CN101576536B - Multi-mode micro-driving force source based on phased array technology - Google Patents
Multi-mode micro-driving force source based on phased array technology Download PDFInfo
- Publication number
- CN101576536B CN101576536B CN2009100995201A CN200910099520A CN101576536B CN 101576536 B CN101576536 B CN 101576536B CN 2009100995201 A CN2009100995201 A CN 2009100995201A CN 200910099520 A CN200910099520 A CN 200910099520A CN 101576536 B CN101576536 B CN 101576536B
- Authority
- CN
- China
- Prior art keywords
- bus
- signal generation
- interface
- speed
- dsp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005516 engineering process Methods 0.000 title claims abstract description 14
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 27
- 230000001360 synchronised effect Effects 0.000 claims description 21
- 230000000052 comparative effect Effects 0.000 claims description 13
- 239000003990 capacitor Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 6
- 238000003491 array Methods 0.000 claims description 3
- 238000002604 ultrasonography Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 11
- 238000007373 indentation Methods 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000005483 Hooke's law Effects 0.000 description 1
- 101100232414 Rattus norvegicus Clns1a gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000002379 ultrasonic velocimetry Methods 0.000 description 1
Images
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
本发明公开了一种基于相控阵技术的多模式微驱动力源。整个系统包括基于工控机的上位机、CAN总线、超声发射卡、高频线性功放和超声换能器阵列;基于工控机的上位机的CAN接口经CAN总线、超声发射卡、高频线性功放与超声换能器阵列相连。本系统具有较好的适应性,采用了总线式结构,形成了灵活可扩展的模块,数字化的系统结构保证了较高的相位控制精度和偏转角度,操作方便,便于维护和调试。
The invention discloses a multi-mode micro-driving power source based on phased array technology. The whole system includes the upper computer based on the industrial computer, CAN bus, ultrasonic transmitting card, high-frequency linear power amplifier and ultrasonic transducer array; the CAN interface of the upper computer based on the industrial computer is connected to the An array of ultrasound transducers is connected. The system has good adaptability, adopts the bus structure, and forms flexible and expandable modules. The digital system structure ensures high phase control accuracy and deflection angle, and is easy to operate, maintain and debug.
Description
技术领域technical field
本发明涉及的是一种用于微驱动的力源,具体的说是涉及一种基于相控阵技术的多模式微驱动力源。The present invention relates to a power source for micro-driving, in particular to a multi-mode micro-driving power source based on phased array technology.
背景技术Background technique
近年来,随着材料科学不断发展,出现了许多新的薄膜材料,并且广泛地应用于人们生活的各个角落。薄膜材料的力学性能是评价薄膜材料地重要指标,在以薄膜为材料的元器件设计中,其力学性能是设计的依据,对元器件的性能、可靠性和使用寿命有很大影响。薄膜的力学性能包括薄膜的弹性模量、屈服强度和界面结合强度等力学参量。其中薄膜的弹性模量不仅是薄膜器件设计的必要参量,而且也是诸如屈服强度、断裂韧性和残余应力等力学性能测量与评定的基础。由于尺寸因素,薄膜弹性模量测量比块材弹性模量的测量难度大得多。针对薄膜的特点,许多科学家对其弹性模量的测量方法及测量仪器展开了大量的研究。In recent years, with the continuous development of material science, many new thin film materials have emerged and are widely used in every corner of people's lives. The mechanical properties of thin film materials are important indicators for evaluating thin film materials. In the design of components using thin films as materials, their mechanical properties are the basis for design and have a great impact on the performance, reliability and service life of components. The mechanical properties of the film include mechanical parameters such as the elastic modulus, yield strength and interface bonding strength of the film. Among them, the elastic modulus of the film is not only a necessary parameter for the design of thin film devices, but also the basis for the measurement and evaluation of mechanical properties such as yield strength, fracture toughness and residual stress. Due to the size factor, the measurement of the elastic modulus of thin films is much more difficult than that of bulk materials. According to the characteristics of the film, many scientists have carried out a lot of research on the measurement method and measuring instrument of its elastic modulus.
目前,常采用的测试方法有超声波测速法、梁弯曲法和压痕法。其中超声波测速法的基本原理是根据超声波的传播速度由介质的弹性常数决定,通过测量超声波波速,即可求出材料的弹性常数。但这种方法受材料性质局限,只能应用于各向同性材料。梁弯曲法中,悬臂梁法的基本原理是通过挠度比较的方法来计算膜的弹性模量,具体方法是比较同等载荷作用下的两组试样(已知弹性常数的基片和镀上膜的基片)间接获得膜的弹性模量。而三点弯曲法的原理是对梁施加一个力产生一个挠度,从而计算出量的抗弯曲刚度,根据抗弯曲刚度与弹性模量的关系计算弹性模量。由于压痕法方法简单、对试样无特殊要求从而得到了广泛应用,压痕法的基本原理是利用一定形状的压头在一定压力作用下压入被测样品,保持一段时间后卸载,然后用相关设备如:如标尺、显微镜、位移传感器等,测出压痕的深度,从而根据所获得位移以及所提供的压力做出相应的载荷-位移曲线(P-h曲线),在对位移曲线进行分析即可得出薄膜的弹性模量。但是,这种实验方法由于该方法的力学模型不完善,要求薄膜厚度不能太小,对同一试样在不同的测量条件下包括压头形状不同和压入深度不同的实验结果无法统一。此外,由于压头的变形、薄膜的表面张力以及薄膜与压头间的摩擦都会引入误差。At present, the commonly used test methods are ultrasonic velocimetry, beam bending method and indentation method. Among them, the basic principle of the ultrasonic velocity measurement method is that the propagation velocity of the ultrasonic wave is determined by the elastic constant of the medium, and the elastic constant of the material can be obtained by measuring the ultrasonic wave velocity. However, this method is limited by the nature of the material and can only be applied to isotropic materials. In the beam bending method, the basic principle of the cantilever beam method is to calculate the elastic modulus of the film by comparing the deflection. The specific method is to compare two sets of samples under the same load (substrate with known elastic constant and coated film The substrate) indirectly obtains the elastic modulus of the film. The principle of the three-point bending method is to apply a force to the beam to generate a deflection, thereby calculating the amount of bending stiffness, and calculating the elastic modulus according to the relationship between the bending stiffness and the elastic modulus. Because the indentation method is simple and has no special requirements for the sample, it has been widely used. The basic principle of the indentation method is to use an indenter of a certain shape to press the sample under a certain pressure, keep it for a period of time, and then unload it. Use related equipment such as rulers, microscopes, displacement sensors, etc. to measure the depth of the indentation, and then make a corresponding load-displacement curve (P-h curve) based on the obtained displacement and the provided pressure, and then analyze the displacement curve. The elastic modulus of the film can be obtained. However, due to the incomplete mechanical model of this experimental method, the thickness of the film must not be too small, and the experimental results of the same sample under different measurement conditions, including different indenter shapes and different indentation depths, cannot be unified. In addition, errors are introduced due to the deformation of the indenter, the surface tension of the film, and the friction between the film and the indenter.
发明内容Contents of the invention
针对传统的压痕法的不足,本发明的目的在于提供工作精确稳定,操作简便的用于定征薄膜材料特性的一种基于相控阵技术的多模式微驱动力源。Aiming at the shortcomings of the traditional indentation method, the purpose of the present invention is to provide a multi-mode micro-driving force source based on phased array technology for characterizing the properties of thin film materials with accurate and stable work and easy operation.
该系统以超声相控阵技术为基础,采用数字声束合成技术形成稳定声场,根据超声辐射力理论,位于声场中的薄膜受到非接触式力的作用,从而薄膜表面产生变形,进一步测出力的大小和变形大小,从而计算出应变,接着根据胡克定律就可计算出弹性模量。该系统各发射电路通道的频率、幅值、相位分别可控,具有较高的重复频率和发射效率,而且各通道间一致性好,易于模块化,操作方便,便于维护和调试。Based on ultrasonic phased array technology, the system uses digital sound beam synthesis technology to form a stable sound field. According to the theory of ultrasonic radiation force, the film in the sound field is subjected to non-contact force, so that the film surface is deformed, and the force is further measured. The size and deformation size are used to calculate the strain, and then the elastic modulus can be calculated according to Hooke's law. The frequency, amplitude, and phase of each transmission circuit channel of the system are separately controllable, have high repetition frequency and transmission efficiency, and have good consistency among channels, are easy to be modularized, easy to operate, and easy to maintain and debug.
本发明采用的技术方案如下:The technical scheme that the present invention adopts is as follows:
整个系统包括基于工控机的上位机、CAN总线、超声发射卡、高频线性功放和超声换能器阵列;基于工控机的上位机的CAN接口经CAN总线、超声发射卡、高频线性功放与超声换能器阵列相连。The whole system includes the upper computer based on the industrial computer, CAN bus, ultrasonic transmitting card, high-frequency linear power amplifier and ultrasonic transducer array; the CAN interface of the upper computer based on the industrial computer is connected to the The ultrasound transducer array is connected.
所述的超声发射卡:包括十五个信号发生单元和信号发生及同步控制单元;十五个信号发生单元和信号发生及同步控制单元的一端经各自的CAN接口分别与CAN总线相连,十五个信号发生单元和信号发生及同步控制单元的另一端分别与高频线性功放中各自的4路高频线性功放相连;信号发生及同步控制单元分别与十五个信号发生单元相连。Described ultrasonic transmitting card: comprise 15 signal generation units and signal generation and synchronous control unit; One end of 15 signal generation units and signal generation and synchronous control unit is respectively connected with CAN bus through respective CAN interface, 15 The other ends of each signal generating unit and the signal generating and synchronous control unit are respectively connected to four high-frequency linear power amplifiers in the high-frequency linear power amplifier; the signal generating and synchronous control units are respectively connected to fifteen signal generating units.
所述的十五个信号发生单元结构相同,均包括CAN接口、基于DSP的嵌入式系统、地址总线、数据总线、控制总线、基于FPGA的接口模块、4个10位高速D/A转换器、用于产生比较幅值的4个高速D/A转换器和4个功放及补偿电路;基于DSP的嵌入式系统通过CAN接口与CAN总线相连,通过地址总线、数据总线和控制总线分别与基于FPGA的接口模块相连;4个10位高速D/A转换器和用于产生比较幅值的4个高速D/A转换器的一端分别与基于FPGA接口模块相连,4个10位高速D/A转换器的另一端分别与各自的功放及补偿电路相连;用于产生比较幅值的4个高速D/A转换器分别与各自的10位高速D/A转换器相连。The fifteen signal generating units have the same structure, and all include a CAN interface, an embedded system based on DSP, an address bus, a data bus, a control bus, an interface module based on FPGA, four 10-bit high-speed D/A converters, 4 high-speed D/A converters and 4 power amplifiers and compensation circuits for generating comparative amplitudes; the DSP-based embedded system is connected to the CAN bus through the CAN interface, and communicates with the FPGA-based system through the address bus, data bus and control bus respectively. Connected to the interface module; 4 10-bit high-speed D/A converters and one end of the 4 high-speed D/A converters used to generate comparative amplitudes are respectively connected to the FPGA-based interface module, and 4 10-bit high-speed D/A converters The other ends of the amplifiers are connected to their respective power amplifiers and compensation circuits; the four high-speed D/A converters used to generate comparative amplitudes are connected to their respective 10-bit high-speed D/A converters.
所述的信号发生及同步控制单元:除了与所述的十五个信号发生单元结构相同外,还具有同步控制模块,同步控制模块分别与基于FPGA的接口模块和基于DSP的嵌入式系统相连。Described signal generating and synchronous control unit: except having the same structure as the fifteen signal generating units, it also has a synchronous control module, which is connected with the interface module based on FPGA and the embedded system based on DSP respectively.
所述的基于DSP的嵌入式系统:由数字信号处理器DSP、晶振、CAN接口电路、复位芯片、JTAG调试口、电源接口、RAM芯片和输入输出接口组成;The described embedded system based on DSP: consists of digital signal processor DSP, crystal oscillator, CAN interface circuit, reset chip, JTAG debugging port, power supply interface, RAM chip and input and output interface;
所述晶振、CAN接口电路、复位芯片、JTAG调试口、电源接口、RAM芯片分别与数字信号处理器DSP相连。The crystal oscillator, CAN interface circuit, reset chip, JTAG debugging port, power supply interface and RAM chip are respectively connected with the digital signal processor DSP.
所述的同步控制模块:包括结构相同的两个三态转换阵列、2个8单元高速光耦元件;每个三态转换阵列分别与DSP的I/O引脚、高速光耦相连;光耦与FPGA触发引脚相连。The synchronous control module: includes two tri-state conversion arrays with the same structure, and 2 8-unit high-speed optocoupler elements; each tri-state conversion array is connected to the I/O pin of DSP and a high-speed optocoupler; the optocoupler Connect to FPGA trigger pin.
高频线性功放4:由PA19芯片、IN4148型二极管D1、D2、PK MUR 120型二极管D3、D4、电容C1、C2、C3、C4、Cc、Cf、电阻Ri、Rf、Rcl+、Rcl一、电源+40V、-40V组成。High-frequency linear power amplifier 4: composed of PA19 chip, IN4148 type diode D1, D2, PK MUR 120 type diode D3, D4, capacitor C1, C2, C3, C4, Cc, Cf, resistor Ri, Rf, Rcl+, Rcl1, power supply Composed of +40V and -40V.
本发明具有的有益效果是:The beneficial effects that the present invention has are:
1.采用相控阵技术合成稳定声场,能对位于其中的薄膜材料产生非接触的聚焦辐射力,从而使薄膜产生变形,克服了传统式压痕法的缺点;1. The phased array technology is used to synthesize a stable sound field, which can generate non-contact focused radiation force on the film material located in it, thereby deforming the film and overcoming the shortcomings of the traditional indentation method;
2.本系统具有较好的适应性,采用了总线式结构,形成了灵活可扩展的模块;2. The system has good adaptability, adopts the bus structure, and forms a flexible and expandable module;
3.数字化的系统结构保证了较高的相位控制精度和偏转角度,操作方便,便于维护和调试;3. The digital system structure ensures high phase control accuracy and deflection angle, and is easy to operate, maintain and debug;
4.本系统具有高增益、宽频带;4. The system has high gain and wide frequency band;
5.本系统采用高速A/D,保证了数据的可靠性;5. The system adopts high-speed A/D to ensure the reliability of data;
6.各通道独立可控,具有多种工作模式。6. Each channel is independently controllable and has multiple working modes.
附图说明Description of drawings
图1是一种基于相控阵技术的多模式微驱动力源系统结构图。Figure 1 is a structural diagram of a multi-mode micro-drive power source system based on phased array technology.
图2是信号发生及同步控制单元的结构图。Figure 2 is a structural diagram of the signal generation and synchronization control unit.
图3是基于DSP的嵌入式系统的原理框图。Fig. 3 is the functional block diagram of the embedded system based on DSP.
图4是同步控制模块原理框图。Figure 4 is a functional block diagram of the synchronous control module.
图5是功放及补偿电路的电路图。Fig. 5 is a circuit diagram of the power amplifier and compensation circuit.
图6是高频线性功放电路图。Figure 6 is a circuit diagram of a high-frequency linear power amplifier.
图中:1-基于工控机的上位机,2-CAN总线,3-超声发射卡,4-高频线性功放,5-超声换能器阵列,6-信号发生单元,7-信号发生及同步控制单元,8-CAN总线接口,9-基于DSP的嵌入式系统,10-地址总线,11-数据总线,12-控制总线,13-基于FPGA的接口模块,14-用于产生比较幅值的高速D/A转换器,15-10位高速D/A转换器,16-功放及补偿电路,17-同步控制模块。In the figure: 1-host computer based on industrial computer, 2-CAN bus, 3-ultrasonic transmitting card, 4-high-frequency linear power amplifier, 5-ultrasonic transducer array, 6-signal generation unit, 7-signal generation and synchronization Control unit, 8-CAN bus interface, 9-DSP-based embedded system, 10-address bus, 11-data bus, 12-control bus, 13-FPGA-based interface module, 14-used to generate comparison amplitude High-speed D/A converter, 15-10-bit high-speed D/A converter, 16-power amplifier and compensation circuit, 17-synchronous control module.
具体实施方式Detailed ways
下面结合附图对本发明作进一步详细描述:Below in conjunction with accompanying drawing, the present invention is described in further detail:
如图1所示,该装置由上位机1、CAN总线2、超声发射卡3、高频线性功放4、超声换能器阵列5构成,其特征在于:As shown in Figure 1, the device consists of a
所述超声换能器阵列5包括64个超声换能器单元。通过研究和论证,采用64路超声换能器发射超声波形成的声场在半径2mm的球体积内与理想声场能量偏差值小于4%,若采用单换能器合成声场,则机械结构就会相当复杂,并且如果要改变合成的声场,则机械结构也得发生改变。为了提高该系统的适应性,使用基于相控阵技术的二维换能器阵列进行声场合成,可以在不移动或少移动的情况下进行,并且可提高精度。The
根据声学阵列理论,在其它参数一定的情况下,阵元数增加可增加主瓣幅值,抑制旁瓣,主瓣宽度也同时得到抑制,有利于提高相控阵超声探头的品质,考虑到精度要求和指向性特征以及系统复杂程度,这里采用8×8圆形活塞换能器阵列。在考虑阵元件间隔和有效工作阵元的同时,优先考虑单个阵元的效率和指向性,以及加工制作的难易程度。According to the acoustic array theory, when other parameters are fixed, increasing the number of array elements can increase the amplitude of the main lobe, suppress side lobes, and suppress the width of the main lobe at the same time, which is conducive to improving the quality of the phased array ultrasonic probe. Considering the accuracy Requirements and directivity characteristics as well as system complexity, an 8×8 circular piston transducer array is used here. While considering the array element spacing and effective working array elements, the efficiency and directivity of a single array element, as well as the ease of manufacturing are given priority.
根据精度的要求采用1.75MHz的超声波,根据相控阵探头声束指向性函数,当阵元间距在半波长和波长之间时,在允许的偏转范围之内,将不会出现栅瓣。阵列阵元直径2.5mm,阵元中心之间的距离为3mm。为了提高换能器的发生性能,其晶片使用钛酸铅压电复合材料,背衬采用环氧树脂基复合材料。工作时改变各换能器之间的相位差,可产生不同角度的声束,从而合成聚焦声场。According to the requirement of accuracy, 1.75MHz ultrasonic waves are used. According to the sound beam directivity function of the phased array probe, when the distance between the array elements is between the half wavelength and the wavelength, within the allowable deflection range, there will be no grating lobes. The diameter of the array elements is 2.5mm, and the distance between the centers of the array elements is 3mm. In order to improve the generation performance of the transducer, the chip uses lead titanate piezoelectric composite material, and the backing adopts epoxy resin-based composite material. Changing the phase difference between the transducers during work can generate sound beams at different angles, thereby synthesizing a focused sound field.
如图1所示,上位机1通过CAN总线与超声发射卡相连,其作用是根据工作的需要,执行对超声发射卡的控制。As shown in Figure 1, the
CAN总线2分别与上位机1和超声发射卡3相连,其作用是将通过上位机设置好的参数(如频率、幅值、相差)传送到超声发射卡。The
超声发射卡3分别与CAN总线2、高频线性功放4相连,其作用是在上位机的控制下,产生不同模式的信号,经高频线性功放去激励超声换能器阵列产生超声波。
高频线性功放4分别与超声发射卡3、超声换能器阵列5相连,其作用是对超声发射卡3送出的信号进行放大,以满足驱动超声换能器阵列的需要。The high-frequency
超声换能器阵列5与高频线性功放4相连,其作用根据控制信号,产生用于聚焦声场合成的超声波束。The
超声发射卡3由一个信号发生及同步控制单元7和十五个信号发生单元组成,信号发生单元6、信号发生及同步控制单元7与CAN总线2和高频线性功放4相连,其作用是产生各通道独立可控的信号。信号发生及同步控制单元7与各信号发生单元6相连,其作用是为了保证各通道的信号具有较高的同步性,从而保证了各通道之间的相差,达到合成聚焦声场的目的。
如图2所示,所述的十五个信号发生单元6结构相同,均包括CAN接口8、基于DSP的嵌入式系统9、地址总线10、数据总线11、控制总线12、基于FPGA的接口模块13、用于产生比较幅值的4个高速D/A转换器14、4个10位高速D/A转换器15和4个功放及补偿电路16;基于DSP的嵌入式系统9通过CAN接口8与CAN总线2相连,通过地址总线10、数据总线11和控制总线12分别与基于FPGA的接口模块13相连;4个10位高速D/A转换器15和用于产生比较幅值的4个高速D/A转换器14的一端分别与基于FPGA接口模块13相连,4个10位高速D/A转换器15的另一端分别与各自的功放及补偿电路16相连;用于产生比较幅值的4个高速D/A转换器14分别与各自的10位高速D/A转换器15相连。由10位高速D/A转换器15转换为模拟波形信号,经板内运算放大及补偿电路进行幅值放大输入到高频线性功放,最后去激励超声换能器阵列发射超声波。D/A转换器时钟频率50MHz,输出延时最大1ns。每个通道最小相位改变量0.35°,频率分辨率为3Hz。As shown in Figure 2, described fifteen
如图2所示,信号发生及同步控制单元7由CAN总线接口8、基于DSP的嵌入式系统9、地址总线10、数据总线11、控制总线12、基于FPGA的接口模块13、用于产生比较幅值的高速D/A转换器14、10位高速D/A转换器15、板内功率放大及补偿电路16、同步触发模块17组成,其特征在于:As shown in Figure 2, signal generation and
基于DSP的嵌入式系统9通过CAN总线接口8与CAN总线2相连,通过地址总线10、数据总线11、控制总线12与基于FPGA的接口模块13相连。其作用是接收CAN总线发送的数据,对数据处理后通过地址总线10、数据总线11、控制总线12发送给基于FPGA的接口模块。The DSP-based embedded
基于FPGA的接口模块13与地址总线10、数据总线11、控制总线12、10位高速D/A转换模块14相连,其作用接收DSP发送的数据,并根据这些数据通过直接数字合成技术查找事先存储在波形存储其中的数据并输出至D/A芯片,此外基于FPGA的接口模块和用于产生比较幅值的D/A转换器14相连。FPGA芯片可以采用XILINX公司生产的XC3S400芯片。FPGA-based
10位高速D/A转换模块15的数字输入端与XC3S400的I/O引脚相连,模拟输出端与功放及补偿电路16相连,参考电压输入端与用于产生比较幅值的D/A转换器14的输出端相连。10位高速D/A转换器15的作用是将FPGA中通过查表所得的数字量转换为模拟量输入到功放及补偿电路。这样的连接方式一共有四路,即每个信号发生单元具有四个独立通道。10位高速D/A转换器可以采用美国模拟器件公司生产的AD9751芯片。The digital input terminal of the 10-bit high-speed D/
用于产生比较幅值的D/A转换器14的数字输入端与XC3S400的I/O引脚相连,模拟输出端与AD9751的外部参考电压输入端相连。其作用是将FPGA输出的数字量转化为模拟量输入到AD9751的外部参考电压输入端,从控制发射信号的幅值。这里用于产生比较幅值的D/A转换器可以采用美国模拟器件公司生产的AD9708芯片。The digital input terminal of the D/
如图3所示,基于DSP的嵌入式系统9由数字信号处理器DSP、晶振、CAN接口电路、信号驱动芯片、复位芯片、JTAG调试口、电源接口、RAM芯片和输入输出接口组成。数字信号处理器DSP可以采用TI公司生产的TMS320F2407芯片,RAM芯片采用美国集成器件技术公司IDT71V124芯片。静态RAM通过地址总线、数据总线、片选/CS、/RD、/WE接口与DSP相连。JTAG调试口、电源接口、复位电路、晶阵分别与数字信号处理器DSP对应接口相连接。CAN接口电路一端通过CANRX和CANTX接口与数字信号处理器DSP相连接,另一端与输入输出接口相连接。图中箭头方向表示信号传输的方向。DSP通过I/O接口与同步控制模块17相连。As shown in Figure 3, the DSP-based embedded
如图4所示,同步控制模块17包括结构相同的两个三态转换阵列、2个8单元高速光耦元件。每个三态逻辑门阵列的输入引脚与DSP的I/O引脚相连,用于同步触发信号的输入;输出端与触发接口相连。高速光耦的输入端与相应的触发接口相连,输出端与FPGA引脚相连。三态逻辑门阵列可以采用PHILIPS公司生产的74LVC245芯片。一个同步触发模块具有两片74LVC245,总共有2×8个触发通道,可以同时触发16个FPGA模块,保证了64路通道之间信号的同时性。为了避免各通道之间的干扰,触发接口之间用屏蔽线连接。As shown in FIG. 4 , the
如图5所示,功放及补偿电路16主要由集成运放U1,电阻R1、R2、R3、R4组成,集成运方芯片可以采用美国模拟器件公司的AD812芯片。电阻R1的一端与10位高速D/A转换芯片的正向输出端相连,另一端与AD812的正向输入端相连;电阻R2的一端与10位高速D/A转换芯片的反相输出端相连,另一端与AD812的反相输入端相连;电阻R3分别于R1和地相连;电阻R4分别与R2和AD812输出端相连。AD971输出的模拟波形幅度最大为1.25V,经差分放大后输出为7V。As shown in FIG. 5 , the power amplifier and
如图6所示,高频线性功放由PA19芯片、IN4148型二极管D1、D2、PK MUR120型二极管D3、D4,电容C1、C2、C3、C4、Cc、Cf,电阻Ri、Rf、Rcl+、Rcl-、电源+40V、-40V组成。运算放大器集成芯片可以采用美国APEX公司生产的高压功率运算放大器集成芯片PA19。PA19的引脚1与接口JP2的1端相连接,PA19的引脚2、3之间通过电阻Rcl+相连接,引脚6、7之间通过电阻Rcl-相连接。Rcl+和Rcl-是限流电阻,其作用是限制输出最大电流。PA19的1、3之间通过二极管D3相连,1、6脚之间通过二极管D4相连,快速恢复二极管D3、D4用于输出级保护,避免PA19由于负载不稳定而产生的浪涌电压而影响整个系统的工作稳定性。引脚1、8之间通过电容Cc相连,其作用是进行相位补偿,避免由相移过大产生的高端提升及振荡现象。引脚1、5之间通过电阻Rf和电容Cf并联相连,电容Cf的作用是改善电路高频时的幅频输出特性。正反向输入端通过二极管D1、D2相连,钳位二极管D1、D2用于输入级保护,以避免瞬态电压多大而损坏整个电路。引脚3和地之间通过电容C1和C2相连,引脚6和地之间通过电容C3、C4相连,其作用是电源保护和滤波。信号经过高频线性功放后电压可达±35V。As shown in Figure 6, the high-frequency linear power amplifier consists of PA19 chip, IN4148 type diodes D1, D2, PK MUR120 type diodes D3, D4, capacitors C1, C2, C3, C4, Cc, Cf, resistors Ri, Rf, Rcl+, Rcl -, power supply +40V, -40V composition. The operational amplifier integrated chip can adopt the high-voltage power operational amplifier integrated chip PA19 produced by American APEX Company.
本发明工作过程如下:在上位机1设置好各发射通道的参数,如频率、相位差、幅值等,通过CAN总线2将这些参数发送到超声发射卡3的15个信号发生单元6和1个信号发生及同步控制单元中7的基于DSP的嵌入式系统9。DSP接收到数据并进行处理后,通过地址总线10、数据总线11、控制总线12发送给FPGA模块13。等所有数据发送完成以后,信号发生及同步控制单元中7的基于DSP的嵌入式系统9通过I/O口发出触发信号。触发信号通过同步触发模块17触发16个FPGA模块。FPGA根据发送的参数通过直接数字合成技术查找事先存储在波形存储其中的数据并输出至10位高速D/A转换器15,另外FPGA将幅值参数输送到用于产生比较幅值的D/A转换器14。用于产生比较幅值的D/A转换器14输出参考电压到10位高速D/A转换15的外部参考电压输入端。10位高速D/A转换器15根据FPGA输出的值和参考电压值输出所需波形。功放及补偿电路16对10位高速D/A转换器输出的信号进行一级放大,高频线性功放4对经一级放大的信号再进行放大,最后送到超声相控阵换能器。各超声换能器根据设定的相位延迟实现聚焦,从而合成聚焦声场。根据超声辐射力理论,位于其中的物体将受到力的作用。The working process of the present invention is as follows: the parameters of each transmitting channel are set in the
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009100995201A CN101576536B (en) | 2009-06-18 | 2009-06-18 | Multi-mode micro-driving force source based on phased array technology |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009100995201A CN101576536B (en) | 2009-06-18 | 2009-06-18 | Multi-mode micro-driving force source based on phased array technology |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101576536A CN101576536A (en) | 2009-11-11 |
| CN101576536B true CN101576536B (en) | 2011-01-05 |
Family
ID=41271520
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2009100995201A Expired - Fee Related CN101576536B (en) | 2009-06-18 | 2009-06-18 | Multi-mode micro-driving force source based on phased array technology |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101576536B (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103744304A (en) * | 2013-12-19 | 2014-04-23 | 浙江大学 | Non-contact type micro scale rotating motor based on ultrasonic radiation torque |
| US9453867B2 (en) * | 2014-03-11 | 2016-09-27 | Texas Instruments Incorporated | Processor chip with ultrasound transducer for ultrasound chip debugging |
| CN104820023B (en) * | 2015-04-16 | 2017-12-19 | 西南科技大学 | The ultrasonic phased array detection means of the convertible array format of low-power consumption |
| CN106896160A (en) * | 2015-12-17 | 2017-06-27 | 中国石油天然气股份有限公司 | Signal excitation circuit of pipeline anticorrosive coating joint coating bonding quality detector |
| CN109283260A (en) * | 2017-07-19 | 2019-01-29 | 中国科学院声学研究所 | Acquisition, processing and control circuit of an ultrasonic phased array borehole wall imaging system |
| CN116106425B (en) * | 2022-12-30 | 2023-11-10 | 天津市滨海新区检验检测中心 | Magnetic nondestructive testing system based on ultrasonic phased array technology |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1506696A (en) * | 2002-12-11 | 2004-06-23 | 中国科学院自动化研究所 | Data Acquisition System of Multiple Ultrasonic Sensors Based on DSP |
| CN201417264Y (en) * | 2009-06-18 | 2010-03-03 | 浙江大学 | A multi-mode micro-drive power source based on phased array technology |
-
2009
- 2009-06-18 CN CN2009100995201A patent/CN101576536B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1506696A (en) * | 2002-12-11 | 2004-06-23 | 中国科学院自动化研究所 | Data Acquisition System of Multiple Ultrasonic Sensors Based on DSP |
| CN201417264Y (en) * | 2009-06-18 | 2010-03-03 | 浙江大学 | A multi-mode micro-drive power source based on phased array technology |
Non-Patent Citations (1)
| Title |
|---|
| 杨克己,桑武斌.基于FPGA的高精度压电陶瓷数字驱动电源.《工程设计学报》.2008,第15卷(第6期),全文. * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101576536A (en) | 2009-11-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101576536B (en) | Multi-mode micro-driving force source based on phased array technology | |
| CN103175900B (en) | A kind of phased-array non-destructive inspection device and system | |
| CN107132015A (en) | A kind of vibration measurement of flexible board and control device and method | |
| CN101576537A (en) | Ultrasound phased array exciting bank | |
| CN102857850B (en) | Near-field calibrating method for acoustic parameters of high-frequency ultrasonic emitter and array | |
| CN109141793B (en) | Shallow spherical thin shell vibration detection control device and method | |
| CN103111410A (en) | Novel ultrasonic wave sensor | |
| CN102820422A (en) | Monolithic piezoelectric transducer and manufacturing method thereof | |
| CN104764522B (en) | Method and device for measuring ultrasonic power | |
| CN106525974A (en) | Ultrasonic concrete detection device | |
| CN203519220U (en) | Bolt with integrated chip | |
| CN201653603U (en) | Acoustic surface wave force sensor based on cantilever beam | |
| CN100365840C (en) | Planar Composite Ultrasonic Transducer | |
| CN109765147A (en) | An ultrasonic phased array suspension device and its working method | |
| CN201417264Y (en) | A multi-mode micro-drive power source based on phased array technology | |
| CN101782378B (en) | Micro-ultrasonic wave sensor | |
| Wang et al. | Design, fabrication, and characterization of 1–3 piezoelectric composite air-coupled ultrasonic transducers with micro-membrane filter matching layer | |
| CN106556641A (en) | A kind of XC6S type control systems of NEXT series of products | |
| CN114415867A (en) | Underwater acoustic 3D touch screen system based on leaky lamb wave and convolutional neural network | |
| CN201196682Y (en) | Ultrasonic sensor capable of adjusting sensibility and aftershock | |
| CN2842393Y (en) | Material internal-stress supersonic measuring device | |
| CN105537091A (en) | Infrasonic wave synthetic method and device based on heterodyne frequency type and parametric acoustic array technology | |
| Sanvito et al. | Pmut-based system for continuous monitoring of bolted joints preload | |
| Harazin et al. | Empirical analysis of piezoelectric stacks composed of plates with different parameters and excited with different frequencies | |
| CN100399596C (en) | Phased Array Probes for Scanning Imaging Setups |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110105 Termination date: 20120618 |