[go: up one dir, main page]

CN101667623B - Organic photoelectric device and preparation method thereof - Google Patents

Organic photoelectric device and preparation method thereof Download PDF

Info

Publication number
CN101667623B
CN101667623B CN200910164276.2A CN200910164276A CN101667623B CN 101667623 B CN101667623 B CN 101667623B CN 200910164276 A CN200910164276 A CN 200910164276A CN 101667623 B CN101667623 B CN 101667623B
Authority
CN
China
Prior art keywords
equation
layer
organic
formula
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910164276.2A
Other languages
Chinese (zh)
Other versions
CN101667623A (en
Inventor
蒋亚东
于军胜
张伟
李仪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN200910164276.2A priority Critical patent/CN101667623B/en
Publication of CN101667623A publication Critical patent/CN101667623A/en
Application granted granted Critical
Publication of CN101667623B publication Critical patent/CN101667623B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

the invention discloses an organic photoelectric device, comprising a substrate, a first electrode layer, a second electrode layer and a function layer arranged between the first electrode layer and the second electrode layer, wherein the first electrode layer or the second electrode layer is arranged on the surface of the substrate; the function layer comprises at least one layer of organic material layer relating to an organic polymer material with the function of transmitting electrons or separating excitons, thus improving electron mobility or exciton separating efficiency in devices and enhancing photoelectric or electro-optical conversion efficiency and service life of devices.

Description

一种有机光电子器件及其制备方法 A kind of organic optoelectronic device and preparation method thereof

技术领域technical field

本发明涉及电子元器件中的有机光电技术领域,具体涉及一种有机光电子器件及其制备方法。The invention relates to the field of organic optoelectronic technology in electronic components, in particular to an organic optoelectronic device and a preparation method thereof.

背景技术Background technique

有机光电子器件能实现光能转换成电能或将电能转换成光能。包括诸如有机电致发光、有机太阳能电池和有机场效应管等。目前,正进行着大量有关导电聚合物薄膜的研究,以便提高载流子传输的效率,而进一步优化器件性能。Organic optoelectronic devices can convert light energy into electrical energy or convert electrical energy into light energy. Including such as organic electroluminescence, organic solar cells and organic field effect tubes. Currently, a lot of research is being done on conductive polymer thin films in order to improve the efficiency of carrier transport and further optimize device performance.

自1977年日本科学家白川英树等发现导电乙炔以来,这种被称为“第四代高分子材料”的导电聚合物材料以其突出的光电性能吸引了众多科学家的关注。与具有相同或相近用途的无机材料相比,导电聚合物有密度低、易加工等优点。由于这类材料在结构上具有共轭特性,使其能传输电荷、受激发光,从而能够或可能在许多电子或光电子器件上得到运用,如发光二极管、光伏电池、场效应晶体管等领域。潜在的运用前景和广泛的运用领域促使科学家竞相研究这类具有光电活性的共轭聚合物材料。Since the discovery of conductive acetylene by Japanese scientist Hideki Shirakawa in 1977, this conductive polymer material, known as the "fourth generation polymer material", has attracted the attention of many scientists for its outstanding photoelectric properties. Compared with inorganic materials with the same or similar applications, conductive polymers have the advantages of low density and easy processing. Due to the conjugation characteristics of this kind of material in structure, it can transport charge and stimulate light, so it can or may be used in many electronic or optoelectronic devices, such as light-emitting diodes, photovoltaic cells, field effect transistors and other fields. Potential application prospects and a wide range of application fields have prompted scientists to study this kind of conjugated polymer materials with photoelectric activity.

通常情况下,有机材料中对空穴的传输能力远大于电子,在一般情况下空穴浓度远大于电子浓度的,电子和空穴的复合几率较小。所以OLED中发光层中电子浓度的大幅度提高将会有效地增加电子和空穴的复合,有效提高器件的效率。这就要求电子注入层的电子注入能力较高,并且电子传输层也要有相匹配的电子传输能力。在有机太阳能电池中,具有高效的电子传输能力的材料也能有效地提高器件的能量转换效率。当电子空穴对在给体材料和受体材料界面分离时,电子和空穴要及时被传输到电极,如果材料传输载流子的性能较差,那么分离后的电子和空穴将会再次复合,从而降低激子有效分离效率。电子传输材料是材料中制约器件效率和寿命的主要因素,所以开发较高性能的电子传输材料是目前众多研究人员的重点研究方向。In general, the transport ability of holes in organic materials is much greater than that of electrons, and in general, the concentration of holes is much greater than that of electrons, and the recombination probability of electrons and holes is small. Therefore, a substantial increase in the electron concentration in the light-emitting layer of the OLED will effectively increase the recombination of electrons and holes, and effectively improve the efficiency of the device. This requires that the electron injection layer has a high electron injection ability, and the electron transport layer must also have a matching electron transport ability. In organic solar cells, materials with efficient electron transport capabilities can also effectively improve the energy conversion efficiency of devices. When the electron-hole pairs are separated at the interface between the donor material and the acceptor material, the electrons and holes must be transported to the electrode in time. If the material has poor carrier transport performance, the separated electrons and holes will be separated again Recombination, thereby reducing the effective separation efficiency of excitons. Electron transport materials are the main factors restricting the efficiency and lifetime of devices in materials, so the development of higher performance electron transport materials is currently the focus of many researchers.

Marco Mazzeo等人开发了一种有机小分子材料,其特点在于:该材料可以通过湿法制备,并且该材料有良好的电子注入和传输性能,同时可以用于发光层。Marco制备的器件表现出了较高的效率和出众的光电能性。Marco Mazzeo et al. developed an organic small molecule material, which is characterized in that the material can be prepared by a wet method, and the material has good electron injection and transport properties, and can be used in the light-emitting layer. The devices prepared by Marco showed high efficiency and outstanding photoelectric performance.

发明内容Contents of the invention

本发明所要解决的问题是:如何提供一种有机光电子器件及其制备方法,该有机光电子器件利用一种新型的有机聚合物材料,提高器件内部的激子解离的电子迁移率,增加了电子和空穴的复合几率,提高了器件的效率和寿命。The problem to be solved by the present invention is: how to provide an organic optoelectronic device and its preparation method. The organic optoelectronic device uses a new type of organic polymer material to improve the electron mobility of the exciton dissociation inside the device and increase the electron mobility. The probability of recombination with holes improves the efficiency and life of the device.

本发明所提出的技术问题是这样解决的:提供一种有机光电子器件,包括衬底、第一电极层和第二电极层,其中第一电极层或第二电极层位于衬底表面,还包括设置在所第一电极层和第二电极层之间的功能层,所述功能层的构成包括以下三种情形:①电子传输层、发光层、空穴传输层;②电子给体层、激子产生层、激子分离层、电子受体层;③绝缘层和有机半导体层;其特征在于,电子传输层或电子受体层或激子分离层或有机半导体层材料为有机聚合物材料,该有机聚合物材料具有良好的光电化学稳定性,通过引入具有吸电子功能的基团,有效地增强了电子的传输能力,从而提高器件的效率和寿命。所述的有机材料具有以下所示的化学结构:The technical problem proposed by the present invention is solved in this way: provide an organic optoelectronic device, including a substrate, a first electrode layer and a second electrode layer, wherein the first electrode layer or the second electrode layer is located on the surface of the substrate, and also includes The functional layer arranged between the first electrode layer and the second electrode layer, the composition of the functional layer includes the following three situations: ① electron transport layer, light emitting layer, hole transport layer; ② electron donor layer, excitation layer sub-generation layer, exciton separation layer, electron acceptor layer; ③ insulating layer and organic semiconductor layer; it is characterized in that, electron transport layer or electron acceptor layer or exciton separation layer or organic semiconductor layer material is organic polymer material, The organic polymer material has good photoelectrochemical stability, and by introducing a group with an electron-absorbing function, the electron transport ability is effectively enhanced, thereby improving the efficiency and life of the device. The organic material has the chemical structure shown below:

Figure G2009101642762D00021
Figure G2009101642762D00021

其中,R1~R8是以-CnH2n+1为通式的取代基团,R11~R14是以-CnH2n+1为通式的取代基团,R9和R10基团相同或者不同,但都是以下(1)~(83)所示电子传输基团中的一种或多种:Among them, R 1 ~ R 8 are substituent groups with the general formula -C n H 2n+1 , R 11 ~ R 14 are substituent groups with the general formula -C n H 2n+1 , R 9 and R 10 groups are the same or different, but they are all one or more of the following electron transport groups shown in (1) to (83):

Figure G2009101642762D00031
Figure G2009101642762D00031

        式1                                        式2Formula 1 Formula 2

Figure G2009101642762D00032
Figure G2009101642762D00032

        式3                                          式4Equation 3 Equation 4

   式5                                      式6Equation 5 Equation 6

Figure G2009101642762D00034
Figure G2009101642762D00034

        式7                                   式8Equation 7 Equation 8

Figure G2009101642762D00035
Figure G2009101642762D00035

        式9                                   式10Formula 9 Formula 10

Figure G2009101642762D00041
Figure G2009101642762D00041

         式11                                      式12Equation 11 Equation 12

Figure G2009101642762D00042
Figure G2009101642762D00042

        式13                                      式14Equation 13 Equation 14

Figure G2009101642762D00043
Figure G2009101642762D00043

        式15                                  式16Equation 15 Equation 16

Figure G2009101642762D00044
Figure G2009101642762D00044

        式17                                      式18Equation 17 Equation 18

        式19                                      式20Equation 19 Equation 20

Figure G2009101642762D00046
Figure G2009101642762D00046

              式21                                     式22Equation 21 Equation 22

Figure G2009101642762D00051
Figure G2009101642762D00051

        式23                                     式24Equation 23 Equation 24

Figure G2009101642762D00052
Figure G2009101642762D00052

          式25                                     式26Equation 25 Equation 26

Figure G2009101642762D00053
Figure G2009101642762D00053

            式27                                   式28Equation 27 Equation 28

Figure G2009101642762D00054
Figure G2009101642762D00054

        式29                                     式30Equation 29 Equation 30

Figure G2009101642762D00055
Figure G2009101642762D00055

            式31                                       式32Equation 31 Equation 32

Figure G2009101642762D00056
Figure G2009101642762D00056

               式33                                  式34Equation 33 Equation 34

Figure G2009101642762D00061
Figure G2009101642762D00061

              式35                                   式36Equation 35 Equation 36

Figure G2009101642762D00062
Figure G2009101642762D00062

  式37                                    式38Formula 37 Formula 38

Figure G2009101642762D00063
Figure G2009101642762D00063

            式39                                     式40Equation 39 Equation 40

Figure G2009101642762D00064
Figure G2009101642762D00064

                 式41                               式42Equation 41 Equation 42

Figure G2009101642762D00065
Figure G2009101642762D00065

      式43                                   式44Equation 43 Equation 44

Figure G2009101642762D00071
Figure G2009101642762D00071

     式45                                   式46Equation 45 Equation 46

Figure G2009101642762D00072
Figure G2009101642762D00072

        式47                                        式48Equation 47 Equation 48

             式49                                     式50Equation 49 Equation 50

            式51                                    式52Equation 51 Equation 52

Figure G2009101642762D00075
Figure G2009101642762D00075

        式53                                    式54Equation 53 Equation 54

        式55                                  式56Equation 55 Equation 56

        式57                                  式58Equation 57 Equation 58

Figure G2009101642762D00083
Figure G2009101642762D00083

           式59                                   式60Equation 59 Equation 60

        式61                                     式62Equation 61 Equation 62

Figure G2009101642762D00085
Figure G2009101642762D00085

        式63                                  式64Equation 63 Equation 64

Figure G2009101642762D00091
Figure G2009101642762D00091

        式65                                 式66Equation 65 Equation 66

Figure G2009101642762D00092
Figure G2009101642762D00092

       式67                                 式68Equation 67 Equation 68

Figure G2009101642762D00093
Figure G2009101642762D00093

    式69                                        式70Formula 69 Formula 70

Figure G2009101642762D00094
Figure G2009101642762D00094

        式71                                      式72Equation 71 Equation 72

Figure G2009101642762D00095
Figure G2009101642762D00095

       式73                                   式74Equation 73 Equation 74

Figure G2009101642762D00096
Figure G2009101642762D00096

            式75                                   式76Equation 75 Equation 76

Figure G2009101642762D00101
Figure G2009101642762D00101

       式77                                 式78Equation 77 Equation 78

Figure G2009101642762D00102
Figure G2009101642762D00102

        式79                                式80Formula 79 Formula 80

Figure G2009101642762D00103
Figure G2009101642762D00103

   式81                                  式82Formula 81 Formula 82

Figure G2009101642762D00104
Figure G2009101642762D00104

           式83Equation 83

其中R为C1-30烷基、C2-30烯基、C1-30烷氧基、C6-30芳基、C6-30芳氧基、C3-30杂芳基、C1-30杂烷基,X为O、S、或NR’,R’为C1-30烷基、C6-30芳基、C3-30杂芳基、C1-30杂烷基或其组合。Where R is C 1-30 alkyl, C 2-30 alkenyl, C 1-30 alkoxy, C 6-30 aryl, C 6-30 aryloxy, C 3-30 heteroaryl, C 1 -30 heteroalkyl, X is O, S, or NR', R' is C 1-30 alkyl, C 6-30 aryl, C 3-30 heteroaryl, C 1-30 heteroalkyl or combination.

按照本发明所提供的有机光电子器件,其特征在于,该器件是有机电致发光器件、有机太阳能电池或有机场效应管。The organic optoelectronic device provided by the present invention is characterized in that the device is an organic electroluminescent device, an organic solar cell or an organic field effect tube.

按照本发明所提供的有机光电子器件,其特征在于,当器件为有机电致发光器件和有机太阳能电池时,所述衬底是玻璃或者柔性基片或者金属薄片,其中柔性基片是超薄玻璃、聚酯类或聚酞亚胺类化合物,所述第一电极层是金属氧化物薄膜或者金属薄膜或PEDOT:PSS或PANI类有机导电聚合物,该金属氧化物薄膜是ITO薄膜或者氧化锌薄膜或氧化锡锌薄膜,该金属薄膜是金、铜、银功函数较高的金属薄膜,所述第二电极层材料是金属薄膜或合金薄膜,该金属薄膜是锂或镁或钙或锶或铝或铟等功函数较低的金属薄膜或它们与铜或金或银等的合金薄膜。According to the organic optoelectronic device provided by the present invention, it is characterized in that, when the device is an organic electroluminescent device and an organic solar cell, the substrate is glass or a flexible substrate or a metal sheet, wherein the flexible substrate is an ultra-thin glass , polyester or polyimide compound, the first electrode layer is metal oxide film or metal film or PEDOT:PSS or PANI organic conductive polymer, the metal oxide film is ITO film or zinc oxide film Or tin-zinc oxide film, the metal film is gold, copper, silver metal film with higher work function, the second electrode layer material is metal film or alloy film, the metal film is lithium or magnesium or calcium or strontium or aluminum Or metal films with low work functions such as indium or alloy films of them with copper or gold or silver.

按照本发明所提供的有机光电子器件,其特征在于,器件为有机电致发光器件和有机太阳能电池,所述发光层材料或激子产生层材料是有机高分子聚合物,该有机高分子聚合物的分子量为10000~100000,能够用旋涂和喷墨打印方法成膜,如聚苯撑乙烯(PPV)。According to the organic optoelectronic device provided by the present invention, it is characterized in that the device is an organic electroluminescent device and an organic solar cell, the material of the light-emitting layer or the material of the exciton generating layer is an organic polymer, and the organic polymer The molecular weight is 10,000-100,000, and it can be formed into a film by spin coating and inkjet printing, such as polyphenylene vinylene (PPV).

按照本发明所提供的有机光电子器件,其特征在于,器件为有机电致发光器件和有机太阳能电池,所述空穴传输层或电子给体层材料具有低的最高被占用能级(HOMO)能级的有机高分子聚合物。该有机高分子化合物是三-[4-(5-苯基-2-噻吩基)苯]胺(PTDATA系列),聚乙烯咔唑(PVK),聚3,4-乙撑二氧噻吩(PEDOT)。According to the organic optoelectronic device provided by the present invention, it is characterized in that the device is an organic electroluminescent device and an organic solar cell, and the material of the hole transport layer or the electron donor layer has a low highest occupied energy level (HOMO) energy grade organic polymers. The organic polymer compound is tri-[4-(5-phenyl-2-thienyl)phenyl]amine (PTDATA series), polyvinylcarbazole (PVK), poly 3,4-ethylenedioxythiophene (PEDOT ).

按照本发明所提供的有机光电子器件,其特征在于,器件为有机太阳能电池,所述电子受体材料具有电子传输和激子分离能力。The organic optoelectronic device provided by the present invention is characterized in that the device is an organic solar cell, and the electron acceptor material has electron transport and exciton separation capabilities.

按照本发明所提供的有机光电子器件,其特征在于,器件为有机场效应管,所述衬底是刚性衬底或者柔性衬底,为Si、超薄玻璃、聚合物薄膜和金属箔中的一种。According to the organic optoelectronic device provided by the present invention, it is characterized in that the device is an organic field effect transistor, and the substrate is a rigid substrate or a flexible substrate, which is one of Si, ultra-thin glass, polymer film and metal foil. kind.

按照本发明所提供的有机光电子器件,其特征在于,器件为有机场效应管,有机半导体层所包含材料为有机聚合物材料,可以用旋涂或者喷墨打印的方法制备有机半导体层。The organic optoelectronic device provided by the present invention is characterized in that the device is an organic field effect transistor, the material contained in the organic semiconductor layer is an organic polymer material, and the organic semiconductor layer can be prepared by spin coating or inkjet printing.

按照本发明所提供的有机光电子器件,其特征在于,器件为有机场效应管,第一电极层为栅极,其材料为金、银、铝、镍和铟锡氧化物中的一种,第二电极层为漏电极和源电极,其材料为金属或者导电薄膜,如Al金属、Au金属、Cu金属、Cr金属等,或者是具有良好的物理性质、化学性质的导电薄膜例如氧化铟锡(ITO)或氧化锌锡(IZO)等。According to the organic optoelectronic device provided by the present invention, it is characterized in that the device is an organic field effect transistor, the first electrode layer is a grid, and its material is one of gold, silver, aluminum, nickel and indium tin oxide. The second electrode layer is a drain electrode and a source electrode, and its material is a metal or a conductive film, such as Al metal, Au metal, Cu metal, Cr metal, etc., or a conductive film with good physical properties and chemical properties such as indium tin oxide ( ITO) or zinc tin oxide (IZO), etc.

按照本发明所提供的有机光电子器件,其特征在于,器件为有机场效应管,绝缘层材料没有特别限制,并且绝缘层可以由从下列材料形成的绝缘膜形成:无机绝缘材料如二氧化硅,氮化硅,含氧的二氧化硅,和含氧的氮化硅,有机绝缘材料如丙烯酸类或聚酰亚胺,或由硅和氧的键形成的骨架结构组成的材料(其中至少含有氢的有机基团(如烷基或芳族烃)、氟代基团、或至少含有氢和氟基团的有机基团作为取代基包括在内),即硅氧烷型材料。According to the organic optoelectronic device provided by the present invention, it is characterized in that the device is an organic field effect transistor, the material of the insulating layer is not particularly limited, and the insulating layer can be formed by an insulating film formed from the following materials: an inorganic insulating material such as silicon dioxide, Silicon nitride, oxygen-containing silicon dioxide, and oxygen-containing silicon nitride, organic insulating materials such as acrylic or polyimide, or materials composed of a skeleton structure formed by bonds between silicon and oxygen (which contain at least hydrogen Organic groups (such as alkyl or aromatic hydrocarbons), fluorinated groups, or organic groups containing at least hydrogen and fluorine groups are included as substituents), that is, siloxane-type materials.

一种有机电致发光器件和有机太阳能电池的制备方法,其特征在于,包括以下步骤:A method for preparing an organic electroluminescent device and an organic solar cell, characterized in that it comprises the following steps:

①利用丙酮、乙醇溶液和去离子水对衬底进行超声清洗,清洗后用高压氮气吹干;①Use acetone, ethanol solution and deionized water to ultrasonically clean the substrate, and dry it with high-pressure nitrogen after cleaning;

②将衬底在真空蒸发室中进行电极的制备,所述电极包括第一电极层或者第二电极层;②The substrate is prepared in a vacuum evaporation chamber for electrodes, and the electrodes include a first electrode layer or a second electrode layer;

③将制备好电极的衬底移入真空室,在氧气压环境下进行预处理;③ Move the prepared electrode substrate into the vacuum chamber and perform pretreatment under the oxygen pressure environment;

④将处理后的衬底置入匀胶机中,在匀胶机中进行有机薄膜的旋涂,按照器件结构依次旋涂有机功能层,所述有机功能层包括发光层或激子产生层、电子传输层或电子受体层、空穴传输层或电子给体层,其中电子受体层材料结构式为:④Put the treated substrate into a homogenizer, spin-coat the organic thin film in the homogenizer, and spin-coat the organic functional layers sequentially according to the device structure. The organic functional layers include a light-emitting layer or an exciton generating layer, Electron transport layer or electron acceptor layer, hole transport layer or electron donor layer, wherein the structural formula of electron acceptor layer material is:

Figure G2009101642762D00121
Figure G2009101642762D00121

⑤在有机层旋涂结束后再在高真空度的蒸发室中进行另一个电极的制备;⑤ After the spin coating of the organic layer is completed, another electrode is prepared in a high-vacuum evaporation chamber;

⑥将做好的器件在手套箱进行封装,手套箱为氮气氛围;⑥Encapsulate the finished device in a glove box, and the glove box is a nitrogen atmosphere;

⑦测试有机电致发光器件的电流-电压-亮度特性、发光光谱参数;测试有机太阳能电池在无光照和光照条件下的电流-电压曲线。⑦Test the current-voltage-brightness characteristics and luminescence spectrum parameters of organic electroluminescent devices; test the current-voltage curves of organic solar cells under the conditions of no light and light.

一种有机场效应管的制备方法,其特征在于,包括以下步骤:①利用H2SO4∶H2O2=7∶3、H2O∶NH3=5∶1的混合溶液和超纯水对衬底进行超声清洗,清洗后用高压氮气吹干;A method for preparing an organic field effect tube is characterized by comprising the following steps: ① using a mixed solution of H 2 SO 4 : H 2 O 2 =7:3, H 2 O:NH 3 =5:1 and ultrapure Clean the substrate ultrasonically with water, and dry it with high-pressure nitrogen after cleaning;

②在基板的表面通过真空蒸镀或者旋涂或者溅射的方法制备栅电极;②Gate electrodes are prepared on the surface of the substrate by vacuum evaporation, spin coating or sputtering;

③通过光刻的方法刻蚀栅电极的图形;③ Etching the pattern of the gate electrode by photolithography;

④在镀有栅电极基板的表面通过真空蒸镀或者旋涂或者溅射的方法制备绝缘层,通过旋涂制备有机半导体层,其中有机半导体层材料的结构式为:④ Prepare an insulating layer on the surface of the substrate coated with a gate electrode by vacuum evaporation or spin coating or sputtering, and prepare an organic semiconductor layer by spin coating, wherein the structural formula of the organic semiconductor layer material is:

Figure G2009101642762D00131
Figure G2009101642762D00131

⑤然后在有机半导体层上通过蒸镀或者旋涂或者溅射的方法制备源电极,漏电极;⑤Then prepare a source electrode and a drain electrode on the organic semiconductor layer by evaporation or spin coating or sputtering;

⑥通过光刻形成源电极、漏电极图案。⑥ Form source electrode and drain electrode patterns by photolithography.

本发明所提供的有机光电器件,所用有机材料为高分子聚合物材料,该聚合物材料溶解性能更好,有效防止了小分子材料中激基复合物与激基缔合物的产生,提高了器件效率,该材料有良好的电子传输能力和激子分离能力,可以用作聚合物太阳能电池中的激子分离层和电子传输层或者有机电致发光器件中的电子注入层或者发光层。所述的有机材料可以应用在有机电致发光器件、有机太阳能电池或者有机场效应管中,在有机电致发光器件中起到电子传输层或者发光层或者空穴阻挡层或者激子阻挡层的作用,在有机太阳能电池中起到电子受体层或者激子产生层或者激子分离层或者激子阻挡层的作用,在有机场效应管中起到n型有机层的作用。另外可用湿法制备,能有效简化有机光电器件的制备过程和控制成本,便于大规模生产,通过对所用的电子传输材料或者电子受体材料结构的设计、组装和剪裁,能够满足有机电致发光器件、有机太阳能电池和有机场效应管对该材料的不同需求。In the organic photoelectric device provided by the present invention, the organic material used is a high molecular polymer material, and the polymer material has better solubility, effectively prevents the generation of exciplexes and excimer associations in small molecule materials, and improves the Device efficiency, the material has good electron transport ability and exciton separation ability, and can be used as the exciton separation layer and electron transport layer in polymer solar cells or the electron injection layer or light emitting layer in organic electroluminescent devices. The organic material can be applied in an organic electroluminescent device, an organic solar cell or an organic field effect tube, and plays the role of an electron transport layer or a light emitting layer or a hole blocking layer or an exciton blocking layer in an organic electroluminescent device. Function, it plays the role of electron acceptor layer or exciton generation layer or exciton separation layer or exciton blocking layer in organic solar cells, and plays the role of n-type organic layer in organic field effect transistor. In addition, it can be prepared by wet method, which can effectively simplify the preparation process and control cost of organic photoelectric devices, and facilitate large-scale production. Through the design, assembly and tailoring of the structure of the electron transport material or electron acceptor material used, it can meet the requirements of organic electroluminescence. Devices, organic solar cells and organic field effect transistors have different demands on the material.

附图说明Description of drawings

图1是本发明所提供的有机电致发光器件的结构示意图;Fig. 1 is the structural representation of organic electroluminescent device provided by the present invention;

图2是本发明所提供的有机太阳能电池的结构示意图;Fig. 2 is a schematic structural view of an organic solar cell provided by the present invention;

图3是本发明所提供的有机场效应管的结构示意图;Fig. 3 is the structural representation of organic field effect tube provided by the present invention;

图4是本发明所提供的电子传输或电子受体材料的结构示意图;Figure 4 is a schematic structural view of the electron transport or electron acceptor material provided by the present invention;

图5是本发明所提供的实施例1、2、3、4的结构示意图;Figure 5 is a schematic structural view of Embodiments 1, 2, 3, and 4 provided by the present invention;

图6是本发明所提供的实施例5的结构示意图;Figure 6 is a schematic structural view of Embodiment 5 provided by the present invention;

图7是本发明所提供的实施例5的性能对比图:7-1是采用常规受体材料制备的器件,7-2是实施例5所制备的器件,两个器件结构相同;Figure 7 is a performance comparison diagram of Example 5 provided by the present invention: 7-1 is a device prepared by using a conventional acceptor material, 7-2 is a device prepared in Example 5, and the two devices have the same structure;

图8是本发明所提供的实施例6的结构示意图。Fig. 8 is a schematic structural diagram of Embodiment 6 provided by the present invention.

其中,1、衬底,2、阳极层,3、有机功能层,31、空穴传输层,32发光层兼电子传输层,4、阴极层,5、外加电源,61、电子给体层兼激子产生层,62、电子受体层,7、阴极层,8、Si基板,9、栅电极,10、绝缘层,11、有机半导体层,12、源电极,13、漏电极。Among them, 1. substrate, 2. anode layer, 3. organic functional layer, 31. hole transport layer, 32 light-emitting layer and electron transport layer, 4. cathode layer, 5. external power supply, 61. electron donor layer and Exciton generation layer, 62, electron acceptor layer, 7, cathode layer, 8, Si substrate, 9, gate electrode, 10, insulating layer, 11, organic semiconductor layer, 12, source electrode, 13, drain electrode.

具体实施方式Detailed ways

下面结合附图对本发明作进一步描述:The present invention will be further described below in conjunction with accompanying drawing:

本发明的技术方案是提供一种以新型有机材料作为电子传输层或电子受体层或有机半导体层的有机光电子器件,如图5所示,器件的结构包括衬底1,阳极层2,有机功能层3,阴极层4,其中阳极层2位于衬底1表面,有机功能层3位于阳极层2和阴极层4之间,有机功能层3可以包括空穴传输层31,发光层和电子传输层32,器件在外加电源5的驱动下发光。图1是有机电致发光器件的结构示意图,图2是有机太阳能电池的结构示意图,图3是有机场效应管的结构示意图。The technical solution of the present invention is to provide a kind of organic optoelectronic device with novel organic material as electron transport layer or electron acceptor layer or organic semiconductor layer, as shown in Figure 5, the structure of device comprises substrate 1, anode layer 2, organic Functional layer 3, cathode layer 4, wherein the anode layer 2 is located on the surface of the substrate 1, the organic functional layer 3 is located between the anode layer 2 and the cathode layer 4, the organic functional layer 3 may include a hole transport layer 31, a light-emitting layer and an electron transport layer layer 32 , the device emits light under the drive of an external power supply 5 . Fig. 1 is a schematic structural diagram of an organic electroluminescent device, Fig. 2 is a schematic structural diagram of an organic solar cell, and Fig. 3 is a schematic structural diagram of an organic field effect transistor.

如图6所示,器件的结构包括衬底1,阳极层2,有机功能层6,阴极7,其中阳极层2位于衬底1表面,有机功能层6位于阳极层2和阴极层7之间,有机功能层6可以包括电子给体层兼61,电子受体层62,器件在光照下电极产生电压。As shown in Figure 6, the structure of the device includes a substrate 1, an anode layer 2, an organic functional layer 6, and a cathode 7, wherein the anode layer 2 is located on the surface of the substrate 1, and the organic functional layer 6 is located between the anode layer 2 and the cathode layer 7 , the organic functional layer 6 may include an electron donor layer 61 and an electron acceptor layer 62, and the electrodes of the device generate voltage under light.

如图8所示,器件的结构包括衬底1,栅极2,绝缘层3,有机半导体层4,源电极5,漏电极6。As shown in FIG. 8 , the structure of the device includes a substrate 1 , a gate 2 , an insulating layer 3 , an organic semiconductor layer 4 , a source electrode 5 , and a drain electrode 6 .

本发明中的有机电致发光器件和有机太阳能电池中衬底1为电极和有机薄膜层的依托,它在可见光区域有着良好的透光性能,有一定的防水汽和氧气渗透的能力,有较好的表面平整性,它可以是玻璃或柔性基片,柔性基片采用聚酯类、聚酞亚胺化合物中的一种材料或者较薄的金属。In the organic electroluminescent device and the organic solar cell of the present invention, the substrate 1 is the support of the electrodes and the organic thin film layer, and it has good light transmission performance in the visible light region, has a certain ability of waterproofing and oxygen penetration, and has relatively Good surface smoothness, it can be glass or flexible substrate, flexible substrate adopts one of polyester, polyimide compound or thinner metal.

本发明中的有机电致发光器件和有机太阳能电池中阳极层2作为有机电致发光器件正向电压的连接层,它要求有较好的导电性能、可见光透明性以及较高的功函数。通常采用无机金属氧化物(如氧化铟锡ITO,氧化锌ZnO等)、有机导电聚合物(如PEDOT:PSS,PANI等)或高功函数金属材料(如金、铜、银、铂等)。The anode layer 2 in the organic electroluminescent device and the organic solar cell of the present invention is used as the connecting layer for the forward voltage of the organic electroluminescent device, and it requires better electrical conductivity, visible light transparency and higher work function. Inorganic metal oxides (such as indium tin oxide ITO, zinc oxide ZnO, etc.), organic conductive polymers (such as PEDOT:PSS, PANI, etc.) or high work function metal materials (such as gold, copper, silver, platinum, etc.) are usually used.

本发明中的有机电致发光器件中阴极层4和有机太阳能电池中阴极层7作为器件负向电压的连接层,它要求具有较好的导电性能和较低的功函数,阴极通常为低功函数金属材料锂、镁、钙、锶、铝、铟等功函数较低的金属或它们与铜、金、银的合金;或者一层很薄的缓冲绝缘层(如LiF、MgF2等)和前面所提高的金属或合金。Cathode layer 4 in the organic electroluminescence device among the present invention and cathode layer 7 in the organic solar cell are as the connecting layer of negative voltage of device, and it requires to have better electrical conductivity and lower work function, and cathode is usually low work function. Functional metal materials Lithium, magnesium, calcium, strontium, aluminum, indium and other metals with low work functions or their alloys with copper, gold, silver; or a very thin buffer insulating layer (such as LiF, MgF2, etc.) and The previously raised metal or alloy.

本发明中的的有机电致发光器件和有机太阳能电池中空穴传输层和电子给体层31材料具有低的最高被占用能级(HOMO)的无机或有机化合物。所述化合物可以是酞氰铜(CuPc),N,N’-双-(3-甲基苯基)-N,N’-二苯基-[1,1’-联苯基]-4,4’-二胺(TPD)或者N,N’-双(3-萘基)-N,N’-二苯基-[1,1’-二苯基]-4,4’-二胺(NPB),所述星形三苯胺化合物可以是三-[4-(5-苯基-2-噻吩基)苯]胺(PTDATA系列),聚乙烯咔唑(PVK)。The organic electroluminescent device and the organic solar cell in the present invention are inorganic or organic compounds with a low highest occupied energy level (HOMO) as the materials for the hole transport layer and the electron donor layer 31 . The compound may be copper phthalocyanine (CuPc), N, N'-bis-(3-methylphenyl)-N, N'-diphenyl-[1,1'-biphenyl]-4, 4'-diamine (TPD) or N,N'-bis(3-naphthyl)-N,N'-diphenyl-[1,1'-diphenyl]-4,4'-diamine ( NPB), the star-shaped triphenylamine compound can be three-[4-(5-phenyl-2-thienyl)phenyl]amine (PTDATA series), polyvinylcarbazole (PVK).

本发明中的有机电致发光器件中发光层32和有机太阳能电池中激子产生层62材料是高分子聚合物材料。高分子聚合物的分子量为10000~100000,能够用旋涂和喷墨打印等方法成膜,如聚苯撑乙烯(PPV)。The material of the light-emitting layer 32 in the organic electroluminescent device and the exciton generating layer 62 in the organic solar cell in the present invention is a polymer material. The molecular weight of the polymer is 10,000-100,000, and it can be formed into a film by methods such as spin coating and inkjet printing, such as polyphenylene vinylene (PPV).

本发明中的有机场效应管中衬底1是刚性衬底或者柔性衬底,为Si、超薄玻璃、聚合物薄膜和金属箔中的一种。The substrate 1 in the organic field effect tube of the present invention is a rigid substrate or a flexible substrate, which is one of Si, ultra-thin glass, polymer film and metal foil.

本发明中的有机场效应管中栅极2材料为金、银、铝、镍和铟锡氧化物中的一种。源电极5和漏电极6为金属或者导电薄膜,如Al金属、Au金属、Cu金属、Cr金属等,或者是具有良好的物理性质、化学性质的薄膜例如氧化铟锡(ITO)或氧化锌锡(IZO)等导电薄膜。The material of the gate 2 in the organic field effect transistor of the present invention is one of gold, silver, aluminum, nickel and indium tin oxide. The source electrode 5 and the drain electrode 6 are metal or conductive films, such as Al metal, Au metal, Cu metal, Cr metal, etc., or films with good physical and chemical properties such as indium tin oxide (ITO) or zinc tin oxide (IZO) and other conductive films.

本发明中的有机场效应管中绝缘层3材料也没有特别限制,并且绝缘层可以由从下列材料形成的绝缘膜形成:无机绝缘材料如二氧化硅,氮化硅,含氧的二氧化硅,和含氧的氮化硅,有机绝缘材料如丙烯酸类或聚酰亚胺,或由硅和氧的键形成的骨架结构组成的材料(其中至少含有氢的有机基团(如烷基或芳族烃)、氟代基团、或至少含有氢和氟基团的有机基团作为取代基包括在内),即硅氧烷型材料。The material of the insulating layer 3 in the organic field effect tube in the present invention is not particularly limited, and the insulating layer can be formed by an insulating film formed from the following materials: inorganic insulating materials such as silicon dioxide, silicon nitride, silicon dioxide containing oxygen , and oxygen-containing silicon nitride, organic insulating materials such as acrylic or polyimide, or materials composed of a skeleton structure formed by bonds between silicon and oxygen (organic groups containing at least hydrogen (such as alkyl or aromatic hydrocarbons), fluorinated groups, or organic groups containing at least hydrogen and fluorine groups are included as substituents), that is, siloxane-type materials.

本发明中的电子传输层(32)或电子受体层(62)材料或有机半导体材料为新型的有机材料,该材料具有良好的热稳定性和较好的接受电子能力,同时在一定的偏压下又能有效地传递电子。下文列出的是本发明的有机材料的具体例,但是本发明并不局限于这些具体例。The electron transport layer (32) or electron acceptor layer (62) material or organic semiconductor material in the present invention is a new type of organic material, and the material has good thermal stability and better ability to accept electrons, and at the same time Depression can effectively transfer electrons. Listed below are specific examples of the organic material of the present invention, but the present invention is not limited to these specific examples.

Figure G2009101642762D00161
Figure G2009101642762D00161

                               式1 材料1Formula 1 Material 1

Figure G2009101642762D00162
Figure G2009101642762D00162

                               式2 材料2Formula 2 Material 2

Figure G2009101642762D00171
Figure G2009101642762D00171

                                式3 材料3Formula 3 Material 3

Figure G2009101642762D00172
Figure G2009101642762D00172

                                 式4 材料4Formula 4 Material 4

                                  式5 材料5Formula 5 Material 5

Figure G2009101642762D00181
Figure G2009101642762D00181

                                   式6 材料6Formula 6 Material 6

采用本发明制备的有机光电器件结构举例如下:The structure of the organic photoelectric device prepared by the present invention is exemplified as follows:

玻璃/ITO/发光层/电子传输层/电子注入层/阴极层Glass/ITO/luminescent layer/electron transport layer/electron injection layer/cathode layer

玻璃/ITO/空穴注入层/空穴传输层/发光层/阴极层Glass/ITO/hole injection layer/hole transport layer/luminescent layer/cathode layer

玻璃/ITO/空穴传输层/发光层/电子传输层/阴极层Glass/ITO/hole transport layer/luminescent layer/electron transport layer/cathode layer

玻璃/ITO/空穴传输层/发光层/电子传输层/电子注入层/阴极层Glass/ITO/hole transport layer/luminescent layer/electron transport layer/electron injection layer/cathode layer

玻璃/ITO/空穴注入层/空穴传输层/发光层/电子传输层/阴极层Glass/ITO/hole injection layer/hole transport layer/light emitting layer/electron transport layer/cathode layer

玻璃/导电聚合物/空穴传输层/发光层/阴极层Glass/conductive polymer/hole transport layer/emissive layer/cathode layer

玻璃/导电聚合物/发光层/电子传输层/电子注入层/阴极层Glass/conductive polymer/emissive layer/electron transport layer/electron injection layer/cathode layer

玻璃/导电聚合物/空穴注入层/空穴传输层/发光层/阴极层Glass/conductive polymer/hole injection layer/hole transport layer/emissive layer/cathode layer

玻璃/导电聚合物/空穴传输层/发光层/电子传输层/阴极层Glass/conductive polymer/hole transport layer/emissive layer/electron transport layer/cathode layer

玻璃/导电聚合物/空穴注入层/空穴传输层/发光层/电子传输层/阴极层Glass/conducting polymer/hole injection layer/hole transport layer/emissive layer/electron transport layer/cathode layer

柔性基板/ITO/空穴传输层/发光层/电子传输层/阴极层Flexible substrate/ITO/hole transport layer/luminescent layer/electron transport layer/cathode layer

柔性基板/ITO/空穴传输层/发光层/电子传输层/电子注入层/阴极层Flexible substrate/ITO/hole transport layer/light emitting layer/electron transport layer/electron injection layer/cathode layer

柔性基板/ITO/空穴传输层/发光层/电子传输层/阴极层Flexible substrate/ITO/hole transport layer/luminescent layer/electron transport layer/cathode layer

柔性基板/ITO/空穴传输层/发光层/电子传输层/电子注入层/阴极层Flexible substrate/ITO/hole transport layer/light emitting layer/electron transport layer/electron injection layer/cathode layer

玻璃/ITO/电子给体层兼激子产生层/电子受体层/阴极层Glass/ITO/electron donor layer and exciton generation layer/electron acceptor layer/cathode layer

实施例1Example 1

如图5所示,器件的结构中的有机功能层3包括空穴注入层31,发光层和电子传输层32。As shown in FIG. 5 , the organic functional layer 3 in the structure of the device includes a hole injection layer 31 , a light emitting layer and an electron transport layer 32 .

器件的空穴传输层材料为PEDOT:PSS,发光层材料和电子传输材料为材料1,阴极层用Mg:Ag合金。整个器件结构描述为:The material of the hole transport layer of the device is PEDOT:PSS, the material of the light emitting layer and the electron transport material are material 1, and the cathode layer is made of Mg:Ag alloy. The entire device structure is described as:

玻璃衬底/ITO/PEDOT:PSS(100nm)/材料1(30nm)/Mg:Ag(100nm)Glass substrate/ITO/PEDOT:PSS(100nm)/Material 1(30nm)/Mg:Ag(100nm)

制备方法如下:The preparation method is as follows:

①用洗涤剂、乙醇溶液和去离子水对透明导电基片ITO玻璃进行超声清洗,清洗后用干燥氮气吹干。其中玻璃衬底上面的ITO膜作为器件的阳极层,ITO膜的方块电阻为10Ω/sq,膜厚为180nm。①Use detergent, ethanol solution and deionized water to ultrasonically clean the transparent conductive substrate ITO glass, and dry it with dry nitrogen after cleaning. Wherein the ITO film on the glass substrate is used as the anode layer of the device, the square resistance of the ITO film is 10Ω/sq, and the film thickness is 180nm.

②将干燥后的基片移入真空室,在气压为20Pa的氧气压环境下对ITO玻璃进行低能氧等离子预处理10分钟,溅射功率为~20W。② Move the dried substrate into a vacuum chamber, and pretreat the ITO glass with low-energy oxygen plasma for 10 minutes under an oxygen pressure environment with an air pressure of 20Pa, and the sputtering power is ~20W.

③将处理后的透明衬底在旋涂机中进行有机薄膜的旋涂,按照器件结构依次旋涂有机功能层,所述有机功能层包括发光层、载流子传输层和(或)注入层和缓冲层。③ Spin-coat the treated transparent substrate with an organic thin film in a spin-coater, and spin-coat organic functional layers sequentially according to the device structure, and the organic functional layers include a light-emitting layer, a carrier transport layer and (or) an injection layer and buffer layers.

④在有机层蒸镀结束后进行金属电极的制备。其气压为3×10-3Pa,蒸镀速率为~1nm/s,合金中Mg∶Ag比例为~10∶1,膜层厚度为100nm。蒸镀速率及厚度由安装在基片附近的膜厚仪监控。④ After the evaporation of the organic layer is completed, the metal electrode is prepared. The gas pressure is 3×10 -3 Pa, the evaporation rate is ~1nm/s, the Mg:Ag ratio in the alloy is ~10:1, and the film thickness is 100nm. The evaporation rate and thickness are monitored by a film thickness meter installed near the substrate.

⑤将做好的器件传送到手套箱进行封装,手套箱为99.9%氮气氛围。⑤Transfer the finished device to the glove box for packaging, and the glove box is 99.9% nitrogen atmosphere.

⑥测试器件的电流-电压-亮度特性,并测试器件的发光光谱参数。⑥Test the current-voltage-brightness characteristics of the device, and test the emission spectrum parameters of the device.

实施例2Example 2

如图5所示,器件的结构中的有机功能层3包括空穴注入层31,发光层和电子传输层32。As shown in FIG. 5 , the organic functional layer 3 in the structure of the device includes a hole injection layer 31 , a light emitting layer and an electron transport layer 32 .

器件的空穴传输层材料为PEDOT:PSS,发光层材料和电子传输材料为材料2,阴极层用Mg:Ag合金。整个器件结构描述为:The material of the hole transport layer of the device is PEDOT:PSS, the material of the light emitting layer and the electron transport material are material 2, and the cathode layer is made of Mg:Ag alloy. The entire device structure is described as:

玻璃衬底/ITO/PEDOT:PSS(100nm)/材料2(30nm)/Mg:Ag(100nm)Glass substrate/ITO/PEDOT:PSS(100nm)/Material 2(30nm)/Mg:Ag(100nm)

器件的制备流程与实施例1相似。The fabrication process of the device is similar to that of Example 1.

实施例3Example 3

如图5所示,器件的结构中的有机功能层3包括空穴传输层31,发光层和电子传输层32。As shown in FIG. 5 , the organic functional layer 3 in the structure of the device includes a hole transport layer 31 , a light emitting layer and an electron transport layer 32 .

器件的空穴传输层材料为PEDOT:PSS,发光层材料和电子传输材料为材料3,阴极层用Mg:Ag合金。整个器件结构描述为:The material of the hole transport layer of the device is PEDOT:PSS, the material of the light emitting layer and the electron transport material are material 3, and the cathode layer is made of Mg:Ag alloy. The entire device structure is described as:

玻璃衬底/ITO/PEDOT:PSS(100nm)/材料3(15nm)/Mg:Ag(100nm)Glass substrate/ITO/PEDOT:PSS(100nm)/Material 3(15nm)/Mg:Ag(100nm)

器件的制备流程与实施例1相似。The fabrication process of the device is similar to that of Example 1.

实施例4Example 4

如图5所示,器件的结构中的有机功能层3包括空穴传输层31,发光层和电子传输层32。As shown in FIG. 5 , the organic functional layer 3 in the structure of the device includes a hole transport layer 31 , a light emitting layer and an electron transport layer 32 .

器件的空穴传输层材料为PEDOT:PSS,发光层材料和电子传输材料为材料4,阴极层用Mg:Ag合金。整个器件结构描述为:The material of the hole transport layer of the device is PEDOT:PSS, the material of the light emitting layer and the electron transport material are material 4, and the cathode layer is made of Mg:Ag alloy. The entire device structure is described as:

玻璃衬底/ITO/PEDOT:PSS(100nm)/材料4(30nm)/Mg:Ag(100nm)Glass substrate/ITO/PEDOT:PSS(100nm)/Material 4(30nm)/Mg:Ag(100nm)

器件的制备流程与实施例1相似。The fabrication process of the device is similar to that of Example 1.

实施例5Example 5

如图6所示,器件的结构中的有机功能层3包括电子给体层61,电子受体层兼激子产生层62。As shown in FIG. 6 , the organic functional layer 3 in the structure of the device includes an electron donor layer 61 , an electron acceptor layer and an exciton generating layer 62 .

器件的电子给体层为PEDOT:PSS,电子受体层材料兼激子产生层材料为材料5,阴极层用Ag合金。两个器件结构相同整个器件结构描述为:The electron donor layer of the device is PEDOT:PSS, the electron acceptor layer material and exciton generation layer material is material 5, and the cathode layer is made of Ag alloy. The two device structures are the same, and the entire device structure is described as:

玻璃衬底/ITO/PEDOT:PSS(100nm)/材料5(30nm)/Ag(100nm)Glass substrate/ITO/PEDOT:PSS(100nm)/Material 5(30nm)/Ag(100nm)

器件的制备流程Device Fabrication Process

①用洗涤剂、乙醇溶液和去离子水对透明导电基片ITO玻璃进行超声清洗,清洗后用干燥氮气吹干。其中玻璃衬底上面的ITO膜作为器件的阳极层,ITO膜的方块电阻为10Ω/sq,膜厚为180nm。①Use detergent, ethanol solution and deionized water to ultrasonically clean the transparent conductive substrate ITO glass, and dry it with dry nitrogen after cleaning. Wherein the ITO film on the glass substrate is used as the anode layer of the device, the square resistance of the ITO film is 10Ω/sq, and the film thickness is 180nm.

②将干燥后的基片移入真空室,在气压为20Pa的氧气压环境下对ITO玻璃进行低能氧等离子预处理10分钟,溅射功率为~20W。② Move the dried substrate into a vacuum chamber, and pretreat the ITO glass with low-energy oxygen plasma for 10 minutes under an oxygen pressure environment with an air pressure of 20Pa, and the sputtering power is ~20W.

③将处理后的透明衬底在旋涂机中进行有机薄膜的旋涂,按照器件结构依次旋涂有机功能层,所述有机功能层包括发光层、载流子传输层和(或)注入层和缓冲层。③ Spin-coat the treated transparent substrate with an organic thin film in a spin-coater, and spin-coat organic functional layers sequentially according to the device structure, and the organic functional layers include a light-emitting layer, a carrier transport layer and (or) an injection layer and buffer layers.

④在有机层蒸镀结束后进行金属电极的制备。其气压为3×10-3Pa,蒸镀速率为~1nm/s,膜层厚度为100nm。蒸镀速率及厚度由安装在基片附近的膜厚仪监控。④ After the evaporation of the organic layer is completed, the metal electrode is prepared. The gas pressure is 3×10 -3 Pa, the evaporation rate is ~1nm/s, and the film thickness is 100nm. The evaporation rate and thickness are monitored by a film thickness meter installed near the substrate.

⑤将做好的器件传送到手套箱进行封装,手套箱为99.9%氮气氛围。⑤Transfer the finished device to the glove box for packaging, and the glove box is 99.9% nitrogen atmosphere.

⑥测试器件的电流-电压特性,并测试器件的吸收光谱。⑥Test the current-voltage characteristics of the device, and test the absorption spectrum of the device.

性能对比见图7:7-1是采用常规受体材料制备的器件,7-2是本实施例所制备的器件。See Figure 7 for performance comparison: 7-1 is a device prepared using conventional receptor materials, and 7-2 is a device prepared in this example.

实施例6Example 6

如图8所示,器件的结构中的基板1,栅电极2,绝缘层3,有机半导体层4,源电极5,漏电极6。As shown in FIG. 8 , the structure of the device includes a substrate 1 , a gate electrode 2 , an insulating layer 3 , an organic semiconductor layer 4 , a source electrode 5 , and a drain electrode 6 .

器件的基板为Si,栅极为Au,绝缘层为PVP,有机半导体层用材料6,源、漏电极为Au。The substrate of the device is Si, the gate is Au, the insulating layer is PVP, the material 6 for the organic semiconductor layer, and the source and drain electrodes are Au.

制备方法如下:The preparation method is as follows:

①.将Si基板放入热的H2SO4∶H2O2(7∶3)中超声1小时,后使用超纯水清洗;①. Put the Si substrate into hot H 2 SO 4 : H 2 O 2 (7: 3) and sonicate for 1 hour, and then wash it with ultrapure water;

②.将H2O∶NH3(5∶1)加热70℃后,加入1体积H2O2,加入基片浸泡15min后,使用超纯水清洗,最后用干燥氮气吹干;②. After heating H 2 O:NH 3 (5:1) to 70°C, add 1 volume of H 2 O 2 , add the substrate and soak for 15 minutes, wash it with ultrapure water, and finally dry it with dry nitrogen;

③.在Si基板的表面通过真空蒸镀或者溅射的方法蒸镀栅电极Au;③. On the surface of the Si substrate, the gate electrode Au is evaporated by vacuum evaporation or sputtering;

④.通过光刻的方法刻蚀栅电极的图形;④. Etching the pattern of the gate electrode by photolithography;

⑤.在镀有栅电极的Si板的另一侧通过旋涂的方法旋涂上有机绝缘层PVP,有机绝缘层PVP可以一次旋涂成膜,也可以分多次旋涂于Si基板上;⑤. On the other side of the Si plate coated with the gate electrode, the organic insulating layer PVP is spin-coated by spin-coating. The organic insulating layer PVP can be spin-coated into a film at one time, or it can be spin-coated on the Si substrate multiple times;

⑥.放入真空蒸发有机导体膜材料6,其气压为3×10-4Pa,蒸镀速率0.1nm/s,蒸镀速率及厚度由安装在基片附近的膜厚仪监控。⑥. Put in the vacuum evaporation organic conductor film material 6, the air pressure is 3×10 -4 Pa, the evaporation rate is 0.1nm/s, and the evaporation rate and thickness are monitored by a film thickness meter installed near the substrate.

然后在有机半导体层上蒸镀源电极、漏电极Au。通过光刻形成源电极、漏电极图案。Then, Au is vapor-deposited on the organic semiconductor layer for the source electrode and the drain electrode. Source electrode and drain electrode patterns are formed by photolithography.

Claims (9)

1.一种有机光电子器件,包括衬底、第一电极层和第二电极层,其中第一电极层或第二电极层位于衬底表面,还包括设置在所第一电极层和第二电极层之间的功能层,所述功能层的构成包括以下三种情形:①电子传输层、发光层、空穴传输层;②电子给体层、激子产生层、激子分离层、电子受体层;③绝缘层和有机半导体层;其特征在于,电子传输层或电子受体层或激子分离层或有机半导体层材料为有机聚合物材料,该有机聚合物材料化学结构如下:1. An organic optoelectronic device, comprising a substrate, a first electrode layer and a second electrode layer, wherein the first electrode layer or the second electrode layer is located on the substrate surface, and also includes a substrate arranged on the first electrode layer and the second electrode layer The functional layer between the layers, the composition of the functional layer includes the following three situations: ① electron transport layer, light-emitting layer, hole transport layer; ② electron donor layer, exciton generation layer, exciton separation layer, electron acceptor layer 3. insulating layer and organic semiconductor layer; it is characterized in that, electron transport layer or electron acceptor layer or exciton separation layer or organic semiconductor layer material is organic polymer material, and the chemical structure of this organic polymer material is as follows: 其中,R1~R8是以-CnH2n+1为通式的取代基团,R11~R14是以-CnH2n+1为通式的取代基团,R9和R10基团相同或者不同,但都是以下式1~式83所示电子传输基团中的一种或多种:Among them, R 1 ~ R 8 are substituent groups with the general formula -C n H 2n+1 , R 11 ~ R 14 are substituent groups with the general formula -C n H 2n+1 , R 9 and R The 10 groups are the same or different, but they are all one or more of the electron-transporting groups shown in the following formulas 1 to 83:
Figure F2009101642762C00012
Figure F2009101642762C00012
式1                                         式2Formula 1 Formula 2
Figure F2009101642762C00013
Figure F2009101642762C00013
式3                                          式4 Formula 3 Formula 4
Figure F2009101642762C00021
Figure F2009101642762C00021
式5                                      式6Equation 5 Equation 6 式7                                       式8Equation 7 Equation 8
Figure F2009101642762C00023
Figure F2009101642762C00023
式9                                        式10Formula 9 Formula 10
Figure F2009101642762C00024
Figure F2009101642762C00024
式11                                        式12Formula 11 Formula 12
Figure F2009101642762C00025
Figure F2009101642762C00025
式13                                         式14 Equation 13 Equation 14
Figure F2009101642762C00031
Figure F2009101642762C00031
式15                                      式16Equation 15 Equation 16 式17                                      式18Equation 17 Equation 18 式19                                       式20Formula 19 Formula 20
Figure F2009101642762C00034
Figure F2009101642762C00034
式21                                       式22Equation 21 Equation 22
Figure F2009101642762C00035
Figure F2009101642762C00035
式23                                        式24Equation 23 Equation 24
Figure F2009101642762C00036
Figure F2009101642762C00036
式25                                           式26 Equation 25 Equation 26
Figure F2009101642762C00041
Figure F2009101642762C00041
式27                                      式28Equation 27 Equation 28
Figure F2009101642762C00042
Figure F2009101642762C00042
式29                                       式30Equation 29 Equation 30
Figure F2009101642762C00043
Figure F2009101642762C00043
式31                                        式32Equation 31 Equation 32
Figure F2009101642762C00044
Figure F2009101642762C00044
式33                                      式34Equation 33 Equation 34
Figure F2009101642762C00045
Figure F2009101642762C00045
式35                                          式36 Equation 35 Equation 36
Figure F2009101642762C00051
Figure F2009101642762C00051
式37                                      式38Equation 37 Equation 38
Figure F2009101642762C00052
Figure F2009101642762C00052
式39                                       式40Equation 39 Equation 40
Figure F2009101642762C00053
Figure F2009101642762C00053
式41                                         式42Equation 41 Equation 42
Figure F2009101642762C00054
Figure F2009101642762C00054
式43                                        式44Equation 43 Equation 44
Figure F2009101642762C00055
Figure F2009101642762C00055
式45                                           式46 Equation 45 Equation 46
Figure F2009101642762C00061
Figure F2009101642762C00061
式47                                       式48Equation 47 Equation 48
Figure F2009101642762C00062
Figure F2009101642762C00062
式49                                      式50Equation 49 Equation 50 式51                                       式52Equation 51 Equation 52
Figure F2009101642762C00064
Figure F2009101642762C00064
式53                                       式54Equation 53 Equation 54
Figure F2009101642762C00065
Figure F2009101642762C00065
式55                                        式56 Equation 55 Equation 56 式57                                          式58Equation 57 Equation 58
Figure F2009101642762C00072
Figure F2009101642762C00072
式59                                          式60Equation 59 Equation 60
Figure F2009101642762C00073
Figure F2009101642762C00073
式61                                          式62Equation 61 Equation 62
Figure F2009101642762C00074
Figure F2009101642762C00074
式63                                          式64Equation 63 Equation 64
Figure F2009101642762C00075
Figure F2009101642762C00075
式65                                          式66 Equation 65 Equation 66
Figure F2009101642762C00081
Figure F2009101642762C00081
式67                                      式68Equation 67 Equation 68
Figure F2009101642762C00082
Figure F2009101642762C00082
式69                                     式70Equation 69 Equation 70
Figure F2009101642762C00083
Figure F2009101642762C00083
式71                                      式72Equation 71 Equation 72
Figure F2009101642762C00084
Figure F2009101642762C00084
式73                                      式74Equation 73 Equation 74
Figure F2009101642762C00085
Figure F2009101642762C00085
式75                                        式76Equation 75 Equation 76                        
Figure F2009101642762C00087
                       
Figure F2009101642762C00087
式77                                      式78 Formula 77 Formula 78
Figure F2009101642762C00091
Figure F2009101642762C00091
式79                                      式80Formula 79 Formula 80
Figure F2009101642762C00092
Figure F2009101642762C00092
式81                                      式82Formula 81 Formula 82
Figure F2009101642762C00093
Figure F2009101642762C00093
式83Formula 83 其中R为C1-30烷基、C2-30烯基、C1-30烷氧基、C6-30芳基、C6-30芳氧基、C3-30杂芳基、C1-30杂烷基,X为O、S、或NR’,R’为C1-30烷基、C6-30芳基、C3-30杂芳基、C1-30杂烷基或其组合。Where R is C 1-30 alkyl, C 2-30 alkenyl, C 1-30 alkoxy, C 6-30 aryl, C 6-30 aryloxy, C 3-30 heteroaryl, C 1 -30 heteroalkyl, X is O, S, or NR', R' is C 1-30 alkyl, C 6-30 aryl, C 3-30 heteroaryl, C 1-30 heteroalkyl or combination.
2.根据权利要求1所述的有机光电子器件,其特征在于,该器件是有机电致发光器件、有机太阳能电池或有机场效应管。2. The organic optoelectronic device according to claim 1, characterized in that the device is an organic electroluminescence device, an organic solar cell or an organic field effect transistor. 3.根据权利要求1或2所述的有机光电子器件,其特征在于,当器件为有机电致发光器件和有机太阳能电池时,所述衬底是玻璃或者柔性基片或者金属薄片,其中柔性基片是超薄玻璃、聚酯类或聚酞亚胺类化合物,所述第一电极层是金属氧化物薄膜或者金属薄膜或PEDOT:PSS或PANI类有机导电聚合物,该金属氧化物薄膜是ITO薄膜或者氧化锌薄膜或氧化锡锌薄膜,该金属薄膜是金、铜、银金属薄膜,所述第二电极层材料是金属薄膜或合金薄膜,该金属薄膜是锂或镁或钙或锶或铝或铟金属薄膜或它们与铜或金或银的合金薄膜。3. The organic optoelectronic device according to claim 1 or 2, wherein when the device is an organic electroluminescent device and an organic solar cell, the substrate is glass or a flexible substrate or a metal sheet, wherein the flexible substrate The sheet is ultra-thin glass, polyester or polyimide compound, the first electrode layer is metal oxide film or metal film or PEDOT:PSS or PANI organic conductive polymer, the metal oxide film is ITO Film or zinc oxide film or tin zinc oxide film, the metal film is gold, copper, silver metal film, the second electrode layer material is metal film or alloy film, the metal film is lithium or magnesium or calcium or strontium or aluminum Or indium metal film or their alloy film with copper or gold or silver. 4.根据权利要求1或2所述的有机光电子器件,其特征在于,器件为有机电致发光器件和有机太阳能电池,所述发光层材料或激子产生层材料是有机高分子聚合物,该有机高分子聚合物的分子量为10000~100000。 4. The organic optoelectronic device according to claim 1 or 2, wherein the device is an organic electroluminescence device and an organic solar cell, and the material of the light-emitting layer or the material of the exciton generating layer is an organic polymer, the The molecular weight of the organic polymer is 10,000-100,000. the 5.根据权利要求1或2所述的有机光电子器件,其特征在于,器件为有机电致发光器件和有机太阳能电池,所述空穴传输层或电子给体层材料具有低的最高被占用能级(HOMO)能级的有机高分子聚合物。该有机高分子化合物是三-[4-(5-苯基-2-噻吩基)苯]胺(PTDATA系列),聚乙烯咔唑(PVK),聚3,4-乙撑二氧噻吩(PEDOT)。5. The organic optoelectronic device according to claim 1 or 2, wherein the device is an organic electroluminescence device and an organic solar cell, and the hole transport layer or electron donor layer material has a low highest occupied energy Level (HOMO) energy level organic polymers. The organic polymer compound is tri-[4-(5-phenyl-2-thienyl)phenyl]amine (PTDATA series), polyvinylcarbazole (PVK), poly 3,4-ethylenedioxythiophene (PEDOT ). 6.根据权利要求1或2所述的有机光电子器件,其特征在于,器件为有机场效应管,所述衬底是刚性衬底或者柔性衬底,为Si、超薄玻璃、聚合物薄膜和金属箔中的一种。6. The organic optoelectronic device according to claim 1 or 2, wherein the device is an organic field effect transistor, and the substrate is a rigid substrate or a flexible substrate, which is Si, ultra-thin glass, polymer film and A type of metal foil. 7.根据权利要求1或2所述的有机光电子器件,其特征在于,器件为有机场效应管,第一电极层为栅极,其材料为金、银、铝、镍和铟锡氧化物中的一种,第二电极层为漏电极和源电极,其材料为导电薄膜。7. The organic optoelectronic device according to claim 1 or 2, wherein the device is an organic field effect transistor, the first electrode layer is a gate, and its material is gold, silver, aluminum, nickel and indium tin oxide. The second electrode layer is a drain electrode and a source electrode, and its material is a conductive film. 8.一种有机电致发光器件和有机太阳能电池的制备方法,其特征在于,包括以下步骤:8. A method for preparing an organic electroluminescent device and an organic solar cell, comprising the following steps: ①利用丙酮、乙醇溶液和去离子水对衬底进行超声清洗,清洗后用高压氮气吹干;①Use acetone, ethanol solution and deionized water to ultrasonically clean the substrate, and dry it with high-pressure nitrogen after cleaning; ②将衬底在真空蒸发室中进行电极的制备,所述电极包括第一电极层或者第二电极层;②The substrate is prepared in a vacuum evaporation chamber for electrodes, and the electrodes include a first electrode layer or a second electrode layer; ③将制备好电极的衬底移入真空室,在氧气压环境下进行预处理;③ Move the prepared electrode substrate into the vacuum chamber and perform pretreatment under the oxygen pressure environment; ④将处理后的衬底置入匀胶机中,在匀胶机中进行有机薄膜的旋涂,按照器件结构依次旋涂有机功能层,所述有机功能层包括发光层或激子产生层、电子传输层或电子受体层、空穴传输层或电子给体层,其中电子受体层材料结构式为: ④Put the treated substrate into a homogenizer, spin-coat the organic thin film in the homogenizer, and spin-coat the organic functional layers sequentially according to the device structure. The organic functional layers include a light-emitting layer or an exciton generating layer, Electron transport layer or electron acceptor layer, hole transport layer or electron donor layer, wherein the structural formula of electron acceptor layer material is:
Figure F2009101642762C00111
Figure F2009101642762C00111
⑤在有机层旋涂结束后再在高真空度的蒸发室中进行另一个电极层的制备;⑤ After the spin coating of the organic layer is completed, another electrode layer is prepared in a high-vacuum evaporation chamber; ⑥将做好的器件在手套箱进行封装,手套箱为氮气氛围;⑥Encapsulate the finished device in a glove box, and the glove box is a nitrogen atmosphere; ⑦测试有机电致发光器件的电流-电压-亮度特性、发光光谱参数;测试有机太阳能电池在无光照和光照条件下的电流-电压曲线。⑦Test the current-voltage-brightness characteristics and luminescence spectrum parameters of organic electroluminescent devices; test the current-voltage curves of organic solar cells under the conditions of no light and light.
9.一种有机场效应管的制备方法,其特征在于,包括以下步骤:9. A preparation method for an organic field effect tube, comprising the following steps: ①利用H2SO4∶H2O2=7∶3、H2O∶NH3=5∶1的混合溶液和超纯水对衬底进行超声清洗,清洗后用高压氮气吹干;①Use a mixed solution of H 2 SO 4 : H 2 O 2 =7:3, H 2 O:NH 3 =5:1 and ultrapure water to ultrasonically clean the substrate, and dry it with high-pressure nitrogen after cleaning; ②在基板的表面通过真空蒸镀或者旋涂或者溅射的方法制备栅电极;②Gate electrodes are prepared on the surface of the substrate by vacuum evaporation, spin coating or sputtering; ③通过光刻的方法刻蚀栅电极的图形;③ Etching the pattern of the gate electrode by photolithography; ④在镀有栅电极基板的表面通过真空蒸镀或者旋涂或者溅射的方法制备绝缘层,通过旋涂制备有机半导体层,其中有机半导体层材料的结构式为:④ Prepare an insulating layer on the surface of the substrate coated with a gate electrode by vacuum evaporation or spin coating or sputtering, and prepare an organic semiconductor layer by spin coating, wherein the structural formula of the organic semiconductor layer material is:
Figure F2009101642762C00112
Figure F2009101642762C00112
⑤然后在有机半导体层上通过蒸镀或者旋涂或者溅射的方法制备源电极,漏电极;⑤Then prepare a source electrode and a drain electrode on the organic semiconductor layer by evaporation or spin coating or sputtering; ⑥通过光刻形成源电极、漏电极图案。 ⑥ Form source electrode and drain electrode patterns by photolithography. the
CN200910164276.2A 2009-08-27 2009-08-27 Organic photoelectric device and preparation method thereof Expired - Fee Related CN101667623B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910164276.2A CN101667623B (en) 2009-08-27 2009-08-27 Organic photoelectric device and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910164276.2A CN101667623B (en) 2009-08-27 2009-08-27 Organic photoelectric device and preparation method thereof

Publications (2)

Publication Number Publication Date
CN101667623A CN101667623A (en) 2010-03-10
CN101667623B true CN101667623B (en) 2011-01-05

Family

ID=41804139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910164276.2A Expired - Fee Related CN101667623B (en) 2009-08-27 2009-08-27 Organic photoelectric device and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101667623B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280585A (en) * 2011-05-20 2011-12-14 电子科技大学 Organic film solar cell and preparation method thereof
TWI515936B (en) * 2011-12-15 2016-01-01 友達光電股份有限公司 Light emitting device and manufacturing method thereof
CN102820430A (en) * 2012-05-14 2012-12-12 华南理工大学 Flexible organic/polymer solar cell and preparation method thereof
DE102014106885B4 (en) * 2014-05-15 2022-01-20 Pictiva Displays International Limited Method for producing an insulator layer, method for producing an organic optoelectronic component comprising an insulator layer and organic optoelectronic component comprising an insulator layer
CN104282838B (en) 2014-10-15 2017-02-15 京东方科技集团股份有限公司 OLED light-emitting device, manufacturing method thereof and display device

Also Published As

Publication number Publication date
CN101667623A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP7724571B2 (en) Spirocyclic compound, formulation, organic electroluminescent diode and display device
JP2023540114A (en) Organic electroluminescent devices and display devices
CN100446634C (en) Organic photoelectric component, electrode structure used for organic photoelectric component and method for improving operation efficiency of organic photoelectric component
CN101556988B (en) An organic optoelectronic device with non-doped gain layer and its preparation method
CN101160673B (en) Modified electrodes using functional organic materials and electronic devices therefrom
CN101504971B (en) Organic opto-electric device based on bi-polar organic material and production process thereof
CN102074658B (en) Electric charge production layer, lamination layer organic light-emitting diode and preparation method thereof
KR20090092114A (en) Electron injecting layer comprising super acid salt, photovoltaic device including the same and electron injecting layer including the same
CN102623640A (en) Solar battery
CN101740724A (en) Organic electroluminescent device and preparation method thereof
CN101667623B (en) Organic photoelectric device and preparation method thereof
CN108598269A (en) Thick-film organic solar cell based on non-fullerene receptor and preparation method
CN102097601B (en) Organic light-emitting diode for N-type doping membrane
CN101710610A (en) Organic light emitting diode of alkali metal carbonate-doped organic electron injecting layer
CN106187892A (en) A kind of organic blended type double-function device and preparation method thereof
CN101114698B (en) Organic Electroluminescent Devices Based on Fluorene-Carbazole Copolymers
CN101661996A (en) Optoelectronic device for introducing transition metal oxide
CN105789441B (en) A kind of organic double-function device and preparation method thereof
CN101022155A (en) Organic electroluminescent device and producing method thereof
JP2012039097A (en) Photovoltaic device
CN201178102Y (en) An organic electroluminescent device
CN101599532A (en) A kind of organic optoelectronic device and preparation method thereof
CN108242508A (en) Electron transport layer, preparation method thereof, and organic light-emitting device
CN101740723B (en) A kind of organic electroluminescence device and preparation method thereof
JP2015502047A (en) Polymer solar cell and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110105

Termination date: 20130827