CN101718582A - Tone testing method of wind power generator set - Google Patents
Tone testing method of wind power generator set Download PDFInfo
- Publication number
- CN101718582A CN101718582A CN200910191362A CN200910191362A CN101718582A CN 101718582 A CN101718582 A CN 101718582A CN 200910191362 A CN200910191362 A CN 200910191362A CN 200910191362 A CN200910191362 A CN 200910191362A CN 101718582 A CN101718582 A CN 101718582A
- Authority
- CN
- China
- Prior art keywords
- signal
- noise
- data segment
- tone
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 23
- 238000004458 analytical method Methods 0.000 claims abstract description 22
- 230000005540 biological transmission Effects 0.000 claims abstract description 21
- 230000003750 conditioning effect Effects 0.000 claims abstract description 20
- 230000003595 spectral effect Effects 0.000 claims description 41
- 238000001228 spectrum Methods 0.000 claims description 27
- 230000000873 masking effect Effects 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 17
- 238000005070 sampling Methods 0.000 claims description 11
- 238000009434 installation Methods 0.000 claims description 8
- 230000003746 surface roughness Effects 0.000 claims description 8
- 230000003321 amplification Effects 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 5
- 238000012545 processing Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000012546 transfer Methods 0.000 abstract 1
- 238000004891 communication Methods 0.000 description 3
- 230000005534 acoustic noise Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012952 Resampling Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
一种风力发电机组音调测试方法,设置有预极化传声器和风机运行参数传感器组。预极化传声器噪声信号输出给噪声信号调理采集器处理,并通过Wi-Fi无线数据传输模块输出到计算机;风机运行参数传感器组将风机运行参数信号输出到风机运行参数信号采集调理器处理,并通过USB数据传输模块输出到计算机。计算机利用虚拟仪器软件对采集到的信号进行音频音调判定,获得音调能听度。本发明的显著效果是:实时采集信号,同步性高,测量精度高,采用阶比分析技术,消除频率模糊现象,模拟人耳听觉和心理特点,结果准确合理,操作简单,性价比高,实现了风力发电机组在各个整风速下的音调分析。
A tone testing method for a wind power generating set, which is provided with a prepolarized microphone and a fan operating parameter sensor group. The pre-polarized microphone noise signal is output to the noise signal conditioning collector for processing, and output to the computer through the Wi-Fi wireless data transmission module; the fan operating parameter sensor group outputs the fan operating parameter signal to the fan operating parameter signal acquisition conditioner for processing, and Output to computer through USB data transfer module. The computer uses the virtual instrument software to judge the audio tone of the collected signal to obtain the tone audibility. The remarkable effects of the present invention are: real-time signal collection, high synchronization, high measurement accuracy, using order ratio analysis technology, eliminating frequency ambiguity, simulating human hearing and psychological characteristics, accurate and reasonable results, simple operation, and high cost performance. Tone analysis of a wind turbine at various full wind speeds.
Description
技术领域technical field
本发明属于风力发电机音频测试领域,具体涉及一种用于测试与分析风力发电机组音调的多参数测试仪器,适用于风力发电机组噪声测试时在各整风速下准确的测试和分析音调,以便评估风机音调能听度,从而为风机降噪和噪声评估提供客观依据。The invention belongs to the field of wind power generator audio testing, and in particular relates to a multi-parameter testing instrument for testing and analyzing the tone of a wind power generating set, which is suitable for accurately testing and analyzing the tone at various wind speeds during the noise test of a wind power generating set, so as to Evaluate the fan pitch audibility, thus providing an objective basis for fan noise reduction and noise assessment.
背景技术Background technique
依据IEC 61400-11风力发电机组噪声特性试验的技术要求,风力发电机组的声学噪声测试,需要在规定的地理条件下,同时进行功率、风速、风向、气温、气压、偏航角、浆距角、转速和A计权声压级测试,并在每个整风速下进行音调分析,以便评估风机音调能听度,从而为噪声评估和风机降噪提供客观依据。风力发电机噪声的音调由啮合齿轮、气动不稳定性因素与转子叶片表面的相互作用,以及作用于孔洞、裂缝或钝尾缘上的失稳气流等造成,该现象的噪声信号属于典型的非平稳信号。而现有的风机噪声音调判定采用的是基于平稳信号分析的窄带谱判定方法,将会为判断结果带来频率模糊现象。同时,常规的风力发电机组声学噪声测试仪通常采用多通道数据记录仪、声级计、1/3倍频程谱分析仪、频谱分析仪等分体式仪器进行测量和分析。According to the technical requirements of IEC 61400-11 noise characteristics test of wind turbines, the acoustic noise test of wind turbines needs to be carried out under the specified geographical conditions at the same time for power, wind speed, wind direction, air temperature, air pressure, yaw angle, and pitch angle. , speed and A-weighted sound pressure level tests, and tone analysis at each full wind speed in order to evaluate the fan tone audibility, thus providing an objective basis for noise assessment and fan noise reduction. The pitch of wind turbine noise is caused by the interaction of meshing gears, aerodynamic instabilities with the surface of the rotor blades, and unsteady airflow acting on holes, cracks, or blunt trailing edges. Smooth signal. However, the existing wind turbine noise tone judgment adopts a narrow-band spectrum judgment method based on stationary signal analysis, which will bring frequency ambiguity to the judgment results. At the same time, conventional acoustic noise testers for wind turbines usually use split instruments such as multi-channel data recorders, sound level meters, 1/3 octave spectrum analyzers, and spectrum analyzers for measurement and analysis.
现有风力发电机音调测试的缺点:测量精度低,同步性差,频率模糊现象严重,操作复杂,价格昂贵。Disadvantages of the existing wind turbine tone test: low measurement accuracy, poor synchronization, serious frequency ambiguity, complicated operation, and high price.
发明内容Contents of the invention
本发明的目的是提供一种测量精度高、同步性高、频率模糊现象影响小、操作简单、成本低的风力发电机组音调测试方法。The purpose of the present invention is to provide a tone testing method of a wind power generating set with high measurement accuracy, high synchronization, little influence of frequency ambiguity phenomenon, simple operation and low cost.
为达到上述目的,本发明采用的技术方案如下:In order to achieve the above object, the technical scheme adopted in the present invention is as follows:
一种风力发电机组音调测试方法,其关键在于,按照以下步骤进行:A method for testing the tone of a wind power generating set, the key of which is to carry out according to the following steps:
步骤一,获取风速信号、气温信号、气压信号、噪声信号、转速信号、电功率信号、风速计安装高度、风力发电机中心高度和地表粗糙度,可通过仪器测得。Step 1: Obtain wind speed signal, air temperature signal, air pressure signal, noise signal, rotational speed signal, electric power signal, installation height of anemometer, center height of wind power generator and surface roughness, which can be measured by instruments.
步骤二,确定整风速,按照以下几步进行:
第一步,根据所述气温信号、气压信号、风速计安装高度、风力发电机中心高度和地表粗糙度,将所述风速信号转换为标准风速信号,该标准风速的换算为公知技术;其中,标准风速范围将涵盖风速为6m/s、7m/s、8m/s、9m/s、10m/s的整风速。The first step is to convert the wind speed signal into a standard wind speed signal according to the air temperature signal, air pressure signal, anemometer installation height, wind generator center height and surface roughness, and the conversion of the standard wind speed is a known technology; wherein, The standard wind speed range will cover the full wind speed of 6m/s, 7m/s, 8m/s, 9m/s, 10m/s.
第二步,定义整风速序号P的初始值P=1;The second step is to define the initial value P=1 of the sequence number P of the rectified wind speed;
第三步,在所述标准风速信号中选取第P整风速;The third step is to select the Pth rectified wind speed in the standard wind speed signal;
第四步,确定第P整风速的风速大小Vp;The fourth step is to determine the wind speed V p of the Pth wind speed;
在国际标准中,通常选取风速大小V1=6m/s的整风速作为第1整风速,必要时可以选取其他风速初始值。In the international standard, the wind speed V 1 =6m/s is usually selected as the first wind speed, and other initial wind speed values can be selected if necessary.
步骤三,确定转速拟合曲线,按照以下几步进行:
第一步,确定待分析的噪声数据段组,该噪声数据段组由第一噪声数据段和第二噪声数据段组成:在所述第P整风速内,选取最接近所述风速大小Vp的一段1分钟噪声信号作为第一噪声数据段;选取最接近所述风速大小Vp的另一段1分钟噪声信号作为第二噪声数据段;The first step is to determine the noise data segment group to be analyzed, the noise data segment group is composed of the first noise data segment and the second noise data segment: within the Pth full wind speed, select the closest wind speed Vp A section of 1 minute noise signal of one section is as the first noise data section; Another section of 1 minute noise signal of the closest described wind speed size V is selected as the second noise data section;
第二步,确定噪声子数据段组,该噪声子数据段组由第一噪声子数据段组和第二噪声子数据段组组成:将所述第一噪声数据段分成6段的噪声子数据段,每段噪声子数据段的时间长度为10秒,作为第一噪声子数据段组;将所述第二噪声数据段分成6段的噪声子数据段,每段噪声子数据段的时间长度为10秒,作为第二噪声子数据段组;Second step, determine the noise sub-data segment group, this noise sub-data segment group is made up of the first noise sub-data segment group and the second noise sub-data segment group: the first noise data segment is divided into 6 noise sub-data Section, the time length of each noise sub-data segment is 10 seconds, as the first noise sub-data segment group; the second noise data segment is divided into 6 noise sub-data segments, the time length of each noise sub-data segment Be 10 seconds, as the second noise sub-data segment group;
第三步,确定转速数据段组,该转速数据段组由第一转速数据段和第二转速数据段组成:选取与第一噪声数据段同时采集的转速信号作为第一转速数据段,选取与第二噪声数据段同时采集的转速信号作为第二转速数据段;The third step is to determine the rotational speed data segment group, which is composed of the first rotational speed data segment and the second rotational speed data segment: select the rotational speed signal collected simultaneously with the first noise data segment as the first rotational speed data segment, and select and The rotational speed signal collected simultaneously by the second noise data segment is used as the second rotational speed data segment;
第四步,确定转速子数据段组,该转速子数据段组由第一转速子数据段组和第二转速子数据段组组成:将所述第一转速数据段分成6段的转速子数据段,每段转速子数据段的时间长度为10秒,作为第一转速子数据段组;将所述第二转速数据段分成6段的转速子数据段,每段转速子数据段的时间长度为10秒,作为第二转速子数据段组;The fourth step is to determine the rotational speed sub-data segment group, which is composed of the first rotational speed sub-data segment group and the second rotational speed sub-data segment group: the first rotational speed data segment is divided into 6 segments of rotational speed sub-data Section, the time length of each speed sub-data segment is 10 seconds, as the first speed sub-data segment group; the second speed data segment is divided into 6 speed sub-data segments, the time length of each
第五步,在转速数据段组上,确定第k段转速子数据段的拟合曲线Rk(t),其表达式为:Rk(t)=akt2+bkt+ck,其中,t为时间,ak、bk、ck为拟合曲线系数;由于风机转速较低,可以采用在转速子数据段上寻找Rk(t)和t之间的关系来获得分段拟合曲线系数,实现风机转速曲线高精度拟合。The fifth step is to determine the fitting curve R k (t) of the kth sub-data segment of the rotational speed on the group of rotational speed data segments, and its expression is: R k (t)=a k t 2 +b k t+c k , where t is the time, a k , b k , and c k are the fitting curve coefficients; due to the low speed of the fan, it can be obtained by looking for the relationship between R k (t) and t on the speed sub-data segment Segmented fitting curve coefficients to achieve high-precision fitting of fan speed curves.
步骤四,确定鉴相时标,按照以下几步进行:
第一步,确定所述拟合曲线Rk(t)的采样频率fs,k,其表达式为:fs,k≥2Omax,k,Omax,k为所述拟合曲线Rk(t)的最大阶比成分。等角度采样间隔满足了采样定理,使鉴相时标对拟合曲线的等角度采样更加合理。The first step, determine the sampling frequency f s of described fitting curve R k (t) , k , its expression is: f s, k ≥ 2O max, k , O max, k is described fitting curve R k (t) the largest order component. The equiangular sampling interval satisfies the sampling theorem, which makes the equiangular sampling of the phase detection time scale to the fitting curve more reasonable.
第二步,确定所述拟合曲线Rk(t)的等角度采样间隔Δθk,其表达式为:Δθk=1/fs,k;The second step is to determine the equiangular sampling interval Δθ k of the fitting curve R k (t), its expression is: Δθ k =1/f s,k ;
第三步,确定所述拟合曲线Rk(t)的积分方程,其表达式为:The 3rd step, determine the integral equation of described fitting curve R k (t), its expression is:
其中,n为时标序号,T0,k为所述拟合曲线Rk(t)的初始时刻,T-1,k为该拟合曲线Rk(t)的终点时刻; Wherein, n is the time scale sequence number, T 0, k is the initial moment of described fitting curve R k (t), and T -1, k is the terminal moment of this fitting curve R k (t);
第四步,根据所述等角度采样间隔Δθk和拟合曲线Rk(t)的积分方程,获得公式确定所述第k段噪声子数据段的鉴相时标Tn,k。为方便获得准确的鉴相时标Tn,k,可取fs,k=2Omax,k。The 4th step, obtain formula Determine the phase detection time scale T n,k of the kth noise sub-data segment. In order to obtain an accurate phase detection time scale T n, k conveniently, f s, k = 2O max, k may be taken.
步骤五,确定所述第k段噪声子数据段的准平稳噪声信号x(Tn,k),其表达式为:其中,t0,k为所述第k段噪声子数据段中时间坐标小于等于Tn,k的第一个点,t1,k为t0,k的下一个点;采用鉴相时标对待分析的一分钟长度噪声信号进行线性插值,实现等角度重采样,可获得准平稳的噪声信号。
步骤六,对所述准平稳噪声信号x(Tn,k)进行A计权,模拟人耳听觉,再加汉宁窗,减少噪声信号能量泄露,进行FFT变换,获得第k段噪声子数据段的A计权窄带声压谱级LA-NS,k;Step 6: Carry out A-weighting on the quasi-stationary noise signal x(T n, k ), simulate the hearing of the human ear, add a Hanning window to reduce the energy leakage of the noise signal, perform FFT transformation, and obtain the noise sub-data of the kth segment The A-weighted narrowband sound pressure spectrum level L A-NS,k of the section;
步骤七,判断音调,按照以下几步进行:Step seven, judge the tone, follow the steps below:
第一步,在所述A计权窄带声压谱级LA-NS,k上,确定临界频带Sk,其表达式为:其中fc,k为第k段噪声子数据段的中心频率;依据人耳的听觉掩蔽效应,选取临界频带,作为后续判断音调是否能被人耳感知的临界分析范围。The first step is to determine the critical frequency band S k at the A-weighted narrowband sound pressure spectrum level L A-NS,k , the expression of which is: Among them , f c and k are the center frequencies of the kth noise sub-data segment; according to the auditory masking effect of the human ear, the critical frequency band is selected as the critical analysis range for subsequent judgment of whether the tone can be perceived by the human ear.
第二步,选取所述临界频带Sk内幅值最小的70%根谱线,确定判据级L70%,k,其表达式为:其中,M为所述临界频带Sk内幅值最小的70%根谱线的总数,Lm,k为该临界频带Sk内第m个幅值最小谱线的噪声频谱能量;The second step is to select 70% of the spectral lines with the smallest amplitude in the critical frequency band S k to determine the criterion level L 70%, k , whose expression is: Wherein, M is the total number of 70% spectral lines with the smallest amplitude in the critical frequency band S k , and L m, k is the noise spectrum energy of the mth smallest amplitude spectral line in the critical frequency band S k ;
第三步,选取所述临界频带Sk内幅值小于L70%,k+6dB的谱线,确定为所述临界频带Sk内的掩蔽噪声;The third step is to select the spectral line whose amplitude is less than L 70%, k +6dB in the critical frequency band Sk , and determine it as the masking noise in the critical frequency band Sk ;
第四步,确定所述临界频带Sk内的平均掩蔽噪声级Lpn,avg,k,其表达式为:其中,H为所述掩蔽噪声的谱线总数,Lh,k为所述临界频带Sk内第h个掩蔽噪声的噪声频谱能量;The fourth step is to determine the average masking noise level L pn,avg,k in the critical frequency band S k , the expression of which is: Wherein, H is the total number of spectral lines of the masking noise, L h, k is the noise spectrum energy of the hth masking noise in the critical frequency band S k ;
第五步,在所述临界频带Sk内,选取噪声频谱能量大于Lpn,avg,k+6dB的谱线作为该临界频带Sk内的音调谱线,音调可能会出现在该音调谱线中。The fifth step, in the critical frequency band S k , select the spectral line whose noise spectrum energy is greater than Lpn, avg, k +6dB as the tone spectral line in the critical frequency band S k , and the tone may appear on the tone spectral line middle.
第六步,对音调谱线进行分贝求和,可确定所述临界频带Sk内的谱线音调级Lpt0,k,其表达式为:其中,G为所述音调谱线的总数,Lg,k为所述临界频带Sk内第g个音调谱线的噪声频谱能量;The sixth step is to sum the tone spectral lines in decibels to determine the tone level L pt0,k of the spectral lines in the critical frequency band S k , the expression of which is: Wherein, G is the total number of the tone spectrum lines, Lg , k is the noise spectrum energy of the gth tone spectrum line in the critical frequency band Sk ;
第七步,判断所述临界频带Sk内相邻的音调谱线的个数i是否大于1:如果i=1,则该音调谱线作为所述临界频带Sk内的音调,音调级Lpt,k=Lpt0,k;如果i>1,则所述相邻的音调谱线中幅值最大的谱线作为所述临界频带Sk内的音调,音调级Lpt,k=Lpt0,k/1.5;The seventh step is to judge whether the number i of adjacent tone spectral lines in the critical frequency band S k is greater than 1: if i=1, then this tone spectral line is used as the tone in the critical frequency band S k , and the tone level L pt,k =L pt0,k ; if i>1, the spectral line with the largest amplitude among the adjacent tone spectral lines is used as the tone in the critical frequency band S k , and the tone level L pt,k =L pt0 , k /1.5;
当音调中包含两根以上的相邻谱线时,考虑到汉宁窗的散布效应增加了FFT的等效连续带宽,将谱线音调级除以1.5,使音调测试结果更加准确,测试方法更加合理。另外,临界频带内除掩蔽噪声与音调之外的谱线将不被用于后续分析。When the tone contains more than two adjacent spectral lines, considering the spread effect of the Hanning window to increase the equivalent continuous bandwidth of the FFT, divide the tone level of the spectral line by 1.5 to make the tone test results more accurate and the test method more accurate Reasonable. In addition, spectral lines other than masking noise and tones in the critical frequency band will not be used for subsequent analysis.
步骤八,修正背景噪声,按照以下几步进行:
第一步,根据所述电功率信号,确定在风机停机时,所述临界频带Sk内的背景噪声的等效连续声压级Ln,k;The first step is to determine the equivalent continuous sound pressure level L n, k of the background noise in the critical frequency band S k when the fan is stopped according to the electric power signal;
第二步,确定所述临界频带Sk内的修正掩蔽噪声级Ls,pn,avg,k,其表达式为:The second step is to determine the modified masking noise level L s,pn,avg,k within the critical frequency band S k , the expression of which is:
为确保分析结果的有效性,必须确认音调成分并非来自背景噪声。经过修正背景噪声后,所得到的修正掩蔽噪声级能更准确地表达风机运行时单独的等效连续声压级,即不含背景噪声的风机噪声。To ensure the validity of the analysis results, it must be confirmed that the tonal components do not come from background noise. After the background noise is corrected, the obtained corrected masking noise level can more accurately express the equivalent continuous sound pressure level of the fan when it is running, that is, the fan noise without background noise.
步骤九,确定所述临界频带Sk内的掩蔽噪声级Lpn,k和所述第P整风速中第k段噪声子数据段的最终音调级ΔLtn,k,按照以下几步进行:
第一步,确定有效噪声带宽Z,其表达式为:Z=1.5×R,其中R为频率分辨率;有效噪声带宽Z修正了使用汉宁窗的影响,使测试结果更加准确合理。The first step is to determine the effective noise bandwidth Z, whose expression is: Z=1.5×R, where R is the frequency resolution; the effective noise bandwidth Z corrects the influence of using the Hanning window, making the test results more accurate and reasonable.
第二步,确定所述掩蔽噪声级Lpn,k,其表达式为: The second step is to determine the masking noise level L pn,k , the expression of which is:
第三步,确定所述最终音调级ΔLtn,k,其表达式为:ΔLtn,k=Lpt,k-Lpn,k;The third step is to determine the final pitch level ΔL tn, k , its expression is: ΔL tn, k = L pt, k - L pn, k ;
步骤十,确定音调能听度,按照以下几步进行:Step ten, determine the audibility of the tone, follow the steps below:
第一步,确定所述第P整风速的能听度ΔLt,其表达式为:The first step is to determine the audibility ΔL t of the Pth full wind speed, the expression of which is:
第二步,确定基于频率的能听度判据La,用于补偿人耳对不同频率成分音调的响应,其表达式为:其中ftone为音调频率值;The second step is to determine the frequency-based audibility criterion L a , which is used to compensate the human ear's response to tones of different frequency components, and its expression is: Where f tone is the tone frequency value;
第三步,确定音调能听度ΔLa,其表达式为:ΔLa=ΔLt-La;The third step is to determine the tone audibility ΔL a , its expression is: ΔL a = ΔL t -L a ;
步骤十一,判断所述整风速序号P是否小于P′,如果P小于P′,则P加1,返回所述在所述标准风速信号中选取第P整风速的步骤,即步骤二的第三步;如果P等于或大于P′,则分析结束;其中,P′为终止整风速序号。在国际标准中,通常选取风速大小VP′=10m/s的整风速作为最后一个待分析的整风速,即在标准风速信号中依次选取风速为6m/s、7m/s、8m/s、9m/s、10m/s的整风速进行分析,必要时可选取更多的整风速。在每一个选取的整风速下,重复进行以上所有分析步骤,直至分析完选取的每一个整风速下的音调。
在所述获取风速信号、气温信号、气压信号、噪声信号、转速信号、电功率信号、风速计安装高度、风力发电机中心高度和地表粗糙度的步骤中,即步骤一中,用预极化传声器获取所述噪声信号,用噪声信号调理采集器处理该噪声信号,用风机运行参数传感器组获取所述风速信号、气温信号、气压信号、转速信号和电功率信号,用风机运行参数信号采集调理器处理该风速信号、气温信号、气压信号、转速信号和电功率信号。In the step of obtaining wind speed signal, air temperature signal, air pressure signal, noise signal, speed signal, electric power signal, anemometer installation height, wind power generator center height and surface roughness, that is, in step one, use a prepolarized microphone Acquire the noise signal, process the noise signal with a noise signal conditioning collector, acquire the wind speed signal, air temperature signal, air pressure signal, rotational speed signal and electric power signal with the fan operating parameter sensor group, and process it with the fan operating parameter signal acquisition conditioner The wind speed signal, air temperature signal, air pressure signal, rotational speed signal and electric power signal.
其中,所述预极化传声器用于获取噪声信号。它的信号输出端连接所述噪声信号调理采集器的信号采集端,噪声信号调理采集器对采集到的噪声数据进行抗混叠滤波,提高分析时的信噪比,同时提高鉴相时标对噪声数据进行线性插值时地精度。该噪声信号调理采集器的Wi-Fi无线数据输出端与计算机的Wi-Fi无线数据输入端无线连接,将A/D转换后的噪声信号数据通过无线传输提供给计算机处理。所述风机运行参数传感器组的信号输出端连接所述风机运行参数信号采集调理器的信号采集端组,该风机运行参数信号采集调理器的USB输出端连接所述计算机的USB输入端,将采集到的数据转化为电压信号,通过USB接口传输给计算机处理。Wherein, the prepolarized microphone is used to acquire noise signals. Its signal output end is connected to the signal acquisition end of the noise signal conditioning collector, and the noise signal conditioning collector performs anti-aliasing filtering on the collected noise data to improve the signal-to-noise ratio during analysis, and at the same time improve the accuracy of the phase detection time scale. Accuracy when performing linear interpolation on noisy data. The Wi-Fi wireless data output end of the noise signal conditioning collector is wirelessly connected with the Wi-Fi wireless data input end of the computer, and the noise signal data after A/D conversion is provided to the computer for processing through wireless transmission. The signal output end of the fan operation parameter sensor group is connected to the signal acquisition end group of the fan operation parameter signal acquisition conditioner, and the USB output end of the fan operation parameter signal acquisition conditioner is connected to the USB input end of the computer, and the collected The received data is converted into a voltage signal and transmitted to the computer for processing through the USB interface.
所述噪声信号调理采集器设置有内置压电ICP激励恒流源、交流耦合器、抗混滤波器、第一A/D转换器和Wi-Fi无线数据传输模块,所述内置压电ICP激励恒流源的输出端连接所述预极化传声器的电源端,用于给预极化传声器提供恒定的电流激励。该预极化传声器的信号输出端连接所述交流耦合器的信号采集端,该交流耦合器的信号输出端连接所述抗混滤波器的信号输入端,该抗混滤波器的信号输出端连接所述第一A/D转换器的信号输入端,该第一A/D转换器的信号输出端连接所述Wi-Fi无线数据传输模块的信号输入端,该Wi-Fi无线数据传输模块的信号输出端与所述计算机的Wi-Fi无线数据输入端无线连接;所述噪声信号调理采集器由可充电电池组供电。The noise signal conditioning collector is provided with a built-in piezoelectric ICP excitation constant current source, an AC coupler, an anti-aliasing filter, a first A/D converter and a Wi-Fi wireless data transmission module, and the built-in piezoelectric ICP excitation The output terminal of the constant current source is connected to the power supply terminal of the prepolarized microphone, and is used for providing constant current excitation to the prepolarized microphone. The signal output end of the prepolarized microphone is connected to the signal acquisition end of the AC coupler, the signal output end of the AC coupler is connected to the signal input end of the anti-aliasing filter, and the signal output end of the anti-aliasing filter is connected to The signal input end of the first A/D converter, the signal output end of the first A/D converter is connected to the signal input end of the Wi-Fi wireless data transmission module, the Wi-Fi wireless data transmission module The signal output end is wirelessly connected with the Wi-Fi wireless data input end of the computer; the noise signal conditioning collector is powered by a rechargeable battery pack.
预极化传声器将采集到的噪声信号送入噪声信号调理采集器进行信号调理和A/D转换,然后通过Wi-Fi无线通信模块将数字信号传输到计算机,实现对噪声信号的实时采集。The prepolarized microphone sends the collected noise signal to the noise signal conditioning collector for signal conditioning and A/D conversion, and then transmits the digital signal to the computer through the Wi-Fi wireless communication module to realize real-time collection of the noise signal.
所述风机运行参数信号采集调理器设置有多路转换器、放大滤波器、第二A/D转换器和USB数据传输模块,所述风机运行参数传感器组的信号输出端连接所述多路转换器的信号采集端组,该多路转换器的信号输出端连接所述放大滤波器的信号输入端,该放大滤波器的信号输出端连接所述第二A/D转换器的信号输入端,该第二A/D转换器的信号输出端连接所述USB数据传输模块的信号输入端,该USB数据传输模块的信号输出端连接所述计算机的USB输入端。The fan operation parameter signal acquisition conditioner is provided with a multiplexer, an amplification filter, a second A/D converter and a USB data transmission module, and the signal output end of the fan operation parameter sensor group is connected to the multiplexer The signal acquisition end group of the device, the signal output end of the multiplexer is connected to the signal input end of the amplification filter, and the signal output end of the amplification filter is connected to the signal input end of the second A/D converter, The signal output end of the second A/D converter is connected to the signal input end of the USB data transmission module, and the signal output end of the USB data transmission module is connected to the USB input end of the computer.
风机运行参数传感器组将风机运行参数转换为电压信号,由风机运行参数信号采集调理器将电压信号进行调理和A/D转换,然后通过USB数据传输模块将数字信号实时传输到计算机,实现对风机运行参数的实时采集。The fan operating parameter sensor group converts the fan operating parameters into a voltage signal, and the fan operating parameter signal acquisition conditioner performs conditioning and A/D conversion on the voltage signal, and then transmits the digital signal to the computer in real time through the USB data transmission module to realize fan monitoring. Real-time collection of operating parameters.
所述风机运行参数传感器组由电功率传感器、风速传感器、气温传感器、气压传感器和转速传感器组成,分别用于获取电功率信号、风速信号、气温信号、气压信号和转速信号。所述电功率传感器的信号输出端连接所述风机运行参数信号采集调理器的电功率信号采集端,所述风速传感器的信号输出端连接该风机运行参数信号采集调理器的风速信号采集端,所述气温传感器的信号输出端连接该风机运行参数信号采集调理器的气温信号采集端,所述气压传感器的信号输出端连接该风机运行参数信号采集调理器的气压信号采集端,所述转速传感器的信号输出端连接该风机运行参数信号采集调理器的转速信号采集端。The fan operating parameter sensor group is composed of an electric power sensor, a wind speed sensor, an air temperature sensor, an air pressure sensor and a rotational speed sensor, which are respectively used to obtain electric power signals, wind speed signals, air temperature signals, air pressure signals and rotational speed signals. The signal output end of the electric power sensor is connected to the electric power signal acquisition end of the fan operation parameter signal acquisition conditioner, the signal output end of the wind speed sensor is connected to the wind speed signal acquisition end of the fan operation parameter signal acquisition conditioner, and the air temperature The signal output end of the sensor is connected to the air temperature signal acquisition end of the fan operation parameter signal acquisition conditioner, the signal output end of the air pressure sensor is connected to the air pressure signal acquisition end of the fan operation parameter signal acquisition conditioner, and the signal output of the speed sensor is The end is connected to the speed signal acquisition end of the fan operation parameter signal acquisition conditioner.
所述计算机的测试软件是虚拟仪器。计算机中的虚拟仪器软件通过模块化和硬件触发方式实现噪声信号和风机运行参数信号的同时采集,以便实现标准风速下的音调分析。该方法可以完成信号通信、信号预处理、非声学信号分析、音调分析、数据显示、数据管理、报表打印和输出以及网络通信等功能,且可脱离硬件进行离线分析和前期模拟。The test software of the computer is a virtual instrument. The virtual instrument software in the computer realizes the simultaneous acquisition of the noise signal and the fan operating parameter signal through modularization and hardware triggering, so as to realize the tone analysis at the standard wind speed. This method can complete functions such as signal communication, signal preprocessing, non-acoustic signal analysis, tone analysis, data display, data management, report printing and output, and network communication, and can perform off-line analysis and pre-simulation without hardware.
本发明的显著效果是:实时采集信号,同步性高,测量精度高,采用阶比分析技术,消除频率模糊现象,模拟人耳听觉和心理特点,结果准确合理,操作简单,性价比高,实现了风力发电机组在各个整风速下的音调分析。The remarkable effects of the present invention are: real-time signal collection, high synchronization, high measurement accuracy, using order ratio analysis technology, eliminating frequency ambiguity, simulating human hearing and psychological characteristics, accurate and reasonable results, simple operation, and high cost performance. Tone analysis of a wind turbine at various full wind speeds.
附图说明Description of drawings
图1为本发明的装置结构框图。Fig. 1 is a block diagram of the device structure of the present invention.
图2为本发明的主流程图;Fig. 2 is the main flowchart of the present invention;
图3为确定转速拟合曲线的流程图;Fig. 3 is the flow chart of determining rotational speed fitting curve;
图4为确定鉴相时标的流程图;Fig. 4 is the flow chart of determining phase identification time scale;
图5为判断音调的流程图;Fig. 5 is the flowchart of judging tone;
图6为修正背景噪声的流程图;Fig. 6 is the flowchart of correcting background noise;
图7为确定掩蔽噪声级和最终音调级的流程图;Fig. 7 is the flowchart of determining masking noise level and final tone level;
图8为确定音调能听度的流程图。FIG. 8 is a flowchart for determining tone audibility.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,一种风力发电机组音调测试方法,首先要获取风速信号、气温信号、气压信号、噪声信号、转速信号和电功率信号,采用预极化传声器1获取所述噪声信号,用噪声信号调理采集器2处理该噪声信号,用风机运行参数传感器组3获取所述风速信号、气温信号、气压信号、转速信号和电功率信号,用风机运行参数信号采集调理器4处理该风速信号、气温信号、气压信号、转速信号和电功率信号;As shown in Figure 1, a method for testing the tone of a wind power generating set firstly needs to obtain the wind speed signal, the air temperature signal, the air pressure signal, the noise signal, the rotational speed signal and the electric power signal, adopt the
噪声信号调理采集器2的内置压电ICP激励恒流源6的输出端连接预极化传声器1的电源端,该预极化传声器1的信号输出端连接交流耦合器7的信号采集端,该交流耦合器7的信号输出端连接抗混滤波器8的信号输入端,该抗混滤波器8的信号输出端连接第一A/D转换器9的信号输入端,该第一A/D转换器9的信号输出端连接Wi-Fi无线数据传输模块10的信号输入端,该Wi-Fi无线数据传输模块10的信号输出端与计算机5的Wi-Fi无线数据输入端无线连接;噪声信号调理采集器2由可充电电池组供电。The output end of the built-in piezoelectric ICP excitation constant
风机运行参数传感器组3的信号输出端连接风机运行参数信号采集调理器4的多路转换器11的信号采集端组,该多路转换器11的信号输出端连接放大滤波器12的信号输入端,该放大滤波器12的信号输出端连接第二A/D转换器13的信号输入端,该第二A/D转换器13的信号输出端连接USB数据传输模块14的信号输入端,该USB数据传输模块14的信号输出端连接计算机5的USB输入端。The signal output end of the fan operation
如图2所示,一种风力发电机组音调测试方法,按照以下步骤进行:As shown in Figure 2, a method for testing the tone of a wind power generating set is carried out according to the following steps:
获取风速信号、气温信号、气压信号、噪声信号、转速信号、电功率信号、风速计安装高度、风力发电机中心高度和地表粗糙度;Obtain wind speed signal, air temperature signal, air pressure signal, noise signal, speed signal, electric power signal, anemometer installation height, wind turbine center height and surface roughness;
根据所述气温信号、气压信号、风速计安装高度、风力发电机中心高度和地表粗糙度,将所述风速信号转换为标准风速信号;Converting the wind speed signal into a standard wind speed signal according to the air temperature signal, air pressure signal, installation height of the anemometer, center height of the wind generator and surface roughness;
定义整风速序号P的初始值P=1;Define the initial value P=1 of the sequence number P of the rectified wind speed;
在所述标准风速信号中选取第P整风速;Selecting the Pth rectified wind speed in the standard wind speed signal;
确定第P整风速的风速大小Vp,其中,初始分析风速V1=6m/s。Determine the wind speed V p of the Pth full wind speed, where the initial analysis wind speed V 1 =6m/s.
确定转速拟合曲线;Determine the speed fitting curve;
确定鉴相时标;Determine phase identification time scale;
确定所述第k段噪声子数据段的准平稳噪声信号x(Tn,k),其表达式为:Determine the quasi-stationary noise signal x(T n, k ) of the kth section noise sub-data segment, its expression is:
其中,t0,k为所述第k段噪声子数据段中时间坐标小于等于Tn,k的第一个点,t1,k为t0,k的下一个点; Wherein, t 0, k is the time coordinate less than or equal to T n in the described k section noise sub-data segment, the first point of k , t 1, k is t 0, the next point of k ;
对所述准平稳噪声信号x(Tn,k)进行A计权、加汉宁窗、FFT变换,获得第k段噪声子数据段的A计权窄带声压谱级LA-NS,k;Perform A-weighting, Hanning window, and FFT transformation on the quasi-stationary noise signal x(T n, k ) to obtain the A-weighted narrowband sound pressure spectrum level L A-NS, k of the noise sub-data segment of the kth segment ;
判断音调;judge tone;
修正背景噪声;Correct background noise;
确定所述临界频带Sk内的掩蔽噪声级Lpn,k和所述第P整风速中第k段噪声子数据段的最终音调级ΔLtn,k;Determining the masking noise level L pn , k in the critical frequency band S k and the final tone level ΔL tn, k of the kth noise sub-data segment in the Pth full wind speed;
确定音调能听度;Determine tonal audibility;
判断所述整风速序号P是否小于P′,如果P小于P′,即Vp<10m/s,则P加1,返回所述在所述标准风速信号中选取第P整风速的步骤;如果P等于或大于P′,即Vp≥10m/s,则分析结束;其中,VP′=10m/s,为终止分析风速。Judging whether the number P of the rectified wind speed is less than P', if P is less than P', that is, V p <10m/s, then add 1 to P, and return to the step of selecting the Pth rectified wind speed in the standard wind speed signal; if If P is equal to or greater than P', that is, V p ≥ 10m/s, then the analysis ends; where, V P '=10m/s, is the wind speed at which the analysis ends.
如图3所示,确定转速拟合曲线,按照以下几步进行:As shown in Figure 3, to determine the speed fitting curve, follow the steps below:
确定待分析的噪声数据段组,该噪声数据段组由第一噪声数据段和第二噪声数据段组成:在所述第P整风速内,选取最接近所述风速大小Vp的一段1分钟噪声信号作为第一噪声数据段;选取最接近所述风速大小Vp的另一段1分钟噪声信号作为第二噪声数据段;Determine the noise data segment group to be analyzed, the noise data segment group is composed of the first noise data segment and the second noise data segment: within the Pth full wind speed, select a section of 1 minute closest to the wind speed V p The noise signal is used as the first noise data segment; another section of 1 minute noise signal closest to the wind speed V is selected as the second noise data segment;
确定噪声子数据段组,该噪声子数据段组由第一噪声子数据段组和第二噪声子数据段组组成:将所述第一噪声数据段分成6段的噪声子数据段,每段噪声子数据段的时间长度为10秒,作为第一噪声子数据段组;将所述第二噪声数据段分成6段的噪声子数据段,每段噪声子数据段的时间长度为10秒,作为第二噪声子数据段组;Determine the noise sub-data segment group, this noise sub-data segment group is made up of the first noise sub-data segment group and the second noise sub-data segment group: the first noise data segment is divided into 6 noise sub-data segments, each segment The time length of the noise sub-data segment is 10 seconds, as the first noise sub-data segment group; the second noise data segment is divided into 6 noise sub-data segments, and the time length of each noise sub-data segment is 10 seconds, as the second noise sub-segment group;
确定转速数据段组,该转速数据段组由第一转速数据段和第二转速数据段组成:选取与第一噪声数据段同时采集的转速信号作为第一转速数据段,选取与第二噪声数据段同时采集的转速信号作为第二转速数据段;Determine the rotational speed data segment group, the rotational speed data segment group is composed of the first rotational speed data segment and the second rotational speed data segment: select the rotational speed signal collected simultaneously with the first noise data segment as the first rotational speed data segment, and select the second rotational speed data segment as the first rotational speed data segment The rotational speed signal collected simultaneously by the segment is used as the second rotational speed data segment;
确定转速子数据段组,该转速子数据段组由第一转速子数据段组和第二转速子数据段组组成:将所述第一转速数据段分成6段的转速子数据段,每段转速子数据段的时间长度为10秒,作为第一转速子数据段组;将所述第二转速数据段分成6段的转速子数据段,每段转速子数据段的时间长度为10秒,作为第二转速子数据段组;Determine the speed sub-data segment group, the speed sub-data segment group is composed of the first speed sub-data segment group and the second speed sub-data segment group: the first speed data segment is divided into 6 speed sub-data segments, each segment The time length of the speed sub-data segment is 10 seconds, as the first speed sub-data segment group; the second speed data segment is divided into 6 sections of speed sub-data segments, and the time length of each speed sub-data segment is 10 seconds, as the second rotational speed sub-segment group;
在转速数据段组上,确定第k段转速子数据段的拟合曲线Rk(t),其表达式为:Rk(t)=akt2+bkt+ck,其中,t为时间,ak、bk、ck为多项式系数。On the rotational speed data segment group, determine the fitting curve R k (t) of the kth rotational speed sub-data segment, the expression of which is: R k (t)=a k t 2 +b k t+c k , wherein, t is time, a k , b k , c k are polynomial coefficients.
如图4所示,确定鉴相时标,按照以下几步进行:As shown in Figure 4, to determine the phase identification time scale, follow the steps below:
确定所述拟合曲线Rk(t)的采样频率fs,k,其表达式为:fs,k=2Omax,k,Omax,k为所述拟合曲线Rk(t)的最大阶比成分;Determine the sampling frequency f s of described fitting curve R k (t) , k , its expression is: f s, k =2O max, k , O max, k is the value of described fitting curve R k (t) largest order component;
确定所述拟合曲线Rk(t)的等角度采样间隔Δθk,其表达式为:Δθk=1/fs,k;Determine the equiangular sampling interval Δθ k of the fitting curve R k (t), its expression is: Δθ k =1/f s, k ;
确定所述拟合曲线Rk(t)的积分方程,其表达式为:Determine the integral equation of the fitting curve R k (t), its expression is:
其中,n为时标序号,T0,k为所述拟合曲线Rk(t)的初始时刻,T-1,k为该拟合曲线Rk(t)的终点时刻; Wherein, n is the time scale sequence number, T 0, k is the initial moment of described fitting curve R k (t), and T -1, k is the terminal moment of this fitting curve R k (t);
根据所述等角度采样间隔Δθk和拟合曲线Rk(t)的积分方程,获得公式确定所述第k段噪声子数据段的鉴相时标Tn,k;According to the integral equation of described equiangular sampling interval Δθ k and fitting curve R k (t), obtain formula Determining the phase detection time scale Tn ,k of the kth noise sub-data segment;
如图5所示,判断音调,按照以下几步进行:As shown in Figure 5, to judge the tone, follow the steps below:
在所述A计权窄带声压谱级LA-NS,k上,确定临界频带Sk,其表达式为:其中fc,k为第k段噪声子数据段的中心频率;On the A-weighted narrowband sound pressure spectrum level L A-NS,k , determine the critical frequency band S k , its expression is: Wherein f c, k is the center frequency of the kth segment noise sub-data segment;
选取所述临界频带Sk内幅值最小的70%根谱线,确定判据级L70%,k,其表达式为:其中,M为所述临界频带Sk内幅值最小的70%根谱线总数,Lm,k为该临界频带Sk内第m个幅值最小谱线的噪声频谱能量;Select 70% of the spectral lines with the smallest amplitude in the critical frequency band S k to determine the criterion level L 70%, k , whose expression is: Wherein, M is the total number of 70% spectral lines with the smallest amplitude in the critical frequency band S k , and L m, k is the noise spectrum energy of the mth smallest amplitude spectral line in the critical frequency band S k ;
选取所述临界频带Sk内幅值小于L70%,k+6dB的谱线,确定为所述临界频带Sk内的掩蔽噪声;Selecting the spectral line whose amplitude is less than L 70%, k +6dB in the critical frequency band Sk is determined as the masking noise in the critical frequency band Sk ;
确定所述临界频带Sk内的平均掩蔽噪声级Lpn,avg,k,其表达式为:其中,H为所述掩蔽噪声的谱线总数,Lh,k为所述临界频带Sk内第h个掩蔽噪声的噪声频谱能量;Determine the average masking noise level L pn,avg,k within the critical frequency band S k , its expression is: Wherein, H is the total number of spectral lines of the masking noise, L h, k is the noise spectrum energy of the hth masking noise in the critical frequency band S k ;
在所述临界频带Sk内,选取噪声频谱能量大于Lpn,avg,k+6dB的谱线作为该临界频带Sk内的音调谱线;In the critical frequency band S k , select the spectral line whose noise spectrum energy is greater than Lpn, avg, k +6dB as the tone spectral line in the critical frequency band S k ;
确定所述临界频带Sk内的谱线音调级Lpt0,k其表达式为:其中,G为所述音调谱线的总数,Lg,k为所述临界频带Sk内第g个音调谱线的噪声频谱能量;Determine the spectral line tone level L pt0 in the critical frequency band S k , the expression of k is: Wherein, G is the total number of the tone spectrum lines, Lg , k is the noise spectrum energy of the gth tone spectrum line in the critical frequency band Sk ;
判断所述临界频带Sk内相邻的音调谱线的个数i是否大于1:如果i=1,则该音调谱线作为所述临界频带Sk内的音调,音调级Lpt,k=Lpt0,k;如果i>1,则所述相邻的音调谱线中幅值最大的谱线作为所述临界频带Sk内的音调,音调级Lpt,k=Lpt0,k/1.5;Judging whether the number i of adjacent tone spectral lines in the critical frequency band S k is greater than 1: if i=1, then the tone spectral lines are used as the tone in the critical frequency band S k , and the tone level L pt, k = L pt0, k ; if i>1, the spectral line with the largest amplitude among the adjacent tone spectral lines is used as the tone in the critical frequency band S k , and the tone level L pt, k =L pt0, k /1.5 ;
如图6所示,修正背景噪声,按照以下几步进行:As shown in Figure 6, to correct the background noise, follow the steps below:
根据所述电功率信号,确定在风机停机时,所述临界频带Sk内的背景噪声的等效连续声压级Ln,k;According to the electric power signal, determine the equivalent continuous sound pressure level L n,k of the background noise in the critical frequency band S k when the fan is stopped;
确定所述临界频带Sk内的修正掩蔽噪声级Ls,pn,avg,k,其表达式为:Determine the modified masking noise level L s,pn,avg,k within the critical frequency band S k , the expression of which is:
如图7所示,确定所述临界频带Sk内的掩蔽噪声级Lpn,k和所述第P整风速中第k段噪声子数据段的最终音调级ΔLtn,k,按照以下几步进行:As shown in Figure 7, to determine the masking noise level L pn ,k in the critical frequency band S k and the final tone level ΔL tn,k of the kth noise sub-data segment in the Pth full wind speed, follow the following steps conduct:
确定有效噪声带宽Z,其表达式为:Z=1.5×R,其中R为频率分辨率;Determine the effective noise bandwidth Z, its expression is: Z=1.5×R, where R is the frequency resolution;
确定所述掩蔽噪声级Lpn,k,其表达式为: Determine the masking noise level L pn,k , its expression is:
确定所述最终音调级ΔLtn,k,其表达式为:ΔLtn,k=Lpt,k-Lpn,k;Determine the final pitch level ΔL tn,k , the expression of which is: ΔL tn,k =L pt,k -L pn,k ;
如图8所示,确定音调能听度,按照以下几步进行:As shown in Figure 8, to determine the tone audibility, follow the steps below:
确定所述第P整风速的能听度ΔLt,其表达式为:Determine the audibility ΔL t of the Pth full wind speed, its expression is:
确定基于频率的能听度判据La,其表达式为:Determine the frequency-based audibility criterion L a , whose expression is:
其中ftone为音调频率值; Where f tone is the tone frequency value;
确定音调能听度ΔLa,其表达式为:ΔLa=ΔLt-La。To determine the tone audibility ΔL a , its expression is: ΔL a =ΔL t -L a .
其工作情况如下:预极化传声器1将采集到的噪声信号输出给噪声信号调理采集器2,经噪声信号调理采集器2转换处理后,通过Wi-Fi无线数据传输模块10输出到计算机5。同时,风机运行参数传感器组3将采集到的风机运行参数信号输出到风机运行参数信号采集调理器4,经风机运行参数信号采集调理器4转换处理后,通过USB数据传输模块14输出到计算机5。计算机5对转速信号进行拟合,确定等角度采样的鉴相时标,对噪声信号进行等角度重采样,获得准平稳噪声信号,并对噪声和音调进行判定和评估,修正背景噪声,获得音调能听度。Its working conditions are as follows: the
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009101913622A CN101718582B (en) | 2009-11-06 | 2009-11-06 | Tone testing method of wind power generator set |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009101913622A CN101718582B (en) | 2009-11-06 | 2009-11-06 | Tone testing method of wind power generator set |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101718582A true CN101718582A (en) | 2010-06-02 |
| CN101718582B CN101718582B (en) | 2012-05-23 |
Family
ID=42433188
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2009101913622A Expired - Fee Related CN101718582B (en) | 2009-11-06 | 2009-11-06 | Tone testing method of wind power generator set |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101718582B (en) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102200186A (en) * | 2011-05-10 | 2011-09-28 | 大连理工大学 | Remote on-line state monitoring and fault diagnosis system of gear box of wind generating set |
| CN103323251A (en) * | 2013-06-25 | 2013-09-25 | 张振宇 | Engine work state double-criterion recognition system |
| CN106595843A (en) * | 2015-10-20 | 2017-04-26 | 现代自动车株式会社 | Apparatus and method for measuring noise |
| CN108254065A (en) * | 2016-12-29 | 2018-07-06 | 北京金风科创风电设备有限公司 | The noise tone appraisal procedure and device of wind power generating set |
| CN108489600A (en) * | 2018-03-22 | 2018-09-04 | 内蒙古工业大学 | A kind of wind power generating set noise testing assessment system and method |
| CN108801447A (en) * | 2018-07-06 | 2018-11-13 | 零零二信息科技(沧州)有限责任公司 | A kind of wind energy conversion system noise measuring system and test method |
| CN109425473A (en) * | 2017-08-31 | 2019-03-05 | 株洲中车时代电气股份有限公司 | A kind of analysis method for rail transit noise |
| CN111076246A (en) * | 2018-10-19 | 2020-04-28 | 宁波方太厨具有限公司 | Method for identifying abnormal sound of fault of range hood |
| CN112343773A (en) * | 2020-09-27 | 2021-02-09 | 中国电力科学研究院有限公司 | Method and system for determining sound value of a wind turbine |
| CN112464151A (en) * | 2020-10-27 | 2021-03-09 | 国电电力湖南新能源开发有限公司 | Wind turbine generator yaw system abnormal sound diagnosis method based on acoustic diagnosis |
| CN113295267A (en) * | 2021-05-10 | 2021-08-24 | 江铃汽车股份有限公司 | Method and system for evaluating sound of intake air flow based on sound scene and readable storage medium |
| CN114757420A (en) * | 2018-10-31 | 2022-07-15 | 北京金风科创风电设备有限公司 | Wind power plant noise prediction method, device and system |
| CN119557771A (en) * | 2025-02-06 | 2025-03-04 | 中国人民解放军海军工程大学 | A method for constructing an online prediction model for underwater radiated noise of ships |
-
2009
- 2009-11-06 CN CN2009101913622A patent/CN101718582B/en not_active Expired - Fee Related
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102200186A (en) * | 2011-05-10 | 2011-09-28 | 大连理工大学 | Remote on-line state monitoring and fault diagnosis system of gear box of wind generating set |
| CN103323251A (en) * | 2013-06-25 | 2013-09-25 | 张振宇 | Engine work state double-criterion recognition system |
| CN103323251B (en) * | 2013-06-25 | 2015-07-08 | 张振宇 | Engine work state double-criterion recognition system |
| CN106595843A (en) * | 2015-10-20 | 2017-04-26 | 现代自动车株式会社 | Apparatus and method for measuring noise |
| CN108254065A (en) * | 2016-12-29 | 2018-07-06 | 北京金风科创风电设备有限公司 | The noise tone appraisal procedure and device of wind power generating set |
| CN109425473A (en) * | 2017-08-31 | 2019-03-05 | 株洲中车时代电气股份有限公司 | A kind of analysis method for rail transit noise |
| CN108489600A (en) * | 2018-03-22 | 2018-09-04 | 内蒙古工业大学 | A kind of wind power generating set noise testing assessment system and method |
| CN108801447A (en) * | 2018-07-06 | 2018-11-13 | 零零二信息科技(沧州)有限责任公司 | A kind of wind energy conversion system noise measuring system and test method |
| CN111076246A (en) * | 2018-10-19 | 2020-04-28 | 宁波方太厨具有限公司 | Method for identifying abnormal sound of fault of range hood |
| CN111076246B (en) * | 2018-10-19 | 2021-07-23 | 宁波方太厨具有限公司 | Method for identifying abnormal sound of fault of range hood |
| CN114757420A (en) * | 2018-10-31 | 2022-07-15 | 北京金风科创风电设备有限公司 | Wind power plant noise prediction method, device and system |
| CN112343773A (en) * | 2020-09-27 | 2021-02-09 | 中国电力科学研究院有限公司 | Method and system for determining sound value of a wind turbine |
| CN112464151A (en) * | 2020-10-27 | 2021-03-09 | 国电电力湖南新能源开发有限公司 | Wind turbine generator yaw system abnormal sound diagnosis method based on acoustic diagnosis |
| CN112464151B (en) * | 2020-10-27 | 2023-12-29 | 国电电力湖南新能源开发有限公司 | Abnormal sound diagnosis method for yaw system of wind turbine generator based on acoustic diagnosis |
| CN113295267A (en) * | 2021-05-10 | 2021-08-24 | 江铃汽车股份有限公司 | Method and system for evaluating sound of intake air flow based on sound scene and readable storage medium |
| CN113295267B (en) * | 2021-05-10 | 2022-08-16 | 江铃汽车股份有限公司 | Method and system for evaluating sound of intake air flow based on sound scene and readable storage medium |
| CN119557771A (en) * | 2025-02-06 | 2025-03-04 | 中国人民解放军海军工程大学 | A method for constructing an online prediction model for underwater radiated noise of ships |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101718582B (en) | 2012-05-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101718582A (en) | Tone testing method of wind power generator set | |
| Yoon et al. | On the use of a single piezoelectric strain sensor for wind turbine planetary gearbox fault diagnosis | |
| CN106840375B (en) | Test method and device for abnormal noise of turbocharger | |
| CN105547698A (en) | Fault diagnosis method and apparatus for rolling bearing | |
| Buck et al. | Experimental characterization of turbulent inflow noise on a full-scale wind turbine | |
| CN201255662Y (en) | Virtual acoustic noise tester for wind-driven generator group | |
| CN105929331A (en) | Double-fed aerogenerator stator/rotor fault analysis diagnosis apparatus and method | |
| CN101839781B (en) | Method and device for quickly identifying state of main cable of suspension bridge | |
| CN101867863A (en) | Audio test system | |
| CN108801447A (en) | A kind of wind energy conversion system noise measuring system and test method | |
| CN104034411A (en) | Distributed measuring system for noise of wind turbine | |
| CN116992269B (en) | Offshore wind power harmonic response extraction method | |
| CN108194278A (en) | A non-contact monitoring device and method for wind turbine blade defects | |
| CN112343773B (en) | A method and system for determining sound value of a wind turbine | |
| CN113758617A (en) | A high-efficiency non-destructive testing system and detection method for stress gradient based on frequency domain calculation of broadband swept signal | |
| Bo et al. | Measurement system for wind turbines noises assessment based on LabVIEW | |
| JPH08177530A (en) | Gas turbine abnormality detection device | |
| CN111780866A (en) | Method and device for testing natural frequency of diesel engine test base in installed state | |
| CN108254066A (en) | Automobile Three-Dimensional Dynamic noise measuring identifying system and method based on neural network | |
| CN204740259U (en) | A Generator Kinetic Energy Test System | |
| CN108489600A (en) | A kind of wind power generating set noise testing assessment system and method | |
| CN101762715B (en) | Method for measuring rotor speed of turbo generator and device thereof | |
| CN104634445B (en) | A kind of vibration of birotor aero-engine time-varying contribution quantity measuring method and system | |
| CN115306754B (en) | Axial flow fan aerodynamic instability identification method based on acoustic array | |
| CN112992182B (en) | Vehicle wind noise level testing system and testing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120523 Termination date: 20121106 |