CN101515601B - Capacitor structure and method for forming the same for booster circuit - Google Patents
Capacitor structure and method for forming the same for booster circuit Download PDFInfo
- Publication number
- CN101515601B CN101515601B CN2008100807725A CN200810080772A CN101515601B CN 101515601 B CN101515601 B CN 101515601B CN 2008100807725 A CN2008100807725 A CN 2008100807725A CN 200810080772 A CN200810080772 A CN 200810080772A CN 101515601 B CN101515601 B CN 101515601B
- Authority
- CN
- China
- Prior art keywords
- dielectric layer
- substrate
- capacitor structure
- layer
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 11
- 229920005591 polysilicon Polymers 0.000 claims description 11
- 239000004020 conductor Substances 0.000 claims description 9
- 125000006850 spacer group Chemical group 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 description 5
- -1 fluorine ions Chemical class 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种电容结构及其形成方法,特别涉及一种用于升压电路中的电容结构及其形成方法。The invention relates to a capacitor structure and a forming method thereof, in particular to a capacitor structure used in a boost circuit and a forming method thereof.
背景技术 Background technique
在传统的动态随机存取存储器(DRAM)中,升压电路对于产生驱动单元(cell)操作的高电压具有举足轻重的脚色。特别是随着动态随机存取存储器(DRAM)的技术不断演进,当驱动单元操作的电压仍然维持相对高伏特时,例如约2.6V,但初始电压(Vint)却可能会降到了1.0V-1.5V左右,这使得升压电路的工作更加吃重。In a conventional dynamic random access memory (DRAM), a boost circuit plays an important role in generating a high voltage for driving a cell to operate. Especially with the continuous evolution of dynamic random access memory (DRAM) technology, when the operating voltage of the driving unit is still relatively high, such as about 2.6V, the initial voltage (Vint) may drop to 1.0V-1.5V V around, which makes the work of the boost circuit more difficult.
升压电路的升压效率主要取决于升压电路中电容的大小。若电容越大,越能够提供较大的升压效率与越大的输出电压。由于电容的大小通常取决于上下极板间的接触面积,因此如何增加上下极板间的接触面积便成为一个关键课题。The boost efficiency of the boost circuit mainly depends on the size of the capacitor in the boost circuit. The larger the capacitance, the greater the boost efficiency and the greater the output voltage can be provided. Since the capacitance usually depends on the contact area between the upper and lower plates, how to increase the contact area between the upper and lower plates becomes a key issue.
但是随着动态随机存取存储器(DRAM)技术的不断演进,基板上已经有限空间的分配变地越来越锱铢必较,由于传统的动态随机存取存储器(DRAM)中,升压电路是使用一般的平面电容,于是大大地限制了上下极板间接触面积空间增加的可能性。为了要一劳永逸地解决驱动单元的操作电压与初始电压间落差的问题,如何增加升压电路的电容值便成为一个急待解决的问题。However, with the continuous evolution of dynamic random access memory (DRAM) technology, the allocation of limited space on the substrate has become more and more penny-pinching, because in traditional dynamic random access memory (DRAM), the boost circuit is used General planar capacitors greatly limit the possibility of increasing the contact area space between the upper and lower plates. In order to solve the problem of the drop between the operating voltage and the initial voltage of the driving unit once and for all, how to increase the capacitance of the boost circuit becomes an urgent problem to be solved.
发明内容 Contents of the invention
本发明于是提供一种新颖的电容结构,使用立体的技术手段来增加上、下极板间的接触面积,以大幅提高升压电路的电容值。The present invention therefore provides a novel capacitor structure, using three-dimensional technical means to increase the contact area between the upper and lower plates, so as to greatly increase the capacitance value of the boost circuit.
本发明用于升压电路中的电容结构,包含:基材、位于基材中的U形下电极、与U形下电极嵌合的T形上电极、以及介于U形下电极以及T形上电极间的介电层。由于上/下电极板以立体的形状彼此嵌合,于是能在有限的空间中创造出最大的接触面积,于是大幅提高了升压电路的电容值。The capacitive structure used in the boost circuit of the present invention includes: a substrate, a U-shaped lower electrode located in the substrate, a T-shaped upper electrode embedded with the U-shaped lower electrode, and a U-shaped lower electrode and a T-shaped Dielectric layer between top electrodes. Since the upper and lower electrode plates fit each other in a three-dimensional shape, the largest contact area can be created in a limited space, thus greatly increasing the capacitance value of the booster circuit.
附图说明 Description of drawings
图1例示本发明电容结构的一优选实施例。Fig. 1 illustrates a preferred embodiment of the capacitor structure of the present invention.
图2A和2B例示本发明电容结构可能的排列方式。2A and 2B illustrate possible arrangements of capacitor structures of the present invention.
图3-4例示制造本发明电容结构的一优选实施方式。3-4 illustrate a preferred embodiment of fabricating the capacitive structure of the present invention.
附图标记说明Explanation of reference signs
100电容结构 110基材100
111氧化物层 112多晶硅层111
113沟槽 120U形下电极113 grooves 120U-shaped lower electrode
130T形上电极 140介电层130T-shaped
141水平方向介电层 142铅直方向介电层141 Dielectric layer in
131/132多晶硅层 150内间隙壁131/132
具体实施方式 Detailed ways
本发明的电容结构,可以大幅提高了升压电路的电容值,于是能在有限的空间中创造出最大的升压效能。请参考图1,本发明电容结构的一优选实施例。本发明的电容结构100包含基材110、U形下电极120、T形上电极130与介电层140。基材110通常为半导体材料,例如硅。The capacitance structure of the present invention can greatly increase the capacitance value of the boost circuit, thus creating the maximum boost performance in a limited space. Please refer to FIG. 1 , which shows a preferred embodiment of the capacitor structure of the present invention. The
U形下电极120位于基材110中。U形下电极120的材料通常与基材110相同,且是使用已知的方式,例如加入离子掺质,使其具有导电性。介电层140位于U形下电极120上并与U形下电极直接接触。介电层140通常包含具有高介电常数的材料,例如氧化硅。通常,介电层140的厚度以介于3nm-10nm之间为优选。此外,水平方向和铅直方向的介电层140的厚度还可以不同。例如,基底中注入氟离子后,经热氧化处理可产生较厚的氧化层,若注入氮离子,则可产生较薄氧化层。于是,水平方向介电层141的厚度可以为约3.8nm,而铅直方向介电层142的厚度可以为约5nm。The U-shaped
T形上电极130位于介电层140的上方。T形上电极130通常包含具有导电性的材料,例如,轻掺杂的多晶硅,并与U形下电极120嵌合。通过T形上电极130与U形下电极120的嵌合,可以增加电容结构100上电极与下电极间的接触面积。The T-shaped
视情况需要,介电层140以及T形上电极130之间另外可再包含有内间隙壁150。If necessary, an
图2A和2B例示本发明电容结构排列方式的多种可能性。例如,可以为图2A的交错式或图2B的棋盘式。不同的排列方式可以视情况所需而定。Figures 2A and 2B illustrate various possibilities for the arrangement of the capacitive structures of the present invention. For example, it may be the staggered pattern shown in FIG. 2A or the checkerboard pattern shown in FIG. 2B. Different arrangements can be made as the case requires.
请参考图3-4,例示制造本发明电容结构的一优选实施方式。首先,请参考图3,提供一基材110,其上可形成一氧化物层111与一多晶硅层112,并形成有一沟槽113。沟槽113的深度视情况需要而定。Please refer to FIGS. 3-4 , which illustrate a preferred embodiment of manufacturing the capacitor structure of the present invention. First, please refer to FIG. 3 , a
继续请参考图4,经由一氧化工艺,例如一水蒸气氧化法,形成沟槽113中水平方向介电层141与铅直方向介电层142。然后再沉积一层多晶硅层131/132。视情况需要,沟槽113中可以再形成有内间隙壁150。水平方向141和铅直方向142的介电层的厚度还可以不同。例如,基底中注入氟离子后,经热氧化处理可产生较厚的氧化层,若注入氮离子,则可产生较薄氧化层。Please continue to refer to FIG. 4 , through an oxidation process, such as a water vapor oxidation method, the horizontal direction
继续请参考图1,再继续沉积一多晶硅层,以形成T形上电极130后,即完成本发明的电容结构100。T形上电极130即由多晶硅层112、多晶硅层131/132,和最终沉积的多晶硅层所共同组成。由于以上方法与一般的动态随机存取存储器(DRAM)工艺相容,此又为本发明电容结构的另一项特征。Please continue to refer to FIG. 1 , and continue to deposit a polysilicon layer to form the T-shaped
以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的等同变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2008100807725A CN101515601B (en) | 2008-02-18 | 2008-02-18 | Capacitor structure and method for forming the same for booster circuit |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2008100807725A CN101515601B (en) | 2008-02-18 | 2008-02-18 | Capacitor structure and method for forming the same for booster circuit |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101515601A CN101515601A (en) | 2009-08-26 |
| CN101515601B true CN101515601B (en) | 2012-07-25 |
Family
ID=41039966
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2008100807725A Active CN101515601B (en) | 2008-02-18 | 2008-02-18 | Capacitor structure and method for forming the same for booster circuit |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101515601B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4918503A (en) * | 1987-04-13 | 1990-04-17 | Nec Corporation | Dynamic random access memory device having a plurality of one transistor type memory cells |
| US6365485B1 (en) * | 2000-04-19 | 2002-04-02 | Promos Tech., Inc, | DRAM technology of buried plate formation of bottle-shaped deep trench |
| US6387750B1 (en) * | 2001-07-02 | 2002-05-14 | Macronix International Co., Ltd. | Method of forming MIM capacitor |
| CN1700408A (en) * | 2004-05-19 | 2005-11-23 | 上海宏力半导体制造有限公司 | Trench type metal - insulation layer - metal capacitor arrangement and forming method thereof |
-
2008
- 2008-02-18 CN CN2008100807725A patent/CN101515601B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4918503A (en) * | 1987-04-13 | 1990-04-17 | Nec Corporation | Dynamic random access memory device having a plurality of one transistor type memory cells |
| US6365485B1 (en) * | 2000-04-19 | 2002-04-02 | Promos Tech., Inc, | DRAM technology of buried plate formation of bottle-shaped deep trench |
| US6387750B1 (en) * | 2001-07-02 | 2002-05-14 | Macronix International Co., Ltd. | Method of forming MIM capacitor |
| CN1700408A (en) * | 2004-05-19 | 2005-11-23 | 上海宏力半导体制造有限公司 | Trench type metal - insulation layer - metal capacitor arrangement and forming method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101515601A (en) | 2009-08-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TW540154B (en) | Deep trench capacitor structure and its manufacturing method | |
| JPH1022476A (en) | Capacitive element | |
| CN101207019A (en) | Metal-insulator-metal capacitor and method for manufacturing the same | |
| TW200524153A (en) | Method for making radom access memory capacitors in shallow trench isolation | |
| TW200820380A (en) | Manufacturing method for an integrated semiconductor structure | |
| TW201019463A (en) | Memory device and fabrication thereof | |
| US8088668B2 (en) | Method for manufacturing capacitor lower electrodes of semiconductor memory | |
| CN101378064A (en) | Dynamic random access memory cell and manufacturing method thereof | |
| JP2001308203A (en) | Vertical DRAM device with channel access transistor and stacked storage capacitor and related method | |
| CN109786381B (en) | Memory element and method of making the same | |
| CN101515601B (en) | Capacitor structure and method for forming the same for booster circuit | |
| TWI377648B (en) | Dram cell with capacitor in the metal layer | |
| CN100338759C (en) | Method for forming capacitor and capacitor | |
| TWI514428B (en) | Method for forming capacitor structure and capacitor structure in boost circuit | |
| CN101114616A (en) | Capacitor contact structure and process for dynamic random access memory | |
| US20160056229A1 (en) | Method of fabricating semiconductor device | |
| TW586129B (en) | Method of forming bottle-shaped trench capacitors | |
| CN1165997C (en) | Integrated circuit with at least one capacitor and method for its manufacture | |
| US7776738B2 (en) | Method for fabricating a storage electrode of a semiconductor device | |
| TW529166B (en) | Method for forming an array of DRAM cells with buried trench capacitors | |
| TW200427064A (en) | Manufacturing method of trench type capacitor with increasing capacitance value | |
| TWI763278B (en) | 3d memory device and manufacturing method thereof | |
| TW410440B (en) | Manufacturing method for crown type capacitor of dynamic random access memory | |
| TW530387B (en) | DRAM formation method | |
| TW201115687A (en) | Capacitor electrode and method of making the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |