CN101702328B - Three-dimensional memory element and method of operation thereof - Google Patents
Three-dimensional memory element and method of operation thereof Download PDFInfo
- Publication number
- CN101702328B CN101702328B CN 200910206679 CN200910206679A CN101702328B CN 101702328 B CN101702328 B CN 101702328B CN 200910206679 CN200910206679 CN 200910206679 CN 200910206679 A CN200910206679 A CN 200910206679A CN 101702328 B CN101702328 B CN 101702328B
- Authority
- CN
- China
- Prior art keywords
- initial
- voltage
- word line
- bit line
- switch layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Semiconductor Memories (AREA)
Abstract
一种三维储存器(3D memory)由多层储存器构成。各层储存器包括m条字线、n条位线以及多数起始开关层。其中m,n为自然数。起始开关层由硫族化合物材料构成。在字线i、字线i+1以及位线j、位线j+1所围的区域中有两个起始开关层Ci,j+1以及Ci+1,j,而在字线i+1、字线i+2以及位线j、位线j+1所围的区域中无起始开关层。其中,i为奇数且1≤i≤m-1;j为自然数且j=1~n-1;上述起始开关层Ci,j+1表示连接字线i与位线j+1的起始开关层;以及上述起始开关层Ci+1,j表示连接字线i+1与位线j的起始开关层。各起始开关层与所连接的字线与所连接的位线构成一储存器内核。
A three-dimensional memory (3D memory) is composed of multi-layer memory. Each layer of memory includes m word lines, n bit lines and a plurality of starting switch layers. Wherein m and n are natural numbers. The starting switch layer is composed of a chalcogenide material. There are two starting switch layers Ci ,j+1 and Ci +1,j in the area surrounded by word line i, word line i+1 and bit line j, bit line j+1, while there is no starting switch layer in the area surrounded by word line i+1, word line i+2 and bit line j, bit line j+1. Wherein, i is an odd number and 1≤i≤m-1; j is a natural number and j=1~n-1; the above-mentioned starting switch layer Ci ,j+1 represents the starting switch layer connecting word line i and bit line j+1; and the above-mentioned starting switch layer Ci +1,j represents the starting switch layer connecting word line i+1 and bit line j. Each starting switch layer and the connected word line and the connected bit line constitute a memory core.
Description
本发明是原申请号200510105365.1,申请日为2005年9月23日,发明名称为“硫族化合物储存器”的分案申请The present invention is a divisional application with the original application number 200510105365.1, the application date is September 23, 2005, and the invention name is "chalcogenide storage device"
技术领域 technical field
本发明是有关于一种储存元件,且特别是有关于一种不需存取晶体管(access transistor)的三维储存器元件及其操作方法。The present invention relates to a storage device, and more particularly to a three-dimensional storage device without an access transistor (access transistor) and its operating method.
背景技术 Background technique
典型的储存单元包括一导向元件(steering element),其例如为一个或多个晶体管(晶体管即为电晶体,以下皆称为晶体管),用来存取(access)每一个储存单元。该存取晶体管也可以是二极管(二极管即为二极体,以下皆称为二极管),其提供存取储存单元的位线(bit line)的字线(word line)。尤其是为了读写储存单元的资料,该存取晶体管可充当用于字线到位线的存取通闸(pass gate)。例如,动态随机存取储存器(DRAM)、快闪储存器(flash memory),静态随机存取储存器(SRAM)、传统的硫族化合物(chalcogenide)储存器、欧式记忆体(ovonic unifiedmemory,OUM)或者相变随机存取储存器(phase-change random accessmemory,PCRAM)需要晶体管或者PN二极管作为导向元件或者寻址元件(addressing element)。在DRAM中,该导向元件是晶体管且资料乃是储存于一电容器中。相类似地,在SRAM中则需要六个晶体管。但是,制造晶体管需要高品质的硅,并且当在硅晶圆上制造晶体管时,会产生一些问题。因此,在硅晶圆上制造具有晶体管的三维(three dimensional,3D)储存器是有困难的。A typical storage unit includes a steering element, such as one or more transistors (transistors are transistors, hereinafter referred to as transistors), for accessing each storage unit. The access transistor can also be a diode (a diode is a diode, hereinafter referred to as a diode), which provides a word line for accessing a bit line of a storage unit. Especially for reading and writing data of the memory cell, the access transistor can act as a pass gate for word line to bit line access. For example, dynamic random access memory (DRAM), flash memory (flash memory), static random access memory (SRAM), traditional chalcogenide (chalcogenide) memory, European memory (ovonic unified memory, OUM) ) or phase-change random access memory (PCRAM) requires transistors or PN diodes as steering elements or addressing elements. In DRAM, the steering element is a transistor and the data is stored in a capacitor. Similarly, six transistors are required in SRAM. But making transistors requires high-quality silicon, and when transistors are made on silicon wafers, some problems arise. Therefore, it is difficult to fabricate a three-dimensional (3D) memory with transistors on a silicon wafer.
可行的解决方案乃是使用多晶硅p-n接合(p-n junction)以作为导向元件的储存器。然而,这种方法存在有一定缺陷。例如,这些储存器的类型大都局限于一次可编程储存器(one time programmable memory,OTP),而这种方法需要高编程电压(programming voltage)以及高制程温度(process temperature)。此高制程温度将会阻碍了铝(Al)和铜(Cu)金属线的使用。例如,铝的最高制程温度是500℃,且铜的制程温度范围是大约400~500℃。由于铝和铜是常用的层间配线金属,所以排除这两种金属将会使得层间配线变得更加困难。另外,当藉由封装技术而制造三维储存器时,层间的结合校准(bonding alignment)将变得非常困难。基于前述观点,故需要一种不用存取晶体管而能够选择存取内核储存单元的储存单元结构。A viable solution is to use polysilicon p-n junctions (p-n junction) as the storage for the steering element. However, this method has certain drawbacks. For example, most of these memory types are limited to one time programmable memory (OTP), which requires high programming voltage and high process temperature. This high process temperature would hinder the use of aluminum (Al) and copper (Cu) wires. For example, the maximum process temperature for aluminum is 500°C, and the process temperature range for copper is about 400-500°C. Since aluminum and copper are commonly used interlayer wiring metals, excluding these two metals will make interlayer wiring more difficult. In addition, when the three-dimensional memory is manufactured by packaging technology, the bonding alignment between layers will become very difficult. Based on the aforementioned viewpoint, there is a need for a memory cell structure capable of selectively accessing core memory cells without access transistors.
发明内容 Contents of the invention
本发明乃是藉由使用起始开关材料(threshold-switching material),其可编程来执行导向元件的功能,而毋须可作为存取一储存器内核单元的导向元件的存取晶体管。The present invention does this by using an initial threshold-switching material that can be programmed to perform the function of a steering element without requiring access transistors that can be used as steering elements for accessing a memory core cell.
本发明再提供一种三维储存器(3D memory)由多层储存器构成。各层储存器包括m条字线、n条位线以及多数起始开关层。其中m,n为自然数。起始开关层由硫族化合物材料构成。在字线i、字线i+1以及位线j、位线j+1所围的区域中有两个起始开关层Ci,j+1以及Ci+1,j,而在字线i+1、字线i+2以及位线j、位线j+1所围的区域中无起始开关层。其中,i为奇数且1≤i≤m-1;j为自然数且j=1~n-1;上述起始开关层Ci,j+1表示连接字线i与位线j+1的起始开关层;以及上述起始开关层Ci+1,j表示连接字线i+1与位线j的起始开关层。各起始开关层与所连接的字线与所连接的位线构成一储存器内核。各储存器内核具有一低电压值的第一起始电压和一高电压值的第二起始电压,该第一起始电压对应于该起始开关层的一第一储存状态,该第二起始电压对应于该储存器的一第二储存状态。当该字线与该位线之间的电压值为该第一起始电压时,该起始开关层被选通并处于该第一储存状态,当该字线与该位线之间的电压值为该第二起始电压时,该起始开关层被选通并处于该第二储存状态,当该字线与位线浮置时,该起始开关层处于非选通状态。The present invention further provides a three-dimensional memory (3D memory) composed of multi-layer memory. Each storage layer includes m word lines, n bit lines and most initial switch layers. Among them, m and n are natural numbers. The initial switching layer is composed of a chalcogenide material. There are two initial switching layers C i,j+1 and C i+1,j in the area surrounded by word line i, word line i+1 and bit line j, bit line j+1 , and in the area surrounded by word line There is no initial switch layer in the area surrounded by i+1, word line i+2, bit line j, and bit line j+1. Among them, i is an odd number and 1≤i≤m-1; j is a natural number and j=1~n-1; the above-mentioned initial switch layer C i, j+1 represents the starting point of connecting word line i and bit line j+1 and the above-mentioned initial switch layer C i+1, j represents the initial switch layer connecting the word line i+1 and the bit line j. Each initial switch layer and the connected word lines and connected bit lines form a memory core. Each memory core has a first initial voltage of a low voltage value and a second initial voltage of a high voltage value, the first initial voltage corresponds to a first storage state of the initial switch layer, the second initial The voltage corresponds to a second storage state of the memory. When the voltage value between the word line and the bit line is the first initial voltage, the initial switch layer is gated and in the first storage state, when the voltage value between the word line and the bit line is When it is the second start voltage, the start switch layer is gated and is in the second storage state, and when the word line and the bit line are floating, the start switch layer is in a non-gate state.
本发明另提供一种在上述三维储存器中存取储存器内核的方法,而该方法包含下列数个步骤。首先,决定用于存取上述储存器内核其中一的起始电压。然后,编程此储存器内核的一起始开关材料,以便能够在起始电压下存取储存器内核。接下来,在与储存器内核连通(communication)的字线上施加一电压,如果该电压至少等于此起始电压时,即可存取储存器内核。The present invention further provides a method for accessing memory cores in the above-mentioned three-dimensional memory, and the method includes the following steps. Firstly, a threshold voltage for accessing one of the memory cores is determined. Then, an initial switch material of the memory core is programmed so that the memory core can be accessed at the initial voltage. Next, a voltage is applied to a word line communicating with the memory core. If the voltage is at least equal to the initial voltage, the memory core can be accessed.
本发明又提供一种读取上述三维储存器(3D chalcogenide memory)元件的方法,包含下列数个步骤。首先,施加一读取电压于一字线。该读取电压可用以直接存取对应所选字线之储存器内核。然后,在与字线相对应的位线上施加一零偏压。接下来,读取储存于储存器内核中的数值。The present invention further provides a method for reading the above-mentioned 3D chalcogenide memory element, which includes the following steps. First, a read voltage is applied to a word line. The read voltage can be used to directly access the memory core corresponding to the selected word line. Then, a zero bias is applied on the bit line corresponding to the word line. Next, the value stored in the memory core is read.
任何熟知本发明的技艺者皆可清楚地知悉,本发明能够应用于许多的储存器/固态元件(solid state device)。该储存器内核的一个显着的优点乃是在于其毋须存取晶体管,其中该存取晶体管可作为传送信号至储存器内核的导向元件。此外,本发明可降低储存器内核所需要的编程电压,亦可降低其制程温度。本发明将可促进三维储存器的制造,其中该储存器可以为非易失性的和快速的储存器。Anyone familiar with the present invention can clearly understand that the present invention can be applied to many storage/solid state devices. A significant advantage of the memory core is that it eliminates the need for access transistors that serve as steering elements for transmitting signals to the memory core. In addition, the present invention can reduce the programming voltage required by the memory core, and can also reduce its process temperature. The present invention will facilitate the fabrication of three-dimensional memories, which may be non-volatile and fast memories.
上述的发明内容以及以下所揭露的实施例仅仅用以解释本发明的实施方式的例子,然其并非用以限定本发明。The above summary of the invention and the embodiments disclosed below are only used to explain examples of the implementation of the present invention, but they are not intended to limit the present invention.
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments will be described in detail below together with the accompanying drawings.
附图说明 Description of drawings
图1A绘示为本发明一实施例的一种储存器内核的示意图。FIG. 1A is a schematic diagram of a memory core according to an embodiment of the present invention.
图1B绘示为本发明一实施例的一种储存器内核的示意图。FIG. 1B is a schematic diagram of a memory core according to an embodiment of the present invention.
图2A和2B绘示为储存器内核经堆叠后所形成的一种三维储存器的示意图。2A and 2B are schematic diagrams of a three-dimensional memory formed by stacking memory cores.
图2C绘示为储存器内核经堆叠而制造的三维储存器的剖面示意图。FIG. 2C is a schematic cross-sectional view of a three-dimensional memory manufactured by stacking memory cores.
图3A绘示为形成一层的储存器内核的阵列示意图。FIG. 3A is a schematic diagram of an array of memory cores forming a layer.
图3B绘示为连接选择电路的位线和字线的储存器内核阵列示意图。FIG. 3B is a schematic diagram of a memory core array connected to bit lines and word lines of a selection circuit.
图3C绘示为多层的三维储存器的示意图。FIG. 3C is a schematic diagram of a three-dimensional memory with multiple layers.
图3D绘示为形成多层的储存器内核阵列,其为三维储存器的一部份。FIG. 3D shows an array of memory cores forming multiple layers, which is part of a three-dimensional memory.
图4A至4D绘示为可以施加于硫族化合物储存器元件的编程技术的示意图。4A-4D are schematic diagrams of programming techniques that may be applied to chalcogenide memory devices.
图5A至5C绘示为本发明的三个实施例的读取一元件的方法。5A to 5C illustrate methods for reading a device according to three embodiments of the present invention.
102、108:顶部电极102, 108: top electrode
104、110:起始开关层104, 110: initial switch layer
106、112:底部电极106, 112: Bottom electrodes
114:选择电路114: Select circuit
202、210、214、222:字线202, 210, 214, 222: word lines
204、212、216、220:起始开关层204, 212, 216, 220: initial switch layer
206、208、218:位线206, 208, 218: bit lines
304、310、318:字线304, 310, 318: word lines
306、314、320:起始开关层306, 314, 320: initial switch layer
302、312、316:位线302, 312, 316: bit lines
308:选择元件308: Select components
311:储存器阵列层311: Storage array layer
317:储存器内核317: memory core
408s、408r:储存单元408s, 408r: storage unit
408a至408n:储存单元408a to 408n: storage unit
Vthl:低起始电压Vthl: low starting voltage
Vthh:高起始电压Vthh: High starting voltage
Vp、Vpl、Vph:偏压Vp, Vpl, Vph: bias voltage
具体实施方式 Detailed ways
本发明乃是藉由将一个起始开关并入一储存单元中而毋须存取晶体管。在一个实施例中,该起始开关材料是硫族化合物(chalcogenide)材料。进一步的关于能够改变起始电压Vth的材料的Vth调整资料乃是揭露在美国专利第10/465,120号中。The present invention eliminates the need for access transistors by incorporating an initiation switch into a memory cell. In one embodiment, the starting switch material is a chalcogenide material. Further information on Vth adjustment of materials capable of changing the threshold voltage Vth is disclosed in US Pat. No. 10/465,120.
在一实施例中,可利用起始开关材料的类似晶体管特性而毋须导向元件以简化储存单元结构,其例如为存取晶体管或者P-N二极管。显然地,对熟知本技术领域的技艺者来说可以在硫族化合物储存单元上植入逻辑电路以形成单晶片系统(a system on a chip,SoC)。进而对于硫族化合物而言,一旦编程该非易失性的特质时,将能够相对快速地进行读写操作。值得注意的是,与起始开关材料相关的(例如为硫族化合物材料)编程电压比快闪唯读储存器(read only memory,ROM)的编程电压低很多。举例而言,硫族化合物储存单元的编程电压大约是5伏特(V),而快闪唯读储存器的编程电压大约是10伏特。In one embodiment, the transistor-like properties of the starting switch material can be used to simplify the memory cell structure without the need for a steering element, such as an access transistor or a P-N diode. Apparently, those skilled in the art can implant logic circuits on the chalcogenide memory cells to form a system on a chip (SoC). Furthermore, for chalcogenides, once the non-volatile nature is programmed, read and write operations can be performed relatively quickly. It is worth noting that the programming voltage associated with the initial switching material (for example, chalcogenide material) is much lower than that of flash read only memory (ROM). For example, the programming voltage of a chalcogenide memory cell is about 5 volts (V), while that of a flash ROM is about 10 volts.
硫族化合物储存单元具有导向元件和储存元件的双重功能。因此,仅制造一个硫族化合物储存器要远比把晶体管和硫族化合物储存单元结合在一起更为容易。另外,当该储存单元作为导向元件时,在具有相同的储存容量情况下,其晶片体积将会小于具有分开的导向元件和储存单元的储存器。相对地,在具有相同储存器体积的情况下,与具有分开的导向元件和储存单元的储存器相比,双功能(dual functioning)硫族化合物储存器将能够提供更高的储存容量。与存取晶体管相比,一个小尺寸的硫族化合物储存器元件将能够通过更高的电流。在此实施例中,使用硫族化合物材料作为起始开关材料仅是一个举例,并非局限于硫族化合物材料。任何具有此硫族化合物材料性质的材料,例如具有稳定且可调整的起始电压(Vth)特性,都可以用于非易失性双功能储存单元。The chalcogenide storage unit has the dual function of guiding element and storage element. Therefore, it is much easier to make just a chalcogenide memory than to combine a transistor and a chalcogenide memory cell. In addition, when the storage unit is used as a guide element, its wafer volume will be smaller than that of a storage with separate guide elements and storage units with the same storage capacity. In contrast, with the same reservoir volume, a dual functioning chalcogenide reservoir will be able to provide a higher storage capacity than a reservoir with separate guide elements and storage units. A small-sized chalcogenide memory element would be able to pass higher currents than an access transistor. In this embodiment, using the chalcogenide material as the starting switch material is just an example, and is not limited to the chalcogenide material. Any material with the properties of the chalcogenide material, such as stable and adjustable threshold voltage (Vth) characteristics, can be used for the non-volatile dual-function memory cell.
图1A和图1B绘示为本发明一实施例的一种储存器内核的示意图。图1A中所示的储存器内核单元包括一顶部电极102和一底部电极106以及设置于顶部电极102和底部电极106之间的一起始开关层(threshold-switching layer)104。顶部电极106可以是金属、类金属(metalloid)、半导体、或者硅化物(silicide)、或者其他具有稳定且可调整电压的起始(threshold)特性材料。1A and 1B are schematic diagrams of a memory core according to an embodiment of the present invention. The memory core cell shown in FIG. 1A includes a
同样的,图1B是储存器内核的另一实施例。在该实施例中,该储存器内核包括一顶部电极108和一底部电极112以及设置于顶部电极108和底部电极112的第一端之间的一起始开关层110。底部电极112的第一端与起始开关层110相连并且底部电极112的第二端与选择电路114相连。该选择电路114可选择与储存单元相对应的位线和字线。Similarly, FIG. 1B is another embodiment of the memory core. In this embodiment, the memory core includes a
图2A和2B绘示为如图1A和1B中所示的储存器内核经堆叠后所形成的一种储存元件的示意图。图2A包括一字线202和一位线206。当然,在一些实施例中,206可以代表字线且202可以代表位线。图2A进一步包括设置于字线202和位线206间的一起始开关层204。该字线202和位线206可以是类似于图1A和1B中的电极。每一储存器内核可以堆积在另一储存器内核之上以形成一储存器元件。2A and 2B are schematic views of a storage device formed by stacking the memory cores shown in FIGS. 1A and 1B . FIG. 2A includes a
图2B和图2A类似,不同之处在于构成储存器内核的独立层(individual layers)。在本实施例中,储存器内核包括一位线208和一字线210。当然,在一些实施例中,208可以代表字线且210可代表位线。起始开关层212位于字线210之下。因此,堆叠的每一层包括一位线208、一字线210和一起始开关层212。Figure 2B is similar to Figure 2A, except for the individual layers that make up the memory core. In this embodiment, the memory core includes a
图2C绘示为如图2A和2B所示的储存器内核经堆叠而制造的三维储存器的剖面示意图。图2C包括一字线214和一位线218。图2C进一步包括设置于字线214和位线218之间的一起始开关层216。同样地,另一起始开关层220设置于位线218和字线222之间。FIG. 2C is a schematic cross-sectional view of a three-dimensional memory manufactured by stacking the memory cores shown in FIGS. 2A and 2B . FIG. 2C includes a
藉由上述的储存器内核的阵列堆叠可以制造出三维储存器。图3A绘示为图2A和2B的储存器内核的阵列示意图。该储存器阵列可以堆叠形成三维储存器。储存器内核阵列中的每一个储存器内核包括一位线302、一字线304、以及设置于字线304和位线302之间的一起始开关层306。A three-dimensional memory can be manufactured by stacking the above-mentioned array of memory cores. FIG. 3A is a schematic diagram of an array of memory cores of FIGS. 2A and 2B . The reservoir arrays can be stacked to form a three-dimensional reservoir. Each memory core in the array of memory cores includes a
图3B绘示为类似于图3A所描述的储存器内核阵列示意图。在本发明一实施例中,字线304和位线302的选择元件308连接于储存器内核阵列的外缘。尽管图3B所示的选择元件308是晶体管,该选择元件也可以是P-N二极管、萧特基二极管(Schottky diodes)或者穿隧二极管(tunnelingdiode)。图3C绘示为多层的三维储存器的示意图。图3C包括多个储存器阵列层311。每一储存器阵列层311包含多条字线310、位线312与起始开关层314。FIG. 3B is a schematic diagram of a memory core array similar to that described in FIG. 3A . In one embodiment of the present invention, the
图3D是根据本发明一实施例所绘示的储存器内核阵列经堆叠而制造的三维储存器的示意图。每一层储存器317包括多条位线316、多条字线318和设置于位线316和字线318之间的起始开关层320。3D is a schematic diagram of a three-dimensional memory manufactured by stacking memory core arrays according to an embodiment of the present invention. Each
更详细地说,三维储存器(3D memory)由多层储存器构成。各层储存器包括m条字线WL1、WL2...WLm、n条位线BL1、BL2...BLn以及多数个起始开关层320。其中m,n为自然数。此三维储存器仅在字线i、字线i+1以及位线j、位线j+1所围的区域中有两个起始开关层Ci,j+1以及Ci+1,j。其中,i为奇数且1≤i≤m-1;j为自然数且j=1~n-1;上述起始开关层Ci,j+1表示连接字线i与位线j+1的起始开关层;上述起始开关层Ci+1,j表示连接字线i+1与位线j的起始开关层。More specifically, a three-dimensional memory (3D memory) is composed of a multilayer memory. Each storage layer includes m word lines WL 1 , WL 2 . . . WL m , n bit lines BL 1 , BL 2 . Among them, m and n are natural numbers. This three-dimensional memory only has two initial switch layers C i,j+1 and C i+1,j in the area surrounded by word line i, word line i +1 and bit line j, bit line j+1 . Among them, i is an odd number and 1≤i≤m-1; j is a natural number and j=1~n-1; the above-mentioned initial switch layer C i, j+1 represents the starting point of connecting word line i and bit line j+1 The initial switch layer; the above initial switch layer C i+1,j represents the initial switch layer connecting the word line i+1 and the bit line j.
起始开关层(Ci,j+1以及Ci+1,j)320由硫族化合物材料构成。各起始开关层与所连接的字线与所连接的位线构成一储存器内核。以起始开关层Ci,j+1、字线i以及字线i+1所构成的储存器内核来说,其具有一低电压值的第一起始电压和一高电压值的第二起始电压,第一起始电压对应于起始开关层Ci,j+1的第一储存状态,第二起始电压对应于该起始开关层Ci,j+1的第二储存状态。当字线WLi与位线BLj+1之间的电压值为第一起始电压时,起始开关层Ci,j+1被选通并处于第一储存状态,当字线WLi与位线BLj+1之间的电压值为第二起始电压时,起始开关层Ci,j+1被选通并处于第二储存状态,当字线WLi与位线BLj+1浮置时,起始开关层Ci,j+1处于非选通状态。The initial switching layers (C i,j+1 and C i+1,j ) 320 are composed of chalcogenide materials. Each initial switch layer and the connected word lines and connected bit lines form a memory core. Taking the memory core composed of the initial switch layer C i,j+1 , word line i and word line i+1 as an example, it has a first initial voltage with a low voltage value and a second initial voltage with a high voltage value. The initial voltage corresponds to the first storage state of the initial switching layer C i,j+1 , and the second initial voltage corresponds to the second storage state of the initial switching layer C i,j+1 . When the voltage value between the word line WL i and the bit line BL j+1 is the first start voltage, the start switch layer C i, j+1 is gated and in the first storage state, when the word line WL i and the bit line BL j+1 are in the first storage state. When the voltage value between the bit line BL j+1 is the second initial voltage, the initial switch layer C i, j+1 is gated and is in the second storage state, when the word line WL i and the bit line BL j+ When 1 is floating, the initial switch layer C i,j+1 is in a non-selected state.
在本发明中,由于储存器内核既是导向元件又是储存单元,因此毋须使用晶体管作为导向元件。如上所述,省略了作为导向元件的晶体管实际上乃是免除了制造储存器时对于高品质硅的需求。同时,也相对地降低了制造储存器的温度。故藉由传统的光刻蚀(photo/etching)或者金属镶嵌(damascene)技术即可以制造多层储存器而不需要进行任何层间校正。In the present invention, since the memory core is both a steering element and a storage unit, there is no need to use a transistor as a steering element. As mentioned above, the omission of the transistor as a steering element effectively eliminates the need for high-quality silicon in the manufacture of the memory. At the same time, the temperature for manufacturing the storage is relatively reduced. Therefore, the multi-layer memory can be fabricated by conventional photo-etching or damascene technology without any inter-layer alignment.
由于该起始开关材料可作为导向元件,所以免除了对于额外的导向元件的需求。因此,藉由一层接着一层制造储存器内核阵列即可很容易地结合为一个三维储存器。此外,藉由合并多数的层将有助于提高储存器密度。Since the starting switch material acts as a guiding element, the need for additional guiding elements is eliminated. Therefore, an array of memory cores can be easily combined into a three-dimensional memory by fabricating the memory core layer by layer. In addition, it helps to increase memory density by merging multiple layers.
图4A至4D绘示为可以施加于硫族化合物储存器元件的编程技术的示意图。图4A表示的是浮置编程(floating programming)技术。在此,假设硫族化合物储存器元件包括两个起始电压,例如为一个作为状态1的低起始电压(Vthl)和一个作为状态0的高起始电压(Vthh)。图4A描述的是施加于储存单元上的偏压。未选择的储存单元乃是施加-Vp到+Vp之间的偏压,而选择的单元乃是施加正向+Vp偏压。储存单元408s乃是代表选择的单元,而剩余的单元408a至408n代表的是未选择的单元。表1归纳了程式1和程式0的编程方法。4A-4D are schematic diagrams of programming techniques that may be applied to chalcogenide memory devices. FIG. 4A shows a floating programming technique. Here, it is assumed that the chalcogenide memory element includes two threshold voltages, eg, a low threshold voltage (Vthl) for state 1 and a high threshold voltage (Vthh) for
表1Table 1
如表1所示的偏压,选择的位线是零,而选择的字线乃是根据程式或者所选择的状态而为Vpl或者Vph。With the biases shown in Table 1, the selected bit line is zero and the selected word line is either Vpl or Vph depending on the program or selected state.
图4B表示的是一偏压编程技术。图4B的图形表示所施加的偏压。在此,可在未选择的字线和位线上施加一电压(偏压)。在选择的单元408s上乃是施加正向+Vp偏压。可以假定硫族化合物储存器元件包括两个起始电压,例如为一个作为状态1的低起始电压(Vthl)和一个作为状态0的高起始电压(Vthh)。以下的表2列出了程式1和程式0的编程方法。Figure 4B shows a bias programming technique. The graph of Figure 4B represents the applied bias voltage. Here, a voltage (bias) may be applied to unselected word lines and bit lines. A forward +Vp bias is applied to the selected
表2Table 2
如表2所示的偏压,选择的位线是零,而选择的字线依据程式或者是选择的状态而为Vpl或Vph。值得注意的是,分别如图4C和4D中所示,可以采用两个偏压编程方法的实施例,也就是V/2方法和V/3方法。当然,其他的偏压编程方法亦可以作为本发明的编程方法,故在此所描述的方法仅作为一实施例但不是限制于此实施例。With the biases shown in Table 2, the selected bit line is zero, and the selected word line is either Vpl or Vph depending on the program or selected state. It is worth noting that two embodiments of the bias programming method, namely the V/2 method and the V/3 method, can be employed, as shown in FIGS. 4C and 4D , respectively. Of course, other bias programming methods can also be used as the programming method of the present invention, so the method described here is only used as an embodiment but not limited to this embodiment.
图4C绘示为V/2方法的示意图。图4C描述的是施加于储存单元上的偏压。于该选择的储存单元408s上乃是施加正向+Vp偏压,而剩余的其他未选择的储存单元则施加正向+Vp/2偏压。可以假定该硫族化合物储存器元件包括两个起始电压,也就是作为状态1的一低起始电压(Vthl)和作为状态0的一高起始电压(Vthh)。状态1和状态0的编程方法乃是表列于下表3。FIG. 4C is a schematic diagram of the V/2 method. Figure 4C depicts the bias applied to the memory cell. A forward +Vp bias is applied to the selected
表3table 3
如表3所示的偏压,选择的位线是零,而选择的字线则根据程式或者所选择的状态而为Vpl或者Vph。The biases shown in Table 3, the selected bit line is zero, and the selected word line is either Vpl or Vph depending on the program or selected state.
图4D绘示为V/3方法的一示意图。图4D描述的是施加于储存单元上的偏压。该选择的储存单元408s乃是施加正向+Vp偏压,而剩余的其他未选择的储存单元则具有下列两种特性的其中之一,也就是一些未选择的储存单元乃是施加正向偏压+Vp/3,而一些未选择的储存单元则施加反向偏压-Vp/3。储存单元408f乃是施加正向偏压+Vp/3,而储存单元408r则施加反向偏压-Vp/3。可以假定硫族化合物储存器元件包括两个起始电压,也就是一个作为状态1的低起始电压(Vthl)和一个作为状态0的高起始电压(Vthh)。至于状态1和状态0的编程方法则表列于下表4中。FIG. 4D is a schematic diagram of the V/3 method. FIG. 4D depicts the bias applied to the memory cell. The selected
表4Table 4
如表4所示的偏压,选择的位线是零,而选择的字线则根据程式或者是选择的状态而为Vpl或者Vph。值得注意的是,编程电压的限制范围可为:“Vthh<Vp<3Vthl”。With the bias shown in Table 4, the selected bit line is zero, and the selected word line is Vpl or Vph depending on the program or selected state. It should be noted that the limited range of the programming voltage can be: "Vthh<Vp<3Vthl".
读取方法包括一浮置方法和一偏压方法。该浮置方法涉及到施加于选择的字线(或者位线)上的Vthl和Vthh之间的偏压以及施加在选择的字线(或者位线)上的零偏压的偏压Vr,而其他的字线和位线是浮置的。该偏压方法涉及到施加于选择的字线(或者位线)上的Vthl和Vthh之间的偏压以及施加在选择的字线(或者位线)上的零偏压的偏压Vr,而其他的字线和位线则是施加在0<V<Vthl范围内的固定偏压。在本发明中,乃是提供了两个不同实施例的偏压方法,亦就是V/2方法和V/3方法。The reading method includes a floating method and a bias method. The floating method involves applying a bias voltage between Vthl and Vthh on the selected word line (or bit line) and a bias voltage Vr of zero bias applied on the selected word line (or bit line), while Other word lines and bit lines are floating. The biasing method involves a bias between Vthl and Vthh applied to the selected word line (or bit line) and a bias voltage Vr of zero bias applied to the selected word line (or bit line), while Other word lines and bit lines are applied with fixed bias voltages in the range of 0<V<Vthl. In the present invention, two different biasing methods are provided, that is, the V/2 method and the V/3 method.
图5A到5C分别绘示为本发明一实施例的读取一元件的方法。图5A到5C各自代表施加于储存单元上的偏压。图5A代表一种浮置方法,其中该偏压是由-Vr到+Vr而选择单元408s乃是施加正向偏压+Vr。图5B代表的是一种V/2的读取方法,其中选择单元408s则施加正向偏压+Vr。如图5B所示,其余未选择的单元乃是施加正向偏压+Vr/2。图5C代表的是一种V/3的读取方法,而选择单元408s乃是施加正向偏压+Vr。图5C中的其余未选择的单元则施加正向偏压+Vr/3或者反向偏压-Vr/3。值得注意的是,图5C中未选择的单元乃是形成了一个与图4D相类似的图案。5A to 5C respectively illustrate a method for reading a device according to an embodiment of the present invention. 5A to 5C each represent a bias voltage applied to a memory cell. FIG. 5A represents a floating method in which the bias voltage is from -Vr to +Vr and the
综上所述,本发明提供了一种储存器内核,其毋须使用用于存取内核储存单元的存取晶体管。换言之,当该内核单元加入了一起始开关材料时,例如为硫族化合物材料,可以藉由编程内核储存单元来存取内核储存单元。实质上,亦可藉由编程起始开关材料来作为导向元件。任何熟知本发明的技艺者皆可知悉,亦可以提供简化的解码逻辑讯号于存取晶体管的方式,使得本发明毋须存取晶体管。In summary, the present invention provides a memory core without using access transistors for accessing core memory cells. In other words, when the core cell incorporates an initial switching material, such as a chalcogenide material, the core memory cell can be accessed by programming the core memory cell. In essence, the initial switching material can also be used as a steering element by programming. Anyone familiar with the present invention will appreciate that a simplified way of decoding logic signals to access transistors can also be provided, so that the present invention does not require access transistors.
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何熟习此技艺者在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视后附的申请专利范围所界定者为准。Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Any skilled person can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall prevail as defined in the scope of the appended patent application.
Claims (14)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/948,891 | 2004-09-24 | ||
| US10/948,891 US20050041467A1 (en) | 2003-06-18 | 2004-09-24 | Chalcogenide memory |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 200510105365 Division CN1770494B (en) | 2004-09-24 | 2005-09-23 | Chalcogenide memory |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101702328A CN101702328A (en) | 2010-05-05 |
| CN101702328B true CN101702328B (en) | 2013-03-06 |
Family
ID=36751613
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 200910206679 Expired - Lifetime CN101702328B (en) | 2004-09-24 | 2005-09-23 | Three-dimensional memory element and method of operation thereof |
| CN 200510105365 Expired - Lifetime CN1770494B (en) | 2004-09-24 | 2005-09-23 | Chalcogenide memory |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 200510105365 Expired - Lifetime CN1770494B (en) | 2004-09-24 | 2005-09-23 | Chalcogenide memory |
Country Status (2)
| Country | Link |
|---|---|
| CN (2) | CN101702328B (en) |
| TW (1) | TWI313863B (en) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20120130939A (en) | 2011-05-24 | 2012-12-04 | 에스케이하이닉스 주식회사 | 3d structured non-volatile memory device and method for manufacturing the same |
| CN107924699A (en) * | 2015-04-24 | 2018-04-17 | 李武开 | Part/complete array/block erasing for 2D/3D hierarchy types NAND |
| US9978810B2 (en) * | 2015-11-04 | 2018-05-22 | Micron Technology, Inc. | Three-dimensional memory apparatuses and methods of use |
| US10134470B2 (en) | 2015-11-04 | 2018-11-20 | Micron Technology, Inc. | Apparatuses and methods including memory and operation of same |
| KR102410947B1 (en) * | 2015-11-20 | 2022-06-22 | 에스케이하이닉스 주식회사 | Threshold switching device and electronic device including the same |
| CN105788632B (en) * | 2016-02-26 | 2019-04-02 | 江苏时代全芯存储科技有限公司 | Memory circuit |
| US10446226B2 (en) | 2016-08-08 | 2019-10-15 | Micron Technology, Inc. | Apparatuses including multi-level memory cells and methods of operation of same |
| CN106898371B (en) * | 2017-02-24 | 2020-08-28 | 中国科学院上海微系统与信息技术研究所 | Three-dimensional memory readout circuit and method for configuring wordline and bitline voltages |
| CN107644664A (en) * | 2017-09-27 | 2018-01-30 | 中国科学院上海微系统与信息技术研究所 | Three-dimensional perpendicular type memory circuitry and bit line and word line voltage collocation method |
| CN115881186B (en) * | 2022-12-20 | 2025-02-07 | 华中科技大学 | A three-dimensional memory, preparation method and data operation method |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5761115A (en) * | 1996-05-30 | 1998-06-02 | Axon Technologies Corporation | Programmable metallization cell structure and method of making same |
-
2005
- 2005-09-23 TW TW94133048A patent/TWI313863B/en active
- 2005-09-23 CN CN 200910206679 patent/CN101702328B/en not_active Expired - Lifetime
- 2005-09-23 CN CN 200510105365 patent/CN1770494B/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| TW200611270A (en) | 2006-04-01 |
| CN101702328A (en) | 2010-05-05 |
| TWI313863B (en) | 2009-08-21 |
| CN1770494B (en) | 2010-05-05 |
| CN1770494A (en) | 2006-05-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7554873B2 (en) | Three-dimensional memory devices and methods of manufacturing and operating the same | |
| US6781858B2 (en) | Cubic memory array | |
| US7750334B2 (en) | Phase change memory device | |
| US6784517B2 (en) | Three-dimensional memory array incorporating serial chain diode stack | |
| JP5826779B2 (en) | Nonvolatile semiconductor memory device | |
| JP2016167332A (en) | Storage device | |
| CN103311248B (en) | Comprise nonvolatile memory and the manufacture method thereof of multilayered memory unit | |
| CN107316869A (en) | Three-dimensional longitudinal direction one-time programming memory | |
| US6873541B2 (en) | Nonvolatile memory programmble by a heat induced chemical reaction | |
| US20050041467A1 (en) | Chalcogenide memory | |
| CN101702328B (en) | Three-dimensional memory element and method of operation thereof | |
| JP2022052081A (en) | Semiconductor storage device | |
| US9001555B2 (en) | Small-grain three-dimensional memory | |
| US10541273B2 (en) | Vertical thin film transistors with isolation | |
| US20250221024A1 (en) | Semiconductor device, method for designing the same, and method for manufacturing the same | |
| US9130166B2 (en) | Resistive non-volatile memory, cell structure and manufacturing method thereof | |
| US9209225B2 (en) | Cell structure of resistive non-volatile memory and manufacturing method thereof | |
| US10741491B1 (en) | Electronic device and method of fabricating the same | |
| JP2009289962A (en) | Nonvolatile storage device and manufacturing method thereof | |
| CN101409302A (en) | Phase change memory array and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CX01 | Expiry of patent term |
Granted publication date: 20130306 |