CN101656833B - image processing device - Google Patents
image processing device Download PDFInfo
- Publication number
- CN101656833B CN101656833B CN2009101646528A CN200910164652A CN101656833B CN 101656833 B CN101656833 B CN 101656833B CN 2009101646528 A CN2009101646528 A CN 2009101646528A CN 200910164652 A CN200910164652 A CN 200910164652A CN 101656833 B CN101656833 B CN 101656833B
- Authority
- CN
- China
- Prior art keywords
- image
- interval
- value
- images
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Studio Devices (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉及图像处理装置,尤其涉及从多个图像中抽出一部分图像的技术。The present invention relates to an image processing device, and in particular to a technique for extracting a part of images from a plurality of images.
背景技术Background technique
现有技术中,已知从时间顺序上连续的多个图像中抽出被摄体运动的图像的数码照相机(参考日本公开公报的特开2008-78837号公报)。具体上,若按时间顺序依次读出通过连续拍摄得到的多个图像,且这次读出的图像较前次读出的图像的变化量为规定值以上,则显示这次读出的图像。基于这种数码照相机,仅抽出与被摄体变化大、被摄体运动大的场景对应的图像。Conventionally, there is known a digital camera that extracts an image of a subject's movement from a plurality of consecutive images in time sequence (refer to Japanese Laid-Open Patent Publication No. 2008-78837). Specifically, when a plurality of images obtained by continuous shooting are sequentially read in chronological order, and the change amount of the currently read image from the previous read image is greater than or equal to a predetermined value, the currently read image is displayed. With such a digital camera, only images corresponding to scenes with large subject changes and large subject movements are extracted.
但是,在上述现有数码照相机中,由于在时间顺序上相邻的图像间的变化量为阈值以上时无条件抽出图像,所以在拍摄状况变化的情况下,有不能适当抽出被摄体的运动大的图像群的问题。例如,即使被摄体静止,若发生手抖动和荧光灯的闪烁,则图像间的变化量变大。该情况下,在上述现有数码照相机中,不管被摄体本身是否静止,都判断为被摄体有大的运动,则抽出图像。However, in the conventional digital camera described above, images are unconditionally extracted when the amount of change between temporally adjacent images is equal to or greater than a threshold value. Therefore, when the shooting situation changes, it may not be possible to properly extract the motion of the subject. group of images. For example, even if the subject is still, if hand shake or flickering of fluorescent lights occurs, the amount of change between images will increase. In this case, in the above-mentioned conventional digital camera, regardless of whether the subject itself is still, it is judged that the subject is moving a lot, and an image is extracted.
发明内容Contents of the invention
因此,本发明所要解决的技术问题是提供一种与拍摄状况无关,而从多个图像中精度良好地抽出被摄体运动大的一部分图像的图像处理装置、记录介质。Therefore, the technical problem to be solved by the present invention is to provide an image processing device and a recording medium for accurately extracting a part of images with a large subject movement from a plurality of images regardless of shooting conditions.
根据本发明的第一观点,提供一种图像处理装置,包括:图像输入部,输入在时间顺序上连续的多个图像;变化量运算部,分别算出在所述输入的多个图像中时间顺序上相邻的图像间的变化量;区间指定部,依次改变在时间顺序中在所述多个图像全部存在的所有区间中含有的第1区间的同 时依次指定该第1区间,同时,依次指定从所述所有区间中去除依次指定的所述第1区间后的区间即第2区间;值决定部,从所述指定的第1区间中存在的各图像中,根据通过所述变化量运算部算出的各第1变化量来决定第1值,同时,从所述指定的第2区间中存在的各图像中,根据由所述变化量运算部算出的各第2变化量来决定第2值;偏离度运算部,每次指定所述第1区间时,分别算出所述各第1变化量和所述第1值的第1偏离度,同时,每次指定所述第2区间时,分别算出所述各第2变化量和所述第2值的第2偏离度;图像抽出单元,抽出在所述算出的各第1偏离度和各第2偏离度的总和为最小时,这时通过所述区间指定部指定的第1区间中存在的图像。According to a first aspect of the present invention, there is provided an image processing device including: an image input unit that inputs a plurality of consecutive images in chronological order; The amount of change between the above adjacent images; the section specifying unit sequentially changes the first section contained in all the sections in which the plurality of images exist in the time order, and sequentially specifies the first section, and at the same time, sequentially specifying a second section that is a section obtained by excluding the sequentially specified first section from all the sections; The first value is determined based on each of the first changes calculated by the change calculation unit, and at the same time, a second value is determined based on each of the second changes calculated by the change calculation unit from among the images existing in the specified second interval. value; the degree of deviation calculation unit calculates the first degree of deviation between each of the first variations and the first value each time the first interval is designated, and at the same time, each time the second interval is designated, Calculate the second degree of deviation of each of the second variation and the second value respectively; the image extraction unit extracts when the sum of the calculated first degree of deviation and each second degree of deviation is the minimum, at this time An image existing in the first section specified by the section specifying unit.
根据本发明的第二观点,提供一种图像处理装置,包括图像输入部,输入时间顺序上连续的多个图像;抽出数设置部,从所述输入的多个图像中设置要抽出的图像数目;变化量运算部,分别算出在所述输入的多个图像中通过时间顺序上相邻的图像规定的该图像间的变化量;变化量特定部,依次特定通过所述变化量运算部算出的各变化量中,比与由所述抽出数设置部设置的数目对应的变化量小的各变化量;图像删除部,从所述输入的多个图像中删除规定由所述变化量特定部特定出的各变化量的图像;图像抽出单元,从所述输入的多个图像中抽出没有被所述图像删除部删除的图像。According to a second aspect of the present invention, there is provided an image processing apparatus including an image input unit for inputting a plurality of consecutive images in chronological order; and an extraction number setting unit for setting the number of images to be extracted from the input plurality of images. The change amount calculation unit calculates the change amount between the images specified by the temporally adjacent images among the plurality of input images; the change amount identification unit sequentially specifies the change amount calculated by the change amount calculation unit Among the change amounts, each change amount smaller than the change amount corresponding to the number set by the extraction number setting section; the image deleting section deletes from the input plurality of images specified by the change amount specifying section The extracted images of each change amount; the image extracting unit extracts an image that has not been deleted by the image deleting unit from the input plurality of images.
根据本发明的第三观点,提供一种计算机可读取的记录介质,存储了使计算机作用为如下部件发挥作用的程序,图像输入部,输入时间顺序上连续的多个图像;变化量运算部,分别算出在所述输入的多个图像中时间顺序上相邻的图像间的变化量;区间指定部,依次改变在时间顺序中在所述多个图像全部存在的所有区间中含有的第1区间的同时依次指定该第1区间,并且,依次指定作为从所述所有区间中去除依次指定的所述第1区间后的区间即第2区间;值决定部,从所述指定的第1区间中存在的各图像中,根据通过所述变化量运算部算出的各第1变化量来决定第1值,同时,从所述指定的第2区间中存在的各图像中,根据由所述变化量运算部算出的各第2变化量来决定第2值;偏离度运算部,每次指定所述第1区间时,分别算出所述各第1变化量和所述第1值的第1偏离度,同时,每 次指定所述第2区间时,分别算出所述各第2变化量和所述第2值的第2偏离度;图像抽出单元,抽出在所述算出的各第1偏离度和各第2偏离度的总和为最小时,这时通过所述区间指定部指定的第1区间中存在的图像。According to a third aspect of the present invention, there is provided a computer-readable recording medium storing a program for causing the computer to function as follows: an image input unit that inputs a plurality of images that are sequential in time; a variation calculation unit , respectively calculate the amount of change between the temporally adjacent images in the plurality of input images; the interval specifying unit sequentially changes the first one contained in all the intervals in which the plurality of images exist in the temporal order. The first interval is sequentially designated while intervals are performed, and a second interval is sequentially designated as an interval obtained by excluding the sequentially designated first interval from among the above-mentioned all intervals; Among the images existing in the , the first value is determined based on the first change amount calculated by the change amount calculation unit, and at the same time, from each image existing in the specified second interval, the first value is determined based on the change amount calculated by the The second value is determined by each second change amount calculated by the amount calculation unit; the deviation degree calculation unit calculates the first deviation between each first change amount and the first value each time the first section is designated. At the same time, when specifying the second interval each time, calculate the second degree of deviation of each of the second changes and the second value; the image extraction unit extracts the calculated first degree of deviation When the sum of the second degrees of deviation and the respective second degrees of deviation is the minimum, the image existing in the first section designated by the section specifying unit at this time.
根据本发明的第四观点,提供一种计算机可读取的记录介质,存储了使计算机作用为如下部件发挥作用的程序,图像输入部,输入时间顺序上连续的多个图像;抽出数设置部,从所述输入的多个图像中设置要抽出的图像数目;变化量运算部,分别算出在所述输入的多个图像中通过时间顺序上相邻的图像规定的该图像间的变化量;变化量特定部,依次特定通过所述变化量运算部算出的各变化量中,比与由所述抽出数设置部设置的数目对应的变化量小的各变化量;图像删除部,从所述输入的多个图像中删除规定由所述变化量特定部特定出的各变化量的图像;图像抽出单元,从所述输入的多个图像中抽出没有通过所述图像删除部删除的图像。According to a fourth aspect of the present invention, there is provided a computer-readable recording medium storing a program for causing the computer to function as follows: an image input unit that inputs a plurality of images that are sequential in time; an extraction number setting unit , setting the number of images to be extracted from the plurality of input images; the change amount calculation unit calculates the amount of change between the images specified by temporally adjacent images among the plurality of input images; The change amount specifying unit sequentially identifies each change amount calculated by the change amount calculation unit that is smaller than the change amount corresponding to the number set by the extraction number setting unit; Deleting an image specifying each amount of change specified by the change amount specifying unit from among the plurality of input images. The image extracting unit extracts an image not deleted by the image deleting unit from the plurality of input images.
根据本发明,可以与拍摄状况无关地从多个图像中精度良好地抽出被摄体运动大的图像群。According to the present invention, it is possible to accurately extract an image group with a large subject movement from among a plurality of images regardless of imaging conditions.
附图说明Description of drawings
图1是本发明的第1实施方式的图像处理装置的硬件结构图;FIG. 1 is a hardware configuration diagram of an image processing device according to a first embodiment of the present invention;
图2是表示本发明的第1实施方式的图像处理装置的功能结构的框图;2 is a block diagram showing the functional configuration of the image processing device according to the first embodiment of the present invention;
图3是本发明的第1实施方式的连续拍摄处理的流程的流程图;3 is a flowchart of the flow of continuous shooting processing according to the first embodiment of the present invention;
图4是表示本发明的第1实施方式的拍摄范围和被摄体的关系的一例的图;FIG. 4 is a diagram showing an example of the relationship between an imaging range and a subject according to the first embodiment of the present invention;
图5是说明本发明的第1实施方式的缩小图像排列和图像变化量排列用的图;5 is a diagram for explaining a reduced image arrangement and an image change amount arrangement according to the first embodiment of the present invention;
图6是表示本发明的第1实施方式的图像变化量运算处理的流程的流程图;6 is a flowchart showing the flow of image change amount calculation processing according to the first embodiment of the present invention;
图7是表示本发明的第1实施方式的孤立矩形函数和图像变化量排列的一例的图;7 is a diagram showing an example of an isolated rectangular function and an array of image change amounts according to the first embodiment of the present invention;
图8是本发明的第1实施方式的图像抽出处理的流程图;8 is a flowchart of image extraction processing according to the first embodiment of the present invention;
图9是表示本发明的第1实施方式的孤立矩形函数的具体例的图;9 is a diagram showing a specific example of an isolated rectangular function according to the first embodiment of the present invention;
图10是本发明的第1实施方式的孤立矩形函数的具体例的图;10 is a diagram of a specific example of an isolated rectangular function according to the first embodiment of the present invention;
图11是本发明的第2实施方式的图像处理装置的功能结构框图;11 is a block diagram showing the functional configuration of an image processing device according to a second embodiment of the present invention;
图12是本发明的第2实施方式的图像抽出处理的流程的流程图;12 is a flowchart of the flow of image extraction processing according to the second embodiment of the present invention;
图13是说明本发明的第2实施方式的图像抽出处理的缩小图像排列和图像变化量排列的变化用的图。13 is a diagram for explaining changes in the reduced image array and the image change amount array in image extraction processing according to the second embodiment of the present invention.
图中:In the picture:
100...图像处理装置、1...光学透镜装置、2...快门装置、3....致动器、4...CMOS传感器、5...AFE、6...TG、7...DRAM、8...DSP、9...CPU、10...RAM、11...ROM、12...液晶显示控制器、13...液晶显示器、14...操作部、15...存储卡、210...图像输入部、220...图像处理部、230...操作接受部、240...显示部、250...存储部、260...控制部100...image processing device, 1...optical lens device, 2...shutter device, 3...actuator, 4...CMOS sensor, 5...AFE, 6...TG , 7...DRAM, 8...DSP, 9...CPU, 10...RAM, 11...ROM, 12...LCD display controller, 13...LCD display, 14.. .operation section, 15...memory card, 210...image input section, 220...image processing section, 230...operation accepting section, 240...display section, 250...storage section, 260 ...control department
具体实施方式Detailed ways
【第1实施方式】[First Embodiment]
下面,根据附图来说明本发明的第1实施方式。Next, a first embodiment of the present invention will be described with reference to the drawings.
图1是表示本发明的第1实施方式的图像处理装置100的硬件结构的图。图像处理装置100例如可以由数码照相机构成。FIG. 1 is a diagram showing a hardware configuration of an
图像处理装置100包括光学透镜装置1、快门装置2、致动器3、CMOS传感器4、AFE5、TG6、DRAM7、DSP8、CPU9、RAM10、ROM11、液晶显示控制器12、液晶显示器13、操作部14和存储卡15。
光学透镜装置1由聚焦透镜和变焦透镜等构成。聚焦透镜是将被摄体像成像到CMOS传感器4的受光面上用的透镜。The
快门装置2作为截断入射到CMOS传感器4的光束的机械式快门发挥作用,同时还作为调节入射到CMOS传感器4的光束的光量的光圈发挥作用。快门装置2由快门叶片等构成。致动器3根据基于CPU9的控制,使快门装置2的快门叶片开关。The
CMOS传感器4是光电转换(拍摄)从光学透镜装置1入射的被摄体像的成像传感器。CMOS传感器4根据从TG6供给的时钟脉冲,每隔一定时间来光电转换被摄体像后积蓄图像信号,并依次输出所积蓄的图像信号。CMOS传感器4由CMOS(Complementary Metal Oxide Semiconductor) 型的成像传感器等构成。The
AFE(Analog Front End)5通过根据从TG6供给的时钟脉冲,对从CMOS传感器4供给的图像信号实施A/D(Analog/Dlgita1)变换处理等的各种信号处理,而生成数字信号后输出。AFE (Analog Front End) 5 performs various signal processing such as A/D (Analog/Digital) conversion processing on the image signal supplied from
TG(Timing Generator)6根据基于CPU9的控制,每隔一定时间将时钟脉冲分别供给CMOS传感器4和AFE5。According to the control based on CPU9, TG (Timing Generator) 6 supplies clock pulses to
DRAM(Dynamic Random Access Memou)7暂时存储由AFE5生成的数字信号和由DSP8生成的图像数据。DRAM (Dynamic Random Access Memory) 7 temporarily stores digital signals generated by AFE5 and image data generated by DSP8.
DSP(Digital Signal Processor)8通过根据基于CPU9的控制,对DRAM7中存储的数字信号实施白平衡校正处理、γ校正处理、YC变换处理等的各种图像处理,而生成由亮度信号和色差信号构成的帧图像数据。在下面的说明中,将通过该帧图像数据表现的图像称作帧图像。DSP (Digital Signal Processor) 8 performs various image processing such as white balance correction processing, γ correction processing, and YC conversion processing on the digital signal stored in
CPU(Central processing Unit)9控制图像处理装置100整体的动作。RAM(Random Access Memory)10在CPU9执行各处理时作为工作区域发挥作用。ROM(Read Only Memory)11存储图像处理装置100执行各处理所需的程序和数据。CPU9将RAM10作为工作区域,并通过与在ROM11上存储的程序协动来执行各处理。A CPU (Central processing Unit) 9 controls the overall operation of the
液晶显示控制器12根据基于CPU9的控制,将DRAM7和存储卡15中存储的帧图像数据转换为模拟信号后输出。液晶显示器13显示通过从液晶显示控制器12供给的模拟信号来表现的图像等。The liquid
操作部14从用户接受各种按钮的操作。操作部14具有电源按钮、十字按钮、决定按钮、菜单按钮和快门按钮等。操作部14将与从用户接受的各种按钮的操作对应的信号提供给CPU9。CPU9在从操作部14接收到这些信号后,执行基于所接收到的信号的处理。The
存储卡15是记录由DSP8生成的帧图像数据的记录介质。The
图2是表示本实施方式的图像处理装置100的功能结构的框图。本实施方式中,假定图像处理装置100包括图像输入部210、图像处理部220、操作接受部230、显示部240、记录部250和控制部260。FIG. 2 is a block diagram showing the functional configuration of the
图像输入部210根据基于控制部260的控制,输入多个帧图像数据。通过这多个帧图像数据分别表现的帧图像在时间顺序上连续。图像输入部 210可通过图1所示的光学透镜装置1、快门装置2、致动器3、CMOS传感器4、AFE5、TG6、DRAM7和DSP8实现。The
图像处理部220根据基于控制部260的控制,执行后述的图像变化量运算处理和图像抽出处理。图像处理部220包括图像变化量运算部221、区间指定部222、值决定部223、偏离度运算部224和图像抽出部225。The
图像变化量运算部221从由图像输入部210输入的帧图像的缩小图像中分别算出时间顺序上相邻的缩小图像间的变化量(例如,像素值的差的总和)。图像变化量运算部221可通过图1所示的CPU9实现。The image change
区间指定部222在由图像输入部210输入的全部帧图像的缩小图像存在的时间顺序上的所有区间中,依次改变规定的运动区间D(第1区间),同时依次指定改变后的运动区间D。区间指定部222依次指定作为从所述所有区间中去除运动区间D后的区间即非运动区间(第2区间)。后面描述该运动区间D和非运动区间D’。区间指定部222将运动区间D和非运动区间D’的指定结果供给值决定部223。区间指定部222可通过图1所示的CPU9实现。也可以将运动区间D作为在例如所有区间中例如帧图像的缩小图像没有间断的一块的区域,将非运动区间D’作为从所有区间中去除运动区间D后的区间。The
值决定部223将基于由区间指定部222指定的运动区间D中存在的各缩小图像间的变化量的值(例如,在运动区间D中存在的各缩小图像间的变化量的平均值)决定为第1值。另外,值决定部223将基于在由区间指定部222指定的非运动区间D’中存在的各缩小图像间的变化量的值(例如,在非运动图像区间D’中存在的各缩小图像间的变化量的平均值)决定为第2值。值决定部223将第1值和第2值的决定结果供给偏离度运算部224。值决定部223可由图1所示的CPU9来实现。The
偏离度运算部224在每当由区间指定部222指定了运动区间D时,分别算出各第1变化量和第1值(各第1变化量的平均值等)的偏离度(下面称作第1偏离度)。另外,偏离度运算部224在每当由区间指定部222指定了非运动区间D’时,分别算出各第2变化量和第2值〔各第2变化量的平均值等〕的偏离度(下面,称作第2偏离度)。偏离度运算部224可通过图1所示的CPU9来实现。The degree of
图像抽出部225在由偏离度运算部224算出的各第1偏离度和各第2偏离度的总和为最小时,从由图像输入部210输入的帧图像的缩小图像中抽出这时由区间指定部222指定的运动区间D中存在的缩小图像。图像抽出部225可通过图1所示的CPU9来实现。The
操作接受部230接受用户对图像处理装置100的操作。作为该操作,有对图像处理装置100进行用户指示拍摄的操作、设置用户拍摄图像的张数(下面称作拍摄张数)的操作和设置图像抽出部225抽出的帧图像的张数(下面称作抽出张数)的操作等。操作接受部230将接受了用户的操作的结果供给控制部260。操作接受部230可通过图1所示的操作部14来实现。The
显示部240显示由图像输入部210输入的帧图像等。显示部240可通过图1所示的液晶显示控制器12和液晶显示器13实现。The
记录部250记录表现由图像抽出部225抽出的帧图像的帧图像数据。记录部250可通过图1所示的存储卡15来实现。The
控制部260统一控制通过各部分执行的处理。控制部260可由图1所示的CPU9、RAM10和ROM11来实现。The
图3是表示图像处理装置100执行的连续拍摄处理流的程的一例的流程图。该连续拍摄处理作为控制部260(CPU9)执行的拍摄处理来加以说明。另外,以用户对操作接受部230进行规定的操作为契机来开始该连续拍摄处理。FIG. 3 is a flowchart showing an example of the flow of continuous shooting processing executed by the
控制部260开始连续拍摄处理,同时将由图像输入都210输入的帧图像依次供给显示部240,从而将帧图像作为实时预览(live preview)图像显示在显示部240上。The
步骤S1中,控制部260判断是否由用户进行了设置图像的拍摄张数和抽出张数的操作。具体上,控制部260通过是否从操作接受部230供给了与设置拍摄张数和抽出张数的操作对应的信号,从而判断是否由用户进行了设置图像的拍摄张数和抽出张数的操作。在步骤S1的判断为是的情况下,控制部260在设置了与用户的操作对应的拍摄张数和抽出张数后,使处理进入到步骤S2。另一方面,在步骤S1的判断为否的情况下,控制部260返回步骤S1的处理。In step S1 , the
在之后的说明中,作为所设置的拍摄张数假定为N张,作为抽出张数假定为M张。即,从时间顺序上连续的N张帧图像中抽出在时间上彼此先后的图像间被摄体运动大的M张帧图像。例如,如图4所示,图像处理装置100连续拍摄N张汽车通过CMOS传感器4的拍摄范围内时的图像,并从该N张的连续图像中仅抽出拍摄了在拍摄范围内移动的汽车的M张图像。In the following description, it is assumed that N sheets are set as the number of photographed sheets, and M sheets are assumed as the number of extracted sheets. That is, M frame images in which the subject motion is large between temporally successive images are extracted from N temporally continuous frame images. For example, as shown in FIG. 4, the
步骤S2中,控制部260监视对应于从操作接受部230供给的快门按钮的操作的信号。控制部260在检测出与用户进行的快门按钮操作对应的信号后,向图像输入部210输入时间顺序上连续的N张帧图像(连续拍摄)。在下面的说明中,将这N张帧图像分别表示为p[x](0≤x≤N-1)。x是在各帧图像上添加的索引号。这里,从时间顺序上最早的帧图像起依次添加0,1,2,...,N-1的各索引号。将按索引顺序,即时间顺序排列帧图像后的排列设作图像排列P。In step S2 , the
步骤S3中,控制部260通过图中未示的拍摄处理部,缩小拍摄到的N张帧图像,并生成在时间顺序上排列的N张缩小图像。该缩小处理是缩小一般进行的图像的像素数的处理。缩小率可以考虑被摄体的最小的尺寸和手抖动的影响,与相机的特性相匹配来适当决定。在下面的说明中,将该N张缩小图像分别表示为ps[x](0≤x≤N-1)。该缩小处理中,使帧图像的索引号与由该帧图像生成的缩小图像的索引号一致。即,对于缩小图像,也与帧图像相同,从时间顺序上最早的缩小图像起依次添加0,1,2,...N-1的索引号。In step S3 , the
如图5所示,将按索引号顺序,即时间顺序排列这些缩小图像后的排列设作缩小图像排列PS。As shown in FIG. 5 , the arrangement in which these reduced images are arranged in the order of index numbers, that is, in time order, is set as the reduced image arrangement PS.
步骤S4中,控制部260进行图像变化量运算处理。即,如图5所示,对于缩小图像排列PS,将时间上彼此先后的缩小图像ps[x]彼此的变化量作为图像变化量e算出。将该图像变化量e的索引号作为上述x,将该算出的各图像变化量表示为e[x](0≤x≤N-2)。这里,从时间顺序上最早的图像变化量起依次添加0,1,2,...N-2的索引号。将按索引号顺序即时间顺序上顺序排列这些图像变化量e[x]后的排列设作图像变化量排列E。后面描述步骤S4的图像变化量运算处理的细节。In step S4, the
步骤S5中,控制部260从N张缩小图像中仅抽出被摄体像运动比较大的缩小图像。后面描述步骤S5的图像抽出处理的细节。In step S5 , the
步骤S6中,控制部260将通过步骤S5的处理抽出的缩小图像调整为M张。这是因为相对于通过用户的操作设置的抽出张数是M张,在通过步骤S5的处理抽出比该M张多的张数的缩小图像的情况下和通过步骤S5的处理抽出比M张少的张数的缩小图像的情况下,需要将缩小图像的张数调整为用户希望的M张。In step S6, the
由此,具体上,在抽出的缩小图像的张数比M大的情况下,例如,相隔规定间隔抽出运动区间D中包含的图像,并将图像数设作M张。另一方面,在所抽出的缩小图像比M张少的情况下,例如,通过扩展运动区间D的范围,而将运动区间D中含有的缩小图像的张数设作M张。Thus, specifically, when the number of extracted reduced images is greater than M, for example, images included in the motion section D are extracted at predetermined intervals, and the number of images is M. On the other hand, when the extracted reduced images are less than M, for example, by expanding the range of the moving interval D, the number of reduced images included in the moving interval D is set to M.
步骤S7中,控制部260仅将与通过步骤S6的处理调整了抽出张数的缩小图像对应的帧图像数据记录到记录部250中。这时,控制部260将合成在记录部250上记录的各帧图像数据后的合成图像和各帧图像数据的缩小图像暂时显示到显示部240上。In step S7 , the
图6是表示步骤S4的图像变化量运算处理的详细流程的一例的流程图。参考图6来说明图像变化量运算处理的细节。在下面的说明中,该图像变化量运算处理根据基于控制部260的控制,由图像处理部220来进行。FIG. 6 is a flowchart showing an example of a detailed flow of image change amount calculation processing in step S4. Details of the image change amount calculation processing will be described with reference to FIG. 6 . In the following description, this image change amount calculation process is performed by the
该图像变化量运算处理是将时间顺序上彼此相邻的缩小图像ps中彼此位于同一位置的像素的像素值的差绝对值的总和作为图像变化量e来加以运算的处理。因此,该图像变化量e由时间顺序上彼此相邻的缩小图像ps来规定。This image change amount calculation process is a process of calculating the sum of the absolute value differences of the pixel values of pixels located at the same position among the reduced images ps adjacent to each other in time order as the image change amount e. Therefore, the image change amount e is specified by the reduced images ps adjacent to each other in time order.
在与该图像变化量运算处理有关的说明中,将图像变化最e的总和的暂定值设作d。为了方便,代替上述x而用i来表示缩小图像的索引号。另外,对于缩小图像ps[i]的像素数,设水平方向即x方向的像素数为p、垂直方向即y方向的像素数为q。另外,用坐标(x,y)来表示缩小图像ps[i]上的任意像素的位置。In the description of this image change amount calculation process, the provisional value of the sum of the image changes most e is assumed to be d. For convenience, the index number of the reduced image is represented by i instead of the above-mentioned x. As for the number of pixels of the reduced image ps[i], p is the number of pixels in the horizontal direction, that is, the x direction, and q is the number of pixels in the vertical direction, that is, the y direction. Also, the position of an arbitrary pixel on the reduced image ps[i] is represented by coordinates (x, y).
图像处理部220设置0(零)作为索引号i(步骤s11),并将暂定值d的初始值设为0(步骤S12),将y坐标的初始值设为1(步骤S13),将x坐标的初始值设为1(步骤S14)。The
接着,图像处理部220的图像变化量运算部221算出缩小图像ps[i]在坐标(x,y)上的像素的像素值和缩小图像ps[i+1]在坐标(x,y)上的像素的像素值的差的绝对值,并将所算出的差的绝对值加到暂定值d上(步骤S15)。Next, the image change
接着,图像处理部220判断x是否是p(步骤316)。在步骤S16的判断为是的情况下,图像处理部220使处理进入到步骤S18。另一方面,在步骤S16的判断为否的情况下,图像处理部220增加坐标x(将x加1)(步骤S17),并使处理回到步骤S15。Next, the
接着,图像处理部220判断y是否为q(步骤S18)。在步骤S18的判断为否的情况下,图像处理部220增加坐标y(将y加1)(步骤S19),并使处理回到步骤S14。Next, the
另一方面,在步骤S18的判断为是的情况下,图像处理部220将图像变化量e[i]保持为暂定值d(步骤S20)。接着,图像处理部220判断当前的索引号i是否为N-2(N是步骤S1的处理中设置的拍摄张数)(步骤S21)。在步骤S21的判断为否的情况下,图像处理部220增加计数值i(将i增1)(步骤S22),并使处理返回到步骤S12。另一方面,在步骤S21的判断为是的情况下,图像处理部220终止图像变化量运算处理。On the other hand, when the determination in step S18 is YES, the
接着,参考图7来说明步骤S5的图像抽出处理。图7中,横轴表示索引号x,纵轴表示图像变化量e[x]。图中,通过实线表示的曲线表示与各索引号x对应的图像变化量e[x]。另外,通过虚线表示的曲线表示后述的孤立矩形函数r[x]。另外,由于图像变化量e[x]的值是对每个作为整数值的索引号定义的离散值,所以在图7中表示为用直线连接图像变化量e[x]后的各值。Next, the image extraction process in step S5 will be described with reference to FIG. 7 . In FIG. 7 , the horizontal axis represents the index number x, and the vertical axis represents the image change amount e[x]. In the figure, the curve indicated by the solid line represents the image change amount e[x] corresponding to each index number x. In addition, the curve indicated by the dotted line represents the isolated rectangular function r[x] described later. In addition, since the value of the image change amount e[x] is a discrete value defined for each index number which is an integer value, it is shown in FIG. 7 as each value of the image change amount e[x] connected by a straight line.
首先,将与运动区间D的起始点和终止点对应的索引号分别设作x1、x2。由此,运动区间D作为x1到x2的区间,如下这样表示。First, let the index numbers corresponding to the start point and end point of the motion section D be x1 and x2, respectively. Accordingly, the motion section D is expressed as a section from x1 to x2 as follows.
D=[x1,x2](0<x1<x2<N-2)D=[x1, x2] (0<x1<x2<N-2)
这里,[x1,x2]表示x1到x2的区间。这些x1,x2为运动区间D和非运动区间D’的分隔点(边界)。并且,图像处理部220的区间指定部222依次指定以上的起始点x1、终止点x2的全部组合,并对由这些x1、x2的多个组合分别规定的运动区间D和多个非运动区间D进行下面的处 理。Here, [x1, x2] represents the interval from x1 to x2. These x1, x2 are the separation points (boundaries) between the motion section D and the non-motion section D'. Then, the
图像处理部220的值决定部223对于由区间指定部222指定的x1、x2的组合的每一个,根据与运动区间D中含有的所有索引号x对应的图像变化量e[x],来决定第1值。图像处理部220的值决定部223对于由区间指定部222指定的x1、x2的组合的每一个,根据与在非运动区间D’中含有的所有索引号x对应的图像变化量e[x],来决定第2值。具体上,值决定部223算出作为属于运动区间D的各图像变化量排列E的各图像变化量e[x]的平均值的a,并将该a决定为第1值。值决定部223算出作为属于非运动区间D’的各图像变化量排列E的各图像变化量e[x]的平均值的b,并将该b决定为第2值。The
图像处理部220的偏离度运算部224对于由区间指定部222指定的x1、x2的组合的每一个,如下这样来定义孤立矩形函数r[x]。The degree of
该孤立矩形函数r[x]的值在运动区间D中为a,在非运动区间D’中为b。The value of this isolated rectangular function r[x] is a in the moving interval D, and b in the non-moving interval D'.
图像处理部220的偏离度运算部224对于由区间指定部222指定的x1、x2的组合的每一个,来算出孤立矩形函数r[x]和图像变化量排列E的偏离度。所谓偏离度J是指每个索引号x的孤立矩形函数r[x]和图像变化量排列E的差的总和。具体上,如下式这样,将孤立矩形状函数r[x]和图像变化量排列E的差平方后的值的总和设作偏离度J。The degree of
若将偏离度J为最小时通过由区间指定部222指定的x1、x2而规定的运动区间称作运动区间Dmin,则图像抽出部225从由图像输入部210输入的帧图像的缩小图像中抽出缩小图像ps,该缩小图像ps分别规定在该运动区间Dmin中含有的所有图像变化量e。If the motion interval defined by x1 and x2 designated by the
接着,说明步骤S5的图像抽出处理的流程的示意。在下面的说明中, 将偏离度J的最小值设作Jmin,将偏离度Jmin的运动区间D的起始点设作m1、将终止点设作m2,将与起始点m1和终止点m2对应的缩小图像排列PS的索引号设作xin、xout。Next, a schematic flow of the image extraction process in step S5 will be described. In the following description, set the minimum value of the deviation degree J as Jmin, set the starting point of the motion interval D of the deviation degree Jmin as m1, set the ending point as m2, and set the corresponding starting point m1 and ending point m2 The index numbers of the reduced image array PS are xin and xout.
首先,图像处理部220使x1,x2变化,同时依次算出偏离度J,通过彼此比较依次算出的各个偏离度J,而求出依次算出的各偏离度J中作为最小值的偏离度Jmin。并且,图像处理部220求出偏离度J成为最小值Jmin时指定的运动区间Dmin的起始点m1、终止点m2。这时,图像处理部220对x1,x2可取的所有组合进行完全搜索。这里,x1,x2是离散值。First, the
第1实施方式的所谓完全搜索是指使x1在0到(N-3)之间变化,同时使x2在x1和(N-2)之间变化,对x1和x2的所有组合确认偏离度J的处理。具体上,首先,将x1固定为0,使x2在1到(N-2)之间变化。接着,将x1固定为1,在使x2在2到(N-2)之间变化。接着,将x1固定为2,而使x2在3到(N-2)之间变化。这样,图像处理部220使x1的值依次加1而从0增加到(N-3),同时,对应于各x1后,x2也依次加1。图像处理部220在每次x1或x2变化1时,确认这次算出的偏离度J。The so-called complete search in the first embodiment refers to changing x1 between 0 and (N-3), while changing x2 between x1 and (N-2), and checking the degree of deviation J for all combinations of x1 and x2. deal with. Specifically, first, x1 is fixed at 0, and x2 is changed between 1 and (N-2). Next, fix x1 to 1, and change x2 between 2 and (N-2). Next, x1 is fixed at 2, and x2 is changed between 3 and (N-2). In this way, the
通常,由于1次连续拍摄所得到的帧图像是几张左右,所以作为帧图像的索引的x比较有限制。因此,控制部260(CPU9)的基于完全搜索造成的处理负担小。Usually, since the number of frame images obtained by one continuous shooting is about several, x which is an index of frame images is relatively limited. Therefore, the processing load by the complete search on the control unit 260 (CPU 9 ) is small.
图8是表示步骤S5的图像抽出处理的详细流程的流程图。参考图8,来说明图像抽出处理的细节。在下面的说明中,该图像抽出处理根据控制部260进行的控制,由图像处理部220来进行。FIG. 8 is a flowchart showing the detailed flow of the image extraction process in step S5. Details of the image extraction process will be described with reference to FIG. 8 . In the following description, this image extraction process is performed by the
首先,图像处理部220将Jmin的初始值设置为接近于无穷大的规定值(步骤S31)。接着,图像处理部220的区间指定部222将x1的初始值设置为零(步骤S32),将x2的初始值设置为x1+1(步骤S33)。接着,图像处理部220的值决定部223决定孤立矩形函数r[x]在运动区间D中的函数值a、在非运动区间D’中的函数值b(步骤S34)。接着,图像处理部220的偏离度运算部224算出偏离度J(步骤S35)。First, the
接着,图像处理部220判断通过步骤S35的处理算出的偏离度J是否比Jmin小(步骤S36)。在步骤S36的判断为否的情况下,图像处理部 220使处理进入到步骤S39。另一方面,在步骤S36的判断为是的情况下,图像处理部220使处理进入到步骤S37。步骤S37中,图像处理部220将由步骤S35的处理算出的偏离度J设作Jmin。接着,图像处理部220将起始点m1暂时设置为x1,将终止点m2暂时设置为x2(步骤S38)。’Next, the
步骤S39中,图像处理部220判断x2是否为N-2(N是在步骤S 1的处理中设置的拍摄张数)。在步骤S39的判断为是的情况下,图像处理部220使处理进入到步骤S41。接着,图像处理部220判断x1是否为N-3(步骤S41)。在步骤S41的判断为是的情况下,图像处理部220使处理进入到步骤S43。在步骤S41的判断为否的情况下,图像处理部220增加计数值x1(使x1增1)(步骤S42),并使处理返回到步骤S33。In step S39, the
另一方面,在步骤S39的判断为否的情况下,图像处理部220增加计数值x2(使x2增1)(步骤S40),并使处理返回到步骤S34。On the other hand, when the determination in step S39 is NO, the
步骤S43中,由于步骤S33~S41的循环处理终止,所以确定了起始点m1和终止点m2。这些m1、m2是图像变化量排列E的索引号,m1、m2的图像变化量e[m1]、e[m2]分别根据两个缩小图像ps算出。由此,需要对应于e[m1]、e[m2],而决定将2个缩小图像PS的哪一个采用为ps[xin]、ps[xout]。因此,步骤S43中,图像处理部220将(m1+1)设置为起始点xin,将m2设置为终止点xout。In step S43, since the loop processing of steps S33-S41 is terminated, the start point m1 and the end point m2 are determined. These m1 and m2 are index numbers of the image change amount array E, and the image change amounts e[m1] and e[m2] of m1 and m2 are respectively calculated from the two reduced images ps. Therefore, it is necessary to determine which of the two reduced images PS to use as ps[xin] and ps[xout] corresponding to e[m1] and e[m2]. Therefore, in step S43, the
在步骤S44中,在缩小图像排列PS中,在运动区间D的起始点的缩小图像ps[xin]到终止点的缩小图像ps[xout]中,抽出时间顺序上连续的一系列缩小图像。并且,图像处理部220在步骤S44的处理后使图像抽出处理终止。In step S44 , in the reduced image array PS, a series of time-sequential reduced images are extracted from the reduced image ps[xin] at the start point to the reduced image ps[xout] at the end point of the motion section D. Furthermore, the
第1实施方式中,作为图像变化量排列E的比较对象,定义了以a、b为函数值的孤立矩形函数r[x]。由于该函数值a是运动区间D中图像变化量排列E的平均值,函数值b是非运动区间D’中图像变化量排列E的平均值,所以根据该运动区间D的起始点x1和终止点x2的位置来动态变化。因此,仅通过比较阈值a、b和图像变化量排列E,而求出偏离度J的最小值Jmin,从而可以将该偏离度Jmin的起始点m1的图像变化量e[m1]、终止点m2的图像变化量e[m2]作为变化相对大的图像变化量可靠抽出。由此,可以抽出图像变化量大的帧图像群、即被摄体运动大的 帧图像群。In the first embodiment, an isolated rectangular function r[x] having a and b as function values is defined as a comparison object of the image change amount array E. Since the function value a is the average value of the image change amount arrangement E in the motion interval D, and the function value b is the average value of the image change amount array E in the non-motion interval D', so according to the starting point x1 and the end point of the motion interval D The position of x2 is changed dynamically. Therefore, only by comparing the threshold values a, b and the image change amount arrangement E, the minimum value Jmin of the deviation degree J can be obtained, so that the image change amount e[m1] of the starting point m1 and the end point m2 of the deviation degree Jmin can be obtained. The image change amount e[m2] of is reliably extracted as a relatively large image change amount. As a result, a group of frame images with a large amount of image change, that is, a group of frame images with a large subject motion can be extracted.
图9(a)~(d)是x1=1的情况下的孤立矩形函数r[x]的具体例,图10(a)~(d)是x1=3的情况下的孤立矩形函数r[x]的具体例。图9(a)~(d)和图10(a)~(d)中,横轴是索引号x,纵轴是图像变化量。图9(a)~(d)和图10(a)~(d)中,用粗实线描绘的矩形波表示孤立矩形函数r[x],用细实线描绘的波形表示图像变化量排列E。另外,由于图像变化量e[x]的值是离散值,所以在这些图9(a)~(d)和图10(a)~(d)中,用直线连接图像变化量e[x]的各值。Fig. 9(a) - (d) are specific examples of the isolated rectangular function r[x] in the case of x1 = 1, and Fig. 10 (a) - (d) are the isolated rectangular function r[ in the case of x1 = 3 x] for a specific example. In FIGS. 9( a ) to ( d ) and FIGS. 10( a ) to ( d ), the horizontal axis represents the index number x, and the vertical axis represents the amount of image change. In Figure 9(a)-(d) and Figure 10(a)-(d), the rectangular wave drawn with thick solid line represents the isolated rectangular function r[x], and the waveform drawn with thin solid line represents the arrangement of image changes e. In addition, since the value of the image change amount e[x] is a discrete value, in these Figs. values of .
如这些图9(a)~(d)和图9(a)~(d)所示,可知孤立矩形函数r[x]的函数值a是运动区间D中图像变化量排列E的平均值,函数值b是非运动区间D’中图像变化量排列E平均值,所以a和b根据运动区间D的起始点x1和终止点x2的位置来动态变化。由于图10(c)中表示孤立矩形函数r[x]的波形和表示图像变化量排列E的波形最近似,所以可以理解为偏离度J在图10(c)的x1=3、x2=6的情况下最小。As shown in these Figures 9 (a) to (d) and Figures 9 (a) to (d), it can be seen that the function value a of the isolated rectangular function r[x] is the average value of the image change amount array E in the motion interval D, The function value b is the average value of the image variation arrangement E in the non-moving interval D', so a and b change dynamically according to the positions of the starting point x1 and the ending point x2 of the moving interval D. Since the waveform representing the isolated rectangular function r[x] in Fig. 10(c) is the closest to the waveform representing the arrangement E of the image variation, it can be understood that the degree of deviation J is at x1=3, x2=6 in Fig. 10(c) case minimum.
如以上说明的,第1实施方式的图像处理装置100将孤立矩形函数r[x]的函数值a作为运动区间D中图像变化量排列E的平均值,将函数值b作为非运动区间D’中图像变化量排列E的平均值。接着,求出函数值a、b和图像变化量排列E的偏离度J为最小的Jmin。并且,求出对应于该偏离度Jmin下的起始点m1的图像变化量e[m1]的图像p[xin],对应于终止点m2的图像变化量e[m2]的图像p[xout]。并且,从图像排列P中抽出从帧图像p[xin]到帧图像P[xout]时间上连续的帧图像群。As described above, the
这样,两个函数值a、b不是恒定值,而是根据运动区间D的起始点x1和终止点x2的位置动态变化的图像变化量排列E的平均值。由此,仅通过比较阈值a、b和图像变化量排列E,并求出偏离度J的最小值Jmin,就可以将该偏离度Jmin下的起始点m1的图像变化量e[m1]、终止点m2的图像变化量e[m2]作为变化相对大的图像变化量可靠抽出。因此,可以从时间顺序上连续的图像排列P中精度良好地抽出被摄体运动大的帧图像群。因此,本实施方式的图像处理装置100例如可以仅从连续拍摄例如,田径竞技和球类等这种被摄体(田径选手和球)经过拍摄范围内的场 景的图像和连续拍摄如体操竞技这种被摄体(体操选手)在拍摄范围内以静止、移动、静止的顺序动作的场景的图像中适当抽出在拍摄范围内被摄体运动大的图像。In this way, the two function values a and b are not constant values, but the average value of the image variation array E according to the dynamically changing positions of the starting point x1 and the ending point x2 of the motion interval D. Therefore, only by comparing the threshold values a, b and the image change amount arrangement E, and finding the minimum value Jmin of the deviation degree J, the image change amount e[m1] of the starting point m1 under the deviation degree Jmin, the end point The image change amount e[m2] of the point m2 is reliably extracted as a relatively large image change amount. Therefore, it is possible to accurately extract a group of frame images in which the subject motion is large from the temporally continuous image sequence P. Therefore, the
另外,例如,即使因手抖动各图像变化量e的值变化,即,即使因手抖动,表示图9和图10中所示的图像变化量排列E的波形位置在上下方向上改变,由于函数值a、b分别是图像变化量排列E的平均值,所以函数值a、b也跟随该变化。因此,第1实施方式的图像处理装置100不需要现有这种阈值的调整,几乎不会受到手抖等外界干扰的影响,可以与拍摄状态无关地适当抽出被摄体运动大的帧图像群,通用性高。Also, for example, even if the value of each image change amount e changes due to hand shake, that is, even if the waveform position representing the image change amount array E shown in FIGS. 9 and 10 changes in the up-down direction due to hand shake, the function The values a and b are the average values of the image variation array E, respectively, so the function values a and b also follow this variation. Therefore, the
在图像的背景区域和被摄体区域的样子大致一样的情况下,在时间上彼此先后的图像间的变化量与帧图像间的被摄体的运动的大小成正比增大。但是,实际上,由于在帧图像间产生被被摄体遮去的背景区域的差、被摄体区域的面积和内容的差、进一步,由手抖动造成的整体边缘的差等,所以有在时间上彼此先后的帧图像间的变化量不稳定变化的问题。When the background area and the subject area of the image have substantially the same appearance, the amount of change between temporally successive images increases in proportion to the magnitude of the subject's motion between frame images. However, in practice, there are differences in the background area covered by the subject, the difference in the area and content of the subject area, and the difference in the overall edge caused by hand shake between the frame images. The problem of unstable change in the amount of change between frame images that are successive in time.
因此,第1实施方式的图像处理装置100定义了由2个函数值a、b构成的孤立矩形函数r[x]。该孤立矩形函数r[x]仅通过决定运动区间D的起始点x1和终止点x2的2个参数,就可在运动区间D中,将运动区间D中含有的图像变化量e的平均值a定义为函数值,对于非运动区间D’,将非运动区间D’中含有的图像变化量e的平均值b定义为函数值。由此,第1实施方式的图像处理装置100即使几个图像变化量e因噪声而有一点改变,但由于孤立矩形状函数r[x]和图像变化量排列E的相对关系不会大大受到该图像变化量e的变动的影响,所以对抗外部干扰强。Therefore, the
但是,在进行连续拍摄的情况下,在由用户按下快门按钮而引起,在仅在快门按钮刚按下之后的一定期间发生了手抖动的情况下,快门按钮刚按下之后所拍摄的图像的变化量变大。这种情况下,在例如图4所示的拍摄状况中,分别在快门按钮刚按下之后的拍摄区间、汽车通过拍摄范围内的拍摄区间这两个不同的拍摄区间中,时间上连续的帧图像间的变化量变大。由此,在这种情况下,关注分别从两个不同的拍摄区间抽出帧图像群。例如在图4所示的拍摄状况中,关注有可能抽出快门按钮刚按下之后拍摄到的图像、即,被摄体不存在于拍摄范围中且缺少变化的帧图像群的问题。However, in the case of continuous shooting, if the hand shake occurs only for a certain period of time immediately after the shutter button is pressed due to the user pressing the shutter button, the image captured immediately after the shutter button is pressed The amount of change becomes larger. In this case, for example, in the shooting situation shown in FIG. 4 , in two different shooting intervals, namely, the shooting interval immediately after the shutter button is pressed and the shooting interval in which the car passes through the shooting range, temporally consecutive frames The amount of change between images becomes larger. Therefore, in this case, attention should be paid to extracting frame image groups from two different imaging sections. For example, in the imaging situation shown in FIG. 4 , there is a concern that an image captured immediately after the shutter button is pressed, that is, a group of frame images in which the subject does not exist in the imaging range and lacks a change, may be extracted.
但是,根据第1实施方式的图像处理装置100,由于仅决定了一个抽出帧图像群的拍摄区间(运动区间D),所以可以降低抽出不需要的帧图像群的可能性。即,根据第1实施方式的图像处理装置100,即使因手抖动等干扰的影响,在表示图像变化量排列E的波形中存在多个波峰区间,即,即使在图像变化量排列E中存在多个图像变化量e大的区间,也可从抽出对象中排除因手抖动等干扰的影响而使图像间的变化量大的区间,而能更可靠地抽出被摄体像的运动大的图像。However, according to the
第1实施方式的图像处理装置100根据在缩小图像排列PS中时间上彼此先后的缩小图像彼此的差来算出图像变化量e。由于在缩小图像排列PS中与时间上彼此先后的缩小图像ps对应的帧图像间的拍摄时间间隔短,所以即使发生手抖动和荧光灯的闪烁等,由于时间上彼此先后的缩小图像ps彼此的图像变化量e不会大大变化,所以很难受到干扰的影响。由此,由于在用户用自己的手握住图像处理装置100而执行拍摄的情况下,也不需要执行缩小图像ps彼此的位置匹配处理,所以可以降低图像处理部220(CPU9)的计算负担。The
【第2实施方式】[Second Embodiment]
接着,说明本发明的第2实施方式。第2实施方式中,图像处理都220的结构和步骤S5的图像抽出处理与第1实施方式不同。由于其他结构和处理与第1实施方式相同,所以省略其说明。Next, a second embodiment of the present invention will be described. In the second embodiment, the configuration of the
图11是表示第2实施方式的图像处理装置100的功能结构框图。第2实施方式的图像处理装置100的功能结构中与第1实施方式不同仅是图像处理部220的结构。假定第2实施方式的图像处理部220包括图像变化量运算部221、抽出张数设置部226、图像变化量特定部227、判断部228、图像删除部229和图像抽出部225。FIG. 11 is a block diagram showing a functional configuration of an
第2实施方式中,图像变化量运算部221最先从通过图像输入部210输入的帧图像的缩小图像中分别算出时间上彼此先后的缩小图像间的变化量(例如像素值的差的总和)。并且,每当由图像删除部220删除缩小图像时,对于从由图像输入部210输入的帧图像的缩小图像中去除该删除的缩小图像后的各缩小图像,重复算出时间上彼此先后的缩小图像间的变化量。In the second embodiment, the image change
抽出张数设置部226响应于用户进行的设置抽出张数的操作,来设置与该操作对应的抽出张数M。在该设置处理时,将表示通过抽出用户进行的操作设置的抽出张数M的信号经控制部260从操作接受部230供给抽出张数设置部226。抽出张数设置部226可通过图1所示的CPU9来实现。In response to the user's operation of setting the number of sheets to be drawn, the number of sheets to be drawn setting
图像变化量特定部227在每次通过图像删除部229删除缩小图像而由图像变化量运算部221算出图像变化量时,特定算出的图像变化量中为最小的图像变化量。另外,这时,图像变化量特定部227还对特定出的为最小的图像变化量特定在时间上彼此先后的两个图像变化量。图像变化量特定部227可通过图1所示的CPU9来实现。The image change
判断部228在每次图像变化量特定部227特定各图像变化量时,对于为最小的图像变化量,判断在时间顺序上先后相邻的两个图像变化量中,哪一个小。判断部228将该判断结果供给图像删除部229。判断部228可通过图1所示的CPU9来实现。The judging
图像删除部229从缩小图像排列PS中删除从判断部228供给的判断结果所示的被判断为小的一方的图像变化量。图像删除部229可通过图1所示的CPU9来实现。The
第2实施方式中,图像抽出部225从由图像输入部210输入的帧图像的缩小图像中抽出没有通过图像删除部229删除而剩余的缩小画橡。In the second embodiment, the
图12是表示第2实施方式的图像抽出处理(步骤S5的处理)流程的一例的流程图。参考图12,来说明第2实施方式的图像抽出处理的细节。在下面的说明中,该图像抽出处理根据基于控制部260的控制,由图像处理部220来进行。FIG. 12 is a flowchart showing an example of the flow of image extraction processing (processing in step S5 ) in the second embodiment. Details of the image extraction process in the second embodiment will be described with reference to FIG. 12 . In the following description, this image extraction process is performed by the
首先,在步骤S51中,图像处理部220的图像变化量特定部227从图像变化量排列E中特定为最小的图像变化量e。在下面的说明中,将通过步骤S51的处理特定出的最小的图像变化量设作e[k],即,将与特定出的最小图像变化量对应的索引号设作k。First, in step S51 , the image change
步骤S52中,图像处理部220的图像变化量特定部227特定图像变化量e[k-1]和图像变化量e[k+1]。图像变化量e[k-1]是在图像变化量排列P中,在时间顺序上比图像变化量e[k]在先(过去)相邻的图像变化量。图像变化量e[k+1]是在图像变化量排列P中,在时间顺序 上比图像变化量e[k]在后(未来)相邻的图像变化量。In step S52 , the image change
步骤S53中,图像处理部220的判断部228判断图像变化量e[k-1]是否比图像变化量e[k+1]小。在步骤S53的判断为是的情况下,图像处理部220使处理进入到步骤S54。另一方面,在步骤S53的判断为否的情况下,图像处理部220使处理进入到步骤S55。In step S53 , the
在步骤S54中,图像处理部220的图像删除部229从缩小图像排列PS中删除与图像变化量e[k]对应的2个缩小图像ps[k]、ps[k+1]中在时间顺序上位于前面的缩小图像ps[k]。换而言之,图像删除部229删除在规定图像变化量e[k-1]的2个缩小图像ps[k-1]、ps[k]中,在时间顺序上位于靠后的ps[k]。In step S54, the
在步骤S55中,图像处理部220的图像删除部229从缩小图像排列PS中删除与图像变化量e[k]对应的2个缩小图像ps[k]、ps[k+⊥]中在时间顺序上位于后面的缩小图像ps[k+1]。换而言之,图像删除部229删除规定图像变化量e〔k+1〕的2个缩小图像ps[k+1]、ps[k+2]中,在时间顺序上位于靠前的Ps[k+1]。In step S55, the
步骤S56中,图像处理部220的判断部228判断通过之前的步骤S54或步骤S55的处理删除缩小图像后的结果在缩小图像排列PS中保留的缩小图像ps的张数是否是M。在步骤S56的判断为否的情况下,图像处理都220使处理进入到步骤S58。In step S56, the judging
步骤S58中,图像处理部220的图像删除部229从图像变化量排列E中删除通过由之前的步骤S54或步骤S55的处理删除后的缩小图像ps来分别规定的两个图像变化量e。在该删除处理中,在例如,如图13所示,在图像删除部229这次删除了缩小图像ps[k]的情况下,删除通过该删除后的缩小图像ps[k]规定的2个图像变化量e[k]、e[k-1],并且算出表示与删除后的缩小图像ps[k]相邻的缩小图像ps[k-1]、ps〔k+1〕的变化量的图像变化量e[k-1]’,并插入到图像变化量排列E中。In step S58 , the
另一方面,在步骤S56的判断为是的情况下,图像处理部220的图像抽出部225抽出剩下的M张缩小图像ps(步骤S57)。在该步骤S57的处理后,图像处理部220使图像抽出处理终止。On the other hand, when the determination in step S56 is YES, the
如上这样,图像处理部220在剩下的缩小图像ps为M张(步骤S56 中是)之前,在步骤S51中持续抽出最小的图像变化量,在步骤S54,S55中持续删除缩小图像ps,在步骤S58中持续删除图像变化量e。并且,在步骤S58中没有删除而最终剩下的图像变化量排列E中最小的图像变化量e根据所设置的M值变化。即,若所设置的M值小,则步骤S58中没有删除而最终剩余图像变化量排列E中最小图像变化量e大。另一方面,若所设置的M值大,则在步骤S58中没有删除而最终剩余图像变化量排列E中最小的图像变化量e小。由此,步骤S51中,在剩余的缩小图像ps为M张(步骤S56中为是)之前,持续全部删除比对应于所设置的M值的特定图像变化量(在步骤S58中没有删除而最终剩余的图像变化量排列E中最小的图像变化量e)小的图像变化量e。As above, the
根据本实施方式,第2实施方式的图像处理装置100通过时间顺序排列图像变化量e而作为图像变化量排列E,并通过彼此比较这些图像变化量e,而抽出相对小的值的图像变化量e[k],并删除与该抽出的图像变化量e[k]对应的缩小图像p,而抽出与图像排列P中剩余的缩小图像所对应的帧图像。即,第2实施方式的图像处理装置100着眼于图像变化量e彼此的相对关系,从图像变化量排列E中抽出与相对大的值的图像变化量e对应的图像p。由此,由于即使在因用户的手抖动图像间变化量e改变的情况下,也可跟踪该变化,所以可以与摄像状况无关地高精度仅抽出被摄体的运动大的图像。According to this embodiment, the
第2实施方式的图像处理装置100着眼于图像变化量e彼此的相对关系,从图像变化量排列E中仅删除图像变化量e相对小的图像p,即,缺少变化的冗余图像。与第1实施方式那样抽出连续的图像群不同,仅离散抽出运动大的图像。由此,并不限于如第1实施方式那样特定的运动模态,可适用于被摄体停留在图像内,或被摄体比较不规则移动这种一般的运动场景。由此,例如,即使合成在拍摄范围内被摄体不规则重复静止和移动的场景的拍摄图像而生成一个合成图像的情况下,也可防止仅合成缺少变化的冗余图像。即,若通过合成由第二实施方式的图像处理装置100抽出的帧图像群来生成合成图像,则可得到被摄体的运动有张弛的合成图像。The
〔变形等〕[deformation, etc.]
本发明并不限于前述实施方式,在可实现本发明的目的的范围内的变 形、改良等包含在本发明中。The present invention is not limited to the foregoing embodiments, and modifications, improvements, and the like within the scope of achieving the object of the present invention are included in the present invention.
例如,上述的第1实施方式中,对于x1,x2的所有组合算出了偏离度J。但是,并不限于此,即使在算出孤立矩形函数r〔x〕的函数值a、b的结果为a<b的情形,只要是函数值b和函数值a的差小的情况,也可从搜索对象中排除该组合。基于此,可以明确排除不是最佳解的x1,x2的组合,可以减少图像处理部220(CPU9)的计算处理所需的负担,可以使处理高速化。For example, in the first embodiment described above, the degree of deviation J is calculated for all combinations of x1 and x2. However, the present invention is not limited thereto. Even in the case where a<b is the result of calculating the function values a and b of the isolated rectangular function r[x], as long as the difference between the function value b and the function value a is small, it can be obtained from Exclude this combination from your search. Based on this, the combination of x1 and x2 which is not an optimal solution can be clearly excluded, the load required for the calculation processing of the image processing unit 220 (CPU 9 ) can be reduced, and the processing speed can be increased.
在上述的第1实施方式中,设定为设作0<x1<x2<N-2,且表示孤立矩形函数r[x]的波峰部分的x1和x2不是作为边界的0或(N-2),但是并不限于此,也可设作0≤x1<x2≤N-2,来使表示孤立矩形函数r[x]波峰的部分的x1和x2可取作为边界的0或(N-2)。In the above-mentioned first embodiment, it is set so that 0<x1<x2<N-2, and x1 and x2 representing the peak portion of the isolated rectangular function r[x] are not 0 or (N-2 ), but it is not limited to this, it can also be set as 0≤x1<x2≤N-2, so that x1 and x2 representing the part of the peak of the isolated rectangular function r[x] can be taken as 0 or (N-2) as the boundary .
上述第1实施方式中,孤立矩形函数的波峰部分的形状可以为四边形,但波峰部分的形状也可以为梯形。In the above-mentioned first embodiment, the shape of the peak portion of the isolated rectangular function may be quadrilateral, but the shape of the peak portion may also be trapezoidal.
另外,上述的各实施方式中,对于时间上彼此先后的缩小图像ps,将相同位置的像素值的差的绝对值的总和作为图像变化量e算出。但是,也可将相同位置上的像素值差的平方的总和算作图像变化量e,只要是可数值化图像的差异的方法,可以使用任何方法。另外,在缩小图像ps是彩色图像的情况下,可以对每个缩小图像ps的颜色成分算出差。In addition, in each of the above-described embodiments, the sum of the absolute values of the differences in pixel values at the same position is calculated as the image change amount e for the reduced images ps that are temporally successive. However, the sum of the squares of pixel value differences at the same position may be calculated as the image change amount e, and any method may be used as long as the difference in the image can be quantified. Also, when the reduced image ps is a color image, a difference may be calculated for each color component of the reduced image ps.
另外,上述各实施方式中,覆盖图像整体来算出像素值的差,但是并不限于此,也可设置窗口或检测框,而仅对图像的一部分算出像素值的差。由此,由于可以减少图像处理部220的计算负担,所以可以使处理高速化。In addition, in each of the above-described embodiments, the difference in pixel values is calculated covering the entire image, but the present invention is not limited to this, and a window or detection frame may be provided to calculate the difference in pixel values only for a part of the image. Thus, since the calculation load of the
另外,上述各实施方式中,作为图像变化量e,仅使用了缩小图像ps间的像素值的差。但是,图像变化量e可以是表示缩小图像ps间的被摄体的运动的运动矢量。In addition, in each of the above-described embodiments, only the difference in pixel values between the reduced images ps is used as the image change amount e. However, the image change amount e may be a motion vector indicating the motion of the subject between the reduced images ps.
另外,上述各实施方式中,在通过连续拍摄取得所有图像后执行缩小帧图像p而生成缩小图像ps的缩小处理、和将缩小图像ps间的变化量作为图像变化量e算出的图像变化量运算处理。但是,也可边执行连续拍摄边进行这些处理。In addition, in each of the above-described embodiments, after all the images are acquired by continuous shooting, the reduction process of reducing the frame image p to generate the reduced image ps, and the image change amount calculation of calculating the amount of change between the reduced images ps as the image change amount e are performed. deal with. However, these processes may also be performed while performing continuous shooting.
另外,第1实施方式中,孤立矩形函数r[x]的函数值a是运动区间D中图像变化量排列E的各值的平均值,但是函数值a也可以是运动区间 D中图像变化量排列E的各值的中央值。另外,第1实施方式中,孤立矩形函数r[x]的函数植b为非运动区间D’中的图像变化量排列E的各值的平均值,但是函数值b也可以是非运动区间D’中的图像变化量排列E的各值的中央值。In addition, in the first embodiment, the function value a of the isolated rectangular function r[x] is the average value of each value of the image change amount array E in the motion interval D, but the function value a may be the image change amount in the motion interval D The median value of each value of E is arranged. In addition, in the first embodiment, the function b of the isolated rectangular function r[x] is the average value of each value of the image change amount array E in the non-moving interval D', but the function value b may be the non-moving interval D' The amount of image change in ranks the median value of each value of E.
另外,第1实施方式中,将平方孤立矩形函数r〔x〕和图像变化量排列E的差后的值的总和作为偏离度J。但是,也可将孤立矩形函数r[x]和图像变化量排列E的差的绝对值的总和作为偏离度J,也可将立方孤立矩形函数r[x]和图像变化量排列E的差后的值的总和作为偏离度J。主要是,只要是孤立矩形函数r[x]和图像变化量排列E的绝对差,则偏离度J可以为任何之一。In addition, in the first embodiment, the sum of the difference values between the square isolated rectangular function r[x] and the image variation array E is taken as the degree of deviation J. However, the sum of the absolute values of the differences between the isolated rectangular function r[x] and the image variation arrangement E can also be used as the degree of deviation J, and the difference between the cubic isolated rectangular function r[x] and the image variation arrangement E can also be used The sum of the values is taken as the degree of deviation J. Mainly, the degree of deviation J may be any one as long as it is the absolute difference between the isolated rectangular function r[x] and the image change amount arrangement E.
上述的各实施方式中,执行了缩小帧图像p而生成缩小图像ps的缩小处理。但是,也可不执行缩小处理,而从缩小前的帧图像算出图像变化量。但是,在该情况下,由于容易受到手抖动等的干扰的影响,所以在手持拍摄中,多数需要进行位置匹配处理。由此,执行缩小处理的方式比执行位置匹配处理的方式计算负担小。另外,在缩小处理中,缩小图像的宽高比可以由缩小前的帧图像的宽高比来适当改变。In each of the above-described embodiments, reduction processing for reducing the frame image p to generate the reduced image ps is executed. However, the amount of image change may be calculated from the frame image before reduction without performing the reduction process. However, in this case, since it is easily affected by disturbances such as hand shake, it is often necessary to perform position matching processing in hand-held shooting. Thus, the method of performing the reduction process has a smaller calculation load than the method of performing the position matching process. In addition, in the reduction process, the aspect ratio of the reduced image may be appropriately changed from the aspect ratio of the frame image before reduction.
也可组合第1实施方式和第2实施方式。例如,通过第1实施方式的图像抽出处理来抽出运动区间D,之后,通过第2实施方式的图像抽出处理,从运动区间D中抽出M个帧。It is also possible to combine the first embodiment and the second embodiment. For example, the motion interval D is extracted by the image extraction process of the first embodiment, and then M frames are extracted from the motion interval D by the image extraction process of the second embodiment.
本发明并不限于数码照相机,还可适用于具有拍摄功能的个人计算机等中。The present invention is not limited to a digital camera, but can also be applied to a personal computer having a camera function and the like.
Claims (3)
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008201961 | 2008-08-05 | ||
| JP2008-201961 | 2008-08-05 | ||
| JP2008201961 | 2008-08-05 | ||
| JP2009102353 | 2009-04-20 | ||
| JP2009102353A JP4760947B2 (en) | 2008-08-05 | 2009-04-20 | Image processing apparatus and program |
| JP2009-102353 | 2009-04-20 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2011100423695A Division CN102082913B (en) | 2008-08-05 | 2009-07-27 | Image processing device and recording medium |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101656833A CN101656833A (en) | 2010-02-24 |
| CN101656833B true CN101656833B (en) | 2011-09-28 |
Family
ID=41710896
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2009101646528A Expired - Fee Related CN101656833B (en) | 2008-08-05 | 2009-07-27 | image processing device |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP5353906B2 (en) |
| CN (1) | CN101656833B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023181580A1 (en) * | 2022-03-22 | 2023-09-28 | キヤノン株式会社 | Image processing device, control method thereof, program, system, and training data generation method |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6720997B1 (en) * | 1997-12-26 | 2004-04-13 | Minolta Co., Ltd. | Image generating apparatus |
| CN1682528A (en) * | 2002-08-09 | 2005-10-12 | 夏普株式会社 | Image synthesis device, method, program, and recording medium recording the program |
| CN101116325A (en) * | 2005-02-07 | 2008-01-30 | 松下电器产业株式会社 | Image forming apparatus with a plurality of image forming units |
| CN101124816A (en) * | 2004-09-15 | 2008-02-13 | 佳能株式会社 | Image processing device and image processing method |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001197405A (en) * | 2000-01-14 | 2001-07-19 | Sharp Corp | Index image creation apparatus and method |
| JP2002329298A (en) * | 2001-05-02 | 2002-11-15 | Nissan Motor Co Ltd | Travel control device for vehicles |
| JP4007954B2 (en) * | 2003-11-04 | 2007-11-14 | オリンパス株式会社 | Image processing apparatus, method, and program |
| EP2070466A4 (en) * | 2006-10-02 | 2018-01-24 | Olympus Corporation | Image processing device, image processing method and image processing program |
-
2009
- 2009-07-27 CN CN2009101646528A patent/CN101656833B/en not_active Expired - Fee Related
-
2011
- 2011-01-21 JP JP2011010317A patent/JP5353906B2/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6720997B1 (en) * | 1997-12-26 | 2004-04-13 | Minolta Co., Ltd. | Image generating apparatus |
| CN1682528A (en) * | 2002-08-09 | 2005-10-12 | 夏普株式会社 | Image synthesis device, method, program, and recording medium recording the program |
| CN101124816A (en) * | 2004-09-15 | 2008-02-13 | 佳能株式会社 | Image processing device and image processing method |
| CN101116325A (en) * | 2005-02-07 | 2008-01-30 | 松下电器产业株式会社 | Image forming apparatus with a plurality of image forming units |
Also Published As
| Publication number | Publication date |
|---|---|
| JP5353906B2 (en) | 2013-11-27 |
| JP2011090712A (en) | 2011-05-06 |
| CN101656833A (en) | 2010-02-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10277812B2 (en) | Image processing to obtain high-quality loop moving image | |
| US9432575B2 (en) | Image processing apparatus | |
| US8208732B2 (en) | Image processing apparatus, image capturing apparatus, image processing method and recording medium | |
| JP5589527B2 (en) | Imaging apparatus and tracking subject detection method | |
| US11818466B2 (en) | Notifying apparatus, image capturing apparatus, notifying method, image capturing method, and storage medium | |
| US9113075B2 (en) | Image processing method and apparatus and digital photographing apparatus using the same | |
| US8488840B2 (en) | Image processing device, image processing method and electronic apparatus | |
| US20100073546A1 (en) | Image Processing Device And Electric Apparatus | |
| US7957633B2 (en) | Focus adjusting apparatus and focus adjusting method | |
| KR102420094B1 (en) | Image processing apparatus, image processing method, and program | |
| US9723201B2 (en) | Image capturing apparatus and control method therefor | |
| US20170200283A1 (en) | Image processing apparatus, method of controlling image processing apparatus, and imaging apparatus | |
| US20120249593A1 (en) | Image processing apparatus, image processing method, and recording medium capable of identifying subject motion | |
| JP2008139683A (en) | Imaging apparatus and autofocus control method | |
| KR20150141059A (en) | Apparatus and method for providing thumbnail image of moving picture | |
| CN110958361B (en) | Camera device capable of HDR synthesis, control method and storage medium thereof | |
| JP2021105850A (en) | Image processing device and method, and imaging device | |
| CN102082913A (en) | Image processing device and recording medium | |
| US9143684B2 (en) | Digital photographing apparatus, method of controlling the same, and computer-readable storage medium | |
| CN101656833B (en) | image processing device | |
| JP5834788B2 (en) | Image processing apparatus and digital camera |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110928 |