en) | 2012-04-25 |
Family
ID=40924930
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200810000885XA Expired - Fee Related CN101494501B (en) | 2008-01-25 | 2008-01-25 | Multi-code type light transmitter and method for generating optical signal |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101494501B (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102237930A (en) * | 2010-05-06 | 2011-11-09 | 中兴通讯股份有限公司 | Device and method for processing clock modulation format |
| CN102520486A (en) * | 2011-12-01 | 2012-06-27 | 浙江大学 | Multi-functional device based on dual Mach-Zehnder interference structures |
| CN102684791A (en) * | 2011-03-18 | 2012-09-19 | 烽火通信科技股份有限公司 | Wired and wireless converged communication system, method, and method and device for generating multi-band signals |
| CN104467978A (en) * | 2014-12-01 | 2015-03-25 | 华中科技大学 | Optical transmitter supporting multiple modulation formats and control method |
| CN104734781A (en) * | 2015-03-02 | 2015-06-24 | 中国人民解放军国防科学技术大学 | Optical transceiver with serial-parallel conversion function |
| WO2015157946A1 (en) * | 2014-04-16 | 2015-10-22 | 华为技术有限公司 | Optical signal transmission method, device and system |
| CN105871533A (en) * | 2015-01-20 | 2016-08-17 | 中兴通讯股份有限公司 | Method and device for processing phase |
| CN116865866A (en) * | 2023-09-04 | 2023-10-10 | 湖北经济学院 | Carrier-suppressed zero-return alternating polarization/frequency shift keying quadrature modulation optical communication system |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB0327605D0 (en) * | 2003-11-27 | 2003-12-31 | Azea Networks Ltd | Method and apparatus for producing chirped RZ-DPSK modulated optical signals |
| CN1808947A (en) * | 2006-01-26 | 2006-07-26 | 上海交通大学 | Method of implementing precoding based modulator for carrier suppression return-to-zero optical signals |
| CN1845475A (en) * | 2006-03-16 | 2006-10-11 | 上海交通大学 | Single modulator realization method for CSRZ-DPSK |
-
2008
- 2008-01-25 CN CN200810000885XA patent/CN101494501B/en not_active Expired - Fee Related
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011137653A1 (en) * | 2010-05-06 | 2011-11-10 | 中兴通讯股份有限公司 | Device and method for processing clock modulation modes |
| CN102237930A (en) * | 2010-05-06 | 2011-11-09 | 中兴通讯股份有限公司 | Device and method for processing clock modulation format |
| CN102684791A (en) * | 2011-03-18 | 2012-09-19 | 烽火通信科技股份有限公司 | Wired and wireless converged communication system, method, and method and device for generating multi-band signals |
| CN102684791B (en) * | 2011-03-18 | 2015-04-08 | 烽火通信科技股份有限公司 | Wired and wireless converged communication system, method, and method and device for generating multi-band signals |
| CN102520486A (en) * | 2011-12-01 | 2012-06-27 | 浙江大学 | Multi-functional device based on dual Mach-Zehnder interference structures |
| CN105264796B (en) * | 2014-04-16 | 2017-12-22 | 华为技术有限公司 | The sending method of optical signal, apparatus and system |
| WO2015157946A1 (en) * | 2014-04-16 | 2015-10-22 | 华为技术有限公司 | Optical signal transmission method, device and system |
| CN105264796A (en) * | 2014-04-16 | 2016-01-20 | 华为技术有限公司 | Optical signal transmission method, device and system |
| CN104467978B (en) * | 2014-12-01 | 2017-04-19 | 华中科技大学 | Optical transmitter supporting multiple modulation formats and control method |
| CN104467978A (en) * | 2014-12-01 | 2015-03-25 | 华中科技大学 | Optical transmitter supporting multiple modulation formats and control method |
| CN105871533A (en) * | 2015-01-20 | 2016-08-17 | 中兴通讯股份有限公司 | Method and device for processing phase |
| CN104734781B (en) * | 2015-03-02 | 2017-04-12 | 中国人民解放军国防科学技术大学 | Optical transceiver with serial-parallel conversion function |
| CN104734781A (en) * | 2015-03-02 | 2015-06-24 | 中国人民解放军国防科学技术大学 | Optical transceiver with serial-parallel conversion function |
| CN116865866A (en) * | 2023-09-04 | 2023-10-10 | 湖北经济学院 | Carrier-suppressed zero-return alternating polarization/frequency shift keying quadrature modulation optical communication system |
| CN116865866B (en) * | 2023-09-04 | 2023-12-05 | 湖北经济学院 | Carrier-suppressed zero-return alternating polarization/frequency shift keying quadrature modulation optical communication system |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101494501B (en) | 2012-04-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5015288B2 (en) | Optical transmission method and apparatus | |
| CN101494501B (en) | Multi-code type light transmitter and method for generating optical signal | |
| CN101515828B (en) | optical transmitter, optical transmission method and optical transmission system | |
| US20100239264A1 (en) | Optical transmission system, apparatus and method | |
| JP2008066849A (en) | Optical transmitter and driving method thereof | |
| JP5321591B2 (en) | Optical transmitter, optical receiver, and optical communication system | |
| JP2005073262A (en) | Duobinary optical transmission device using semiconductor optical amplifier and duobinary optical transmission method | |
| KR100703410B1 (en) | Offset Quadrature Phase Shift Keying Method and Optical Transmitter | |
| US8077375B2 (en) | Method and apparatus for generating 8-QAM-modulated optical signal | |
| CN101527601B (en) | Optical transmitter and method for optical signal generation | |
| JP3984220B2 (en) | Duobinary optical transmission equipment | |
| CN101626274A (en) | Method for generating star hexadecimal optical signals, optical transmitter and system | |
| US6842125B2 (en) | Unipolar electrical to CSRZ optical converter | |
| JP2005122171A (en) | RZ-AMI optical transmission module | |
| JP4809270B2 (en) | Optical transmission apparatus and method | |
| JP4083144B2 (en) | Polarized duobinary optical transmission device | |
| JP2004140833A (en) | Optical transmission system | |
| JP4053473B2 (en) | Optical transmitter | |
| JP2006033792A (en) | Duobinary optical transmission equipment | |
| US7450861B2 (en) | Return-to-zero alternative-mark-inversion optical transmitter and method for generating return-to-zero alternative-mark-inversion optical signal using the same | |
| CN101141199B (en) | Optical transmitting system and method | |
| CN103634052B (en) | Light modulation system and method thereof | |
| EP2148455A1 (en) | A device and method to produce an optical modulating signal of rz-dpsk | |
| JP5131601B2 (en) | Optical modulation signal generator | |
| CN101478347A (en) | Pre-coder for light differential orthogonal phase shift keying modulator without feedback loop |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120425 Termination date: 20210125 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |