CN101562395A - Voltage modulation circuit with light load efficiency improving function - Google Patents
Voltage modulation circuit with light load efficiency improving function Download PDFInfo
- Publication number
- CN101562395A CN101562395A CN200810091071.1A CN200810091071A CN101562395A CN 101562395 A CN101562395 A CN 101562395A CN 200810091071 A CN200810091071 A CN 200810091071A CN 101562395 A CN101562395 A CN 101562395A
- Authority
- CN
- China
- Prior art keywords
- voltage
- pulse width
- output
- terminal
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 33
- 239000003990 capacitor Substances 0.000 claims description 10
- 238000004146 energy storage Methods 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000001965 increasing effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种电压调制电路,尤其涉及一种具有轻载效率提升功能的电压调制电路,具有在负载轻载状态下提高电源转换效率的功能。The invention relates to a voltage modulation circuit, in particular to a voltage modulation circuit with a light-load efficiency improvement function, which has the function of improving power conversion efficiency under light-load conditions.
背景技术 Background technique
在中央处理器所使用的电压调制电路中,必须对中央处理器提供稳定工作电压,因此,对于电压调制电路来说,中央处理器为其负载。但是,由于中央处理器基于用户的操作会处于运算繁忙或闲置的状态,从而负载在不同时间会呈现重载或轻载用电状态。因此,对于电压调制电路来说,必须根据当前的负载状态来提供稳定的工作电压。In the voltage modulation circuit used by the central processing unit, a stable working voltage must be provided to the central processing unit. Therefore, for the voltage modulation circuit, the central processing unit is its load. However, since the central processing unit will be in a busy or idle state based on user operations, the load will be in a heavy or light power consumption state at different times. Therefore, for the voltage modulation circuit, it is necessary to provide a stable working voltage according to the current load state.
通常,现有单电压输出的电压调制电路应用于低压负载的电源电路,并且可大体上分为两类:其中一类为非隔离式电源电路,另一类为隔离式电源电路。其中,非隔离式电源电路包括例如,降压型电源电路或升降压型电源电路,而隔离式电源电路则例如为返驰式(Flyback)电源转换电路。Usually, the existing single-voltage output voltage modulation circuit is applied to the power supply circuit of the low-voltage load, and can be roughly divided into two categories: one is a non-isolated power supply circuit, and the other is an isolated power supply circuit. Wherein, the non-isolated power supply circuit includes, for example, a step-down power supply circuit or a buck-boost power supply circuit, while the isolated power supply circuit is, for example, a flyback power conversion circuit.
图5所示为采用降压型电源转换电路实现的电压调制电路,其包括一脉宽调制控制器50,一开关驱动器60,多个主动开关Q1、Q2,电感L及电容C。其中,脉宽调制控制器取得电压输出端的电压反馈信号,以判断负载(Load)电压Vout的高低变化,从而通过开关驱动器60交替控制主动开关Q1、Q2的导通周期。图6所示为开关驱动器60的电路方块图,其包括一逻辑电路单元61,两个功率放大器62、63及一相位调整电路64。其中,逻辑电路单元61的输入端为一脉宽调制信号端(PWM),连接至脉宽调制控制器50的输出端;该逻辑电路单元61包含两输出端,分别通过逻辑元件及相位调整电路64连接至功率放大器62、63,以根据脉宽调制控制器50输出的脉宽调制信号,调整功率放大器62、63输出驱动信号的脉宽宽度,从而决定各个主动开关的导通周期。该两个功率放大器62、63的高电位上限端UVCC、LVCC分别连接两外部电压。一般电路设计中会将两高电位上限端UVCC、LVCC连接至外部直流电源的最高电位端VCC。FIG. 5 shows a voltage modulation circuit implemented by a step-down power conversion circuit, which includes a
上述现有降压型电压调制电路虽然能根据负载轻载或重载用电电压升降状态,提供负载稳定的工作电压,具有稳压的功能。但是,不论在轻载或重载状态下,由于主动开关的特性,使得整体电源转换效果不佳,易产生废热,从而提高中央处理器附近的升温,降低了中央处理器运算稳定性。Although the above-mentioned existing step-down voltage modulation circuit can provide a stable working voltage for the load according to the state of light load or heavy load power voltage rise and fall, it has the function of voltage stabilization. However, no matter in the light load or heavy load state, due to the characteristics of the active switch, the overall power conversion effect is not good, and waste heat is easily generated, thereby increasing the temperature rise near the CPU and reducing the stability of the CPU operation.
由于主动开关所造成的转换效果不佳的原因主要可分为:切换损失(Switching Loss)、导通损失(Conduction Loss)以及驱动损失(Driver Loss)。其中,切换损失是主动开关处于导通断开切换瞬间,由于在其端电压为非零电压或其端电流为非零电流的状态下进行导通断开而产生的。导通损失为主动开关导通时,电流流经主动开关内部存在的一导通电阻而产生的。驱动损失则是由于主动开关被驱动导通或断开瞬间产生的。因此,主动开关整体功率损失可由以下公式表示:The reasons for the poor conversion effect caused by active switching can be mainly divided into: switching loss (Switching Loss), conduction loss (Conduction Loss) and driving loss (Driver Loss). Among them, the switching loss is caused by the active switch being turned on and off when its terminal voltage is non-zero voltage or its terminal current is non-zero current at the moment of on-off switching. The conduction loss is generated when the active switch is turned on, and the current flows through a conduction resistance existing inside the active switch. The driving loss is due to the moment when the active switch is driven on or off. Therefore, the overall power loss of the active switch can be expressed by the following formula:
以下进一步说明负载处于中、重载与轻载情况下的各种转换损失占整体功率损失的比例:The following further explains the ratio of various conversion losses to the overall power loss under the conditions of medium load, heavy load and light load:
当负载处于中、重载时,流经主动开关的电流提高,因此导通损失所占的整体损失相比其他两者高。因此,为了在中、高载情况下降低整体损失,可以通过调整主动开关的导通电阻,使得导通损失降低来达到降低损失的目的。其中以MOSFET主动开关为例对该导通损失公式进行说明:When the load is medium and heavy, the current flowing through the active switch increases, so the overall loss accounted for by the conduction loss is higher than the other two. Therefore, in order to reduce the overall loss under medium and high load conditions, the on-resistance of the active switch can be adjusted to reduce the conduction loss to achieve the purpose of reducing the loss. The conduction loss formula is explained by taking the MOSFET active switch as an example:
其中,上述的PON为导通损失功率,Ids为主动开关的导通电流,而rds(ON)为导通电阻。Among them, the above-mentioned P ON is the conduction loss power, I ds is the conduction current of the active switch, and rds(ON) is the conduction resistance.
图7所示为型号是IRF6631的MOSFET主动开关的导通特性曲线图,其中主动开关的驱动电压VGS与导通电阻rds(ON)成反比关系;因此,为了降低导通电阻,可在中、重载状态下通过提高驱动电压来降低导通电阻。Figure 7 shows the conduction characteristic curve of the MOSFET active switch model IRF6631, where the driving voltage V GS of the active switch is inversely proportional to the on-resistance r ds(ON) ; therefore, in order to reduce the on-resistance, the Under medium and heavy load conditions, the on-resistance can be reduced by increasing the driving voltage.
当负载处于轻载状态时,由于流经主动开关的电流降低,因此驱动损失及切换损失在整体损失中较导通损失高,驱动损失及切换损失可由以下公式表示:When the load is in a light load state, since the current flowing through the active switch is reduced, the driving loss and switching loss are higher than the conduction loss in the overall loss, and the driving loss and switching loss can be expressed by the following formula:
PG=fS·VGSQg_tol P G =f S ·V GS Q g_tol
公式中PG为驱动损失功率,fS为主动开关切换频率,VGS为主动开关的驱动电压,Qg_tol为主动开关导通所需的电荷量;因此,处于轻载状态时可通过降低驱动电压来减少驱动损失。In the formula, PG is the driving loss power, f S is the switching frequency of the active switch, V GS is the driving voltage of the active switch, and Q g_tol is the amount of charge required for the active switch to turn on; voltage to reduce drive losses.
通过上述说明反观现有的电压调制电路,由图5、6所示的开关驱动器的方块图可知,不论在轻载还是中、重载的状态下,两个功率放大器的最高电位端UVCC、LVCC均连接至固定外部直流电压VCC。因此两功率放大器62、63输出的驱动信号振幅相同,仅有脉宽宽度会根据输出反馈电压而调制。所以两主动开关的驱动电压相同。因此,目前的电压调制电路并未根据负载的中重载或轻载状态而改变主动开关的驱动电压大小,对照上述损失主动开关损失公式可知,其无法改善这些损失,而仅有稳压的功能。Looking back at the existing voltage modulation circuits through the above description, it can be seen from the block diagrams of the switch drivers shown in Figures 5 and 6 that no matter in the light load, medium or heavy load state, the highest potential terminals UVCC and LVCC of the two power amplifiers Both are connected to a fixed external DC voltage VCC. Therefore, the amplitudes of the driving signals output by the two
发明内容 Contents of the invention
有鉴于上述缺点,本发明主要目的是提供一种具有轻载效率提升功能的电压调制电路,能够根据负载目前所处的中、重载状态或轻载状态调整主动开关的脉宽驱动信号的振幅大小。In view of the above shortcomings, the main purpose of the present invention is to provide a voltage modulation circuit with a light-load efficiency improvement function, which can adjust the amplitude of the pulse width drive signal of the active switch according to the current load state, heavy load state or light load state size.
为了达到上述目的所使用的主要技术手段是使该电压调制电路包括:一降压型电源转换电路及一限位电压调制电路。其中该降压型电源转换电路包括:一脉宽调制控制器、一开关驱动器、至少一主动开关、一电感性储能元件及一电容,该电容构成降压型电源转换电路的输出端,以供负载连接。该限位电压调制电路连接至降压型电源转换电路的输出端,以取得输出电流的大小,再根据电流大小判断负载处于轻载或中、重载状态,并且调整开关驱动器中用以推动主开关的输出电压大小。当降压型电源转换电路输出电流较小且接近于零时,表示当前负载处于轻载状态,因此该限位电压调制电路会降低主动开关的驱动电压,以达到减少驱动损失的功能;反之,若降压型电源转换电路输出电流提高,表示负载处于中、重载状态,则限位调制电路会调整升高主动开关的驱动电压,以减少导通损失。The main technical means used to achieve the above purpose is to make the voltage modulation circuit include: a step-down power conversion circuit and a limit voltage modulation circuit. Wherein the step-down power conversion circuit includes: a pulse width modulation controller, a switch driver, at least one active switch, an inductive energy storage element and a capacitor, the capacitor constitutes the output end of the step-down power conversion circuit, and For load connection. The limiting voltage modulating circuit is connected to the output terminal of the step-down power conversion circuit to obtain the magnitude of the output current, and then judge whether the load is in a light-load or medium- or heavy-load state according to the magnitude of the current, and adjust the switch driver to drive the main The output voltage of the switch. When the output current of the step-down power conversion circuit is small and close to zero, it means that the current load is in a light load state, so the limit voltage modulation circuit will reduce the driving voltage of the active switch to reduce the driving loss; otherwise, If the output current of the step-down power conversion circuit increases, indicating that the load is in a medium or heavy load state, the limit modulation circuit will adjust and increase the driving voltage of the active switch to reduce the conduction loss.
附图说明 Description of drawings
图1为本发明的第一较佳实施例的电路图;Fig. 1 is the circuit diagram of the first preferred embodiment of the present invention;
图2为本发明限位电压调制电路第一较佳实施例的电路图;Fig. 2 is the circuit diagram of the first preferred embodiment of the limit voltage modulation circuit of the present invention;
图3为本发明第二较佳实施例的电路图;Fig. 3 is the circuit diagram of the second preferred embodiment of the present invention;
图4为本发明第三较佳实施例的电路图;Fig. 4 is the circuit diagram of the third preferred embodiment of the present invention;
图5为现有电压调制电路的电路图;Fig. 5 is the circuit diagram of existing voltage modulation circuit;
图6为现有驱动及相位控制电路方块图;Fig. 6 is the block diagram of existing drive and phase control circuit;
图7为现有的型号为IER6631的MOSFET主动开关的导通特性曲线图。Fig. 7 is a conduction characteristic curve diagram of an existing MOSFET active switch of the type IER6631.
图中的元件符号:Component symbols in the figure:
10 脉冲调制控制器 20 开关驱动器10
30、30a、30b 限位电压调制电路 31 运算放大器30, 30a, 30b limit
32 电子开关 33 分压电路32
34 第一分压电路 35 第二分压电路34 The first voltage divider circuit 35 The second voltage divider circuit
35a 第二分压电路 50 电压调制电路35a Second
51 脉宽调制控制器 52 开关驱动器51 Pulse Width Modulation Controller 52 Switching Driver
521 逻辑电路单元 522 功率放大器521 Logic circuit unit 522 Power amplifier
523 功率放大器 524 相位调整电路523 Power amplifier 524 Phase adjustment circuit
53 主动开关 54 电感53 Active switch 54 Inductance
55 电容55 Capacitance
具体实施方式 Detailed ways
图1所示为本发明电压调制电路的第一较佳实施例,该电压调制电路包括一降压型电源转换电路及一限位电压跳变电路30。其中,该降压型电源转换电路包括:FIG. 1 shows a first preferred embodiment of the voltage modulation circuit of the present invention, the voltage modulation circuit includes a step-down power conversion circuit and a limit
一脉宽调制控制器10,至少包括一反馈电压输入端VFEB及一脉宽调制输出端PWM;A pulse
一开关驱动器20,包括一逻辑电路单元及两个功率放大器,该逻辑电路单元包括一脉宽调制信号端PWM及两输出端,其中脉宽调制信号端PWM连接至脉宽调制控制器10的输出端PWM,两输出端分别连接至对应功率放大器的输入端,两功率放大器的输出端则为开关驱动器20的两输出端;A
两主动开关Q1、Q2,相互串联,且各主动开关Q1、Q2的驱动端对应连接开关驱动器20的输出端;The two active switches Q1, Q2 are connected in series with each other, and the driving ends of the active switches Q1, Q2 are correspondingly connected to the output end of the
一电感L,其一端连接至两主动开关Q1、Q2的串联节点,另一端则通过电容C构成输出端,供负载连接,以及供脉宽调制控制器10的反馈电压端VFEB耦合连接,以提供脉宽调制控制器10目前负载用电电压大小。An inductor L, one end of which is connected to the series node of the two active switches Q1, Q2, and the other end forms an output end through a capacitor C, which is used for load connection, and for coupling and connection of the feedback voltage end V FEB of the pulse
上述限位电压调制电路30的输入端取得电感L的电流Iout大小,并取得该电流对应的电压VIout。该限位电压调制电路30的可变限制电压端Vo连接至开关驱动器20中的一个功率放大器的高电位上限端LVCC。该限位电压调制电路30根据降压型电源转换电路输出的电流大小,调整开关驱动器20的外部电压输入端PVCC的电压大小,或一并调整开关驱动器20的两个功率放大器的高电位上限端UVCC、LVCC。The input terminal of the limit
上述限位电压调制电路30可与开关驱动器20整合成单个集成电路。另外,该限位电压调制电路30及开关驱动器20可与脉宽调制控制器10整合成单个集成电路,或者,两个主动开关Q1、Q2与开关驱动器20整合成单个集成电路。The limit
图2所示为上述限位电压调制电路30的较佳实施例,该限位电压调制电路30包括:FIG. 2 shows a preferred embodiment of the above limit
一运算放大器31,其包括两输入端和一输出端,其中非反相输入端通过两电阻Ra、Rb分别连接至一固定参考电压Vref及降压型电源转换电路输出电流Iout所对应的电压信号VIout,即可以以一变流器(current transformer)耦合至降压型电源转换电路的输出端来取得输出电流所对应的电压VIout;在本实施例中,固定参考电压Vref可以是一齐纳二极管(ZD)或一稳压器(ShuntRegulator);An
一电子开关32,其控制端连接至运算放大器31的输出端,由运算放大器31控制其导通断开,而电子开关32的其中一端连接至外部直流电源高电位端(+5V至+12V),而另一端则为可变限制电压端Vo;在本实施例中,电子开关32采用一NPN型BJT晶体管,而控制端为基极,另外两端分别为集电极及发射极,与外部直流电源高电位端连接的是集电极,而发射极为可变限制电压端;另外,该电子开关也可以为一MOSFET;及An
一分压电路33,由两电阻R1、R2串联而成,其一端连接至电子开关32另一端,其另一端接地,而串联节点连接至运算放大器31的反向输入端。A
由上述电路结构可知,运算放大器31构成一正向放大电路,由正向放大电路的可变限制电压端Vo公式
举例来说,当调整各电阻的电阻值且Vref=2.5V,即可令正向放大电路可变限制电压端Vo公式成为
由此可知,本发明的限位电压调制电路30确实可以向开关驱动器20功率放大器的高电位上限端LVCC提供一随降压型电源传唤电路输出端电流大小调制的限制电压;另外,因为输出端电流大小能反应负载处于轻载或中重载状态,所以当负载(Load)处于轻载状态时,该限位电压调制电路30会同步调整降低输出至该开关驱动器30的功率放大器的高电位上限端LVCC/PVCC的电压,使连接外部电压输入端PVCC的功率放大器所输出的脉宽驱动信号振幅得以降低;因此,在轻载状态时,驱动电压端LGATE输出的驱动信号的电压会被降低,即对应主动开关的驱动电压下降,从而减少主动开关的驱动损失。反之,当负载处于中、重载状态时,该限位电压调制电路30会提高驱动电压,以减少通道损失。It can be seen that the limit
附图3所示为本发明降压型电源转换电路的第二较佳实施例,其结构与第一较佳实施例大致相同,只是仅包含单个主动开关,另一个主动开关Q2则由一二极管D代替。该二极管阳极接地,阴极连接至主动开关Q1的源极,构成一飞轮二极管(freewheeling diode)。Accompanying drawing 3 shows the second preferred embodiment of the step-down power conversion circuit of the present invention, its structure is roughly the same as that of the first preferred embodiment, except that it only includes a single active switch, and the other active switch Q2 consists of a diode D instead. The anode of the diode is grounded, and the cathode is connected to the source of the active switch Q1, forming a freewheeling diode.
附图4所示为本发明降压型电源转换电路第三较佳实施例,其为返驰式电源转换电路,主要包括:Accompanying drawing 4 shows the third preferred embodiment of the step-down power conversion circuit of the present invention, which is a flyback power conversion circuit, mainly comprising:
一脉宽调制控制器10,至少包括一反馈电压输入端VFEB及一脉宽调制输出端PWM;A pulse
一开关驱动器20,其包括一逻辑电路单元及至少一功率放大器,该逻辑电路单元包括一脉宽调制信号端PWM及至少一输出端,其中该脉宽调制信号端PWM连接至脉宽调制控制器10的输出端PWM,而各功率放大器的高电位上限端PVCC/LVCC连接至限位电压调制电路30的可变限制电压端Vo,而各功率放大器的输出端为开关驱动器20的输出端;A
变压器T1,其一次侧连接至直流电源(+12V),另外,二次侧连接至一电容C,作为降压型电源转换电路的输出端Vout供负载连接并供脉宽调制控制器10的反馈电压端VFEB耦合连接,从而为脉宽调制控制器10提供目前负载所用电压大小;Transformer T1, its primary side is connected to a DC power supply (+12V), and its secondary side is connected to a capacitor C, which is used as the output terminal Vout of the step-down power conversion circuit for load connection and for the feedback of the pulse
一主动开关Q1,与变压器T1一次侧以及直流电源回路串联,其驱动端G连接至该开关驱动器20的一输出端LGATE,以由开关驱动器20控制器导通断开,确定导通周期。An active switch Q1 is connected in series with the primary side of the transformer T1 and the DC power circuit, and its drive terminal G is connected to an output terminal LGATE of the
由上述各实施例可知,本发明的限位电压调制电路确实可以对开关驱动器的外部输入端提供一个随负载端电压调制的限制电压,可分别在轻载以及中重载状态下,同步调整提升或者调整降低输出至开关驱动器的外部电压输入端的电压,使连接该外部电压输入端的功率放大器输出的脉宽驱动信号振幅得以被降低或提高,从而在轻载时有效减少驱动损失,在中、重载时,也可以降低导通损失。It can be seen from the above-mentioned embodiments that the limit voltage modulation circuit of the present invention can indeed provide a limit voltage modulated with the load terminal voltage to the external input terminal of the switch driver, and can synchronously adjust and improve Or adjust and reduce the voltage output to the external voltage input terminal of the switch driver, so that the amplitude of the pulse width driving signal output by the power amplifier connected to the external voltage input terminal can be reduced or increased, thereby effectively reducing the driving loss at light loads, and at medium and heavy loads. It can also reduce the conduction loss when loaded.
Claims (7)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW097109051A TW200938985A (en) | 2008-03-14 | 2008-03-14 | Voltage-modulation circuit containing function enhancing light-load efficiency |
| CN200810091071.1A CN101562395A (en) | 2008-03-14 | 2008-04-16 | Voltage modulation circuit with light load efficiency improving function |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW097109051A TW200938985A (en) | 2008-03-14 | 2008-03-14 | Voltage-modulation circuit containing function enhancing light-load efficiency |
| CN200810091071.1A CN101562395A (en) | 2008-03-14 | 2008-04-16 | Voltage modulation circuit with light load efficiency improving function |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN101562395A true CN101562395A (en) | 2009-10-21 |
Family
ID=50185341
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200810091071.1A Pending CN101562395A (en) | 2008-03-14 | 2008-04-16 | Voltage modulation circuit with light load efficiency improving function |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN101562395A (en) |
| TW (1) | TW200938985A (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102545632A (en) * | 2012-01-09 | 2012-07-04 | 绍兴光大芯业微电子有限公司 | Driving circuit for switching power supply |
| CN102810984A (en) * | 2012-07-13 | 2012-12-05 | 电子科技大学 | A switching power supply circuit |
| CN103259431A (en) * | 2012-02-18 | 2013-08-21 | 立锜科技股份有限公司 | Isolated power converter circuit and control method thereof |
| CN104283415A (en) * | 2013-07-04 | 2015-01-14 | 康舒科技股份有限公司 | Multi-Mode Current Scheduling Device |
| CN108702092A (en) * | 2016-01-25 | 2018-10-23 | 博世热力技术有限公司 | Voltage converter, actuator and gas burner |
| CN109067173A (en) * | 2018-08-14 | 2018-12-21 | 郑州云海信息技术有限公司 | A kind of server and its POL for promoting power supply conversion efficiency |
| CN109638948A (en) * | 2018-12-10 | 2019-04-16 | 无锡睿勤科技有限公司 | A kind of method and device promoting power-efficient |
| CN112564810A (en) * | 2020-11-26 | 2021-03-26 | 江苏科大亨芯半导体技术有限公司 | Set-top transmitter circuit and set-top signal transmission method |
| CN115133889A (en) * | 2021-03-26 | 2022-09-30 | 立锜科技股份有限公司 | BD type pulse width modulation circuit for class D amplifier and modulation method therein |
| CN117707265A (en) * | 2023-06-14 | 2024-03-15 | 荣耀终端有限公司 | Electronic equipment and voltage adjustment chip |
| CN119382479A (en) * | 2024-12-27 | 2025-01-28 | 上海思格源智能科技有限公司 | A switch tube drive control method and a switch tube drive control structure |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI505618B (en) * | 2010-11-30 | 2015-10-21 | Richtek Technology Corp | Audio-skipping control method and circuit for a constant on-time power converter |
| TWI419447B (en) * | 2011-01-27 | 2013-12-11 | Holtek Semiconductor Inc | Power converter and gate driver for its power transistor |
| TWI474147B (en) * | 2012-03-01 | 2015-02-21 | Realtek Semiconductor Corp | Modulating determination apparatus , modulating determination method, and power supply circuit thereof |
| TWI548193B (en) | 2012-05-11 | 2016-09-01 | 緯創資通股份有限公司 | Power saving method and related power saving circuit |
-
2008
- 2008-03-14 TW TW097109051A patent/TW200938985A/en not_active IP Right Cessation
- 2008-04-16 CN CN200810091071.1A patent/CN101562395A/en active Pending
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102545632A (en) * | 2012-01-09 | 2012-07-04 | 绍兴光大芯业微电子有限公司 | Driving circuit for switching power supply |
| CN103259431A (en) * | 2012-02-18 | 2013-08-21 | 立锜科技股份有限公司 | Isolated power converter circuit and control method thereof |
| CN103259431B (en) * | 2012-02-18 | 2015-12-09 | 立锜科技股份有限公司 | isolated power converter circuit and control method thereof |
| CN102810984A (en) * | 2012-07-13 | 2012-12-05 | 电子科技大学 | A switching power supply circuit |
| CN102810984B (en) * | 2012-07-13 | 2015-01-07 | 电子科技大学 | Switching power circuit |
| CN104283415A (en) * | 2013-07-04 | 2015-01-14 | 康舒科技股份有限公司 | Multi-Mode Current Scheduling Device |
| CN104283415B (en) * | 2013-07-04 | 2016-10-05 | 康舒科技股份有限公司 | Multi-Mode Current Scheduling Device |
| CN108702092B (en) * | 2016-01-25 | 2020-09-01 | 博世热力技术有限公司 | Voltage converter, actuator and gas burner |
| CN108702092A (en) * | 2016-01-25 | 2018-10-23 | 博世热力技术有限公司 | Voltage converter, actuator and gas burner |
| CN109067173A (en) * | 2018-08-14 | 2018-12-21 | 郑州云海信息技术有限公司 | A kind of server and its POL for promoting power supply conversion efficiency |
| CN109638948A (en) * | 2018-12-10 | 2019-04-16 | 无锡睿勤科技有限公司 | A kind of method and device promoting power-efficient |
| CN112564810A (en) * | 2020-11-26 | 2021-03-26 | 江苏科大亨芯半导体技术有限公司 | Set-top transmitter circuit and set-top signal transmission method |
| CN112564810B (en) * | 2020-11-26 | 2022-04-19 | 江苏科大亨芯半导体技术有限公司 | Set-top transmitter circuit and set-top signal transmission method |
| CN115133889A (en) * | 2021-03-26 | 2022-09-30 | 立锜科技股份有限公司 | BD type pulse width modulation circuit for class D amplifier and modulation method therein |
| CN115133889B (en) * | 2021-03-26 | 2025-07-01 | 立锜科技股份有限公司 | BD type pulse width modulation circuit for class D amplifier and modulation method therein |
| CN117707265A (en) * | 2023-06-14 | 2024-03-15 | 荣耀终端有限公司 | Electronic equipment and voltage adjustment chip |
| CN117707265B (en) * | 2023-06-14 | 2024-10-01 | 荣耀终端有限公司 | Electronic equipment and voltage regulator chip |
| CN119382479A (en) * | 2024-12-27 | 2025-01-28 | 上海思格源智能科技有限公司 | A switch tube drive control method and a switch tube drive control structure |
Also Published As
| Publication number | Publication date |
|---|---|
| TW200938985A (en) | 2009-09-16 |
| TWI375143B (en) | 2012-10-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101562395A (en) | Voltage modulation circuit with light load efficiency improving function | |
| US11563378B2 (en) | Seamless DCM-PFM transition for single pulse operation in DC-DC converters | |
| CN105871208B (en) | Multiphase regulator with asymmetric phase inductance | |
| US9488995B2 (en) | Voltage converter and voltage conversion method having multiple converter stages | |
| CN110391744B (en) | Light load efficiency improvement method and apparatus for hybrid switched capacitor converter | |
| TWI594558B (en) | Switching converter and its controller and mode control circuit | |
| KR101176179B1 (en) | Apparatus and method for controlling a voltage converting mode | |
| US4720668A (en) | Zero-voltage switching quasi-resonant converters | |
| US8456868B2 (en) | Controller for a resonant switched-mode power converter | |
| US6430070B1 (en) | Synchronous PWM switching regulator system | |
| CN101515756B (en) | Multimode method and system for high-efficiency power control | |
| CN102077449B (en) | voltage converter | |
| CN101594056B (en) | DC-to-DC converter and method thereof | |
| CN101951151B (en) | Dual-mode fully-integrated high-frequency reduction voltage power supply with high light load efficiency | |
| US20100148740A1 (en) | Voltage buck-boost switching regulator | |
| US8502516B2 (en) | Voltage adjustment module and power supply device | |
| CN105281571B (en) | For the controllable conduction time reduction with the regulator of PFM mode operations | |
| US20040145922A1 (en) | Buck regulator with adaptive auxiliary voltage flyback regulator | |
| CN102594137A (en) | System and method for controlling a switched-mode power supply | |
| GB2441926A (en) | DC/DC converter | |
| US11799380B2 (en) | Hybrid control of switching power converters | |
| US20200169167A1 (en) | Dc/dc power converter | |
| US7304463B2 (en) | DC-DC converter | |
| JP3206556B2 (en) | Buck-boost chopper DC-DC converter circuit | |
| JP3128943U (en) | Adjustment circuit for forward converter |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20091021 |