[go: up one dir, main page]

CN101702328B - Three-dimensional memory element and method of operation thereof - Google Patents

Three-dimensional memory element and method of operation thereof Download PDF

Info

Publication number
CN101702328B
CN101702328B CN 200910206679 CN200910206679A CN101702328B CN 101702328 B CN101702328 B CN 101702328B CN 200910206679 CN200910206679 CN 200910206679 CN 200910206679 A CN200910206679 A CN 200910206679A CN 101702328 B CN101702328 B CN 101702328B
Authority
CN
China
Prior art keywords
initial
voltage
word line
bit line
switch layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 200910206679
Other languages
Chinese (zh)
Other versions
CN101702328A (en
Inventor
陈逸舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/948,891 external-priority patent/US20050041467A1/en
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Publication of CN101702328A publication Critical patent/CN101702328A/en
Application granted granted Critical
Publication of CN101702328B publication Critical patent/CN101702328B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

一种三维储存器(3D memory)由多层储存器构成。各层储存器包括m条字线、n条位线以及多数起始开关层。其中m,n为自然数。起始开关层由硫族化合物材料构成。在字线i、字线i+1以及位线j、位线j+1所围的区域中有两个起始开关层Ci,j+1以及Ci+1,j,而在字线i+1、字线i+2以及位线j、位线j+1所围的区域中无起始开关层。其中,i为奇数且1≤i≤m-1;j为自然数且j=1~n-1;上述起始开关层Ci,j+1表示连接字线i与位线j+1的起始开关层;以及上述起始开关层Ci+1,j表示连接字线i+1与位线j的起始开关层。各起始开关层与所连接的字线与所连接的位线构成一储存器内核。

A three-dimensional memory (3D memory) is composed of multi-layer memory. Each layer of memory includes m word lines, n bit lines and a plurality of starting switch layers. Wherein m and n are natural numbers. The starting switch layer is composed of a chalcogenide material. There are two starting switch layers Ci ,j+1 and Ci +1,j in the area surrounded by word line i, word line i+1 and bit line j, bit line j+1, while there is no starting switch layer in the area surrounded by word line i+1, word line i+2 and bit line j, bit line j+1. Wherein, i is an odd number and 1≤i≤m-1; j is a natural number and j=1~n-1; the above-mentioned starting switch layer Ci ,j+1 represents the starting switch layer connecting word line i and bit line j+1; and the above-mentioned starting switch layer Ci +1,j represents the starting switch layer connecting word line i+1 and bit line j. Each starting switch layer and the connected word line and the connected bit line constitute a memory core.

Description

三维储存器元件及其操作方法Three-dimensional memory element and method of operation thereof

本发明是原申请号200510105365.1,申请日为2005年9月23日,发明名称为“硫族化合物储存器”的分案申请The present invention is a divisional application with the original application number 200510105365.1, the application date is September 23, 2005, and the invention name is "chalcogenide storage device"

技术领域 technical field

本发明是有关于一种储存元件,且特别是有关于一种不需存取晶体管(access transistor)的三维储存器元件及其操作方法。The present invention relates to a storage device, and more particularly to a three-dimensional storage device without an access transistor (access transistor) and its operating method.

背景技术 Background technique

典型的储存单元包括一导向元件(steering element),其例如为一个或多个晶体管(晶体管即为电晶体,以下皆称为晶体管),用来存取(access)每一个储存单元。该存取晶体管也可以是二极管(二极管即为二极体,以下皆称为二极管),其提供存取储存单元的位线(bit line)的字线(word line)。尤其是为了读写储存单元的资料,该存取晶体管可充当用于字线到位线的存取通闸(pass gate)。例如,动态随机存取储存器(DRAM)、快闪储存器(flash memory),静态随机存取储存器(SRAM)、传统的硫族化合物(chalcogenide)储存器、欧式记忆体(ovonic unifiedmemory,OUM)或者相变随机存取储存器(phase-change random accessmemory,PCRAM)需要晶体管或者PN二极管作为导向元件或者寻址元件(addressing element)。在DRAM中,该导向元件是晶体管且资料乃是储存于一电容器中。相类似地,在SRAM中则需要六个晶体管。但是,制造晶体管需要高品质的硅,并且当在硅晶圆上制造晶体管时,会产生一些问题。因此,在硅晶圆上制造具有晶体管的三维(three dimensional,3D)储存器是有困难的。A typical storage unit includes a steering element, such as one or more transistors (transistors are transistors, hereinafter referred to as transistors), for accessing each storage unit. The access transistor can also be a diode (a diode is a diode, hereinafter referred to as a diode), which provides a word line for accessing a bit line of a storage unit. Especially for reading and writing data of the memory cell, the access transistor can act as a pass gate for word line to bit line access. For example, dynamic random access memory (DRAM), flash memory (flash memory), static random access memory (SRAM), traditional chalcogenide (chalcogenide) memory, European memory (ovonic unified memory, OUM) ) or phase-change random access memory (PCRAM) requires transistors or PN diodes as steering elements or addressing elements. In DRAM, the steering element is a transistor and the data is stored in a capacitor. Similarly, six transistors are required in SRAM. But making transistors requires high-quality silicon, and when transistors are made on silicon wafers, some problems arise. Therefore, it is difficult to fabricate a three-dimensional (3D) memory with transistors on a silicon wafer.

可行的解决方案乃是使用多晶硅p-n接合(p-n junction)以作为导向元件的储存器。然而,这种方法存在有一定缺陷。例如,这些储存器的类型大都局限于一次可编程储存器(one time programmable memory,OTP),而这种方法需要高编程电压(programming voltage)以及高制程温度(process temperature)。此高制程温度将会阻碍了铝(Al)和铜(Cu)金属线的使用。例如,铝的最高制程温度是500℃,且铜的制程温度范围是大约400~500℃。由于铝和铜是常用的层间配线金属,所以排除这两种金属将会使得层间配线变得更加困难。另外,当藉由封装技术而制造三维储存器时,层间的结合校准(bonding alignment)将变得非常困难。基于前述观点,故需要一种不用存取晶体管而能够选择存取内核储存单元的储存单元结构。A viable solution is to use polysilicon p-n junctions (p-n junction) as the storage for the steering element. However, this method has certain drawbacks. For example, most of these memory types are limited to one time programmable memory (OTP), which requires high programming voltage and high process temperature. This high process temperature would hinder the use of aluminum (Al) and copper (Cu) wires. For example, the maximum process temperature for aluminum is 500°C, and the process temperature range for copper is about 400-500°C. Since aluminum and copper are commonly used interlayer wiring metals, excluding these two metals will make interlayer wiring more difficult. In addition, when the three-dimensional memory is manufactured by packaging technology, the bonding alignment between layers will become very difficult. Based on the aforementioned viewpoint, there is a need for a memory cell structure capable of selectively accessing core memory cells without access transistors.

发明内容 Contents of the invention

本发明乃是藉由使用起始开关材料(threshold-switching material),其可编程来执行导向元件的功能,而毋须可作为存取一储存器内核单元的导向元件的存取晶体管。The present invention does this by using an initial threshold-switching material that can be programmed to perform the function of a steering element without requiring access transistors that can be used as steering elements for accessing a memory core cell.

本发明再提供一种三维储存器(3D memory)由多层储存器构成。各层储存器包括m条字线、n条位线以及多数起始开关层。其中m,n为自然数。起始开关层由硫族化合物材料构成。在字线i、字线i+1以及位线j、位线j+1所围的区域中有两个起始开关层Ci,j+1以及Ci+1,j,而在字线i+1、字线i+2以及位线j、位线j+1所围的区域中无起始开关层。其中,i为奇数且1≤i≤m-1;j为自然数且j=1~n-1;上述起始开关层Ci,j+1表示连接字线i与位线j+1的起始开关层;以及上述起始开关层Ci+1,j表示连接字线i+1与位线j的起始开关层。各起始开关层与所连接的字线与所连接的位线构成一储存器内核。各储存器内核具有一低电压值的第一起始电压和一高电压值的第二起始电压,该第一起始电压对应于该起始开关层的一第一储存状态,该第二起始电压对应于该储存器的一第二储存状态。当该字线与该位线之间的电压值为该第一起始电压时,该起始开关层被选通并处于该第一储存状态,当该字线与该位线之间的电压值为该第二起始电压时,该起始开关层被选通并处于该第二储存状态,当该字线与位线浮置时,该起始开关层处于非选通状态。The present invention further provides a three-dimensional memory (3D memory) composed of multi-layer memory. Each storage layer includes m word lines, n bit lines and most initial switch layers. Among them, m and n are natural numbers. The initial switching layer is composed of a chalcogenide material. There are two initial switching layers C i,j+1 and C i+1,j in the area surrounded by word line i, word line i+1 and bit line j, bit line j+1 , and in the area surrounded by word line There is no initial switch layer in the area surrounded by i+1, word line i+2, bit line j, and bit line j+1. Among them, i is an odd number and 1≤i≤m-1; j is a natural number and j=1~n-1; the above-mentioned initial switch layer C i, j+1 represents the starting point of connecting word line i and bit line j+1 and the above-mentioned initial switch layer C i+1, j represents the initial switch layer connecting the word line i+1 and the bit line j. Each initial switch layer and the connected word lines and connected bit lines form a memory core. Each memory core has a first initial voltage of a low voltage value and a second initial voltage of a high voltage value, the first initial voltage corresponds to a first storage state of the initial switch layer, the second initial The voltage corresponds to a second storage state of the memory. When the voltage value between the word line and the bit line is the first initial voltage, the initial switch layer is gated and in the first storage state, when the voltage value between the word line and the bit line is When it is the second start voltage, the start switch layer is gated and is in the second storage state, and when the word line and the bit line are floating, the start switch layer is in a non-gate state.

本发明另提供一种在上述三维储存器中存取储存器内核的方法,而该方法包含下列数个步骤。首先,决定用于存取上述储存器内核其中一的起始电压。然后,编程此储存器内核的一起始开关材料,以便能够在起始电压下存取储存器内核。接下来,在与储存器内核连通(communication)的字线上施加一电压,如果该电压至少等于此起始电压时,即可存取储存器内核。The present invention further provides a method for accessing memory cores in the above-mentioned three-dimensional memory, and the method includes the following steps. Firstly, a threshold voltage for accessing one of the memory cores is determined. Then, an initial switch material of the memory core is programmed so that the memory core can be accessed at the initial voltage. Next, a voltage is applied to a word line communicating with the memory core. If the voltage is at least equal to the initial voltage, the memory core can be accessed.

本发明又提供一种读取上述三维储存器(3D chalcogenide memory)元件的方法,包含下列数个步骤。首先,施加一读取电压于一字线。该读取电压可用以直接存取对应所选字线之储存器内核。然后,在与字线相对应的位线上施加一零偏压。接下来,读取储存于储存器内核中的数值。The present invention further provides a method for reading the above-mentioned 3D chalcogenide memory element, which includes the following steps. First, a read voltage is applied to a word line. The read voltage can be used to directly access the memory core corresponding to the selected word line. Then, a zero bias is applied on the bit line corresponding to the word line. Next, the value stored in the memory core is read.

任何熟知本发明的技艺者皆可清楚地知悉,本发明能够应用于许多的储存器/固态元件(solid state device)。该储存器内核的一个显着的优点乃是在于其毋须存取晶体管,其中该存取晶体管可作为传送信号至储存器内核的导向元件。此外,本发明可降低储存器内核所需要的编程电压,亦可降低其制程温度。本发明将可促进三维储存器的制造,其中该储存器可以为非易失性的和快速的储存器。Anyone familiar with the present invention can clearly understand that the present invention can be applied to many storage/solid state devices. A significant advantage of the memory core is that it eliminates the need for access transistors that serve as steering elements for transmitting signals to the memory core. In addition, the present invention can reduce the programming voltage required by the memory core, and can also reduce its process temperature. The present invention will facilitate the fabrication of three-dimensional memories, which may be non-volatile and fast memories.

上述的发明内容以及以下所揭露的实施例仅仅用以解释本发明的实施方式的例子,然其并非用以限定本发明。The above summary of the invention and the embodiments disclosed below are only used to explain examples of the implementation of the present invention, but they are not intended to limit the present invention.

为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments will be described in detail below together with the accompanying drawings.

附图说明 Description of drawings

图1A绘示为本发明一实施例的一种储存器内核的示意图。FIG. 1A is a schematic diagram of a memory core according to an embodiment of the present invention.

图1B绘示为本发明一实施例的一种储存器内核的示意图。FIG. 1B is a schematic diagram of a memory core according to an embodiment of the present invention.

图2A和2B绘示为储存器内核经堆叠后所形成的一种三维储存器的示意图。2A and 2B are schematic diagrams of a three-dimensional memory formed by stacking memory cores.

图2C绘示为储存器内核经堆叠而制造的三维储存器的剖面示意图。FIG. 2C is a schematic cross-sectional view of a three-dimensional memory manufactured by stacking memory cores.

图3A绘示为形成一层的储存器内核的阵列示意图。FIG. 3A is a schematic diagram of an array of memory cores forming a layer.

图3B绘示为连接选择电路的位线和字线的储存器内核阵列示意图。FIG. 3B is a schematic diagram of a memory core array connected to bit lines and word lines of a selection circuit.

图3C绘示为多层的三维储存器的示意图。FIG. 3C is a schematic diagram of a three-dimensional memory with multiple layers.

图3D绘示为形成多层的储存器内核阵列,其为三维储存器的一部份。FIG. 3D shows an array of memory cores forming multiple layers, which is part of a three-dimensional memory.

图4A至4D绘示为可以施加于硫族化合物储存器元件的编程技术的示意图。4A-4D are schematic diagrams of programming techniques that may be applied to chalcogenide memory devices.

图5A至5C绘示为本发明的三个实施例的读取一元件的方法。5A to 5C illustrate methods for reading a device according to three embodiments of the present invention.

102、108:顶部电极102, 108: top electrode

104、110:起始开关层104, 110: initial switch layer

106、112:底部电极106, 112: Bottom electrodes

114:选择电路114: Select circuit

202、210、214、222:字线202, 210, 214, 222: word lines

204、212、216、220:起始开关层204, 212, 216, 220: initial switch layer

206、208、218:位线206, 208, 218: bit lines

304、310、318:字线304, 310, 318: word lines

306、314、320:起始开关层306, 314, 320: initial switch layer

302、312、316:位线302, 312, 316: bit lines

308:选择元件308: Select components

311:储存器阵列层311: Storage array layer

317:储存器内核317: memory core

408s、408r:储存单元408s, 408r: storage unit

408a至408n:储存单元408a to 408n: storage unit

Vthl:低起始电压Vthl: low starting voltage

Vthh:高起始电压Vthh: High starting voltage

Vp、Vpl、Vph:偏压Vp, Vpl, Vph: bias voltage

具体实施方式 Detailed ways

本发明乃是藉由将一个起始开关并入一储存单元中而毋须存取晶体管。在一个实施例中,该起始开关材料是硫族化合物(chalcogenide)材料。进一步的关于能够改变起始电压Vth的材料的Vth调整资料乃是揭露在美国专利第10/465,120号中。The present invention eliminates the need for access transistors by incorporating an initiation switch into a memory cell. In one embodiment, the starting switch material is a chalcogenide material. Further information on Vth adjustment of materials capable of changing the threshold voltage Vth is disclosed in US Pat. No. 10/465,120.

在一实施例中,可利用起始开关材料的类似晶体管特性而毋须导向元件以简化储存单元结构,其例如为存取晶体管或者P-N二极管。显然地,对熟知本技术领域的技艺者来说可以在硫族化合物储存单元上植入逻辑电路以形成单晶片系统(a system on a chip,SoC)。进而对于硫族化合物而言,一旦编程该非易失性的特质时,将能够相对快速地进行读写操作。值得注意的是,与起始开关材料相关的(例如为硫族化合物材料)编程电压比快闪唯读储存器(read only memory,ROM)的编程电压低很多。举例而言,硫族化合物储存单元的编程电压大约是5伏特(V),而快闪唯读储存器的编程电压大约是10伏特。In one embodiment, the transistor-like properties of the starting switch material can be used to simplify the memory cell structure without the need for a steering element, such as an access transistor or a P-N diode. Apparently, those skilled in the art can implant logic circuits on the chalcogenide memory cells to form a system on a chip (SoC). Furthermore, for chalcogenides, once the non-volatile nature is programmed, read and write operations can be performed relatively quickly. It is worth noting that the programming voltage associated with the initial switching material (for example, chalcogenide material) is much lower than that of flash read only memory (ROM). For example, the programming voltage of a chalcogenide memory cell is about 5 volts (V), while that of a flash ROM is about 10 volts.

硫族化合物储存单元具有导向元件和储存元件的双重功能。因此,仅制造一个硫族化合物储存器要远比把晶体管和硫族化合物储存单元结合在一起更为容易。另外,当该储存单元作为导向元件时,在具有相同的储存容量情况下,其晶片体积将会小于具有分开的导向元件和储存单元的储存器。相对地,在具有相同储存器体积的情况下,与具有分开的导向元件和储存单元的储存器相比,双功能(dual functioning)硫族化合物储存器将能够提供更高的储存容量。与存取晶体管相比,一个小尺寸的硫族化合物储存器元件将能够通过更高的电流。在此实施例中,使用硫族化合物材料作为起始开关材料仅是一个举例,并非局限于硫族化合物材料。任何具有此硫族化合物材料性质的材料,例如具有稳定且可调整的起始电压(Vth)特性,都可以用于非易失性双功能储存单元。The chalcogenide storage unit has the dual function of guiding element and storage element. Therefore, it is much easier to make just a chalcogenide memory than to combine a transistor and a chalcogenide memory cell. In addition, when the storage unit is used as a guide element, its wafer volume will be smaller than that of a storage with separate guide elements and storage units with the same storage capacity. In contrast, with the same reservoir volume, a dual functioning chalcogenide reservoir will be able to provide a higher storage capacity than a reservoir with separate guide elements and storage units. A small-sized chalcogenide memory element would be able to pass higher currents than an access transistor. In this embodiment, using the chalcogenide material as the starting switch material is just an example, and is not limited to the chalcogenide material. Any material with the properties of the chalcogenide material, such as stable and adjustable threshold voltage (Vth) characteristics, can be used for the non-volatile dual-function memory cell.

图1A和图1B绘示为本发明一实施例的一种储存器内核的示意图。图1A中所示的储存器内核单元包括一顶部电极102和一底部电极106以及设置于顶部电极102和底部电极106之间的一起始开关层(threshold-switching layer)104。顶部电极106可以是金属、类金属(metalloid)、半导体、或者硅化物(silicide)、或者其他具有稳定且可调整电压的起始(threshold)特性材料。1A and 1B are schematic diagrams of a memory core according to an embodiment of the present invention. The memory core cell shown in FIG. 1A includes a top electrode 102 and a bottom electrode 106 and a threshold-switching layer 104 disposed between the top electrode 102 and the bottom electrode 106 . The top electrode 106 can be metal, metalloid, semiconductor, or silicide, or other materials with stable and adjustable threshold characteristics.

同样的,图1B是储存器内核的另一实施例。在该实施例中,该储存器内核包括一顶部电极108和一底部电极112以及设置于顶部电极108和底部电极112的第一端之间的一起始开关层110。底部电极112的第一端与起始开关层110相连并且底部电极112的第二端与选择电路114相连。该选择电路114可选择与储存单元相对应的位线和字线。Similarly, FIG. 1B is another embodiment of the memory core. In this embodiment, the memory core includes a top electrode 108 and a bottom electrode 112 and an initial switch layer 110 disposed between first ends of the top electrode 108 and the bottom electrode 112 . A first end of the bottom electrode 112 is connected to the initial switch layer 110 and a second end of the bottom electrode 112 is connected to the selection circuit 114 . The selection circuit 114 can select a bit line and a word line corresponding to a memory cell.

图2A和2B绘示为如图1A和1B中所示的储存器内核经堆叠后所形成的一种储存元件的示意图。图2A包括一字线202和一位线206。当然,在一些实施例中,206可以代表字线且202可以代表位线。图2A进一步包括设置于字线202和位线206间的一起始开关层204。该字线202和位线206可以是类似于图1A和1B中的电极。每一储存器内核可以堆积在另一储存器内核之上以形成一储存器元件。2A and 2B are schematic views of a storage device formed by stacking the memory cores shown in FIGS. 1A and 1B . FIG. 2A includes a word line 202 and a bit line 206 . Of course, in some embodiments, 206 may represent a word line and 202 may represent a bit line. FIG. 2A further includes an initial switch layer 204 disposed between the word line 202 and the bit line 206 . The wordlines 202 and bitlines 206 may be electrodes similar to those in FIGS. 1A and 1B . Each memory core can be stacked on top of another memory core to form a memory element.

图2B和图2A类似,不同之处在于构成储存器内核的独立层(individual layers)。在本实施例中,储存器内核包括一位线208和一字线210。当然,在一些实施例中,208可以代表字线且210可代表位线。起始开关层212位于字线210之下。因此,堆叠的每一层包括一位线208、一字线210和一起始开关层212。Figure 2B is similar to Figure 2A, except for the individual layers that make up the memory core. In this embodiment, the memory core includes a bit line 208 and a word line 210 . Of course, in some embodiments, 208 may represent a word line and 210 may represent a bit line. The initial switch layer 212 is located under the word line 210 . Thus, each layer of the stack includes a bit line 208 , a word line 210 and an initial switch layer 212 .

图2C绘示为如图2A和2B所示的储存器内核经堆叠而制造的三维储存器的剖面示意图。图2C包括一字线214和一位线218。图2C进一步包括设置于字线214和位线218之间的一起始开关层216。同样地,另一起始开关层220设置于位线218和字线222之间。FIG. 2C is a schematic cross-sectional view of a three-dimensional memory manufactured by stacking the memory cores shown in FIGS. 2A and 2B . FIG. 2C includes a word line 214 and a bit line 218 . FIG. 2C further includes an initial switch layer 216 disposed between the word line 214 and the bit line 218 . Likewise, another initial switch layer 220 is disposed between the bit line 218 and the word line 222 .

藉由上述的储存器内核的阵列堆叠可以制造出三维储存器。图3A绘示为图2A和2B的储存器内核的阵列示意图。该储存器阵列可以堆叠形成三维储存器。储存器内核阵列中的每一个储存器内核包括一位线302、一字线304、以及设置于字线304和位线302之间的一起始开关层306。A three-dimensional memory can be manufactured by stacking the above-mentioned array of memory cores. FIG. 3A is a schematic diagram of an array of memory cores of FIGS. 2A and 2B . The reservoir arrays can be stacked to form a three-dimensional reservoir. Each memory core in the array of memory cores includes a bit line 302 , a word line 304 , and an initial switch layer 306 disposed between the word line 304 and the bit line 302 .

图3B绘示为类似于图3A所描述的储存器内核阵列示意图。在本发明一实施例中,字线304和位线302的选择元件308连接于储存器内核阵列的外缘。尽管图3B所示的选择元件308是晶体管,该选择元件也可以是P-N二极管、萧特基二极管(Schottky diodes)或者穿隧二极管(tunnelingdiode)。图3C绘示为多层的三维储存器的示意图。图3C包括多个储存器阵列层311。每一储存器阵列层311包含多条字线310、位线312与起始开关层314。FIG. 3B is a schematic diagram of a memory core array similar to that described in FIG. 3A . In one embodiment of the present invention, the selection elements 308 of the word lines 304 and the bit lines 302 are connected to the outer edge of the memory core array. Although the selection element 308 shown in FIG. 3B is a transistor, the selection element may also be a P-N diode, Schottky diodes or tunneling diodes. FIG. 3C is a schematic diagram of a three-dimensional memory with multiple layers. FIG. 3C includes multiple memory array layers 311 . Each memory array layer 311 includes a plurality of word lines 310 , bit lines 312 and an initial switch layer 314 .

图3D是根据本发明一实施例所绘示的储存器内核阵列经堆叠而制造的三维储存器的示意图。每一层储存器317包括多条位线316、多条字线318和设置于位线316和字线318之间的起始开关层320。3D is a schematic diagram of a three-dimensional memory manufactured by stacking memory core arrays according to an embodiment of the present invention. Each storage layer 317 includes a plurality of bit lines 316 , a plurality of word lines 318 and an initial switch layer 320 disposed between the bit lines 316 and the word lines 318 .

更详细地说,三维储存器(3D memory)由多层储存器构成。各层储存器包括m条字线WL1、WL2...WLm、n条位线BL1、BL2...BLn以及多数个起始开关层320。其中m,n为自然数。此三维储存器仅在字线i、字线i+1以及位线j、位线j+1所围的区域中有两个起始开关层Ci,j+1以及Ci+1,j。其中,i为奇数且1≤i≤m-1;j为自然数且j=1~n-1;上述起始开关层Ci,j+1表示连接字线i与位线j+1的起始开关层;上述起始开关层Ci+1,j表示连接字线i+1与位线j的起始开关层。More specifically, a three-dimensional memory (3D memory) is composed of a multilayer memory. Each storage layer includes m word lines WL 1 , WL 2 . . . WL m , n bit lines BL 1 , BL 2 . Among them, m and n are natural numbers. This three-dimensional memory only has two initial switch layers C i,j+1 and C i+1,j in the area surrounded by word line i, word line i +1 and bit line j, bit line j+1 . Among them, i is an odd number and 1≤i≤m-1; j is a natural number and j=1~n-1; the above-mentioned initial switch layer C i, j+1 represents the starting point of connecting word line i and bit line j+1 The initial switch layer; the above initial switch layer C i+1,j represents the initial switch layer connecting the word line i+1 and the bit line j.

起始开关层(Ci,j+1以及Ci+1,j)320由硫族化合物材料构成。各起始开关层与所连接的字线与所连接的位线构成一储存器内核。以起始开关层Ci,j+1、字线i以及字线i+1所构成的储存器内核来说,其具有一低电压值的第一起始电压和一高电压值的第二起始电压,第一起始电压对应于起始开关层Ci,j+1的第一储存状态,第二起始电压对应于该起始开关层Ci,j+1的第二储存状态。当字线WLi与位线BLj+1之间的电压值为第一起始电压时,起始开关层Ci,j+1被选通并处于第一储存状态,当字线WLi与位线BLj+1之间的电压值为第二起始电压时,起始开关层Ci,j+1被选通并处于第二储存状态,当字线WLi与位线BLj+1浮置时,起始开关层Ci,j+1处于非选通状态。The initial switching layers (C i,j+1 and C i+1,j ) 320 are composed of chalcogenide materials. Each initial switch layer and the connected word lines and connected bit lines form a memory core. Taking the memory core composed of the initial switch layer C i,j+1 , word line i and word line i+1 as an example, it has a first initial voltage with a low voltage value and a second initial voltage with a high voltage value. The initial voltage corresponds to the first storage state of the initial switching layer C i,j+1 , and the second initial voltage corresponds to the second storage state of the initial switching layer C i,j+1 . When the voltage value between the word line WL i and the bit line BL j+1 is the first start voltage, the start switch layer C i, j+1 is gated and in the first storage state, when the word line WL i and the bit line BL j+1 are in the first storage state. When the voltage value between the bit line BL j+1 is the second initial voltage, the initial switch layer C i, j+1 is gated and is in the second storage state, when the word line WL i and the bit line BL j+ When 1 is floating, the initial switch layer C i,j+1 is in a non-selected state.

在本发明中,由于储存器内核既是导向元件又是储存单元,因此毋须使用晶体管作为导向元件。如上所述,省略了作为导向元件的晶体管实际上乃是免除了制造储存器时对于高品质硅的需求。同时,也相对地降低了制造储存器的温度。故藉由传统的光刻蚀(photo/etching)或者金属镶嵌(damascene)技术即可以制造多层储存器而不需要进行任何层间校正。In the present invention, since the memory core is both a steering element and a storage unit, there is no need to use a transistor as a steering element. As mentioned above, the omission of the transistor as a steering element effectively eliminates the need for high-quality silicon in the manufacture of the memory. At the same time, the temperature for manufacturing the storage is relatively reduced. Therefore, the multi-layer memory can be fabricated by conventional photo-etching or damascene technology without any inter-layer alignment.

由于该起始开关材料可作为导向元件,所以免除了对于额外的导向元件的需求。因此,藉由一层接着一层制造储存器内核阵列即可很容易地结合为一个三维储存器。此外,藉由合并多数的层将有助于提高储存器密度。Since the starting switch material acts as a guiding element, the need for additional guiding elements is eliminated. Therefore, an array of memory cores can be easily combined into a three-dimensional memory by fabricating the memory core layer by layer. In addition, it helps to increase memory density by merging multiple layers.

图4A至4D绘示为可以施加于硫族化合物储存器元件的编程技术的示意图。图4A表示的是浮置编程(floating programming)技术。在此,假设硫族化合物储存器元件包括两个起始电压,例如为一个作为状态1的低起始电压(Vthl)和一个作为状态0的高起始电压(Vthh)。图4A描述的是施加于储存单元上的偏压。未选择的储存单元乃是施加-Vp到+Vp之间的偏压,而选择的单元乃是施加正向+Vp偏压。储存单元408s乃是代表选择的单元,而剩余的单元408a至408n代表的是未选择的单元。表1归纳了程式1和程式0的编程方法。4A-4D are schematic diagrams of programming techniques that may be applied to chalcogenide memory devices. FIG. 4A shows a floating programming technique. Here, it is assumed that the chalcogenide memory element includes two threshold voltages, eg, a low threshold voltage (Vthl) for state 1 and a high threshold voltage (Vthh) for state 0. Figure 4A depicts the bias voltage applied to the memory cell. Unselected memory cells are biased between -Vp and +Vp, and selected cells are biased forward +Vp. Storage cell 408s represents selected cells, and the remaining cells 408a to 408n represent unselected cells. Table 1 summarizes the programming methods of program 1 and program 0.

表1Table 1

  程式1 Program 1   程式0 Program 0   选择的位线 Selected bit line   0 0   0 0   其他的位线 other bit lines   浮置 floating   浮置 floating   选择的字线 Selected word line   Vpl Vpl   Vph Vph   其他的字线 Other word lines   浮置 floating   浮置 floating

如表1所示的偏压,选择的位线是零,而选择的字线乃是根据程式或者所选择的状态而为Vpl或者Vph。With the biases shown in Table 1, the selected bit line is zero and the selected word line is either Vpl or Vph depending on the program or selected state.

图4B表示的是一偏压编程技术。图4B的图形表示所施加的偏压。在此,可在未选择的字线和位线上施加一电压(偏压)。在选择的单元408s上乃是施加正向+Vp偏压。可以假定硫族化合物储存器元件包括两个起始电压,例如为一个作为状态1的低起始电压(Vthl)和一个作为状态0的高起始电压(Vthh)。以下的表2列出了程式1和程式0的编程方法。Figure 4B shows a bias programming technique. The graph of Figure 4B represents the applied bias voltage. Here, a voltage (bias) may be applied to unselected word lines and bit lines. A forward +Vp bias is applied to the selected cell 408s. It may be assumed that the chalcogenide memory element comprises two start voltages, for example a low start voltage (Vthl) as state 1 and a high start voltage (Vthh) as state 0. Table 2 below lists the programming methods of program 1 and program 0.

表2Table 2

  程式1 Program 1   程式0 Program 0   选择的位线 Selected bit line   0 0   0 0   其他的位线 other bit lines   0≤V≤Vp 1 0≤V≤Vp 1   0≤V≤Vph 0≤V≤Vph   选择的字线 Selected word line   Vp 1 Vp 1   Vph Vph   其他的字线 Other word lines   0≤V≤Vpl 0≤V≤Vpl   0≤V≤Vph 0≤V≤Vph

如表2所示的偏压,选择的位线是零,而选择的字线依据程式或者是选择的状态而为Vpl或Vph。值得注意的是,分别如图4C和4D中所示,可以采用两个偏压编程方法的实施例,也就是V/2方法和V/3方法。当然,其他的偏压编程方法亦可以作为本发明的编程方法,故在此所描述的方法仅作为一实施例但不是限制于此实施例。With the biases shown in Table 2, the selected bit line is zero, and the selected word line is either Vpl or Vph depending on the program or selected state. It is worth noting that two embodiments of the bias programming method, namely the V/2 method and the V/3 method, can be employed, as shown in FIGS. 4C and 4D , respectively. Of course, other bias programming methods can also be used as the programming method of the present invention, so the method described here is only used as an embodiment but not limited to this embodiment.

图4C绘示为V/2方法的示意图。图4C描述的是施加于储存单元上的偏压。于该选择的储存单元408s上乃是施加正向+Vp偏压,而剩余的其他未选择的储存单元则施加正向+Vp/2偏压。可以假定该硫族化合物储存器元件包括两个起始电压,也就是作为状态1的一低起始电压(Vthl)和作为状态0的一高起始电压(Vthh)。状态1和状态0的编程方法乃是表列于下表3。FIG. 4C is a schematic diagram of the V/2 method. Figure 4C depicts the bias applied to the memory cell. A forward +Vp bias is applied to the selected memory cell 408s, while a forward +Vp/2 bias is applied to the remaining unselected memory cells. It can be assumed that the chalcogenide memory element includes two start voltages, namely a low start voltage (Vthl) as state 1 and a high start voltage (Vthh) as state 0. The programming methods of state 1 and state 0 are listed in Table 3 below.

表3table 3

  程式1 Program 1   程式0 Program 0   选择的位线 Selected bit line   0 0   0 0   其他的位线 other bit lines   Vpl  /2 Vpl /2   Vph/2 Vph/2   选择的字线 Selected word line   Vpl Vpl   Vph Vph   其他的字线 Other word lines   Vpl  /2 Vpl /2   Vph/2 Vph/2

如表3所示的偏压,选择的位线是零,而选择的字线则根据程式或者所选择的状态而为Vpl或者Vph。The biases shown in Table 3, the selected bit line is zero, and the selected word line is either Vpl or Vph depending on the program or selected state.

图4D绘示为V/3方法的一示意图。图4D描述的是施加于储存单元上的偏压。该选择的储存单元408s乃是施加正向+Vp偏压,而剩余的其他未选择的储存单元则具有下列两种特性的其中之一,也就是一些未选择的储存单元乃是施加正向偏压+Vp/3,而一些未选择的储存单元则施加反向偏压-Vp/3。储存单元408f乃是施加正向偏压+Vp/3,而储存单元408r则施加反向偏压-Vp/3。可以假定硫族化合物储存器元件包括两个起始电压,也就是一个作为状态1的低起始电压(Vthl)和一个作为状态0的高起始电压(Vthh)。至于状态1和状态0的编程方法则表列于下表4中。FIG. 4D is a schematic diagram of the V/3 method. FIG. 4D depicts the bias applied to the memory cell. The selected memory cell 408s is applied with forward +Vp bias, and the remaining other unselected memory cells have one of the following two characteristics, that is, some unselected memory cells are applied with forward bias Voltage +Vp/3, while some unselected memory cells are reverse biased -Vp/3. The storage cell 408f is applied with a forward bias of +Vp/3, while the storage cell 408r is applied with a reverse bias of -Vp/3. It may be assumed that the chalcogenide memory element comprises two start voltages, namely a low start voltage (Vthl) as state 1 and a high start voltage (Vthh) as state 0. The programming methods for state 1 and state 0 are listed in Table 4 below.

表4Table 4

  程式1 Program 1   程式0 Program 0   选择的位线 Selected bit line   0 0   0 0   其他的位线 other bit lines   2Vpl/3 2Vpl/3   2Vph/3 2Vph/3   选择的字线 Selected word line   Vpl Vpl   Vph Vph   其他的字线 Other word lines   Vpl/3 Vpl/3   Vph/3 Vph/3

如表4所示的偏压,选择的位线是零,而选择的字线则根据程式或者是选择的状态而为Vpl或者Vph。值得注意的是,编程电压的限制范围可为:“Vthh<Vp<3Vthl”。With the bias shown in Table 4, the selected bit line is zero, and the selected word line is Vpl or Vph depending on the program or selected state. It should be noted that the limited range of the programming voltage can be: "Vthh<Vp<3Vthl".

读取方法包括一浮置方法和一偏压方法。该浮置方法涉及到施加于选择的字线(或者位线)上的Vthl和Vthh之间的偏压以及施加在选择的字线(或者位线)上的零偏压的偏压Vr,而其他的字线和位线是浮置的。该偏压方法涉及到施加于选择的字线(或者位线)上的Vthl和Vthh之间的偏压以及施加在选择的字线(或者位线)上的零偏压的偏压Vr,而其他的字线和位线则是施加在0<V<Vthl范围内的固定偏压。在本发明中,乃是提供了两个不同实施例的偏压方法,亦就是V/2方法和V/3方法。The reading method includes a floating method and a bias method. The floating method involves applying a bias voltage between Vthl and Vthh on the selected word line (or bit line) and a bias voltage Vr of zero bias applied on the selected word line (or bit line), while Other word lines and bit lines are floating. The biasing method involves a bias between Vthl and Vthh applied to the selected word line (or bit line) and a bias voltage Vr of zero bias applied to the selected word line (or bit line), while Other word lines and bit lines are applied with fixed bias voltages in the range of 0<V<Vthl. In the present invention, two different biasing methods are provided, that is, the V/2 method and the V/3 method.

图5A到5C分别绘示为本发明一实施例的读取一元件的方法。图5A到5C各自代表施加于储存单元上的偏压。图5A代表一种浮置方法,其中该偏压是由-Vr到+Vr而选择单元408s乃是施加正向偏压+Vr。图5B代表的是一种V/2的读取方法,其中选择单元408s则施加正向偏压+Vr。如图5B所示,其余未选择的单元乃是施加正向偏压+Vr/2。图5C代表的是一种V/3的读取方法,而选择单元408s乃是施加正向偏压+Vr。图5C中的其余未选择的单元则施加正向偏压+Vr/3或者反向偏压-Vr/3。值得注意的是,图5C中未选择的单元乃是形成了一个与图4D相类似的图案。5A to 5C respectively illustrate a method for reading a device according to an embodiment of the present invention. 5A to 5C each represent a bias voltage applied to a memory cell. FIG. 5A represents a floating method in which the bias voltage is from -Vr to +Vr and the selection cell 408s is forward biased to +Vr. FIG. 5B represents a V/2 reading method, in which the selection unit 408s applies a forward bias voltage +Vr. As shown in FIG. 5B, the remaining unselected cells are forward biased by +Vr/2. FIG. 5C represents a V/3 reading method, and the selection unit 408s is applied with a forward bias +Vr. The remaining unselected cells in FIG. 5C are applied with a forward bias of +Vr/3 or a reverse bias of -Vr/3. It is worth noting that the unselected cells in Figure 5C form a pattern similar to that in Figure 4D.

综上所述,本发明提供了一种储存器内核,其毋须使用用于存取内核储存单元的存取晶体管。换言之,当该内核单元加入了一起始开关材料时,例如为硫族化合物材料,可以藉由编程内核储存单元来存取内核储存单元。实质上,亦可藉由编程起始开关材料来作为导向元件。任何熟知本发明的技艺者皆可知悉,亦可以提供简化的解码逻辑讯号于存取晶体管的方式,使得本发明毋须存取晶体管。In summary, the present invention provides a memory core without using access transistors for accessing core memory cells. In other words, when the core cell incorporates an initial switching material, such as a chalcogenide material, the core memory cell can be accessed by programming the core memory cell. In essence, the initial switching material can also be used as a steering element by programming. Anyone familiar with the present invention will appreciate that a simplified way of decoding logic signals to access transistors can also be provided, so that the present invention does not require access transistors.

虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何熟习此技艺者在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视后附的申请专利范围所界定者为准。Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Any skilled person can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall prevail as defined in the scope of the appended patent application.

Claims (14)

1.一种三维储存器,由多层储存器构成,其特征在于各层储存器包括:1. A kind of three-dimensional storage device, is made of multi-layer storage device, is characterized in that each layer storage device comprises: m条字线,其中m为自然数;m word lines, wherein m is a natural number; n条位线,其中n为自然数;n bit lines, where n is a natural number; 多数个起始开关层,由硫族化合物材料构成,其中仅在字线i、字线i+1以及位线j、位线j+1所围的区域中有两个起始开关层Ci,j+1以及Ci+1,jA plurality of initial switching layers are composed of chalcogenide materials, and there are only two initial switching layers C i in the area surrounded by word line i, word line i+1, bit line j, and bit line j+1 , j+1 and C i+1, j , 其中in i为奇数,1≤i≤m-1;i is an odd number, 1≤i≤m-1; j为自然数,j=1~n-1;j is a natural number, j=1~n-1; 上述起始开关层Ci,j+1表示连接字线i与位线j+1的起始开关层;The aforementioned initial switch layer C i, j+1 represents the initial switch layer connecting word line i and bit line j+1; 上述起始开关层Ci+1,j表示连接字线i+1与位线j的起始开关层;The above initial switch layer C i+1, j represents the initial switch layer connecting word line i+1 and bit line j; 上述起始开关层Ci,j+1与所连接的该字线i与所连接的该位线j+1构成一储存器内核,上述起始开关层Ci+1,j与所连接的该字线i+1与所连接的该位线j构成一储存器内核,上述各储存器内核具有一低电压值的第一起始电压和一高电压值的第二起始电压,该第一起始电压对应于该起始开关层Ci,j+1的一第一储存状态,该第二起始电压对应于该起始开关层Ci,j+1的一第二储存状态;The initial switch layer C i, j+1 and the word line i connected to it and the bit line j+1 connected to form a memory core, and the initial switch layer C i+1, j connected to the The word line i+1 and the connected bit line j form a storage core, and each storage core has a first starting voltage of a low voltage value and a second starting voltage of a high voltage value, and the first starting voltage The initial voltage corresponds to a first storage state of the initial switching layer C i,j+1 , and the second initial voltage corresponds to a second storage state of the initial switching layer C i,j+1 ; 当该字线i与该位线j+1之间的电压值为该第一起始电压时,对应的该起始开关层Ci,j+1被选通并处于该第一储存状态,当该字线i与该位线j+1之间的电压值为该第二起始电压时,对应的该起始开关层Ci,j+1被选通并处于该第二储存状态,当该字线i与该位线j+1浮置时,该起始开关层Ci,j+1处于非选通状态,When the voltage value between the word line i and the bit line j+1 is the first start voltage, the corresponding start switch layer C i, j+1 is gated and in the first storage state, when When the voltage value between the word line i and the bit line j+1 is the second initial voltage, the corresponding initial switch layer C i,j+1 is gated and in the second storage state, when When the word line i and the bit line j+1 are floating, the initial switch layer C i, j+1 is in a non-selected state, 当该字线i+1与该位线j之间的电压值为该第一起始电压时,对应的该起始开关层Ci+1,j被选通并处于该第一储存状态当该字线i+1与该位线j之间的电压值为该第二起始电压时,对应的该起始开关层Ci+1,j被选通并处于该第二储存状态,当该字线i+1与该位线j浮置时,该起始开关层处于非选通状态。When the voltage between the word line i+1 and the bit line j is the first initial voltage, the corresponding initial switch layer C i+1,j is gated and is in the first storage state when the When the voltage value between the word line i+1 and the bit line j is the second initial voltage, the corresponding initial switch layer C i+1,j is gated and in the second storage state, when the When the word line i+1 and the bit line j are floating, the initial switch layer is in a non-selected state. 2.根据权利要求1所述的三维储存器,其特征在于其中所述的字线包括一金属材料或者一类金属材料。2. The three-dimensional memory according to claim 1, wherein said word line comprises a metal material or a type of metal material. 3.根据权利要求1所述的三维储存器,其特征在于其中所述的位线包括一半导体材料或硅化物。3. The three-dimensional memory according to claim 1, wherein the bit line comprises a semiconductor material or silicide. 4.根据权利要求3所述的储存器内核,其特征在于其中所述的半导体材料包括硅。4. The memory core of claim 3, wherein the semiconductor material comprises silicon. 5.根据权利要求1所述的三维储存器,其特征在于其中所述的起始开关层可用以提供于一非易失性储存器。5. The three-dimensional memory as claimed in claim 1, wherein the initial switch layer can be used to provide a non-volatile memory. 6.根据权利要求1所述的三维储存器,其特征在于其中所述的第一储存状态表示为状态1,所述的第二储存状态表示为状态0。6. The three-dimensional storage according to claim 1, wherein the first storage state is represented as state 1, and the second storage state is represented as state 0. 7.一种在三维储存器中存取储存器内核的方法,该三维储存器由多层储存器构成,各层储存器包括:7. A method for accessing a storage core in a three-dimensional storage, the three-dimensional storage is composed of multi-layer storage, and each storage layer includes: m条字线,其中m为自然数;m word lines, wherein m is a natural number; n条位线,其中n为自然数;n bit lines, where n is a natural number; 多数个起始开关层,由硫族化合物材料构成,其中仅在字线i、字线i+1以及位线j、位线j+1所围的区域中有两个起始开关层Ci,j+1以及Ci+1,jA plurality of initial switching layers are composed of chalcogenide materials, and there are only two initial switching layers C i in the area surrounded by word line i, word line i+1, bit line j, and bit line j+1 , j+1 and C i+1, j , 其中in i为奇数,1≤i≤m-1;i is an odd number, 1≤i≤m-1; j为自然数,j=1~n-1;j is a natural number, j=1~n-1; 上述起始开关层Ci,j+1表示连接字线i与位线j+1的起始开关层;The aforementioned initial switch layer C i, j+1 represents the initial switch layer connecting word line i and bit line j+1; 上述起始开关层Ci+1,j表示连接字线i+1与位线j的起始开关层;The above initial switch layer C i+1, j represents the initial switch layer connecting word line i+1 and bit line j; 上述起始开关层Ci,j+1与所连接的该字线i与所连接的该位线j+1构成一储存器内核,上述起始开关层Ci+1,j与所连接的该字线i+1与所连接的该位线j构成一储存器内核,上述各储存器内核具有一低电压值的第一起始电压和一高电压值的第二起始电压,该第一起始电压对应于该起始开关层Ci,j+1的一第一储存状态,该第二起始电压对应于该起始开关层Ci,j+1的一第二储存状态;The initial switch layer C i, j+1 and the word line i connected to it and the bit line j+1 connected to form a memory core, and the initial switch layer C i+1, j connected to the The word line i+1 and the connected bit line j form a storage core, and each storage core has a first starting voltage of a low voltage value and a second starting voltage of a high voltage value, and the first starting voltage The initial voltage corresponds to a first storage state of the initial switching layer C i,j+1 , and the second initial voltage corresponds to a second storage state of the initial switching layer C i,j+1 ; 当该字线i与该位线j+1之间的电压值为该第一起始电压时,对应的该起始开关层Ci,j+1被选通并处于该第一储存状态,当该字线i与该位线j+1之间的电压值为该第二起始电压时,对应的该起始开关层Ci,j+1被选通并处于该第二储存状态,当该字线i与该位线j+1浮置时,该起始开关层Ci,j+1处于非选通状态,When the voltage value between the word line i and the bit line j+1 is the first start voltage, the corresponding start switch layer C i, j+1 is gated and in the first storage state, when When the voltage value between the word line i and the bit line j+1 is the second initial voltage, the corresponding initial switch layer C i,j+1 is gated and in the second storage state, when When the word line i and the bit line j+1 are floating, the initial switch layer C i, j+1 is in a non-selected state, 当该字线i+1与该位线j之间的电压值为该第一起始电压时,对应的该起始开关层Ci+1,j被选通并处于该第一储存状态当该字线i+1与该位线j之间的电压值为该第二起始电压时,对应的该起始开关层Ci+1,j被选通并处于该第二储存状态,当该字线i+1与该位线j浮置时,该起始开关层Ci+1,j处于非选通状态,When the voltage between the word line i+1 and the bit line j is the first initial voltage, the corresponding initial switch layer C i+1,j is gated and is in the first storage state when the When the voltage value between the word line i+1 and the bit line j is the second initial voltage, the corresponding initial switch layer C i+1,j is gated and in the second storage state, when the When the word line i+1 and the bit line j are floating, the initial switch layer C i+1, j is in a non-selected state, 其特征在于其包括:It is characterized in that it includes: 决定用于存取上述储存器内核其中之一的一起始电压为该第一起始电压或该第二起始电压;determining that an initial voltage for accessing one of the memory cores is the first initial voltage or the second initial voltage; 编程该储存器内核的起始开关层,以便在该第一起始电压或该第二起始电压下能够存取该储存器内核;programming an initial switch layer of the memory core to enable access to the memory core at the first initial voltage or the second initial voltage; 施加一第一电压于一字线;以及applying a first voltage to a word line; and 如果该第一电压至少等于该第一起始电压或该第二起始电压时,即可存取该储存器内核。If the first voltage is at least equal to the first starting voltage or the second starting voltage, the memory core can be accessed. 8.根据权利要求7所述的在三维储存器中存取储存器内核的方法,其特征在于其中编程该储存器内核的该起始开关层,以便在该起始电压下能够存取该储存器内核的步骤包括:采用一浮置技术或者一偏压技术。8. The method for accessing a memory core in a three-dimensional memory according to claim 7, wherein the initial switch layer of the memory core is programmed so that the memory can be accessed at the initial voltage The steps for the core of the device include: adopting a floating technique or a bias technique. 9.根据权利要求7所述的在三维储存器中存取储存器内核的方法,其特征在于其更包括:如果该第一电压小于该起始电压时,则拒绝存取该储存器内核。9. The method for accessing a memory core in a three-dimensional memory according to claim 7, further comprising: denying access to the memory core if the first voltage is lower than the initial voltage. 10.一种读取三维储存器元件的方法,该三维储存器由多层储存器构成,各层储存器包括:10. A method for reading a three-dimensional storage element, the three-dimensional storage is composed of multi-layer storage, and each layer of storage includes: m条字线,其中m为自然数;m word lines, wherein m is a natural number; n条位线,其中n为自然数;n bit lines, where n is a natural number; 多数个起始开关层,由硫族化合物材料构成,其中仅在字线i、字线i+1以及位线j、位线j+1所围的区域中有两个起始开关层Ci,j+1以及Ci+1,jA plurality of initial switching layers are composed of chalcogenide materials, and there are only two initial switching layers C i in the area surrounded by word line i, word line i+1, bit line j, and bit line j+1 , j+1 and C i+1, j , 其中in i为奇数,1≤i≤m-1;i is an odd number, 1≤i≤m-1; j为自然数,j=1~n-1;j is a natural number, j=1~n-1; 上述起始开关层Ci,j+1表示连接字线i与位线j+1的起始开关层;The aforementioned initial switch layer C i, j+1 represents the initial switch layer connecting word line i and bit line j+1; 上述起始开关层Ci+1,j表示连接字线i+1与位线j的起始开关层;The above initial switch layer C i+1, j represents the initial switch layer connecting word line i+1 and bit line j; 上述起始开关层Ci,j+1与所连接的字线i与所连接的该位线j+1构成一储存器内核,上述起始开关层Ci+1,j与所连接的该字线i+1与所连接的该位线j构成一储存器内核,上述各储存器内核具有一低电压值的第一起始电压和一高电压值的第二起始电压,该第一起始电压对应于该起始开关层Ci,j+1的一第一储存状态,该第二起始电压对应于该起始开关层Ci,j+1的一第二储存状态;The initial switch layer C i, j+1 and the connected word line i and the connected bit line j+1 constitute a memory core, and the above-mentioned initial switch layer C i+1, j and the connected word line The word line i+1 and the connected bit line j form a storage core, and each of the storage cores has a first initial voltage of a low voltage value and a second initial voltage of a high voltage value, and the first initial initial voltage a voltage corresponding to a first storage state of the initial switching layer C i,j+1 , the second initial voltage corresponding to a second storage state of the initial switching layer C i,j+1 ; 当该字线i与该位线j+1之间的电压值为该第一起始电压时,对应的该起始开关层Ci,j+1被选通并处于该第一储存状态,当该字线i与该位线j+1之间的电压值为该第二起始电压时,该起始开关层Ci,j+1被选通并处于该第二储存状态,当该字线i与该位线j+1浮置时,该起始开关层Ci,j+1处于非选通状态,When the voltage value between the word line i and the bit line j+1 is the first start voltage, the corresponding start switch layer C i, j+1 is gated and in the first storage state, when When the voltage value between the word line i and the bit line j+1 is the second start voltage, the start switch layer C i, j+1 is gated and in the second storage state, when the word When the line i and the bit line j+1 are floating, the initial switch layer C i, j+1 is in a non-selected state, 当该字线i+1与该位线j之间的电压值为该第一起始电压时,对应的该起始开关层Ci+1,j被选通并处于该第一储存状态当该字线i+1与该位线j之间的电压值为该第二起始电压时,对应的该起始开关层Ci+1,j被选通并处于该第二储存状态,当该字线i+1与该位线j浮置时,该起始开关层Ci+1,j处于非选通状态,When the voltage between the word line i+1 and the bit line j is the first initial voltage, the corresponding initial switch layer C i+1,j is gated and is in the first storage state when the When the voltage value between the word line i+1 and the bit line j is the second initial voltage, the corresponding initial switch layer C i+1,j is gated and in the second storage state, when the When the word line i+1 and the bit line j are floating, the initial switch layer C i+1, j is in a non-selected state, 其特征在于其包括:It is characterized in that it includes: 施加一读取电压于一选择的字线,而该读取电压可用以直接存取对应所选字线的该储存器内核;applying a read voltage to a selected word line, and the read voltage can be used to directly access the memory core corresponding to the selected word line; 施加一零偏压于一位线,而该位线乃是对应于该选择的字线;以及applying a zero bias to the bit line corresponding to the selected word line; and 读取储存于该储存器内核的一数值。Read a value stored in the memory core. 11.根据权利要求10所述的读取三维储存器元件的方法,其特征在于其更包括:维持未选择的字线和未选择的位线于一浮置状态。11. The method for reading a three-dimensional memory device according to claim 10, further comprising: maintaining unselected word lines and unselected bit lines in a floating state. 12.根据权利要求10所述的读取三维储存器元件的方法,其特征在于其更包括:12. The method for reading a three-dimensional memory element according to claim 10, further comprising: 施加第一偏压电压于未选择的字线和施加第二偏压电压于未选择的位线。A first bias voltage is applied to unselected word lines and a second bias voltage is applied to unselected bit lines. 13.根据权利要求12所述的读取三维储存器元件的方法,其特征在于其中,13. The method for reading a three-dimensional memory element according to claim 12, wherein, 决定一起始电压为该第一起始电压或该第二起始电压;determining an initial voltage to be the first initial voltage or the second initial voltage; 所述的该第一偏压电压和该第二偏压电压乃是小于该起始电压,而该第一偏压电压和该第二偏压电压的范围乃是介于0.1V至20V之间。The first bias voltage and the second bias voltage are less than the initial voltage, and the range of the first bias voltage and the second bias voltage is between 0.1V and 20V . 14.根据权利要求12所述的读取三维储存器元件的方法,其特征在于其中所述的第一偏压电压大约是选择的字线上的读取电压的三分之一以及所述第二偏压电压是选择的字线上的读取电压的三分之二。14. The method for reading a three-dimensional memory element according to claim 12, wherein said first bias voltage is approximately one-third of a read voltage on a selected word line and said first bias voltage is The second bias voltage is two-thirds of the read voltage on the selected word line.
CN 200910206679 2004-09-24 2005-09-23 Three-dimensional memory element and method of operation thereof Expired - Lifetime CN101702328B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/948,891 2004-09-24
US10/948,891 US20050041467A1 (en) 2003-06-18 2004-09-24 Chalcogenide memory

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN 200510105365 Division CN1770494B (en) 2004-09-24 2005-09-23 Chalcogenide memory

Publications (2)

Publication Number Publication Date
CN101702328A CN101702328A (en) 2010-05-05
CN101702328B true CN101702328B (en) 2013-03-06

Family

ID=36751613

Family Applications (2)

Application Number Title Priority Date Filing Date
CN 200910206679 Expired - Lifetime CN101702328B (en) 2004-09-24 2005-09-23 Three-dimensional memory element and method of operation thereof
CN 200510105365 Expired - Lifetime CN1770494B (en) 2004-09-24 2005-09-23 Chalcogenide memory

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN 200510105365 Expired - Lifetime CN1770494B (en) 2004-09-24 2005-09-23 Chalcogenide memory

Country Status (2)

Country Link
CN (2) CN101702328B (en)
TW (1) TWI313863B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120130939A (en) 2011-05-24 2012-12-04 에스케이하이닉스 주식회사 3d structured non-volatile memory device and method for manufacturing the same
CN107924699A (en) * 2015-04-24 2018-04-17 李武开 Part/complete array/block erasing for 2D/3D hierarchy types NAND
US9978810B2 (en) * 2015-11-04 2018-05-22 Micron Technology, Inc. Three-dimensional memory apparatuses and methods of use
US10134470B2 (en) 2015-11-04 2018-11-20 Micron Technology, Inc. Apparatuses and methods including memory and operation of same
KR102410947B1 (en) * 2015-11-20 2022-06-22 에스케이하이닉스 주식회사 Threshold switching device and electronic device including the same
CN105788632B (en) * 2016-02-26 2019-04-02 江苏时代全芯存储科技有限公司 Memory circuit
US10446226B2 (en) 2016-08-08 2019-10-15 Micron Technology, Inc. Apparatuses including multi-level memory cells and methods of operation of same
CN106898371B (en) * 2017-02-24 2020-08-28 中国科学院上海微系统与信息技术研究所 Three-dimensional memory readout circuit and method for configuring wordline and bitline voltages
CN107644664A (en) * 2017-09-27 2018-01-30 中国科学院上海微系统与信息技术研究所 Three-dimensional perpendicular type memory circuitry and bit line and word line voltage collocation method
CN115881186B (en) * 2022-12-20 2025-02-07 华中科技大学 A three-dimensional memory, preparation method and data operation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761115A (en) * 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same

Also Published As

Publication number Publication date
TW200611270A (en) 2006-04-01
CN101702328A (en) 2010-05-05
TWI313863B (en) 2009-08-21
CN1770494B (en) 2010-05-05
CN1770494A (en) 2006-05-10

Similar Documents

Publication Publication Date Title
US7554873B2 (en) Three-dimensional memory devices and methods of manufacturing and operating the same
US6781858B2 (en) Cubic memory array
US7750334B2 (en) Phase change memory device
US6784517B2 (en) Three-dimensional memory array incorporating serial chain diode stack
JP5826779B2 (en) Nonvolatile semiconductor memory device
JP2016167332A (en) Storage device
CN103311248B (en) Comprise nonvolatile memory and the manufacture method thereof of multilayered memory unit
CN107316869A (en) Three-dimensional longitudinal direction one-time programming memory
US6873541B2 (en) Nonvolatile memory programmble by a heat induced chemical reaction
US20050041467A1 (en) Chalcogenide memory
CN101702328B (en) Three-dimensional memory element and method of operation thereof
JP2022052081A (en) Semiconductor storage device
US9001555B2 (en) Small-grain three-dimensional memory
US10541273B2 (en) Vertical thin film transistors with isolation
US20250221024A1 (en) Semiconductor device, method for designing the same, and method for manufacturing the same
US9130166B2 (en) Resistive non-volatile memory, cell structure and manufacturing method thereof
US9209225B2 (en) Cell structure of resistive non-volatile memory and manufacturing method thereof
US10741491B1 (en) Electronic device and method of fabricating the same
JP2009289962A (en) Nonvolatile storage device and manufacturing method thereof
CN101409302A (en) Phase change memory array and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20130306