CN101599413B - Excimer lamp - Google Patents
Excimer lamp Download PDFInfo
- Publication number
- CN101599413B CN101599413B CN200910141045XA CN200910141045A CN101599413B CN 101599413 B CN101599413 B CN 101599413B CN 200910141045X A CN200910141045X A CN 200910141045XA CN 200910141045 A CN200910141045 A CN 200910141045A CN 101599413 B CN101599413 B CN 101599413B
- Authority
- CN
- China
- Prior art keywords
- accumulation body
- excimer lamp
- ultraviolet
- discharge
- discharge vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
- H01J65/04—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
- H01J65/042—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
- H01J65/046—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J5/00—Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
- H01J5/50—Means forming part of the tube or lamps for the purpose of providing electrical connection to it
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/35—Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/24—Manufacture or joining of vessels, leading-in conductors or bases
- H01J9/245—Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps
- H01J9/247—Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps specially adapted for gas-discharge lamps
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
- H05B41/2806—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices and specially adapted for lamps without electrodes in the vessel, e.g. surface discharge lamps, electrodeless discharge lamps
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Plasma & Fusion (AREA)
- Manufacturing & Machinery (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种准分子灯,用于对被处理体实施通过照射紫外线来进行的清洁处理、灰化处理、成膜处理等表面处理。The present invention relates to an excimer lamp for performing surface treatment such as cleaning treatment, ashing treatment, and film-forming treatment on an object to be treated by irradiating ultraviolet rays.
背景技术 Background technique
近年来如下技术得到开发和实用:在液晶显示装置的玻璃基板、半导体晶片等被处理体上照射波长200nm以下的紫外线即真空紫外光,通过真空紫外光及由此生成的臭氧的作用处理被处理体,该技术例如包括除去附着于被处理体表面的有机污染物质的清洁处理技术或在被处理体表面上形成氧化膜的氧化膜形成处理技术。In recent years, the following technology has been developed and put into practical use: irradiating ultraviolet light with a wavelength below 200nm, that is, vacuum ultraviolet light, on glass substrates of liquid crystal display devices, semiconductor wafers, etc. For example, this technology includes cleaning treatment technology for removing organic pollutants adhering to the surface of the object to be processed or oxide film formation treatment technology for forming an oxide film on the surface of the object to be processed.
作为照射真空紫外光的装置,例如使用具备如下准分子灯的装置:在电介质构成的放电容器内封入放电用气体,经由放电容器施加交流高电压来产生准分子放电,放射真空紫外光即准分子光。在这种准分子灯中,为了有效地放射更高强度的紫外线,进行了很多尝试。As a device for irradiating vacuum ultraviolet light, for example, a device equipped with an excimer lamp is used: a discharge gas is sealed in a discharge vessel made of a dielectric, an AC high voltage is applied through the discharge vessel to generate an excimer discharge, and vacuum ultraviolet light, that is, an excimer lamp, is emitted. Light. In such excimer lamps, many attempts have been made to efficiently emit higher-intensity ultraviolet rays.
具体地说,开发了如下的技术:在准分子灯的放电容器内表面形成紫外线反射层,紫外线反射层通过层叠透射紫外线的微小粒子而形成,例如仅层叠二氧化硅,或层叠二氧化硅与其它的微小粒子例如氧化铝、氟化镁、氟化钙、氟化锂、氧化镁等(参照专利文献1)。Specifically, a technique has been developed in which an ultraviolet reflective layer is formed on the inner surface of the discharge vessel of an excimer lamp. The ultraviolet reflective layer is formed by laminating fine particles that transmit ultraviolet rays, such as laminating only silicon dioxide, or laminating silicon dioxide and silicon dioxide. Other fine particles include alumina, magnesium fluoride, calcium fluoride, lithium fluoride, magnesium oxide, and the like (see Patent Document 1).
在这种构成的准分子灯中,在放电容器内所产生的紫外线中不朝光射出部直接放射的紫外线射入至紫外线反射层,在构成紫外线反射层的多个微小粒子的表面反复进行折射、反射而扩散反射,从而从光射出部放射。由此,可有效地放射紫外线。In the excimer lamp with such a configuration, among the ultraviolet rays generated in the discharge vessel, the ultraviolet rays that are not directly radiated toward the light emitting portion enter the ultraviolet reflection layer, and are repeatedly refracted on the surface of a plurality of fine particles constituting the ultraviolet reflection layer. , Reflected and diffusely reflected, and radiated from the light emitting part. Thereby, ultraviolet rays can be emitted efficiently.
在放射紫外线的灯中,作为构成放电容器的材料,例如广泛地使用二氧化硅玻璃。因此,作为构成紫外线反射层的微小粒子,为了使与构成放电容器的二氧化硅玻璃的热胀系数之差减小或很小而提高紫外线反射层在二氧化硅玻璃上的附着性,优选含有与放电容器相同材质的二氧化硅粒子。In lamps that emit ultraviolet rays, silica glass, for example, is widely used as a material constituting the discharge vessel. Therefore, as the microparticles constituting the ultraviolet reflective layer, in order to reduce or minimize the difference in thermal expansion coefficient with the silica glass constituting the discharge vessel and improve the adhesion of the ultraviolet reflective layer on the silica glass, it is preferable to contain Silica particles of the same material as the discharge vessel.
表面处理的被处理物多为例如液晶面板的玻璃基板的平坦形状。所以,在光射出部由与被处理物相同的平坦形状的放电容器构成的准分子灯中,通过减少光射出部与被处理物的间隙,可抑制氧吸收紫外线,因而可有效地进行表面处理。作为由这种形状的放电容器构成的准分子灯,例如在专利文献2中公开了由方型的放电容器构成的准分子灯。Surface-treated objects are often flat, such as glass substrates of liquid crystal panels. Therefore, in an excimer lamp in which the light emitting part is composed of a discharge vessel having the same flat shape as the object to be processed, by reducing the gap between the light emitting part and the object to be processed, the absorption of ultraviolet rays by oxygen can be suppressed, and thus the surface treatment can be effectively performed. . As an excimer lamp including a discharge vessel having such a shape, for example, Patent Document 2 discloses an excimer lamp including a square discharge vessel.
作为光出射出部由平坦的放电容器构成的准分子灯,有如图10所示的构造。准分子灯10通过由二氧化硅玻璃构成的扁平方型放电容器20构成,该放电容器20由上壁板21、下壁板22、侧壁板23及端壁板24连接而成,在内部封入有放电用气体。此外,在上壁板21外表面具备高电压供应电极11,在下壁板22的外表面具备接地电极12,这些电极11、12彼此相对地配置,在放电空间S产生的准分子光通过兼作光射出部的下壁板22射出至外部。As an excimer lamp whose light emitting and emitting part is composed of a flat discharge vessel, there is a structure as shown in FIG. 10 . The
专利文献1:日本特开2007-335350号公报Patent Document 1: Japanese Patent Laid-Open No. 2007-335350
专利文献2:日本特开2004-113984号公报Patent Document 2: Japanese Patent Laid-Open No. 2004-113984
然而,在具备由含有二氧化硅粒子的微小粒子构成的紫外线反射层的准分子灯中,若长时间点灯,则照度维持率随时间的经过而逐渐降低。所以,例如在进行清洁处理等表面处理时,希望以恒定照度进行处理时,产生准分子灯的处理能力随着点灯时间而变化的问题。However, when an excimer lamp provided with an ultraviolet reflection layer made of fine particles including silica particles is turned on for a long period of time, the illuminance maintenance rate gradually decreases with time. Therefore, for example, when performing surface treatment such as cleaning treatment, when it is desired to perform treatment with a constant illuminance, there arises a problem that the treatment capability of the excimer lamp varies with the lighting time.
发明内容 Contents of the invention
本发明是鉴于上述情况而作出,其目的在于提供一种准分子灯,具备由含有二氧化硅粒子的微小粒子构成的紫外线反射层,即使长时间点灯,也能够抑制照度下降的程度,能够有效地射出真空紫外光。The present invention is made in view of the above-mentioned circumstances, and its object is to provide an excimer lamp, equipped with an ultraviolet reflection layer composed of fine particles containing silica particles, which can suppress the decline in illuminance even if the lamp is turned on for a long time, and can effectively emits vacuum ultraviolet light.
本申请第1发明的准分子灯,包括具有放电空间的、由二氧化硅玻璃构成的放电容器,以夹着形成该放电容器的二氧化硅玻璃的状态设有一对电极,并且在放电空间内封入有放电用气体,在上述放电容器的内表面的一部分形成有紫外线反射层,所述准分子灯的特征为:上述紫外线反射层包括:形成于与一方电极对应的区域的至少一部分上的堆积体A;及形成于与电极对应的区域以外的至少一部分上的堆积体B,上述堆积体A由含有OH基的二氧化硅粒子和融点比二氧化硅高的微小粒子构成,上述堆积体B由包含含有OH基的二氧化硅粒子的微小粒子构成,构成上述紫外线反射层的二氧化硅粒子中的OH基浓度是10wt ppm以上。The excimer lamp of the first invention of the present application includes a discharge vessel made of silica glass having a discharge space, a pair of electrodes are provided sandwiching the silica glass forming the discharge vessel, and the discharge space Discharge gas is enclosed, and an ultraviolet reflective layer is formed on a part of the inner surface of the discharge vessel. The excimer lamp is characterized in that the ultraviolet reflective layer includes: a deposition formed on at least a part of a region corresponding to one electrode. body A; and a deposition body B formed on at least a part of the region other than the region corresponding to the electrode, the deposition body A being composed of silicon dioxide particles containing OH groups and fine particles having a higher melting point than silicon dioxide, the deposition body B Composed of fine particles containing silica particles containing OH groups, the concentration of OH groups in the silica particles constituting the ultraviolet reflection layer is 10 wt ppm or more.
此外,本申请第2发明的特征在于,在本申请第1发明中,在将上述堆积体A的设置面积设为a(cm2),将上述堆积体B的设置面积设为b(cm2),将堆积体B的比表面积设为c(cm2/g),将放电容器的内表面积设为d(cm2)时,彼此的关系满足In addition, the second invention of the present application is characterized in that, in the first invention of the present application, when the installation area of the above-mentioned accumulation body A is a (cm 2 ), the installation area of the above-mentioned accumulation body B is b (cm 2 ) . ), when the specific surface area of the stack B is c (cm 2 /g), and the inner surface area of the discharge vessel is d (cm 2 ), the relationship between them satisfies
b≥-5.0×10-7ac+0.35a、且b>0.02d。b≥-5.0×10 -7 ac+0.35a, and b>0.02d.
通过在紫外线反射层中混入融点比二氧化硅高的微小粒子,防止彼此邻接的微小粒子彼此间结合而引起晶界消失,可抑制紫外线反射层的反射率下降。尤其是,形成于与电极对应的区域上的堆积体A容易受到等离子体的热,因而需要混入融点比二氧化硅高的微小粒子来抑制紫外线反射层的反射率下降。By mixing fine particles having a melting point higher than that of silicon dioxide in the ultraviolet reflective layer, it is possible to prevent the grain boundaries from disappearing due to the bonding of adjacent fine particles, thereby suppressing a decrease in the reflectance of the ultraviolet reflective layer. In particular, the deposit A formed on the region corresponding to the electrode is susceptible to the heat of the plasma, so it is necessary to mix fine particles having a melting point higher than that of silicon dioxide to suppress a decrease in the reflectance of the ultraviolet reflective layer.
此外,通过在构成紫外线反射层的二氧化硅粒子中含有OH基,能够抑制在紫外线反射层所含的二氧化硅粒子中生成内部缺陷,防止紫外线反射层吸收紫外区域波长的光而维持紫外线反射层的反射率,抑制准分子灯的照度下降程度,有效地射出真空紫外光。尤其是,通过使构成紫外线反射层的二氧化硅粒子中的OH基浓度为10wtppm以上,能够使反射维持率及照度维持率均保持较高的值,具有长时间点灯时维持照度的优异效果。In addition, by containing OH groups in the silica particles constituting the ultraviolet reflective layer, it is possible to suppress the generation of internal defects in the silica particles contained in the ultraviolet reflective layer, prevent the ultraviolet reflective layer from absorbing light of wavelengths in the ultraviolet region, and maintain ultraviolet reflection. The reflectivity of the layer suppresses the reduction of the illuminance of the excimer lamp, and effectively emits vacuum ultraviolet light. In particular, by setting the concentration of OH groups in the silica particles constituting the ultraviolet reflection layer to 10 wtppm or more, both the reflection maintenance rate and the illuminance maintenance rate can be maintained at high values, which has an excellent effect of maintaining illuminance during long-term lighting.
形成于与设有电极的位置对应的放电容器内表面上的紫外线反射层含有OH基时,暴露于放电等离子体中而放出以水为主要成分的杂质气体。若水为主要成分的杂质气体与放电用气体结合,则等离子体发光的照度会降低。然而,通过在与未设有电极的位置对应的放电容器内表面的一部分上也形成紫外线反射层,吸附该紫外线反射层所放出的水,同时吸收水在等离子体中分解而产生的氧,能够抑制准分子光的照度下降。因此,即使在长时间点亮准分子灯时,也能够抑制照度下降的程度,有效地射出真空紫外光。When the ultraviolet reflection layer formed on the inner surface of the discharge vessel corresponding to the position where the electrode is provided contains OH groups, it is exposed to the discharge plasma and emits impurity gas mainly composed of water. When the impurity gas whose main component is water is combined with the discharge gas, the illuminance of plasma emission decreases. However, by forming an ultraviolet reflective layer on a part of the inner surface of the discharge vessel corresponding to the position where no electrode is provided, absorbing the water released by the ultraviolet reflective layer and absorbing oxygen generated by decomposing water in the plasma, it is possible Suppresses decrease in illuminance of excimer light. Therefore, even when the excimer lamp is turned on for a long time, it is possible to efficiently emit vacuum ultraviolet light while suppressing a decrease in illuminance.
考虑堆积体B的比表面积,在将堆积体A的设置面积设为a(cm2),将堆积体B的设置面积设为b(cm2),将堆积体B的比表面积设为c(cm2/g),将放电容器的内表面积设为d(cm2)时,彼此的关系满足Considering the specific surface area of the stack B, when the installation area of the stack A is a (cm 2 ), the installation area of the stack B is b (cm 2 ), and the specific surface area of the stack B is c ( cm 2 /g), when the internal surface area of the discharge vessel is d(cm 2 ), the relationship between them satisfies
b≥-5.0×10-7ac+0.35a、且b>0.02db≥-5.0×10 -7 ac+0.35a, and b>0.02d
从而从堆积体A所放出的杂质气体的量不会超过堆积体B可吸附的杂质气体的量,能够在放电空间不残留杂质气体。因此,能够抑制杂质气体所含的氧原子与放电用气体结合而引起准分子光的照度下降,即使长时间点灯准分子灯,也能够抑制照度下降,有效地射出真空紫外光。Therefore, the amount of impurity gas released from stack A does not exceed the amount of impurity gas that can be adsorbed by stack B, and no impurity gas remains in the discharge space. Therefore, the decrease in illuminance of the excimer light caused by the combination of oxygen atoms contained in the impurity gas and the discharge gas can be suppressed, and even if the excimer lamp is turned on for a long time, the decrease in illuminance can be suppressed, and vacuum ultraviolet light can be efficiently emitted.
附图说明 Description of drawings
图1是表示本发明的准分子灯的一例的大致构成的说明用剖视图,图1(a)是表示沿着放电容器的长度方向的断面的剖视图,图1(b)是图1(a)中的A-A’线剖视图。Fig. 1 is an explanatory cross-sectional view showing the general structure of an example of an excimer lamp of the present invention, Fig. 1(a) is a cross-sectional view showing a section along the longitudinal direction of the discharge vessel, Fig. 1(b) is Fig. 1(a) A-A' line sectional view in.
图2表示准分子灯的实验结果。Fig. 2 shows the experimental results of the excimer lamp.
图3表示准分子灯的实验结果。Fig. 3 shows the experimental results of the excimer lamp.
图4是用于说明实施例的准分子灯的照度测定方法的剖视图。Fig. 4 is a cross-sectional view illustrating a method of measuring illuminance of an excimer lamp according to an embodiment.
图5表示准分子灯的实验结果。Fig. 5 shows the experimental results of the excimer lamp.
图6表示准分子灯的实验结果。Fig. 6 shows the experimental results of the excimer lamp.
图7表示准分子灯的实验结果。Fig. 7 shows the experimental results of the excimer lamp.
图8表示准分子灯的实验结果。Fig. 8 shows the experimental results of the excimer lamp.
图9表示准分子灯的实验结果。Fig. 9 shows the experimental results of the excimer lamp.
图10是表示现有的准分子灯的大致构成的说明用透视图。Fig. 10 is an explanatory perspective view showing a schematic configuration of a conventional excimer lamp.
具体实施方式 Detailed ways
图1是表示本发明的准分子灯10的一例的构成概略的说明用剖视图。图1(a)是表示沿着放电容器20的长度方向的断面的剖视图,图1(b)是表示图1(a)的A-A’线的剖视图。FIG. 1 is an explanatory sectional view showing a schematic configuration of an example of an
该准分子灯10具备两端被气密地密封而在内部形成有放电空间S的、断面矩形状的中空长尺状的放电容器20。该放电容器20包括:上壁板21及相对于上壁板21的下壁板22;连结于上壁板21与下壁板22的一对侧壁板23;及将由这些上壁板21、下壁板22及一对侧壁板23构成的四方筒状体的两端予以密封的一对端壁板24。放电容器20由良好地透射真空紫外光的二氧化硅玻璃例如合成石英玻璃形成。The
在放电容器20的内部,以如10~80kPa的压力封入有放电用气体。作为放电用气体,即使选择任何气体,对放射强度的继时性变化也不会有影响,但根据放电用气体的种类,所放射的准分子光的中心波长是不相同。例如,封入有氙(Xe)的准分子灯产生以172nm作为中心波长的准分子光,而封入有氩(Ar)与氯(Cl)的混合气体的准分子灯产生以175nm作为中心波长的准分子光,封入有氪(Kr)与碘(I)的混合气体的准分子灯产生以191nm作为中心波长的准分子光,在封入有氩(Ar)与氟(F)的混合气体的准分子灯产生以波长193nm作为中心波长的准分子光,封入有氪(Kr)与溴(Br)的混合气体的准分子灯产生以207nm作为中心波长的准分子光,封入有氪(Kr)与氯(Cl)的混合气体的准分子灯产生以222nm作为中心波长的准分子光,封入有氙(Xe)与氯(Cl)的混合气体的准分子灯产生以308nm作为中心波长的准分子光。In the
在放电容器20的上壁板21的外表面具备高电压供应电极11,在下壁板22的外表面具备接地电极12,这些电极11、12配置成彼此相对。这种电极11、12成为网状构造,从网孔之间能透射光。作为材质,例如使用铝、镍、金等,例如通过网印或真空蒸镀的方法形成。此外,各电极11、12被连接于适当的高频电源(未图示)。A high
在上述准分子灯10中,为了有效率地利用通过准分子放电所产生的真空紫外光,在相对于放电容器20的放电空间S的内表面设有由微小粒子构成的紫外线反射层30。该紫外线反射层30由堆积体A31及堆积体B32构成。堆积体A31形成于设有高电压供应电极11的放电容器20的面向放电空间S的内表面的一部分,即形成于与上壁板21的内表面的与高电压供应电极11对应的区域的一部分。此外,堆积体B32形成于未设有高电压供应电极11或接地电极12的放电容器20的面向放电空间S的内表面的一部分,即形成于从与电极11、12对应的区域偏离的上壁板21及下壁板22的内表面以及侧壁板23及端壁板24的内表面中的任意区域。即,将形成于上壁板21的内表面的与高电压供应电极11对应的区域上的紫外线反射层30称为堆积体A31,而将形成于放电容器20内表面的其它区域的紫外线反射层30称为堆积体B32。In the
另一方面,在放电容器20的下壁板22与接地电极12对应的内表面没有形成紫外线反射层30,由此构成光射出部。On the other hand, the
堆积体A31的厚度为例如5~1000μm,由二氧化硅粒子及融点比二氧化硅高且透射紫外线的微小粒子构成。融点比二氧化硅高且透射紫外线的微小粒子有例如氧化铝、氟化锂、氟化镁、氟化钙、氟化钡等。The thickness of the deposit A31 is, for example, 5 to 1000 μm, and is composed of silica particles and fine particles having a melting point higher than that of silica and transmitting ultraviolet rays. Fine particles having a higher melting point than silica and which transmit ultraviolet rays include, for example, alumina, lithium fluoride, magnesium fluoride, calcium fluoride, barium fluoride, and the like.
真空紫外光射入至这种堆积体A31,则一部分在微小粒子的表面反射,另一部分是折射而在粒子内部透射,而再次在其它表面反射或折射。在多个微小粒子中反复进行这种反射、折射,从而真空紫外光被扩散反射。When the vacuum ultraviolet light enters the accumulation body A31, part of it is reflected on the surface of the microparticles, the other part is refracted and transmitted inside the particle, and is reflected or refracted on other surfaces again. Such reflection and refraction are repeated in many fine particles, and the vacuum ultraviolet light is diffusely reflected.
然而,二氧化硅粒子因准分子灯10所产生的等离子体的热而熔融,晶界消失,无法扩散反射真空紫外光,降低反射率。尤其是,形成于与高电压供应电极11对应的区域上的堆积体A31是容易受到等离子体的热,构成堆积体A31的二氧化硅粒子容易熔融。另一方面,融点比二氧化硅高的微小粒子即使暴露在等离子体的热中也不会熔融。因此,在堆积体A31中混入融点比二氧化硅高的微小粒子,彼此邻接的微小粒子彼此间结合,从而可防止晶界消失,可抑制堆积体A31的反射率下降。However, the silica particles are melted by the heat of the plasma generated by the
堆积体B32的厚度例如为10~1000μm,由含有二氧化硅粒子的微小粒子构成。构成堆积体B32的微小粒子可以仅由二氧化硅粒子构成,也可以含有其他与氧结合的物质,且混合有由透射紫外线的物质构成的绝缘性微小粒子,例如氧化铝、氟化锂、氟化镁、氟化钙、氟化钡。The thickness of the accumulation body B32 is, for example, 10 to 1000 μm, and is composed of fine particles including silica particles. The microparticles constituting the stack B32 may consist of only silica particles, or may contain other substances that combine with oxygen, and may be mixed with insulating microparticles composed of substances that transmit ultraviolet rays, such as alumina, lithium fluoride, fluorine Magnesium chloride, calcium fluoride, barium fluoride.
即使真空紫外光射入至堆积体B32,也在多个微小粒子上反复产生反射、折射,从而真空紫外光扩散反射。此外,堆积体B32形成于与电极11、12对应的区域以外的放电容器20的内表面,因而不容易受到等离子体的热的影响。因此,即使仅由二氧化硅粒子构成堆积体B32,也不容易产生邻接的微小粒子彼此间结合所引起的晶界消失。Even if the vacuum ultraviolet ray enters the accumulation body B32, reflection and refraction repeatedly occur on a plurality of fine particles, and the vacuum ultraviolet ray is diffusely reflected. In addition, since the deposit B32 is formed on the inner surface of the
微小粒子是如下定义的粒子径在例如0.01~20μm的范围内的粒子,中心粒径(个数基准的粒度分布的最大值)在堆积体A31中例如优选0.1~10μm,更优选0.1~3μm,而在堆积体B32也同样例如优选0.1~20μm。Fine particles are particles defined as follows with a particle diameter in the range of, for example, 0.01 to 20 μm. The central particle diameter (the maximum value of the particle size distribution based on the number of particles) is, for example, preferably 0.1 to 10 μm, more preferably 0.1 to 3 μm in the aggregate A31, Similarly, for the deposit B32, for example, the thickness is preferably 0.1 to 20 μm.
在此所谓“粒子径”是指,将对于紫外线反射层30的表面朝垂直方向切剖时的切剖面上的厚度方向的大约中间位置作为观察范围,通过扫描电子显微镜(SEM)取得放大投影图像,而以一定方向的两条平行线夹着该放大投影图像中的任意粒子时的该平行线的间隔即弗雷特(Feret)直径。The term "particle diameter" here refers to an enlarged projected image obtained with a scanning electron microscope (SEM) with the approximate middle position in the thickness direction on the cut section when the surface of the
此外,“中心粒径”是指,将如上述所得到的各粒子的粒子径的最大值与最小值的粒子径的范围例如以0.1μm的范围分成多个区域,例如区分成15个区域左右,属于各区域的粒子个数(度数)为最大的区域的中心值。In addition, the "central particle diameter" refers to dividing the range of the maximum and minimum particle diameters of the particle diameters of each particle obtained above into a plurality of regions, for example, about 15 regions in the range of 0.1 μm. , the number of particles (degrees) belonging to each region is the central value of the largest region.
在该准分子灯10中,点灯电力供应于高电压供应电极12时,经由放电容器20而在两电极11、12间的放电空间S会产生准分子放电。由此,形成准分子,并且从该受激准分子放射真空紫外光。在放电空间S所产生的真空紫外光的一部分直接经具有光射出部的下壁板22而射出至外部。此外,另一部分真空紫外光朝上壁板21的方向放射,在紫外线反射层30扩散放射,经光射出部朝外部射出。In this
构成紫外线反射层30的微小粒子具有与真空紫外光的波长相同程度的粒子径,从而能够有效地扩散反射真空紫外光。The microparticles constituting the
然而,长时间点灯具备上述紫外线反射层30的准分子灯10时,无法维持初始照度,随着点灯时间照度逐渐下降。发明人从所有方面来分析照度降低的原因,考虑到是否会是其主要因素之一的紫外线反射层30的反射率下降。However, when the
因此,测定点灯初始的准分子灯10的紫外线反射层30的反射强度光谱及长时间点灯后的准分子灯10的紫外线反射层30的反射强度光谱,比较解析两者。由该结果得知,在长时间点灯后的准分子灯10的紫外线反射层30,在紫外区域产生吸收带,紫外线的一部分被紫外线反射层30吸收,从而产生照度降低。Therefore, the reflection intensity spectrum of the
紫外线反射层30的紫外区域吸收带的产生原因在于,构成紫外线反射层30的二氧化硅粒子在放电中曝露在紫外线或等离子体中,受到放射损伤(radiation damage),产生吸收紫外区域波长的光的内部缺陷,紫外线被内部缺陷吸收,使得扩散反射被抑制。内部缺陷是指,二氧化硅粒子的Si-O-Si键曝露在紫外线或等离子体中而产生的、在波长163nm附近具有吸收端的Si-Si缺陷或在波长215nm附近具有吸收带的E’心(E’center)(Si·)。The ultraviolet region absorption band of the ultraviolet
由于上述的原因,产生吸收紫外区域波长的光的内部缺陷的是二氧化硅粒子,成为照度降低的原因的紫外区域波长的光吸收取决于二氧化硅粒子的内部缺陷。此外,在氧化铝、氟化锂、氟化镁、氟化钙、氟化钡等构成的、除了二氧化硅粒子以外的透射紫外线的微小粒子即使曝露于紫外线或等离子体中也不会产生放射损伤。因此,通过防止在构成紫外线反射层30的二氧化硅粒子中产生内部缺陷,可抑制照度降低,即使长时间点灯也可保持高照度维持率。For the reasons described above, it is the silica particles that generate internal defects that absorb light at wavelengths in the ultraviolet region, and the absorption of light at wavelengths in the ultraviolet region that causes a decrease in illuminance depends on the internal defects of the silica particles. In addition, fine particles that transmit ultraviolet rays other than silicon dioxide particles, which are composed of alumina, lithium fluoride, magnesium fluoride, calcium fluoride, barium fluoride, etc., do not emit radiation even when exposed to ultraviolet rays or plasma. damage. Therefore, by preventing the occurrence of internal defects in the silica particles constituting the
为了防止在二氧化硅粒子中产生内部缺陷,使二氧化硅粒子含有OH基就有效。通过含有OH基,可抑制在紫外线反射层30所含的二氧化硅粒子中生成内部缺陷,可防止降低紫外线反射层30的反射率。In order to prevent the generation of internal defects in the silica particles, it is effective to make the silica particles contain OH groups. By containing OH groups, generation of internal defects in the silica particles contained in the
以下,对含有包含OH基的二氧化硅粒子的微小粒子所构成的紫外线反射层30的形成方法加以说明。紫外线反射层30是通过例如称为“流下法(flow down)”的方法,在放电容器形成材料的内表面的预定区域,形成含有二氧化硅粒子的粒子堆积层。例如,在具有组合了水与PEO树脂(polyethylene oxide:聚氧化乙烯)的黏性溶剂中混合微小粒子来调整分散液,将该分散液流进放电容器形成材料内。此外,将分散液附着于放电容器形成材料内表面的预定区域之后,经干燥、煅烧使水与PEO树脂蒸发,由此可形成粒子堆积层。在此,煅烧温度是例如500℃~1100℃。Hereinafter, a method for forming the
作为使二氧化硅粒子含有OH基的方法的一例,通过供应水蒸气并用电炉对未含OH基的二氧化硅粒子进行加热(例如1000℃),制作含有大量OH基的二氧化硅粒子。通过使用经这种处理的二氧化硅粒子,可形成含有包含OH基的二氧化硅粒子的微小粒子所构成的紫外线反射层30。As an example of a method of adding OH groups to silica particles, silica particles containing no OH groups are heated in an electric furnace (for example, 1000° C.) by supplying water vapor to produce silica particles containing a large amount of OH groups. By using such treated silica particles, it is possible to form the
此外,作为其它方法,也可以在使未含OH基的二氧化硅粒子附着于放电容器形成材料内表面的预定区域之后,通过供应水蒸气并进行煅烧,使二氧化硅粒子含有OH基。此外,也可以在使未含OH基的二氧化硅粒子经煅烧而形成紫外线反射层30之后,通过再供应水蒸气并用电炉进行加热,使二氧化硅粒子含有OH基。Alternatively, as another method, after attaching silica particles not containing OH groups to a predetermined region on the inner surface of the discharge vessel forming material, the silica particles may contain OH groups by supplying steam and firing. In addition, after forming the
此外,通过购入可得到的二氧化硅粒子根据其制法也会含有OH基,但有些产品的OH基浓度较低,因而优选通过上述方法含有高浓度的OH基。In addition, silica particles available by purchase also contain OH groups depending on the production method, but some products have a low concentration of OH groups, so it is preferable to contain a high concentration of OH groups by the above-mentioned method.
关于二氧化硅粒子所含的OH基的浓度,通过选择各种加热排气条件,可将构成紫外线反射层30的二氧化硅粒子所含的OH浓度调整成任意值。例如,即使保持温度为恒定,随着保持时间的延长,可除去更多的OH基。考虑到预先含有于二氧化硅粒子的OH基的量,通过加热排气来调整除去OH基的量,就可形成含有任意OH基浓度的二氧化硅粒子的微小粒子所构成的紫外线反射层30。The concentration of OH groups contained in the silica particles can be adjusted to an arbitrary value by selecting various heating and exhaust conditions. For example, even if the temperature is kept constant, more OH groups can be removed as the holding time increases. Considering the amount of OH groups contained in the silica particles in advance, by heating the exhaust gas to adjust the amount of OH groups removed, the
表示与准分子灯相关的第1实验。Indicates the first experiment related to the excimer lamp.
根据图1(a)、(b)所示的构成,制作具备紫外线反射层的准分子灯。According to the structure shown in FIG.1(a), (b), the excimer lamp provided with the ultraviolet reflection layer was produced.
[准分子灯的基本构成][Basic configuration of an excimer lamp]
放电容器的材质为二氧化硅玻璃,尺寸为15mm×43mm×350mm、厚度为2.5mm。The material of the discharge vessel is silica glass, the size is 15mm×43mm×350mm, and the thickness is 2.5mm.
高电压供应电极及接地电极的尺寸是30mm×300mm。The size of the high voltage supply electrode and the ground electrode is 30mm×300mm.
紫外线反射层由将中心粒径1.5μm的二氧化硅粒子按成分比90重量%、将中心粒径1.5μm的氧化铝粒子按成分比10重量%混合的混合物构成,通过流下法分别形成,煅烧温度为1000℃。The ultraviolet reflective layer is composed of a mixture of silica particles with a central particle diameter of 1.5 μm in a composition ratio of 90% by weight and alumina particles with a central particle diameter of 1.5 μm in a composition ratio of 10% by weight, which are formed separately by a flow-down method and calcined. The temperature is 1000°C.
作为放电用气体,将氙以40kPa封入放电容器内。As a discharge gas, xenon was sealed in the discharge vessel at 40 kPa.
对具有上述构成的准分子灯测定二氧化硅粒子中的OH基浓度、反射维持率及照度维持率。从放电容器削取所有紫外线反射层,使用热脱附谱分析法进行测定。由此,算出紫外线反射层所含的二氧化硅粒子中的OH基浓度。此外,求出被削取的紫外线反射层所含的二氧化硅粒子的成分比,由成分比算出OH基相对于二氧化硅粒子的重量。此外,使用真空紫外光分光装置(VUV)、紫外线照度测定器,测定500小时连续点灯后的紫外线反射层相对于初始状态的反射维持率及照度维持率。The concentration of OH groups in the silica particles, the reflection maintenance ratio, and the illuminance maintenance ratio were measured for the excimer lamp having the above configuration. All ultraviolet reflective layers were scraped off from the discharge vessel, and measured by thermal desorption spectroscopy. From this, the OH group concentration in the silica particles contained in the ultraviolet reflection layer was calculated. In addition, the component ratio of the silica particles contained in the shaved ultraviolet reflection layer was obtained, and the weight of OH groups with respect to the silica particles was calculated from the component ratio. In addition, using a vacuum ultraviolet spectrometer (VUV) and an ultraviolet illuminance measuring device, the reflection maintenance rate and illuminance maintenance rate of the ultraviolet reflection layer from the initial state after 500 hours of continuous lighting were measured.
将灯1~5的测定结果表示于表1。Table 1 shows the measurement results of
[表1][Table 1]
图2是将表1所示的测定结果中二氧化硅粒子中的OH基浓度(wtppm)作为横轴、反射维持率(%)作为纵轴而描绘灯1~5的数值的图表。2 is a graph plotting the values of
此外,图3是将表1所示的测定结果纵二氧化硅粒子中的OH基浓度(wtppm)作为横轴、照度维持率(%)作为纵轴而描绘灯1~5的数值的图表。In addition, FIG. 3 is a graph plotting the numerical values of
此外,表示于图2及图3的图表是横轴为对数刻度的单对数图表。In addition, the graphs shown in FIG. 2 and FIG. 3 are logarithmic graphs in which the abscissa is a logarithmic scale.
由以上结果可读取到:二氧化硅粒子中的OH基浓度小于10wtppm时,反射维持率及照度维持率均低,而长时间点灯准分子灯时,处理能力下降。另一方面,二氧化硅粒子中的OH基浓度成为10wtppm以上时,反射维持率及照度维持率都成为90%以上,即使长时间点灯准分子灯,也可维持处理能力。如图2及图3所示可知,OH基浓度由小于10wtppm成为10wtppm以上时,反射维持率及照度维持率都会急剧地变高,因此使二氧化硅粒子中的OH基浓度达到10wtppm以上时会有显著差异,在长时间点灯时维持照度方面发挥优异的效果。From the above results, it can be read that when the OH group concentration in the silica particles is less than 10 wtppm, both the reflection maintenance rate and the illuminance maintenance rate are low, and when the excimer lamp is turned on for a long time, the processing capacity decreases. On the other hand, when the OH group concentration in the silica particles is 10 wtppm or more, both the reflection maintenance rate and the illuminance maintenance rate are 90% or more, and the treatment capability can be maintained even if the excimer lamp is turned on for a long time. As shown in Figure 2 and Figure 3, it can be seen that when the OH group concentration is changed from less than 10wtppm to more than 10wtppm, the reflection maintenance rate and illuminance maintenance rate will increase sharply, so when the OH group concentration in the silica particles reaches 10wtppm or more, it will There is a significant difference, and it exhibits an excellent effect in maintaining illuminance during long-term lighting.
然而,即使将构成紫外线反射层30的二氧化硅粒子中的OH基浓度作成10wtppm以上,也产生准分子灯中以172nm为中心波长的准分子光的照度较低的情形。此外,在作为放电用气体而封入有氙的准分子灯10的点灯中,存在放电空间S中产生的放电的颜色成为绿色的情形,确认产生了氙原子与氧原子所结合的分子(XeO),而由该分子放射以550nm附近作为中心波长的绿色光。However, even if the concentration of OH groups in the silica particles constituting the
此外,构成紫外线反射层30的二氧化硅粒子所含的OH基在曝露在放电空间内所生成的放电等离子体中时,被加热而将以水(H2O)为主要成分的杂质气体放出至放电空间S内。以水为主要成分的杂质气体在等离子体中分解而产生的氧原子是从构成紫外线反射层30的二氧化硅粒子所含的OH基放出至放电空间S。In addition, when the OH groups contained in the silicon dioxide particles constituting the
在放电容器20的内表面形成有由微小粒子构成的紫外线反射层30时,由于有微小粒子的凹凸,因而表面积比未形成有紫外线反射层30的平坦的放电容器20的表面大。杂质气体是由曝露在放电等离子体中的紫外线反射层30放出而产生,因而在形成有紫外线反射层30时产生更多的杂质气体。此外,由于一个粒子的体积小,因而构成紫外线反射层30的微小粒子与放电容器20相比,热容较小。所以,即使在产生放电等离子体的数10ns左右的短时间内进行加热,也成为高温而容易放出杂质气体。When the ultraviolet
堆积体A31是形成于上壁板21内表面的与高电压供应电极11对应的区域,因而直接曝露于在电极11、12间所产生的放电等离子体,所以被加热而将杂质气体放出至放电空间S内。The accumulation body A31 is formed on the inner surface of the
另一方面,堆积体B32是形成于从高电压供应电极11偏离的上壁板21或从接地电极12偏离的下壁板22的内表面,或形成于侧壁板23或端壁板24内表面的任何区域,因而虽面向放电空间S,但不会直接曝露于在电极11、12间所产生的放电等离子体。所以,认为从堆积体B32几乎不会产生杂质气体。相反地,认为堆积体B32吸附杂质气体,由以下实验可证实这种情形。On the other hand, the accumulation body B32 is formed on the inner surface of the
作为第2实验对象,制作在放电容器20的内表面仅形成有堆积体B、而未形成堆积体A的准分子灯。使用氙作为放电用气体,而在封入放电用气体之际也混入氧,将预先作为杂质气体而封入有氧的准分子灯作为实验对象。被封入于放电空间S的氧浓度是160wtppm,而放电用气体的压力是40kPa。作为杂质气体混入有氧时,与稀有气体反应而对照度下降的影响很大,此外会产生波长550nm的放电光,由此容易判别氧混入放电空间S。As a second test subject, an excimer lamp in which only the deposit B was formed on the inner surface of the
准备在放电容器的内表面具有构成微小粒子的粒子成分比不相同的堆积体B的3种准分子灯。灯1具备仅由二氧化硅粒子作成的堆积体B,灯2具备由二氧化硅粒子与氧化铝粒子构成的堆积体B,灯3具备由二氧化硅粒子与氟化钙粒子构成的堆积体B。此外,作为比较例,准备未形成有堆积体B的灯4。对各灯测定直到准分子放电稳定为止的连续点灯15分钟后的550nm的发光强度,而将其作为“点灯初期的550nm发光强度”。之后,继续点灯准分子灯,测定连续点灯5小时后的550nm发光强度,将其作为“点灯5小时后的550nm发光强度”。Three types of excimer lamps were prepared which had accumulations B in which the particle composition ratios constituting the fine particles were different on the inner surface of the discharge vessel.
[表2][Table 2]
将第2实验结果表示于表2。“点灯5小时后的550nm发光强度”的数值,是将“点灯初期的550nm发光强度”的数值作为100时的相对值。在具备堆积体B的灯1~灯3中,点灯5小时后的550nm发光强度的数值减少成100以下,与点灯初期相比,氙原子与氧原子所结合的分子(XeO)的数量减少。即,预先混入放电空间中的氧减少。另一方面,在未形成有堆积体B的灯4中,点灯5小时后的550nm发光强度的数值仍维持100,可知预先混入放电空间中的氧的量并未变化。由此,在准分子灯的放电容器的内表面设置堆积体B就可减少550nm的光,可知氧被堆积体B吸附。此外,堆积体B没有曝露于放电等离子体,因此所吸附的杂质气体不会放出至放电空间。Table 2 shows the results of the second experiment. The numerical value of "luminous intensity at 550 nm after lighting for 5 hours" is a relative value when the numerical value of "luminous intensity at 550 nm at the initial stage of lighting" is taken as 100. In
以下,为了确认在第2实验中确认的氧被吸附在堆积体B的现象是否为根据准分子灯的点灯而产生,进行第3实验。将具有与第2实验对象的灯1~3同样构成的灯5~7作为第3实验。此外,作为比较例,准备未形成有堆积体B的灯8。对各灯测定连续点灯15分钟后的550nm的发光强度,将其作为“点灯初期的550nm发光强度”。然后,以未点灯状态下放置48小时后进行点灯,测定连续点灯15分钟的550nm的发光强度,将其作为“经过48小时后的550nm发光强度”。之后,继续准分子灯的点灯,测定连续点灯5小时后的550nm发光强度,将其作为“经过48小时后点灯5小时后的550nm发光强度”。Hereinafter, a third experiment was performed to confirm whether the phenomenon that oxygen was adsorbed on the stack B confirmed in the second experiment occurred by turning on the excimer lamp. The lamps 5 to 7 having the same configuration as the
[表3][table 3]
将第3实验结果表示于表3。“经过48小时后的550nm发光强度”及“经过48小时后点灯5小时后的550nm发光强度”的数值,是将“点灯初期的550nm发光强度”的值作为100时的相对值。在具备堆积体B的灯5~灯7中,相对于经过48小时后的550nm发光强度的值为100,经过48小时后点灯5小时后的550nm发光强度的值减少至10~11,可知点灯准分子灯才会减少氧。作为氧吸附于堆积体B的原理,在堆积体B的微小粒子表面,产生了通过点灯而产生的紫外线使氧产生化学反应而被吸附的化学吸附。Table 3 shows the results of the third experiment. The values of "luminous intensity at 550 nm after 48 hours" and "luminous intensity at 550 nm after 5 hours of lighting after 48 hours" are relative values when the value of "luminous intensity at 550 nm at the initial stage of lighting" is taken as 100. In the lamps 5 to 7 provided with deposits B, the value of the luminous intensity at 550 nm after 48 hours has elapsed is 100, and the value of the luminous intensity at 550 nm after 48 hours has elapsed and been turned on for 5 hours has decreased to 10 to 11. Excimer lamps will only reduce oxygen. As the principle of oxygen adsorption to the deposit B, on the surface of the fine particles of the deposit B, chemisorption occurs in which oxygen is chemically reacted and adsorbed by ultraviolet rays generated by lighting.
另一方面,在未形成堆积体B的灯8中,经过48小时后的550nm发光强度及经过48小时后点灯5小时后的550nm发光强度的值都仍维持100,因而可知预先混入放电空间中的氧的量并未变化。On the other hand, in the
构成堆积体B的微小粒子是在曝露于放电空间的表面吸附杂质气体,因而面向放电空间的表面积愈大愈可吸附更多的杂质气体。因此,“比表面积”亦即单位重量的粉体中所含的所有粒子的表面积总和愈大,愈可吸附更多的杂质气体。比表面积是例如通过如下的被称为BET法的测定方法进行测定:在微小粒子的表面预先吸附已知占有面积的分子气体(例如氮),通过其量求出比表面积。测定构成堆积体B的微小粒子的比表面积时,将堆积体B曝露于放电空间的表面曝露于分子气体而进行吸附,通过其量求出比表面积。The tiny particles constituting the stack B adsorb impurity gas on the surface exposed to the discharge space, so the larger the surface area facing the discharge space, the more impurity gas can be adsorbed. Therefore, the larger the "specific surface area", that is, the sum of the surface areas of all particles contained in a unit weight of powder, the more impurity gas can be adsorbed. The specific surface area is measured, for example, by a measurement method called the BET method in which a molecular gas (such as nitrogen) having a known occupied area is previously adsorbed on the surface of fine particles, and the specific surface area is obtained from the amount. When measuring the specific surface area of the fine particles constituting the accumulation body B, the surface of the accumulation body B exposed to the discharge space is exposed to molecular gas for adsorption, and the specific surface area is obtained from the amount.
以下,表示为了确认本发明的效果而进行的第4实验。Hereinafter, a fourth experiment conducted to confirm the effect of the present invention is shown.
<实验对象><subject>
根据表示于图1(a)、(b)的构成,制作具备堆积体A及堆积体B的准分子灯。According to the structure shown in FIG.1(a), (b), the excimer lamp provided with the stack A and the stack B was produced.
[准分子灯的基本构成][Basic configuration of an excimer lamp]
放电容器的材质为二氧化硅玻璃,尺寸为15mm×43mm×540mm,厚度为2.5mm。The material of the discharge vessel is silica glass, the size is 15mm×43mm×540mm, and the thickness is 2.5mm.
高电压供应电极及接地电极的尺寸是32mm×500mm。The dimensions of the high voltage supply electrode and the ground electrode are 32 mm x 500 mm.
在下壁板上未形成堆积体B的区域所对应的光射出部的尺寸比接地电极大2mm,为36mm×504mm。The size of the light emitting portion corresponding to the region where the accumulation body B is not formed on the lower wall plate is 36 mm×504 mm larger than the ground electrode by 2 mm.
堆积体A与堆积体B是通过流下法分别形成,煅烧温度为1000℃。The accumulation body A and the accumulation body B are respectively formed by the flow-down method, and the calcination temperature is 1000°C.
在800℃条件下进行1小时(升温后的时间)的加热排气后,在放电容器内封入氙。其封入量是40kPa。After heating and exhausting at 800° C. for 1 hour (time after temperature rise), xenon was sealed in the discharge vessel. Its sealing volume is 40kPa.
所制作的灯的堆积体A的OH基含量是500wtppm。The OH group content of the stack A of the produced lamp was 500 wtppm.
如表4所示,针对堆积体A的构成,准备了构成(1-1)、构成(1-2)、构成(1-3)、构成(1-4)这4种。4种构成在材料、粒子径、中心粒径、成分比方面相同,但形成于上壁板内表面的与高电压供应电极对应的区域上的堆积体A的设置面积变更为160cm2、128cm2、107cm2、40cm2。放出到放电空间内的杂质气体的量取决于堆积体A的设置面积,因此如构成(1-1)所示,堆积体A的设置面积愈大,杂质气体的量愈多,而如构成(1-4)所示,堆积体A的设置面积愈小,杂质气体的量会变少。此外,在构成(1-2)、构成(1-3)、构成(1-4)中,形成有堆积体A的设置面积比形成有高电压供应电极的面积即160cm2小,因而并不是在设有高电压供应电极的放电容器的内表面整个区域上形成有堆积体A,而是在其一部分形成有堆积体A。As shown in Table 4, four types of constitutions of the accumulation body A were prepared: constitution (1-1), constitution (1-2), constitution (1-3), and constitution (1-4). The materials, particle diameters, central particle diameters, and composition ratios of the four structures are the same, but the installation area of the deposit A formed on the inner surface of the upper wall plate corresponding to the high voltage supply electrode is changed to 160cm 2 and 128cm 2 , 107cm 2 , 40cm 2 . The amount of impurity gas released into the discharge space depends on the installation area of the accumulation body A. Therefore, as shown in the composition (1-1), the larger the installation area of the accumulation body A is, the greater the amount of impurity gas is. As shown in 1-4), the smaller the installation area of the accumulation body A is, the smaller the amount of impurity gas is. In addition, in the configuration (1-2), the configuration (1-3), and the configuration (1-4), the installation area where the deposit A is formed is smaller than 160 cm 2 which is the area where the high-voltage supply electrode is formed, so it is not The deposit A is formed over the entire area of the inner surface of the discharge vessel provided with the high-voltage supply electrode, but the deposit A is formed on a part thereof.
[表4][Table 4]
此外,如表5所示,针对堆积体B的构成,也准备了构成(2-1)、构成(2-2)、构成(2-3)、构成(2-4)这4种。构成(2-1)、构成(2-2)、构成(2-3)仅由二氧化硅粒子构成,而构成(2-4)由二氧化硅粒子及氧化铝粒子所构成。构成(2-1)、构成(2-2)、构成(2-3)通过变更二氧化硅粒子的粒子径,将比表面积作成16×104cm2/g、4×104cm2/g、1×104cm2/g不等。此外,构成(2-4)的比表面积为4×104cm2/g。堆积体B的比表面积愈大吸附愈多的杂质气体,因而如构成(2-1)所示,堆积体B的比表面积愈大面向放电空间的表面积较大,因而混进放电空间内的杂质气体的量随着点灯会减少,而如构成(2-3)所示,堆积体B的比表面积愈小,混进放电空间内的杂质气体随着点灯减少的量变小。In addition, as shown in Table 5, for the composition of the accumulation body B, four types of constitution (2-1), constitution (2-2), constitution (2-3), and constitution (2-4) were prepared. Composition (2-1), composition (2-2), and composition (2-3) consist only of silica particles, and composition (2-4) consists of silica particles and alumina particles. Composition (2-1), Composition (2-2), and Composition (2-3) The specific surface area was adjusted to 16×10 4 cm 2 /g, 4×10 4 cm 2 / g by changing the particle diameter of the silica particles. g, 1×10 4 cm 2 /g, etc. In addition, the specific surface area of the composition (2-4) was 4×10 4 cm 2 /g. The larger the specific surface area of the accumulation body B, the more impurity gas is adsorbed. Therefore, as shown in the composition (2-1), the larger the specific surface area of the accumulation body B is, the larger the surface area facing the discharge space is, so the impurities mixed into the discharge space The amount of gas decreases with lighting, and as shown in the configuration (2-3), the smaller the specific surface area of the deposit B, the smaller the amount of impurity gas mixed into the discharge space decreases with lighting.
[表5][table 5]
对于构成为(1-1)的堆积体A,准备堆积体B为构成(2-1)~构成(2-4)的灯作为实验对象。此外,对于各组合,准备变更堆积体B的设置面积的5种灯。同样地,对于构成(1-2)、构成(1-3)、构成(1-4)的堆积体A,准备堆积体B为构成(2-1)~构成(2-3)的灯。With respect to the pile A having the structure (1-1), lamps having the pile B having the structures (2-1) to (2-4) were prepared as test objects. In addition, five types of lamps in which the installation area of the accumulation body B was changed were prepared for each combination. Similarly, with respect to the stacked body A of the configuration (1-2), the configuration (1-3), and the configuration (1-4), the stacked body B is the lamp of the configuration (2-1) to the configuration (2-3).
对如此构成的各准分子灯,在放电容器的管壁负荷成为0.6W/cm2的条件下进行点灯,测定连续点灯15分钟后的波长150nm~200nm波长区域的氙准分子光的照度及在恒定的管壁负荷下500小时连续点灯之后的波长150nm~200nm波长区域的氙准分子光的照度。将连续点灯15分钟后的照度作为初始照度,而将500小时连续点灯之后的照度相对于初始照度的值作为照度维持率,算出[(500小时点灯后的照度)/(刚点灯后的照度)](%)作为“500小时照度维持率”。设置500小时的原因如下。由杂质气体引起的照度降低持续至500小时,之后照度不会降低,因此紫外线反射层所含的杂质气体在500小时为止的之期间全部放出,而之后不会放出。For each excimer lamp thus constituted, the tube wall load of the discharge vessel was turned on under the condition that the load on the wall of the discharge vessel became 0.6 W/cm 2 , and the illuminance of xenon excimer light in the wavelength range of 150 nm to 200 nm after continuous lighting for 15 minutes was measured and the The illuminance of xenon excimer light in the wavelength range of 150nm to 200nm after continuous lighting for 500 hours under a constant tube wall load. The illuminance after 15 minutes of continuous lighting is taken as the initial illuminance, and the value of the illuminance after 500 hours of continuous lighting relative to the initial illuminance is taken as the illuminance maintenance rate, and [(illuminance after 500 hours of lighting)/(illuminance immediately after lighting) is calculated ] (%) as "500-hour illuminance maintenance rate". The reason for setting 500 hours is as follows. The decrease in illuminance due to impurity gas lasted until 500 hours, and the illuminance did not decrease thereafter. Therefore, the impurity gas contained in the ultraviolet reflective layer was completely released until 500 hours, and was not released thereafter.
作为产品的规格,要求80%以上的照度维持,因而将500小时照度维持率为80%以上时判断为“○”,而500小时照度维持率为80%以下时判断为“×”。As a product specification, an illuminance maintenance of 80% or more is required, so when the 500-hour illuminance maintenance rate is 80% or more, it is judged as "○", and when the 500-hour illuminance maintenance rate is 80% or less, it is judged as "×".
如图4所示,照度测定是如下进行:在配置于铝制容器40内部的陶瓷制支撑台41上固定准分子灯10,且在距准分子灯10的表面1mm的位置,以与准分子灯10相对的方式固定紫外线照度测定器42,在以氮置换铝制容器40的内部气氛的状态下,在准分子灯10的电极11、12间施加5.0kV的交流高电压,由此在放电容器20的内部产生放电,测定经由接地电极12的网孔放射的真空紫外光的照度。As shown in Fig. 4, the illuminance measurement is carried out as follows: the
将实验结果表示于图5及图6。由该结果,在堆积体A的构成与堆积体B的构成的各组合中,抽出500小时照度维持率为80%以上的准分子灯中堆积体B的设置面积成为最小的组合。例如,堆积体A的构成为“构成(1-1)”、堆积体B的构成为“构成(2-1)”的组合中选择灯3。同样,选择灯8、灯13、灯18等。The experimental results are shown in FIGS. 5 and 6 . From the results, among the combinations of the configuration of the stack A and the stack B, the combination with the smallest installation area of the stack B among the excimer lamps with a 500-hour illuminance maintenance rate of 80% or more was extracted. For example, the lamp 3 is selected in a combination in which the configuration of the accumulation body A is "configuration (1-1)" and the configuration of the accumulation body B is "configuration (2-1)". Likewise,
针对如此抽出的组合,将堆积体A的构成、堆积体B的构成、堆积体B的比表面积、堆积体B的设置面积列于表6。For the combinations thus extracted, the composition of the stack A, the composition of the stack B, the specific surface area of the stack B, and the installation area of the stack B are listed in Table 6.
[表6][Table 6]
图7是表示表6的结果的图表。将横轴作为堆积体B的比表面积(×104cm2/g),将纵轴作为堆积体B的设置面积(cm2),按堆积体A的构成分别标示数值。FIG. 7 is a graph showing the results of Table 6. FIG. The horizontal axis is the specific surface area of the stack B (×10 4 cm 2 /g), the vertical axis is the installation area of the stack B (cm 2 ), and the numerical values are indicated according to the composition of the stack A.
表6及图7表示比表面积愈大抑制照度降低所需的设置面积变小。针对堆积体A的各构成,即针对构成(1-1)、构成(1-2)、构成(1-3),各设置面积与比表面积成比例。但是,在具有构成为(1-4)的堆积体A的准分子灯中,即使增加比表面积,设置面积是也不会成为比10cm2低的值。Table 6 and FIG. 7 show that the larger the specific surface area, the smaller the installation area required to suppress the decrease in illuminance. For each constitution of the stack A, that is, constitution (1-1), constitution (1-2), and constitution (1-3), each installation area is proportional to the specific surface area. However, in the excimer lamp having the stacked body A having the configuration (1-4), even if the specific surface area is increased, the installation area does not become a value lower than 10 cm 2 .
在具有构成为(1-4)的堆积体A的准分子灯中,与放电容器的内容积相比,堆积体B的设置面积过小,因而扩散至放电空间内的杂质气体到达堆积体B的机率变低,无法表现出吸附效果。即,相对于放电空间的大小,存在堆积体B所需的最低限度的面积。将放电空间的大小以放电容器的内表面积来表示,此时内表面积是大约500cm2,相对于此,堆积体B的设置面积是10cm2。因此,是最低限所需的堆积体B的设置面积是放电容器内表面积的0.02倍。In the excimer lamp having the stack A configured as (1-4), the installation area of the stack B is too small compared to the internal volume of the discharge vessel, so the impurity gas diffused into the discharge space reaches the stack B The probability becomes lower, unable to show the adsorption effect. That is, there is a minimum area required for the accumulation body B with respect to the size of the discharge space. The size of the discharge space is represented by the inner surface area of the discharge vessel. In this case, the inner surface area is about 500 cm 2 , while the installation area of the stack B is 10 cm 2 . Therefore, the minimum required installation area of the accumulation body B is 0.02 times the inner surface area of the discharge vessel.
以下,导出图7的堆积体A的各构成即构成(1-1)、构成(1-2)、构成(1-3)的各近似直线的斜率与截距。将该结果即堆积体A的构成、堆积体A的设置面积,堆积体B的比表面积与设置面积的关系的斜率、堆积体B的比表面积与设置面积的关系的截距列于表7。Hereinafter, the slopes and intercepts of the respective approximate straight lines of the configurations of the accumulation body A in FIG. 7 , that is, the configuration (1-1), the configuration (1-2), and the configuration (1-3), are derived. The results, that is, the composition of the accumulation body A, the installation area of the accumulation body A, the slope of the relationship between the specific surface area of the accumulation body B and the installation area, and the intercept of the relationship between the specific surface area of the accumulation body B and the installation area are listed in Table 7.
[表7][Table 7]
在图8中,将横轴作为堆积体A的设置面积(cm2),将纵轴作为堆积体B的比表面积与设置面积的关系的斜率(×10-4g),而标示表7的结果的值。In FIG. 8 , the horizontal axis is the installation area (cm 2 ) of the stack A, and the vertical axis is the slope (×10 -4 g) of the relationship between the specific surface area of the stack B and the installation area, and the values in Table 7 are indicated. The value of the result.
由图表可知,堆积体B的比表面积与设面积的关系的斜率相对于堆积体A的设置面积(cm2)具有负的斜率的比例关系。将堆积体A的设置面积设为a(cm2)时,堆积体B的比表面积与设置面积的关系的斜率,可表示为-5.0×10-7×a。It can be seen from the graph that the slope of the relationship between the specific surface area of the stack B and the set area has a proportional relationship with a negative slope relative to the set area (cm 2 ) of the stack A. When the installation area of the accumulation body A is a (cm 2 ), the slope of the relationship between the specific surface area of the accumulation body B and the installation area can be expressed as -5.0×10 −7 ×a.
在图9中,将横轴作为堆积体A的设置面积(cm2),将纵轴作为堆积体B的比表面积与设置面积的关系的截距(cm2),而标示表7的结果的值。In FIG. 9, the horizontal axis is the installation area (cm 2 ) of the accumulation body A, and the vertical axis is the intercept (cm 2 ) of the relationship between the specific surface area of the accumulation body B and the installation area, and the results of Table 7 are indicated. value.
由图表可知,堆积体B的比表面积与设面积的关系的截距相对于堆积体A的设置面积(cm2)具有正的斜率的比例关系。将堆积体A的设置面积设为a(cm2)时,堆积体B的比表面积与设置面积的关系的截距可表示为0.35×a。It can be seen from the graph that the intercept of the relationship between the specific surface area of the stack B and the set area has a proportional relationship with a positive slope relative to the set area (cm 2 ) of the stack A. When the installation area of the accumulation body A is a (cm 2 ), the intercept of the relationship between the specific surface area of the accumulation body B and the installation area can be expressed as 0.35×a.
此外,由图7可知,堆积体B的设置面积与堆积体B的比表面积具有以“堆积体B的比表面积与设置面积的关系的斜率”和“堆积体B的比表面积与设置面积的关系的截距”表示的比例关系。由此,将堆积体B的设置面积设为b(cm2),将堆积体B的比表面积设为c(cm2/g)时,图5的堆积体B的设置面积与堆积体B的比表面积的关系可表示为In addition, it can be seen from Fig. 7 that the installation area of the accumulation body B and the specific surface area of the accumulation body B have "the slope of the relationship between the specific surface area of the accumulation body B and the installation area" and "the relationship between the specific surface area of the accumulation body B and the installation area". The proportional relationship represented by the intercept". Therefore, when the installation area of the accumulation body B is b (cm 2 ) and the specific surface area of the accumulation body B is c (cm 2 /g), the installation area of the accumulation body B and the volume of the accumulation body B in Fig. 5 The relationship between the specific surface area can be expressed as
b=(堆积体B的比表面积与设置面积的关系的斜率)×c+(堆积体B的比表面积与设置面积的关系的截距)b = (the slope of the relationship between the specific surface area of the accumulation body B and the installation area) × c + (the intercept of the relationship between the specific surface area of the accumulation body B and the installation area)
此外,由图8及图9的结果,将堆积体A的设置面积设为a(cm2)时,堆积体B的比表面积与设置面积的关系的斜率可表示为-5.0×10-7×a,堆积体B的比表面积与设置面积的关系的截距可表示为0.35×a,因而图7的堆积体B的设置面积与堆积体B的比表面积的关系可如下表示。In addition, from the results of Fig. 8 and Fig. 9, when the installation area of stack A is a (cm 2 ), the slope of the relationship between the specific surface area of stack B and the installation area can be expressed as -5.0×10 -7 × a, the intercept of the relationship between the specific surface area of the accumulation body B and the installation area can be expressed as 0.35×a, so the relationship between the installation area of the accumulation body B and the specific surface area of the accumulation body B in Figure 7 can be expressed as follows.
b=-5.0×10-7ac+0.35ab=-5.0×10 -7 ac+0.35a
此外,由图5及图6的实验结果可知,若堆积体B的设置面积b比图5的堆积体B的设置面积与堆积体B的比表面积的关系所示的量大,则500小时照度维持率为80%以上,判定为○。In addition, it can be seen from the experimental results in Fig. 5 and Fig. 6 that if the installation area b of the accumulation body B is larger than the amount indicated by the relationship between the installation area of the accumulation body B and the specific surface area of the accumulation body B in Fig. 5, the illuminance at 500 hours The maintenance rate was 80% or more, and it was judged as ◯.
由以上结果可知,在具备含有OH基的堆积体A的准分子灯中,为了抑制照度降低,堆积体B的设置面积满足以下的关系即可。From the above results, in the excimer lamp including the stack A containing OH groups, in order to suppress a decrease in illuminance, the installation area of the stack B may satisfy the following relationship.
将堆积体A的设置面积设为a(cm2),将堆积体B的设置面积设为b(cm2),将堆积体B的比表面积设为c(cm2/g)时,为When the installation area of the accumulation body A is a (cm 2 ), the installation area of the accumulation body B is b (cm 2 ), and the specific surface area of the accumulation body B is c (cm 2 /g), it is
b≥-5.0×10-7ac+0.35ab≥-5.0×10 -7 ac+0.35a
此外,在图7中,在具有构成为(1-4)的堆积体A的准分子灯中,即使增加堆积体B的比表面积,堆积体B的设置面积也不会成为比10cm2低的值,堆积体B的比表面积与设面积的关系不会成为具有构成(1-1)、构成(1-2)、构成(1-3)的堆积体A时的情形。所以,在表7及图8、图9中,不考虑具有构成为(1-4)的堆积体A的情形。即,上述堆积体B的设置面积应满足的条件是排除具有构成为(1-4)的堆积体A的情形。因此,在堆积体B的设置面积应满足的条件中,必须排除具有构成为(1-4)的堆积体A的情形。In addition, in FIG. 7 , in the excimer lamp having the accumulation body A having the configuration (1-4), even if the specific surface area of the accumulation body B is increased, the installation area of the accumulation body B will not become lower than 10 cm 2 value, the relationship between the specific surface area of the accumulation body B and the design area is not the same as that of the accumulation body A having the constitution (1-1), the constitution (1-2), and the constitution (1-3). Therefore, in Table 7 and FIGS. 8 and 9 , the case where there is the stacked body A having the configuration (1-4) is not considered. That is, the condition to be satisfied by the installation area of the accumulation body B is to exclude the case where there is the accumulation body A having the configuration (1-4). Therefore, in the conditions to be satisfied by the installation area of the stack B, the case of having the stack A having the configuration (1-4) must be excluded.
具有构成为(1-4)的堆积体A的情形是指,与放电容器的内容积相比,堆积体B的设置面积过小,因而无法表现出吸附的效果的情形。即,堆积体B的设置面积达到放电容器的内表面积的0.02倍左右。因此,为了抑制照度降低,在将放电容器的内表面积设为d(cm2)时,堆积体B的设置面积b(cm2)的关系还需要满足以下的条件。The case where there is the accumulation body A having the configuration (1-4) means that the installation area of the accumulation body B is too small compared with the internal volume of the discharge vessel, so that the effect of adsorption cannot be exhibited. That is, the installation area of the stack B is about 0.02 times the inner surface area of the discharge vessel. Therefore, in order to suppress a decrease in illuminance, when the inner surface area of the discharge vessel is d (cm 2 ), the relation of the installation area b (cm 2 ) of the accumulation body B needs to satisfy the following conditions.
b>0.02db>0.02d
由以上结果可知,在具备含有OH基的堆积体A的准分子灯中,为了抑制照度下降,堆积体B的构成必须满足以下的关系。将堆积体A的设置面积设为a(cm2),将堆积体B的设置面积设为b(cm2),将堆积体B的比表面积设为c(cm2/g),将放电容器的内表面积设为d(cm2)时,必须满足From the above results, in the excimer lamp including the stack A containing an OH group, in order to suppress a decrease in illuminance, the configuration of the stack B must satisfy the following relationship. Let the installation area of the stack A be a (cm 2 ), the installation area of the stack B be b (cm 2 ), and the specific surface area of the stack B be c (cm 2 /g). When the inner surface area of is set to d(cm 2 ), it must satisfy
b≥-5.0×10-7ac+0.35a,且b>0.2d。b≥-5.0×10 −7 ac+0.35a, and b>0.2d.
通过满足上述关系,从堆积体A所放出的杂质气体的量,不会超过堆积体B可吸附的杂质气体的量,而在放电空间不会残留杂质气体。因此,可抑制杂质气体中所含的氧原子与放电用气体结合而引起准分子光的照度降低,即使长时间点灯准分子灯时,也可抑制照度降低,有效地射出真空紫外光。By satisfying the above relationship, the amount of impurity gas released from stack A does not exceed the amount of impurity gas that can be adsorbed by stack B, and impurity gas does not remain in the discharge space. Therefore, the decrease in illuminance of the excimer light caused by the combination of oxygen atoms contained in the impurity gas and the discharge gas can be suppressed, and even when the excimer lamp is turned on for a long time, the decrease in illuminance can be suppressed to efficiently emit vacuum ultraviolet light.
此外,堆积体A的设置面积a(cm2)及堆积体B的设置面积b(cm2)是指,不考虑到微小粒子的凹凸,假设堆积体A或堆积体B的表面平滑而计测的值。此外,放电容器的内表面积d(cm2)也是假设其表面平滑而计测的值。In addition, the installation area a (cm 2 ) of the accumulation body A and the installation area b (cm 2 ) of the accumulation body B are measured assuming that the surface of the accumulation body A or the accumulation body B is smooth without considering the irregularities of the fine particles. value. In addition, the inner surface area d (cm 2 ) of the discharge vessel is also a value measured assuming that the surface is smooth.
Claims (1)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008149060A JP5245552B2 (en) | 2008-06-06 | 2008-06-06 | Excimer lamp |
| JP2008149060 | 2008-06-06 | ||
| JP2008-149060 | 2008-06-06 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101599413A CN101599413A (en) | 2009-12-09 |
| CN101599413B true CN101599413B (en) | 2013-08-14 |
Family
ID=41420799
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200910141045XA Active CN101599413B (en) | 2008-06-06 | 2009-05-18 | Excimer lamp |
Country Status (4)
| Country | Link |
|---|---|
| JP (1) | JP5245552B2 (en) |
| KR (1) | KR101246481B1 (en) |
| CN (1) | CN101599413B (en) |
| TW (1) | TWI431659B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5151816B2 (en) * | 2008-08-29 | 2013-02-27 | ウシオ電機株式会社 | Excimer lamp |
| CN102097282A (en) * | 2010-11-30 | 2011-06-15 | 王颂 | Electrodeless excimer lamp and application thereof |
| JP7384090B2 (en) * | 2020-03-26 | 2023-11-21 | ウシオ電機株式会社 | Excimer lamp, light irradiation device |
| US11887835B2 (en) | 2021-08-10 | 2024-01-30 | Kla Corporation | Laser-sustained plasma lamps with graded concentration of hydroxyl radical |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH1083793A (en) * | 1996-09-11 | 1998-03-31 | Toshiba Lighting & Technol Corp | High pressure discharge lamp and lighting equipment |
| JP3346291B2 (en) * | 1998-07-31 | 2002-11-18 | ウシオ電機株式会社 | Dielectric barrier discharge lamp and irradiation device |
| JP3591470B2 (en) * | 2001-03-19 | 2004-11-17 | ウシオ電機株式会社 | Discharge lamp |
| JP4048998B2 (en) * | 2003-04-15 | 2008-02-20 | ウシオ電機株式会社 | Lamp and ultraviolet light irradiation device |
| JP2006221984A (en) * | 2005-02-10 | 2006-08-24 | Matsushita Electric Ind Co Ltd | Fluorescent lamp manufacturing method and fluorescent lamp |
| JP4857939B2 (en) * | 2006-06-19 | 2012-01-18 | ウシオ電機株式会社 | Discharge lamp |
| JP4788534B2 (en) | 2006-09-07 | 2011-10-05 | ウシオ電機株式会社 | Excimer lamp |
| JP4900011B2 (en) * | 2006-11-24 | 2012-03-21 | ウシオ電機株式会社 | Discharge lamp |
-
2008
- 2008-06-06 JP JP2008149060A patent/JP5245552B2/en active Active
-
2009
- 2009-04-02 KR KR1020090028400A patent/KR101246481B1/en active Active
- 2009-04-08 TW TW098111695A patent/TWI431659B/en active
- 2009-05-18 CN CN200910141045XA patent/CN101599413B/en active Active
Non-Patent Citations (2)
| Title |
|---|
| JP特开2004-319200A 2004.11.11 |
| JP特开2007-335350A 2007.12.27 |
Also Published As
| Publication number | Publication date |
|---|---|
| KR101246481B1 (en) | 2013-03-25 |
| TWI431659B (en) | 2014-03-21 |
| JP2009295469A (en) | 2009-12-17 |
| TW200952032A (en) | 2009-12-16 |
| KR20090127215A (en) | 2009-12-10 |
| CN101599413A (en) | 2009-12-09 |
| JP5245552B2 (en) | 2013-07-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI416583B (en) | Excimer lamp | |
| US9649401B2 (en) | Ultraviolet irradiation apparatus | |
| CN101599414A (en) | Excimer lamp | |
| TW200941540A (en) | Excimer lamp | |
| CN101599413B (en) | Excimer lamp | |
| EP2056335B1 (en) | Excimer lamps | |
| EP2056336B1 (en) | Excimer lamps | |
| JP2010027268A (en) | Excimer lamp | |
| CN101409206A (en) | Excimer lamps | |
| JP5035121B2 (en) | Excimer lamp | |
| CN101409207B (en) | Excimer lamps | |
| TW200917324A (en) | Excimer lamp | |
| TWI434321B (en) | Excimer lamp | |
| JP5151816B2 (en) | Excimer lamp | |
| JP2009146588A (en) | Excimer lamp | |
| JP5200749B2 (en) | Excimer lamp | |
| KR101399225B1 (en) | Discharge lamp |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |