CN101587187B - Method for correcting deviation of depth measuring sonar system - Google Patents
Method for correcting deviation of depth measuring sonar system Download PDFInfo
- Publication number
- CN101587187B CN101587187B CN2008101124824A CN200810112482A CN101587187B CN 101587187 B CN101587187 B CN 101587187B CN 2008101124824 A CN2008101124824 A CN 2008101124824A CN 200810112482 A CN200810112482 A CN 200810112482A CN 101587187 B CN101587187 B CN 101587187B
- Authority
- CN
- China
- Prior art keywords
- deviation
- calibrated
- parameter
- roll
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000012937 correction Methods 0.000 claims abstract description 178
- 238000012360 testing method Methods 0.000 claims abstract description 20
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000003672 processing method Methods 0.000 claims description 4
- 230000008713 feedback mechanism Effects 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 14
- 238000012805 post-processing Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 238000003491 array Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
本发明提供一种测深声纳系统偏差校正方法,包括如下步骤:1)通过海上校准试验采集数据,得出各个待校准参量的初始值;2)选取一个待校准参量,根据各个待校准参量的当前值,计算出所选取的待校准参量的修正量;3)判断所选取的待校准参量的当前修正量是否小于预设的门限值或收敛于某一数值;如判断为否,则待校准参量的值用该待校准参量当前值与当前修正量之和替换,返回步骤2),直至所有待校准参量的修正量均符合上述判定条件。本发明综合考虑系统中的各校准参量,利用反馈机制,降低了各系统偏差之间的影响,增加了各系统偏差修正量的准确性。同时本发明考虑了高分辨率测深侧扫声纳的各项特点,因此特别适合应用于高分辨率测深侧扫声纳。
The invention provides a method for correcting the deviation of a sounding sonar system, comprising the following steps: 1) collecting data through an offshore calibration test to obtain the initial value of each parameter to be calibrated; 2) selecting a parameter to be calibrated, and according to each parameter to be calibrated 3) Judging whether the current correction amount of the selected parameter to be calibrated is less than the preset threshold value or converges to a certain value; if judged to be no, wait for The value of the calibration parameter is replaced by the sum of the current value of the parameter to be calibrated and the current correction amount, and returns to step 2), until the correction amounts of all the parameters to be calibrated meet the above determination conditions. The present invention comprehensively considers each calibration parameter in the system, utilizes a feedback mechanism, reduces the influence between the deviations of each system, and increases the accuracy of the deviation correction amount of each system. Simultaneously, the present invention considers various characteristics of the high-resolution depth-finding side-scan sonar, so it is particularly suitable for application to the high-resolution depth-finding side-scan sonar.
Description
技术领域 technical field
本发明属于测深声纳技术领域,具体地说,本发明涉及一种测深声纳系统偏差校正方法。The invention belongs to the technical field of sounding sonar, in particular, the invention relates to a deviation correction method of a sounding sonar system.
背景技术 Background technique
目前常用的测深声纳有三类,一类是多波束测深系统,另一类就是高分辨率测深侧扫声纳,第三类是干涉合成孔径声纳。多波束测深系统出现的较早,应用范围更广一些;高分辨率测深侧扫声纳出现较晚,目前正在推广过程中;干涉合成孔径声纳系统最为复杂,目前正在发展过程中,因此下面主要介绍前两类测深声纳。At present, there are three types of sounding sonars commonly used, one is multi-beam sounding system, the other is high-resolution sounding side-scan sonar, and the third is interferometric synthetic aperture sonar. The multi-beam bathymetric system appeared earlier and has a wider range of applications; the high-resolution bathymetric side-scan sonar appeared later and is currently in the process of promotion; the interferometric synthetic aperture sonar system is the most complex and is currently in the process of development. Therefore, the following mainly introduces the first two types of sounding sonar.
高分辨率测深侧扫声纳是一种能够探测高分辨率海底地形和地貌的声学设备。它由常规测深侧扫声纳发展而来,常规测深侧扫声纳使用两条平行接收线阵,通过测量海底回波达到两声纳阵间延时来估计回波达到方向,从而得到海底相对声纳阵的位置。常规测深侧扫声纳的缺点是不能测量同时到达声纳阵的多个目标,声纳的正下方测深精度差。A high-resolution bathymetric side-scan sonar is an acoustic device capable of detecting seafloor topography and landforms in high resolution. It is developed from the conventional sounding side-scan sonar, which uses two parallel receiving line arrays to estimate the arrival direction of the echo by measuring the delay between the two sonar arrays, thus obtaining The position of the ocean floor relative to the sonar array. The disadvantage of conventional sounding side-scan sonar is that it cannot measure multiple targets arriving at the sonar array at the same time, and the sounding accuracy directly below the sonar is poor.
高分辨率测深侧扫声纳通过采用多条间距为半波长的平行接收线阵,再利用专用信号处理算法,解决了常规测深侧扫声纳的两个问题,扩大了其使用范围,增强了声纳的适用性。The high-resolution sounding side-scan sonar solves the two problems of the conventional sounding side-scan sonar by adopting multiple parallel receiving line arrays with a half-wavelength spacing and using a dedicated signal processing algorithm, and expands its application range. Enhanced sonar usability.
多波束测深声纳通过形成多个指向不同方向的波束,再利用一定信号处理方法估计每个波束海底回波到达的时延,从而得到海底相对声纳阵的位置。高分辨率测深侧扫声纳的测深原理与传统的多波束测深系统不同,它对已知时延的回波信号,通过一定的信号处理方法直接估计回波到达声纳阵的方向,从而得到海底相对声纳阵的位置。Multi-beam sounding sonar forms multiple beams pointing in different directions, and then uses a certain signal processing method to estimate the arrival time delay of each beam's seabed echo, so as to obtain the position of the seabed relative to the sonar array. The sounding principle of the high-resolution sounding side-scan sonar is different from the traditional multi-beam sounding system. It directly estimates the direction of the echo arriving at the sonar array through a certain signal processing method for the echo signal with a known time delay. , so as to obtain the position of the seabed relative to the sonar array.
这两类声纳获得入射角和时延后,都需要再利用各种传感器获得的载体位置、载体姿态、声速剖面、潮位等数据,以及声纳阵和各种传感器在载体上的空间位置关系数据,对获得的时延和入射角进行参数修正,并最终推导出被测海底的经纬度坐标和稳态深度。After these two types of sonars obtain the angle of incidence and time delay, they need to use the carrier position, carrier attitude, sound velocity profile, tide level and other data obtained by various sensors, as well as the spatial position relationship between the sonar array and various sensors on the carrier. Data, correct the parameters of the obtained time delay and incident angle, and finally deduce the latitude and longitude coordinates and steady-state depth of the measured seabed.
但是,在实际进行上述工作前,为了得到更高精度的海底深度和位置数据,需要采用一定的系统偏差校正方法获得会产生系统误差的参数的偏差量,以对实际使用的各种参数进行校正。However, before the above work is actually carried out, in order to obtain higher-precision seabed depth and position data, it is necessary to use a certain system deviation correction method to obtain the deviation of the parameters that will cause system errors, so as to correct various parameters actually used .
针对多波束系统的系统偏差校正已有一定的研究,吴自银,金翔龙的文章“多波束测深边缘波束误差的综合校正[J].海洋学报,2005,27(4):88-94.”提出了在勘测前对横摇偏差角的校正方法和在已勘测的数据基础上对横摇偏差角的校正方法;刘胜旋,关永贤的文章“多波束系统的参数误差判断及校正[J].海洋测绘,2002,22(1):33-37.”提出了同一目标探测法和剖面重叠法进行导航定位延迟校正的方法以及实测法和同一目标探测法进行首摇偏差校正;李文杰,胡平,肖都,刘春雷的文章“多波束测深在海洋工程勘察中的应用[J].物探与化探,2004,28(4):373-376.”提出了校正首摇偏差的线性目标探测法;刘方兰,张志荣,余平的文章“多波束系统横摇、纵倾参数的校正方法[J].吉林大学学报地球科学版,2004,34(4):621-624.”提出了实测法和剖面重合法校正横摇和纵倾角偏差。There has been some research on the system deviation correction of multi-beam systems. Wu Ziyin and Jin Xianglong’s article "Comprehensive Correction of Edge Beam Errors in Multi-beam Bathymetry [J]. Oceanographic Journal, 2005, 27(4): 88-94." The correction method of the roll deviation angle before the survey and the correction method of the roll deviation angle on the basis of the surveyed data; Liu Shengxuan, Guan Yongxian's article "Multi-beam system parameter error judgment and correction [J].Ocean surveying and mapping , 2002, 22(1): 33-37." Proposed the same target detection method and section overlapping method for navigation and positioning delay correction and the actual measurement method and the same target detection method for yaw deviation correction; Li Wenjie, Hu Ping, Xiao Du , Liu Chunlei's article "Application of multi-beam bathymetry in marine engineering survey [J]. Geophysical and Geochemical Prospecting, 2004, 28(4): 373-376." proposed a linear target detection method for correcting yaw deviation; Liu Fanglan , Zhang Zhirong, Yu Ping's article "Correcting Method of Roll and Pitch Parameters of Multi-beam System [J]. Journal of Jilin University Earth Science Edition, 2004, 34(4): 621-624." Legal corrections for roll and pitch deviations.
上述方法存在以下不足和缺陷:1)上述的系统偏差校正方法,本质是希望尽量降低其它参数影响,突出被校参数的影响,以进行偏差校正。但实际上测深误差是多种参数综合影响的结果,所以单一的系统偏差校正方法只能在一定程度上去除显著的系统偏差影响。2)上述的系统偏差校正方法是基于多波束测深声纳的,没有考虑到其它一些测深声纳的特点,例如高分辨率测深侧扫声纳具有下述特点:一是高分辨率测深侧扫声纳主要的估计参数是回波的到达方向;二是高分辨率测深侧扫声纳一般不采用波束稳定技术;三是高分辨率测深侧扫声纳多通道的不一致性,它会引起计算入射角的系统偏差;四是高分辨率测深侧扫声纳左右舷各采用一个声纳阵,需要使用两组独立的声纳阵安装参数。因此现有的系统偏差校正方法难以直接用于高分辨率测深侧扫声纳中。The above-mentioned method has the following deficiencies and defects: 1) The essence of the above-mentioned system deviation correction method is to reduce the influence of other parameters as much as possible and highlight the influence of the calibrated parameters for deviation correction. But in fact, the sounding error is the result of the comprehensive influence of various parameters, so a single system deviation correction method can only remove the significant system deviation influence to a certain extent. 2) The above-mentioned system deviation correction method is based on multi-beam sounding sonar, and does not take into account the characteristics of other sounding sonars. For example, high-resolution sounding side-scan sonar has the following characteristics: First, high-resolution The main estimation parameter of depth-sounding side-scan sonar is the direction of arrival of the echo; second, high-resolution sounding side-scan sonar generally does not use beam stabilization technology; It will cause systematic deviation in calculating the angle of incidence; Fourth, a sonar array is used for the left and right sides of the high-resolution sounding side-scan sonar, and two sets of independent sonar array installation parameters are required. Therefore, the existing system deviation correction method is difficult to be directly used in high-resolution bathymetric side-scan sonar.
为了提高测深声纳的测深精度,使它获得更广泛的应用,并考虑高分辨率测深侧扫声纳的特点,提出了一套切实可行的系统偏差校正方法。In order to improve the sounding accuracy of sounding sonar and make it more widely used, and considering the characteristics of high-resolution sounding side-scan sonar, a set of feasible system deviation correction methods is proposed.
发明内容 Contents of the invention
本发明的目的是克服现有技术不足,将首摇、横摇、纵倾、时延等多方面的偏差进行系统地综合处理,从而提供一种适合于测深声纳,并特别适合于高分辨率测深侧扫声纳的切实可行的系统偏差校正方法。The purpose of the present invention is to overcome the deficiencies of the prior art, systematically and comprehensively process the deviations in yaw, roll, pitch, time delay, etc., so as to provide a sonar suitable for depth sounding, and especially suitable for high Practical system bias correction method for resolution bathymetric side-scan sonar.
为实现上述发明目的,本发明提供的测深声纳系统偏差校正方法,包括如下步骤:In order to achieve the above-mentioned purpose of the invention, the method for correcting the deviation of the sounding sonar system provided by the present invention includes the following steps:
1)通过海上校准试验采集数据,得出各个待校准参量的初始值;所述校准参量至少包括横摇偏差;1) Collect data through offshore calibration tests to obtain the initial values of each parameter to be calibrated; the calibration parameters include at least roll deviation;
2)选取一个待校准参量,根据各个待校准参量的当前值,计算出所选取的待校准参量的修正量;2) Select a parameter to be calibrated, and calculate the correction amount of the selected parameter to be calibrated according to the current value of each parameter to be calibrated;
3)判断所选取的待校准参量的当前修正量是否小于预设的门限值或收敛于某一数值;如判断为是,则将待校准参量当前修正量做为该待校准参量的最终修正量;如判断为否,则待校准参量的值用该待校准参量当前值与当前修正量之和替换,返回步骤2);3) Judging whether the current correction amount of the selected parameter to be calibrated is less than the preset threshold value or converges to a certain value; if it is judged to be yes, the current correction amount of the parameter to be calibrated is used as the final correction of the parameter to be calibrated If the judgment is no, the value of the parameter to be calibrated is replaced with the sum of the current value of the parameter to be calibrated and the current correction value, and returns to step 2);
4)当所有待校准参量都得到最终修正量时,校正过程结束。4) When all the parameters to be calibrated have obtained the final correction value, the calibration process ends.
上述技术方案中,所述待校准参量还包括入射角系统偏差。In the above technical solution, the parameters to be calibrated also include a systematic deviation of the incident angle.
上述技术方案中,所述待校准参量还包括首摇偏差。In the above technical solution, the parameters to be calibrated also include yaw deviation.
上述技术方案中,所述待校准参量还包括纵倾偏差。In the above technical solution, the parameters to be calibrated also include a pitch deviation.
上述技术方案中,所述待校准参量还包括定位延迟。In the above technical solution, the parameter to be calibrated further includes positioning delay.
上述技术方案中,所述的测深声纳系统是高分辨率测深侧扫声纳系统,所述横摇偏差和入射角系统偏差同步进行校正,得出横摇和入射角系统偏差的综合修正量。In the above technical solution, the depth-sounding sonar system is a high-resolution depth-sounding side-scan sonar system, and the roll deviation and the incident angle system deviation are corrected synchronously to obtain a comprehensive combination of the roll and incident angle system deviation. correction amount.
上述技术方案中,所述横摇和入射角系统偏差的综合修正量的计算方法如下:In the above technical solution, the calculation method of the comprehensive correction amount of the roll and incident angle system deviation is as follows:
a)在海上校准试验中,沿预定测线航行,采集测深数据;采集试验前后的声速剖面数据;a) During the offshore calibration test, sail along the predetermined survey line to collect sounding data; collect sound velocity profile data before and after the test;
b)分别对右舷测深数据和左舷测深数据进行处理,分别得到右舷横摇和入射角系统偏差综合修正量以及左舷横摇和入射角系统偏差综合修正量,对测深数据进行处理方法如下:b) Process the starboard sounding data and the port sounding data respectively to obtain the comprehensive correction value of starboard roll and incident angle system deviation and the comprehensive correction value of port roll and incident angle system deviation respectively. The processing method of the sounding data is as follows :
b1)对于第i帧测深数据,读取其中的正下方散射信号到达时间,再根据声速剖面数据计算出正下方深度d;b1) For the i-th frame of bathymetry data, read the arrival time of the scattering signal directly below, and then calculate the depth d directly below according to the sound velocity profile data;
b2)在每个测深点的深度都等于d的假设条件下,拟合计算出第i帧右舷数据中每个时延τ对应的理论入射角θ′;b2) Under the assumption that the depth of each sounding point is equal to d, the theoretical incidence angle θ' corresponding to each time delay τ in the starboard data of the i-th frame is calculated by fitting;
b3)计算在第i帧测深数据中直接读取的每个时延τ对应的实际入射角θ与它对应的理论入射角θ′的差值Δi(θ),将该差值Δi(θ)作为第i帧的横摇和入射角系统偏差综合修正量;b3) Calculate the difference Δ i (θ) between the actual angle of incidence θ corresponding to each time delay τ directly read in the i-th frame of bathymetric data and its corresponding theoretical angle of incidence θ′, and the difference Δ i (θ) is used as the comprehensive correction value of the roll and incident angle system deviation of the i-th frame;
b4)计算出单条航迹上所有帧的横摇和入射角系统偏差综合修正量的平均值Δ(θ);b4) Calculate the average value Δ(θ) of the comprehensive corrections of roll and incident angle system deviations of all frames on a single track;
b5)根据垂直航迹方向的平均坡度,以及不同航迹上计算出的横摇和入射角系统偏差综合修正量平均值,得出修正后的横摇和入射角系统偏差综合修正量。b5) According to the average slope in the vertical track direction and the average value of the comprehensive corrections of roll and incident angle system deviations calculated on different tracks, the corrected comprehensive corrections of roll and incident angle system deviations are obtained.
上述技术方案中,所述校准参量还包括运动传感器输出延时偏差,获得所述运动传感器输出延时偏差的修正量的方法如下:In the above technical solution, the calibration parameters also include the motion sensor output delay deviation, and the method for obtaining the correction amount of the motion sensor output delay deviation is as follows:
c1)取一段在平坦区域得到的测深数据作为校正的原始数据;c1) Take a section of bathymetric data obtained in a flat area as the corrected original data;
c2)把已有的系统校准参量的修正量代入,根据原始数据计算深度和位置,拟合计算出每一次发射得到的测深数据的斜率,将第i帧数据的斜率ri;c2) Substituting the correction amount of the existing system calibration parameters, calculating the depth and position according to the original data, fitting and calculating the slope of the bathymetry data obtained by each launch, and taking the slope r i of the i-th frame data;
c3)读取每一帧的横摇Ri和时间Ti,得到Ri(Ti);c3) Read the roll R i and time T i of each frame to obtain R i (T i );
c4)计算由于运动传感器输出延时造成的每一帧的横摇偏差:c4) Calculate the roll deviation of each frame due to the delay of the motion sensor output:
ΔiR(τ0)=Ri(Ti-τ0)-Ri(Ti)Δ i R(τ 0 )=R i (T i -τ 0 )-R i (T i )
按最小均方误差准则选取最优的τ0值,取使得最小的τ0为最终运动传感器延时修正量。Select the optimal τ 0 value according to the minimum mean square error criterion, so that The smallest τ 0 is the final motion sensor delay correction.
上述技术方案中,所述步骤2)中,首先对各待校准参量的偏差的严重程度进行排序,得出各待校准参量进行校正的优先级,然后按优先级依次选取各待校准参量以对各待校准参量的修正量进行计算。In the above technical solution, in the step 2), firstly, the severity of the deviation of each parameter to be calibrated is sorted to obtain the priority of correcting each parameter to be calibrated, and then each parameter to be calibrated is selected in sequence according to the priority to correct The correction amount of each parameter to be calibrated is calculated.
上述技术方案中,所述步骤2)中,选取各待校准参量的顺序依次为:首摇偏差、纵倾偏差、定位延迟、横摇偏差和入射角系统偏差。In the above technical solution, in the step 2), the order of selecting the parameters to be calibrated is as follows: yaw deviation, pitch deviation, positioning delay, roll deviation and incident angle system deviation.
与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:
(1)本发明的系统偏差校正方法考虑了高分辨率测深侧扫声纳的各项特点,因此特别适合应用于高分辨率测深侧扫声纳;但本发明也可以用于常规测深侧扫声纳、多波束测深系统和干涉合成孔径声纳等声纳的参数校正中。(1) The system deviation correction method of the present invention has considered the characteristics of high-resolution sounding side-scan sonar, so it is particularly suitable for being applied to high-resolution sounding side-scan sonar; but the present invention can also be used for conventional sounding The parameters of sonar such as deep side scan sonar, multibeam sounding system and interferometric synthetic aperture sonar are being corrected.
(2)本发明的系统偏差校正方法提出了针对高分辨率测深侧扫声纳特点的横摇和入射角系统偏差综合校正方法;该方法也可以用于常规测深侧扫声纳、多波束测深系统和干涉合成孔径声纳等声纳的参数校正中。。(2) The system deviation correction method of the present invention proposes a comprehensive correction method for roll and incident angle system deviation aimed at the characteristics of high-resolution sounding side-scan sonar; this method can also be used for conventional sounding side-scan sonar, multiple The parameters of sonar such as beam sounding system and interferometric synthetic aperture sonar are being corrected. .
(3)本发明的系统偏差校正方法提出了针对测深声纳的运动传感器延时校正方法。(3) The system deviation correction method of the present invention proposes a motion sensor delay correction method for sounding sonar.
(4)本发明的系统偏差校正方法每一步获得的系统偏差修正量会代入到下一步的数据处理中,而最后获得的横摇和入射角系统偏差修正量代入最先的首摇数据校正后处理中再次进行处理,形成反馈,从而增加了各系统偏差修正量的准确性。(4) The system deviation correction amount obtained in each step of the system deviation correction method of the present invention will be substituted into the next step of data processing, and the finally obtained roll and incident angle system deviation correction amount will be substituted into the first yaw data after correction Processing is performed again during the processing to form feedback, thereby increasing the accuracy of the deviation correction amount of each system.
附图说明 Description of drawings
以下,结合附图来详细说明本发明的实施例,其中:Hereinafter, embodiments of the present invention will be described in detail in conjunction with the accompanying drawings, wherein:
图1是平坦区域测线;Figure 1 is the flat area survey line;
图2是本发明的系统偏差校正方法流程图;Fig. 2 is a flow chart of the system deviation correction method of the present invention;
图3是使用本发明的系统偏差校正前后测深图的对比示意图;左侧为系统偏差校正前的测深结果(等深线图),右侧为系统偏差校正后的测深结果(等深线图);二者使用同样的标尺;Fig. 3 is the comparative schematic diagram of bathymetric charts before and after using the system deviation correction of the present invention; line graph); both use the same scale;
图4是使用本发明的系统偏差校正前后深度误差比较图,左图为系统偏差校正前的深度误差图,右图为系统偏差校正后的的深度误差图。两图使用同样的标尺;Fig. 4 is a comparison diagram of depth error before and after system deviation correction using the present invention, the left figure is the depth error figure before system deviation correction, and the right figure is the depth error figure after system deviation correction. Both graphs use the same scale;
图5是横摇偏差引起的地形变化示意图。Figure 5 is a schematic diagram of terrain changes caused by roll deviation.
具体实施方式 Detailed ways
本发明的基本构思如下:Basic idea of the present invention is as follows:
由于测深声纳系统所有需要校正的参数在进行参数修正过程中是相互影响和相互作用的,因此对某个单一参数的校正方法无法排除其它参数偏差的影响,从而带来新的误差。因此本发明提出循环数据处理的方法,其原理是把每一步获得的系统偏差修正量代入到下一步的数据处理中,而最后获得的系统偏差修正量代入最先的系统偏差数据校正后处理中再次进行处理,形成反馈。反馈的目的是再一次降低各系统偏差之间的影响,反馈的中止条件是各个系统偏差的修正量的变化值达到预设的门限值或收敛于某一值。Since all the parameters that need to be corrected in the depth sounding sonar system are mutually affected and interacted during the parameter correction process, the correction method for a single parameter cannot exclude the influence of other parameter deviations, thus bringing new errors. Therefore, the present invention proposes a method for cyclic data processing, the principle of which is to substitute the system deviation correction amount obtained in each step into the data processing in the next step, and substitute the system deviation correction amount obtained at the end into the first system deviation data correction post-processing Process again to form feedback. The purpose of the feedback is to reduce the influence among the system deviations again, and the termination condition of the feedback is that the change value of the correction amount of each system deviation reaches a preset threshold value or converges to a certain value.
实施例1Example 1
高分辨率测深侧扫声纳在获得入射角和时延后,还需要利用各种传感器获得的载体位置、载体姿态、声速剖面、潮位等数据,以及声纳阵和各种传感器在载体上的空间位置关系数据,对获得的时延和入射角进行参数修正,并最终推导出被测海底的经纬度坐标和稳态深度。表1是影响高分辨率测深侧扫声纳误差的主要参数的列表。After the high-resolution bathymetric side-scan sonar obtains the incident angle and time delay, it also needs to use various sensors to obtain carrier position, carrier attitude, sound velocity profile, tide level and other data, as well as sonar arrays and various sensors on the carrier. The spatial position relationship data of the obtained time delay and incident angle are corrected, and finally the latitude and longitude coordinates and steady-state depth of the measured seabed are derived. Table 1 is a list of the main parameters affecting the error of high-resolution bathymetric side-scan sonar.
表1Table 1
从表1中可以看出,系统根据其自身特点,所需要进行的偏差校正主要包括以下几个方面:定位系统天线、运动传感器和声纳阵之间的相对距离的精细测量;首摇、纵倾、横摇的安装偏差校正;定位延迟校正和声纳通道不一致性引起的入射角系统偏差校正。It can be seen from Table 1 that according to its own characteristics, the deviation correction required by the system mainly includes the following aspects: fine measurement of the relative distance between the positioning system antenna, motion sensor and sonar array; Installation deviation correction of tilt and roll; positioning delay correction and incident angle system deviation correction caused by inconsistency of sonar channels.
本实施例主要是对首摇、纵倾、横摇(只考虑安装造成的横摇偏差)以及定位延迟进行综合校正。其步骤如下:This embodiment is mainly to comprehensively correct yaw, pitch, roll (only consider the roll deviation caused by installation) and positioning delay. The steps are as follows:
第1步:系统安装时精细测量定位系统天线、运动传感器和声纳阵之间的相对距离,将这些数据记录下来作为后续数据处理中的参数。Step 1: When the system is installed, finely measure the relative distance between the antenna of the positioning system, the motion sensor and the sonar array, and record these data as parameters in the subsequent data processing.
第2步:进行海上校准实验。首先按照常规方法获得进行首摇校正、纵倾校正和定位延迟校正需要的数据。选择一个孤立目标,在它的一侧直线航行,用边缘波束测量目标,得到一数据文件;在目标的另一侧反向直线航行,用同一声纳阵的边缘波束测量标志物,得到另一数据文件,获得首摇校正所需数据。找一个有斜坡的海域,沿一条垂直于等深线方向的测线往返测量,尽量保持航速不变,得到纵倾校正所需数据。改变航速,在目标的正上方同向反复直线航行,得到定位延迟校正需要的数据。然后选择尽量平坦的区域测量以获得横摇校正所需要的数据,使用如图1所示测线,测线长度为声纳的两侧的最大覆盖范围,测线间隔为单测的最大覆盖范围。校准试验前后应使用声速剖面仪对试验水域的声速剖面进行探测,所测声纳剖面值将在第3步和第4步中使用。Step 2: Perform sea calibration experiments. Firstly, the data needed for yaw correction, pitch correction and positioning delay correction are obtained according to conventional methods. Select an isolated target, sail straight on one side of it, use the edge beam to measure the target, and get a data file; sail in the opposite direction on the other side of the target, use the edge beam of the same sonar array to measure the marker, and get another Data file to obtain the data required for yaw correction. Find a sea area with a slope, measure back and forth along a survey line perpendicular to the isobath, try to keep the speed constant, and obtain the data required for trim correction. Change the speed and sail in a straight line repeatedly in the same direction directly above the target to obtain the data required for positioning delay correction. Then select an area that is as flat as possible to measure to obtain the data required for roll correction. Use the survey line shown in Figure 1. The length of the survey line is the maximum coverage on both sides of the sonar, and the interval between the survey lines is the maximum coverage of a single measurement. . Before and after the calibration test, a sound velocity profiler should be used to detect the sound velocity profile of the test water area, and the measured sonar profile value will be used in
第3步:进行首摇、纵倾和定位延迟校正数据后处理。首先从首摇校正数据计算初步测深结果,获得首摇修正量,然后修正纵倾校正数据中的首摇值,并处理得到纵倾修正量,最后把首摇修正量和纵倾修正量代入定位延迟校正数据,获得定位延迟的值。首摇和纵倾校正数据后处理中对两个声纳阵的数据分别进行处理。Step 3: Perform post-processing of yaw, pitch and positioning delay correction data. First, the preliminary sounding results are calculated from the yaw correction data to obtain the yaw correction value, then the yaw value in the pitch correction data is corrected, and the pitch correction value is obtained through processing, and finally the yaw correction value and the pitch correction value are substituted into Positioning delay correction data to obtain the value of positioning delay. The data of the two sonar arrays are processed separately in the post-processing of the yaw and pitch correction data.
本步骤的首摇、纵倾和定位延迟校正数据后处理可参考“横摇偏差和纵倾偏差的校正方法:刘方兰,张志荣,余平,多波束系统横摇、纵倾参数的校正方法[J].吉林大学学报地球科学版,2004,34(4):621-624.”以及“导航定位延迟校正方法和首摇偏差的校正方法:刘胜旋,关永贤,多波束系统的参数误差判断及校正[J].海洋测绘,2002,22(1):33-37.”The post-processing of the yaw, pitch and positioning delay correction data in this step can refer to "Correction method of roll deviation and pitch deviation: Liu Fanglan, Zhang Zhirong, Yu Ping, Correction method of roll and pitch parameters of multi-beam system [J ]. Jilin University Journal of Earth Sciences, 2004, 34(4): 621-624." and "Navigation positioning delay correction method and yaw deviation correction method: Liu Shengxuan, Guan Yongxian, multi-beam system parameter error judgment and correction[ J]. Oceanographic Mapping, 2002, 22(1): 33-37."
第4步:进行横摇校正数据后处理。带入首摇偏差、纵倾偏差和定位延迟等修正量,利用平坦区域的探测数据采用拟合算法获得横摇系统偏差修正量,利用同一侧声纳阵对同一区域的经过横摇多次测量值的一致性作为判定修正量是否正确的判据。横摇校正要分左右舷分别进行。Step 4: Perform roll correction data post-processing. Incorporate corrections such as yaw deviation, pitch deviation and positioning delay, use the detection data in flat areas and use the fitting algorithm to obtain roll system deviation corrections, and use the sonar array on the same side to measure the rolling of the same area multiple times The consistency of the value is used as the criterion for judging whether the correction amount is correct. The roll correction should be carried out separately for the starboard and starboard sides.
本步骤的横摇校正数据后处理可参考“横摇偏差和纵倾偏差的校正方法:刘方兰,张志荣,余平,多波束系统横摇、纵倾参数的校正方法[J].吉林大学学报地球科学版,2004,34(4):621-624.”以及“横摇偏差的校正方法:吴自银,金翔龙,多波束测深边缘波束误差的综合校正[J].海洋学报,2005,27(4):88-94”。For the post-processing of roll correction data in this step, please refer to "Correction method of roll deviation and pitch deviation: Liu Fanglan, Zhang Zhirong, Yu Ping, Correction method of roll and pitch parameters of multi-beam system [J]. Journal of Jilin University Earth Science Edition, 2004, 34(4): 621-624." and "Correction Method for Rolling Deviation: Wu Ziyin, Jin Xianglong, Comprehensive Correction of Edge Beam Errors in Multi-beam Bathymetry [J]. Oceanographic Journal, 2005, 27(4 ): 88-94".
第5步:将横摇偏差修正量代入第3步,替换原有的横摇数据,然后重新按照第3步的方法,依次计算出新的首摇偏差、纵倾偏差和定位延迟修正量,然后再把新的首摇偏差、纵倾偏差和定位延迟修正量代入第4步,再次计算横摇偏差修正量。如此反复上述的迭代计算过程,直到首摇偏差、纵倾偏差、定位延迟和横摇偏差修正量的变化量均小于预设的门限值或收敛于某一值为止。当然,这里停止迭代计算的标准也可以是其中某一个或多个参数修正量的变化量小于预设的门限值或收敛于某一值,这是本领域技术人员容易理解的。Step 5: Substitute the roll deviation correction into step 3 to replace the original roll data, and then follow the method in step 3 to calculate the new yaw deviation, pitch deviation and positioning delay correction in turn. Then substitute the new yaw deviation, pitch deviation and positioning delay correction into
具体地说,本步骤中,首先判断所选取的待校准参量的当前修正量(如横摇偏差修正量的当前值)是否小于预设的门限值或收敛于某一数值;如判断为是,则将待校准参量当前修正量做为该待校准参量的最终修正量;如判断为否,则待校准参量的值(即横摇偏差的值)用该待校准参量当前值(即当前的横摇偏差值)与当前修正量(即当前的横摇偏差修正量)之和替换,然后将新的待校准参量的值(即新的横摇偏差的值)代入第3步,重新计算其它待校准参量的修正量(如首摇偏差、纵倾偏差和定位延迟修正量);这样不断反复迭代计算并更新各待校准参量(包括首摇偏差、纵倾偏差、定位延迟和横摇偏差)的修正量,直至所有待校准参量都符合上述判断条件,从而得到最终修正量。Specifically, in this step, it is first judged whether the current correction amount of the selected parameter to be calibrated (such as the current value of the roll deviation correction amount) is less than a preset threshold value or converges to a certain value; if it is judged to be , then take the current correction amount of the parameter to be calibrated as the final correction amount of the parameter to be calibrated; roll deviation value) and the current correction amount (that is, the current roll deviation correction value), and then substitute the value of the new parameter to be calibrated (that is, the new roll deviation value) into step 3, and recalculate the other The correction of the parameters to be calibrated (such as yaw deviation, pitch deviation and positioning delay correction); in this way, iteratively calculate and update each parameter to be calibrated (including yaw deviation, pitch deviation, positioning delay and roll deviation) The correction amount until all the parameters to be calibrated meet the above judgment conditions, so as to obtain the final correction amount.
第6步:在海上选择十字交叉测线进行内符合试验,用获得的各修正量对相应参数进行校准,并处理获得测深结果进行内符合评估,检验系统偏差校正的效果。Step 6: Select the cross survey line at sea to carry out the internal coincidence test, use the obtained corrections to calibrate the corresponding parameters, and process the obtained bathymetry results for internal coincidence evaluation to test the effect of system deviation correction.
对内符合评估结果的分析表明,所有测深点中,96.6%的点的误差小于0.2712米,测量精度超过IHO一级标准。本发明提出的高分辨率测深侧扫声纳系统偏差校正方法通过了试验数据的验证,可以获得高精度的测深图。The analysis of the internal coincidence evaluation results shows that the error of 96.6% of all the sounding points is less than 0.2712 meters, and the measurement accuracy exceeds the IHO first-class standard. The deviation correction method of the high-resolution bathymetric side-scan sonar system proposed by the invention has passed the verification of test data, and can obtain high-precision bathymetric maps.
实施例2Example 2
本实施例的1至3步以及第5、第6步与实施例1一致,其区别在于为获得更精确的偏差修正数据,本实施例的第4步考虑到声纳通道不一致性引起的入射角系统偏差,对横摇和入射角系统偏差同时进行校正。下面详细描述本实施例第4步的原理及实施步骤。
对于高分辨率测深侧扫声纳,由于各通道间的不一致性,经过信号处理之后得到的入射角存在固定的偏差。它的大小随θ的值而改变,在θ取值处于一定区间的时候会有较大值。这一偏差在测深图上表现为平行于航迹方向的沟状或脊状假地形。由于入射角系统偏差的存在,导致实测法中的海底垂直航迹方向的平均坡度的计算产生很大误差,单纯调整横摇角也无法使剖面重合。因此横摇的安装偏差和入射角的偏差对深度和位置的影响是叠加在一起的,对它们的校正必须同时完成,称为横摇和入射角系统偏差综合校正。For high-resolution bathymetric side-scan sonar, due to the inconsistency between channels, the incident angle obtained after signal processing has a fixed deviation. Its size changes with the value of θ, and it will have a larger value when the value of θ is in a certain range. This deviation appears on the bathymetric chart as a ditch-like or ridge-like pseudo-terrain parallel to the track direction. Due to the existence of the incident angle system deviation, the calculation of the average slope in the vertical track direction of the seabed in the actual measurement method has a large error, and the simple adjustment of the roll angle cannot make the profiles overlap. Therefore, the influence of roll installation deviation and incident angle deviation on depth and position is superimposed, and their correction must be completed at the same time, which is called comprehensive correction of roll and incident angle system deviation.
横摇和入射角系统偏差综合校正,在一个平坦的海底进行校正试验,采集数据。采用一定的拟合算法获得横摇安装偏差和入射角系统偏差的修正量,利用同一侧声纳阵对同一区域的经过横摇和入射角校正后的多次测量值尽可能一致作为判定修正量是否正确的判据。横摇和入射角系统偏差综合校正要分左右舷分别进行。Roll and incident angle system deviation is comprehensively corrected, and the correction test is carried out on a flat seabed to collect data. A certain fitting algorithm is used to obtain the correction amount of the roll installation deviation and the incident angle system deviation, and the multiple measured values of the same side of the sonar array to the same area after roll and incident angle correction are as consistent as possible as the judgment correction amount correctness criterion. The comprehensive correction of roll and incident angle system deviation should be carried out separately for starboard and starboard.
使用如上图所示测线在平坦区域采集数据,测线长度为声纳的两侧的最大覆盖范围,测线间隔为单测的最大覆盖范围。Use the measuring line shown in the figure above to collect data in a flat area. The length of the measuring line is the maximum coverage of both sides of the sonar, and the distance between the measuring lines is the maximum coverage of a single measurement.
实际工作中采用如下步骤获得横摇和入射角系统偏差综合修正量:In actual work, the following steps are used to obtain the comprehensive correction value of roll and incident angle system deviation:
1.沿图1所示测线航行,采集测深数据,取AB段和CD段的右舷测深数据作为右舷横摇和入射角系统偏差综合校正的原始数据,CD段和EF段的左舷测深数据作为左舷横摇和入射角系统偏差综合校正的原始数据。试验前后要采集声速剖面数据。1. Navigate along the surveying line shown in Figure 1, collect sounding data, take the starboard sounding data of AB section and CD section as the original data for comprehensive correction of starboard roll and incident angle system deviation, and the port side sounding data of CD section and EF section The deep data is used as the raw data for the comprehensive correction of system deviation of port roll and incident angle. The sound velocity profile data should be collected before and after the test.
2.取AB段的右舷测深数据进行处理。取一次发射得到的右舷测深数据(假设为第i帧右舷测深数据),读取其中的正下方散射信号到达时间,再根据声速剖面数据计算出正下方深度d。2. Take the starboard sounding data of section AB for processing. Take the starboard sounding data obtained from one launch (assuming it is the i-th frame of starboard sounding data), read the arrival time of the scattered signal directly below, and then calculate the depth d directly below according to the sound velocity profile data.
3.在每个测深点的深度都等于d的假设条件下,拟合出第i帧右舷数据中每个时延τ对应的理论入射角θ′。拟合算法使用各种测深参数和声速剖面按照声线跟踪法的公式进行计算,经过层层递推,直到深度等于d,最终得到每个时延τ对应的理论入射角θ′。3. Under the assumption that the depth of each sounding point is equal to d, the theoretical incidence angle θ' corresponding to each time delay τ in the starboard data of the i-th frame is fitted. The fitting algorithm uses various depth-sounding parameters and sound velocity profiles to calculate according to the formula of the sound ray tracing method. After layer-by-layer recursion, until the depth is equal to d, the theoretical incidence angle θ′ corresponding to each time delay τ is finally obtained.
4.每个时延τ对应的实际入射角θ(即在第i帧右舷数据中读取的入射角θ)与它对应的理论入射角θ′(即第3步中拟合得到的入射角θ′)的差值Δi(θ)即为第i帧的右舷横摇和入射角系统偏差综合修正量。4. The actual angle of incidence θ corresponding to each time delay τ (that is, the angle of incidence θ read in the starboard data of the i-th frame) and its corresponding theoretical angle of incidence θ′ (that is, the angle of incidence obtained by fitting in step 3 θ′) The difference Δ i (θ) is the comprehensive correction amount of starboard roll and incident angle system deviation in the i-th frame.
5.对AB段的每一帧右舷测深数据计算Δn(θ),求它们的平均值Δ(θ)。5. Calculate Δ n (θ) for each frame of starboard sounding data in AB section, and calculate their average value Δ(θ).
6.考虑到海底一般总会有一定的固有倾斜,把Δ(θ)代入到参数修正公式中,根据CD段右舷测深数据计算深度和位置,然后得出垂直航迹方向的平均坡度β,Δ(θ)减去得到右舷横摇和入射角系统偏差综合修正量。6. Considering that the seabed generally has a certain inherent inclination, Δ(θ) is substituted into the parameter correction formula, and the depth and position are calculated according to the starboard sounding data of the CD section, and then the average slope β in the vertical track direction is obtained, Δ(θ) minus Obtain the comprehensive correction value of starboard roll and incident angle system deviation.
7.对右舷横摇和入射角系统偏差综合修正量进行微调,直到AB段和CD段的右舷测深结果尽可能一致。7. Fine-tune the comprehensive correction value of starboard roll and incident angle system deviation until the starboard sounding results of section AB and section CD are as consistent as possible.
8.参考上述2至7步骤,对CD段和EF段的左舷测深数据做同样的处理得到左舷横摇和入射角系统偏差综合修正量。8. Referring to the above steps 2 to 7, do the same processing on the port sounding data of the CD segment and EF segment to obtain the comprehensive correction value of the system deviation of the port roll and incident angle.
实施例3Example 3
本实施例是在实施例2的基础上,进一步考虑运动传感器输出延时,从而对各系统偏差进行更加精确的校正。This embodiment is based on Embodiment 2, and further considers the output delay of the motion sensor, so as to perform more accurate correction of each system deviation.
除安装偏差以外,横摇、纵倾和首摇角还存在运动传感器输出延时所造成的偏差。采用一定的方法得到运动传感器输出延时即可校正这个偏差。一般运动传感器输出延时是一个固定的系统参数,由运动传感器生产厂家给出。但是在实际工作中,由于数据传输或者计算机处理数据的延时,导致实际的运动传感器输出延时与厂家给出的值不符。这个值的测量比较困难,本文通过数据后处理进行运动传感器输出延时校正,其原理是几何上可以证明对于平坦区域的测深结果,其中某一帧的斜率等于这一帧的横摇偏差。具体校正方法如下:In addition to installation deviations, roll, pitch and yaw angles also have deviations caused by motion sensor output delays. This deviation can be corrected by using a certain method to obtain the output delay of the motion sensor. Generally, the output delay of the motion sensor is a fixed system parameter, which is given by the motion sensor manufacturer. However, in actual work, due to the delay of data transmission or computer processing data, the actual output delay of the motion sensor does not match the value given by the manufacturer. The measurement of this value is relatively difficult. In this paper, the output delay correction of the motion sensor is performed through data post-processing. The principle is that it can be proved geometrically that the slope of a certain frame is equal to the roll deviation of this frame for the bathymetry results of a flat area. The specific correction method is as follows:
1.取一段在平坦区域得到的测深数据作为校正的原始数据;1. Take a piece of bathymetry data obtained in a flat area as the original data for correction;
2.把已有的系统偏差修正量代入到参数修正公式中,根据原始数据计算深度和位置,然后拟合出每一次发射得到的测深数据(假设为第i帧数据)的斜率ri;2. Substituting the existing system deviation correction amount into the parameter correction formula, calculating the depth and position according to the original data, and then fitting the slope r i of the bathymetry data (assumed to be the i-th frame data) obtained by each launch;
3.读取每一帧的横摇Ri和时间Ti,它们是一一对应的,得到Ri(Ti);3. Read the roll R i and time T i of each frame, they are in one-to-one correspondence, and get R i (T i );
4.由下式计算由于运动传感器输出延时造成的每一帧的横摇偏差:4. Calculate the roll deviation of each frame due to the output delay of the motion sensor by the following formula:
ΔiR(τ0)=Ri(Ti-τ0)-Ri(Ti)Δ i R(τ 0 )=R i (T i -τ 0 )-R i (T i )
按最小均方误差准则选取最优的τ0值,即取使得最小的τ0为最终运动传感器延时修正量。Select the optimal τ 0 value according to the minimum mean square error criterion, that is, take such that The smallest τ 0 is the final motion sensor delay correction.
本实施例中,将所述运动传感器延时修正量代入第4步(即实施例1中进行横摇校正数据后处理的步骤)的计算,用以提高横摇和入射角系统偏差综合校正的准确性。In this embodiment, the motion sensor delay correction amount is substituted into the calculation of step 4 (i.e., the step of post-processing the roll correction data in embodiment 1), so as to improve the comprehensive correction of roll and incident angle system deviation. accuracy.
另外,由于运动传感器延时对纵倾和首摇偏差同样会造成一定影响,因此,也可以同时在第3步(即实施例1中进行首摇、纵倾和定位延迟校正数据后处理的步骤)的计算中代入所述运动传感器延时修正量。In addition, since the delay of the motion sensor will also have a certain impact on the pitch and yaw deviation, it is also possible to perform the post-processing of the yaw, pitch, and positioning delay correction data in the third step (i.e., in Embodiment 1) ) is substituted into the motion sensor delay correction amount.
实施例4Example 4
本实施例与前三个实施例的区别在于对各参数偏差校正的顺序选择上,其余部分与实施例1或2或3一致。本实施例的步骤如下:The difference between this embodiment and the first three embodiments lies in the selection of the order of deviation correction of each parameter, and the rest is consistent with
第1步:系统安装时尽可能精确的测量定位系统天线、运动传感器和声纳阵之间的相对距离,减小由于相对距离引起的系统偏差。Step 1: When the system is installed, measure the relative distance between the antenna of the positioning system, the motion sensor and the sonar array as accurately as possible to reduce the system deviation caused by the relative distance.
第2步:进行海上校准实验。校准试验包含两部分:一是按照常规方法获得进行首摇校正、纵倾校正和定位延迟校正需要的数据;二是选择尽量平坦的区域测量以获得横摇和入射角系统偏差校正所需要的数据,使用如图1所示测线,测线长度为声纳的两侧的最大覆盖范围,测线间隔为单测的最大覆盖范围。校准试验前后应使用声速剖面仪对试验水域的声速剖面进行探测。Step 2: Perform sea calibration experiments. The calibration test consists of two parts: one is to obtain the data required for yaw correction, pitch correction and positioning delay correction according to the conventional method; the other is to select an area as flat as possible for measurement to obtain the data required for roll and incident angle system deviation correction , using the measuring line shown in Figure 1, the length of the measuring line is the maximum coverage of both sides of the sonar, and the distance between the measuring lines is the maximum coverage of a single measurement. Before and after the calibration test, a sound velocity profiler should be used to detect the sound velocity profile of the test water area.
第3步:对试验数据进行参数修正,得到初步测深结果。对初步测深结果进行分析,根据对测深结果的影响大小,对各系统参数偏差的严重程度进行排序,从而得出各系统参数偏差进行校正的优先级。这里的需要进行优先级排序的系统参数至少包括首摇、纵倾、定位延迟和横摇。Step 3: Correct the parameters of the test data to obtain preliminary sounding results. The preliminary sounding results are analyzed, and the severity of each system parameter deviation is sorted according to the impact on the sounding results, so as to obtain the priority of correcting each system parameter deviation. The system parameters that need to be prioritized here include at least yaw, pitch, positioning delay and roll.
第4步:根据所述各系统参数偏差进行校正的优先级,依照优先级由高到低的顺序依次进行校正数据后处理,得到它们的修正量。每一步获得的系统参数偏差修正量要代入到下一步的优先级较低的系统参数偏差的数据处理中。Step 4: According to the priorities of correcting the deviations of the various system parameters, post-processing the correction data is performed sequentially in order of priorities from high to low to obtain their correction amounts. The system parameter deviation correction amount obtained in each step shall be substituted into the data processing of the system parameter deviation with lower priority in the next step.
第5步:将第4步获得的优先级最低的系统参数偏差的修正量重新代入优先级最高的系统参数偏差修正量的数据处理,再次执行第4步,依照优先级由高到低的顺序依次进行校正数据后处理,得出各系统参数偏差修正量,获得更准确的系统偏差修正量。如此反复上述过程,直到各参数变化量小于预设的门限值或收敛于某一值为止。Step 5: Substitute the correction amount of the system parameter deviation with the lowest priority obtained in
第6步:在海上选择十字交叉测线进行内符合评估试验,用获得的各系统偏差修正量校正系统偏差,进行参数修正和内符合评估,检验系统偏差校正的效果。Step 6: Select the cross-crossing survey line at sea to conduct internal coincidence evaluation test, correct the system deviation with the obtained deviation correction amount of each system, perform parameter correction and internal coincidence evaluation, and test the effect of system deviation correction.
以上所述的具体实施例对本发明的目的、技术方案以及有益效果进行了详细的说明。所应理解的是,上述内容仅为本发明的具体实施例而已,并不用于限制本发明。凡在本发明的精神与原则之内,所做的任何修改、等同替换以及改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above content is only a specific embodiment of the present invention, and is not intended to limit the present invention. All modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2008101124824A CN101587187B (en) | 2008-05-23 | 2008-05-23 | Method for correcting deviation of depth measuring sonar system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2008101124824A CN101587187B (en) | 2008-05-23 | 2008-05-23 | Method for correcting deviation of depth measuring sonar system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101587187A CN101587187A (en) | 2009-11-25 |
| CN101587187B true CN101587187B (en) | 2012-05-30 |
Family
ID=41371513
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2008101124824A Expired - Fee Related CN101587187B (en) | 2008-05-23 | 2008-05-23 | Method for correcting deviation of depth measuring sonar system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101587187B (en) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102721966B (en) * | 2012-06-20 | 2013-09-18 | 中国科学院声学研究所 | Below high precision depth-sounding method and system by coherent depth-sounding sonar |
| CN103884869A (en) * | 2012-12-19 | 2014-06-25 | 北京百度网讯科技有限公司 | Sensor deviation correction method and device |
| CN107219529B (en) * | 2017-06-07 | 2019-08-09 | 国家深海基地管理中心 | A kind of acquisition methods and system of high-precision seafloor topography figure |
| CN109031256B (en) * | 2018-07-03 | 2022-08-05 | 交通运输部天津水运工程科学研究所 | Depth and span performance calibration method of multi-beam echo sounder |
| CN111190168B (en) * | 2018-11-14 | 2022-01-11 | 中国科学院声学研究所 | Posture stabilizing method of side-scan sonar |
| CN109583083B (en) * | 2018-11-29 | 2022-12-16 | 中国能源建设集团广东省电力设计研究院有限公司 | Cable current-carrying capacity optimization method and device, computer equipment and storage medium |
| CN110837086B (en) * | 2019-10-31 | 2021-07-09 | 江苏科技大学 | A method and positioning system for submarine target positioning based on side scan sonar |
| CN111352115B (en) * | 2020-03-19 | 2022-03-15 | 海底鹰深海科技股份有限公司 | High-resolution sounding side-scan sonar and detection method thereof |
| CN111350214B (en) * | 2020-03-23 | 2021-07-30 | 中交第三航务工程局有限公司江苏分公司 | Multi-beam underwater steel pipe pile position measuring method |
| CN112902948A (en) * | 2021-01-18 | 2021-06-04 | 国家深海基地管理中心 | Deep sea landform and landform combined matching auxiliary navigation positioning system and method |
| CN114791590B (en) * | 2022-06-20 | 2022-08-26 | 北京星天科技有限公司 | Roll compensation beam generation method, device, circuit and system |
| CN115979297B (en) * | 2022-10-31 | 2024-04-26 | 国家海洋标准计量中心 | Calibration system and calibration method for large and medium ocean pressure type depth sounder |
| CN116125477B (en) * | 2023-04-13 | 2023-07-14 | 中交天津港湾工程研究院有限公司 | Automatic-correction underwater acoustic depth finder system and correction method thereof |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6185512B1 (en) * | 1998-10-13 | 2001-02-06 | Raytheon Company | Method and system for enhancing the accuracy of measurements of a physical quantity |
| CN1402018A (en) * | 2001-09-13 | 2003-03-12 | 中国科学院声学研究所 | High resolution submarine microgeomorphy-measuring sounding side scan sonar system and measuring method |
-
2008
- 2008-05-23 CN CN2008101124824A patent/CN101587187B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6185512B1 (en) * | 1998-10-13 | 2001-02-06 | Raytheon Company | Method and system for enhancing the accuracy of measurements of a physical quantity |
| CN1402018A (en) * | 2001-09-13 | 2003-03-12 | 中国科学院声学研究所 | High resolution submarine microgeomorphy-measuring sounding side scan sonar system and measuring method |
Non-Patent Citations (2)
| Title |
|---|
| 吴自银等.多波束测深边缘波束误差的综合校正.《海洋学报》.2005,第27卷(第4期),第88-96页. * |
| 朱维庆等.高分辨率测深侧扫声纳.《海洋技术》.2005,第24卷(第4期),第30-36页. * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101587187A (en) | 2009-11-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101587187B (en) | Method for correcting deviation of depth measuring sonar system | |
| CN110081864B (en) | Water depth measurement comprehensive delay correction method considering water depth value | |
| Xin et al. | A TOA/AOA underwater acoustic positioning system based on the equivalent sound speed | |
| CN107167224B (en) | A kind of measurement method of Ship Radiated-Noise | |
| WO2009048683A2 (en) | Controlling seismic source elements based on determining a three-dimensional geometry of the seismic source elements | |
| Mohammadloo et al. | Correcting multibeam echosounder bathymetric measurements for errors induced by inaccurate water column sound speeds | |
| CN104181523A (en) | Multibeam depth measuring method based on roll stabilization strategy and system thereof | |
| CN112666562A (en) | Synthetic aperture sonar motion compensation and imaging method | |
| CN113093159A (en) | Multi-beam sounding error improved model design method | |
| US5761153A (en) | Method of locating hydrophones | |
| CN110132281B (en) | Underwater high-speed target high-precision autonomous acoustic navigation method based on inquiry response mode | |
| CN102721966A (en) | Below high precision depth-sounding method and system by coherent depth-sounding sonar | |
| CN111220146A (en) | Underwater terrain matching and positioning method based on Gaussian process regression learning | |
| Zhang et al. | Underwater navigation based on real-time simultaneous sound speed profile correction | |
| CN114994649B (en) | A multi-beam probe correction method and a multi-beam depth sounding data correction method | |
| CN112902931B (en) | Method for measuring and eliminating delay between depth measurement data and positioning data of unmanned ship | |
| WO2020148531A1 (en) | Echo sounder callibration | |
| CN113703050B (en) | Secondary positioning method for deep-sea seismic vertical cable | |
| H Mohammadloo et al. | Multi-beam echo-sounder bathymetric measurements: Implications of using frequency modulated pulses | |
| CN113189646B (en) | Method for removing dragging type shallow-section stratum abnormal fluctuation | |
| Didier et al. | Real-time correction of sound refraction errors in bathymetric measurements using multiswath multibeam echosounder | |
| CN114442076B (en) | Ultrashort baseline installation angle deviation combined adjustment calibration method based on differential technology | |
| CN110749861A (en) | A three-dimensional localization method for underwater fixed targets based on multi-hypothesis depth | |
| RU2480790C1 (en) | Method of determining position of measured depths of sound signals | |
| Mann | Field calibration procedures for multibeam sonar systems |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120530 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |