CN101718884B - Zero-level light optical locating method of optical grating substrate in manufacturing of plane holographic grating - Google Patents
Zero-level light optical locating method of optical grating substrate in manufacturing of plane holographic grating Download PDFInfo
- Publication number
- CN101718884B CN101718884B CN200910217814XA CN200910217814A CN101718884B CN 101718884 B CN101718884 B CN 101718884B CN 200910217814X A CN200910217814X A CN 200910217814XA CN 200910217814 A CN200910217814 A CN 200910217814A CN 101718884 B CN101718884 B CN 101718884B
- Authority
- CN
- China
- Prior art keywords
- grating
- mirror
- reticle
- light
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Holo Graphy (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
技术领域technical field
本发明属于光谱技术领域中涉及的一种平面全息光栅制作中光栅基底的定位方法。 The invention belongs to the field of spectrum technology and relates to a method for positioning a grating substrate in the production of a plane holographic grating. the
背景技术Background technique
在平面全息光栅的制作中,光栅基底的定位精度会直接影响光栅常数的精确度,利用零级光对光栅基底进行定位能够保证光栅常数的精确度。 In the manufacture of planar holographic gratings, the positioning accuracy of the grating substrate will directly affect the accuracy of the grating constants, and the use of zero-order light to position the grating substrate can ensure the accuracy of the grating constants. the
平面全息光栅是通过光刻胶记录下两相干光束的干涉条纹后经显影制作而成,其光栅常数由干涉条纹周期决定。制作平面全息光栅时的干涉条纹周期非常小,实际中难以对其进行直接的精确测量。常规的检测方法一般都是在完成光栅制作后,通过测量光栅0级与1级衍射光的夹角来计算光栅常数,测量误差较大,光路调整过程没有固定的基准可依,仅凭经验进行调整,往往要经过多个光栅制作回合,并且很难达到要求的精度。与本发明最为接近的已有技术是中国专利号为CN1544994的专利,提出一种平面全息光栅制作中精确控制光栅常数的方法,平面全息光栅曝光装置结构示意图如图1所示。激光光源1发出的光束经第一平面反射镜2和第二平面反射镜3反射,再经空间滤波器4扩束滤波后成为球面波,球面波经准直反射镜5准直后成为平行光,在平行光光路里放置第五平面反射镜8引出一束平行光,再经第六平面反射镜9反射后到达半反半透镜10,调整第六平 面反射镜9使通过半反半透镜10的反射光和透射光均以自准直衍射角入射到标准机刻反射光栅11上,这两束光经标准机刻反射光栅11的±1级自准直衍射后,各自按它们的入射方向原路返回,再经半反半透镜10之后,-1级的反射光和+1级的透射光在半反半透镜10的另一侧重叠,在接收屏12上形成干涉条纹。这时,将第五平面反射镜8和第六平面反射镜9以及标准机刻反射光栅11撤走并保持半反半透镜10和接收屏12位置不变,在平行光束中放置第三平面反射镜6和第四平面反射镜7,调整两束反射光方向使它们在接收屏上形成与原来一样的干涉条纹。这样,在放置标准机刻反射光栅11的区域由第三平面反射镜6和第四平面反射镜7的反射光束交汇形成的干涉场的条纹周期就与标准机刻反射光栅11的光栅常数相同,将涂有光刻胶的光栅基底放置到标准机刻反射光栅11的位置进行曝光、显影就可以制得具有标准光栅常数的平面全息光栅。 The planar holographic grating is made by recording the interference fringes of two coherent light beams through photoresist and then developed. The grating constant is determined by the period of the interference fringes. The period of the interference fringes when making a planar holographic grating is very small, and it is difficult to measure it directly and accurately in practice. The conventional detection method is to calculate the grating constant by measuring the angle between the 0th order and the 1st order diffracted light of the grating after the grating is manufactured. The measurement error is relatively large. There is no fixed benchmark for the optical path adjustment process, and it is only based on experience. Adjustments often have to go through multiple grating production rounds, and it is difficult to achieve the required accuracy. The existing technology closest to the present invention is Chinese Patent No. CN1544994, which proposes a method for precisely controlling the grating constant in the manufacture of a planar holographic grating. The schematic diagram of the planar holographic grating exposure device is shown in Figure 1. The light beam emitted by the
该方法存在的主要问题是:实际操作中撤走标准机刻反射光栅11后,很难将待曝光的光栅基底还原到标准机刻反射光栅11原来的位置,如果待曝光的光栅基底法线偏离标准机刻反射光栅11的法线方向,则必然使制作出光栅的光栅常数产生误差。待曝光的光栅基底法线偏离标准机刻反射光栅11的法线方向越多,制作出光栅的光栅常数误差越大。 The main problem of this method is: after removing the standard machine-engraved reflective grating 11 in actual operation, it is difficult to restore the grating substrate to be exposed to the original position of the standard machine-engraved reflective grating 11. If the normal line of the grating substrate to be exposed deviates from The normal direction of the standard machine engraved reflective grating 11 will inevitably cause errors in the grating constant of the fabricated grating. The more the normal line of the grating substrate to be exposed deviates from the normal direction of the standard machine-engraved reflective grating 11, the greater the error of the grating constant of the fabricated grating. the
发明内容Contents of the invention
为了克服已有技术存在的问题,本发明的目的在于建立一种简便可行的在平面全息光栅制作中采用零级光对光栅基底进行精确定位的方法。 In order to overcome the problems existing in the prior art, the object of the present invention is to establish a simple and feasible method for precise positioning of the grating substrate using zero-order light in the manufacture of planar holographic gratings. the
本发明要解决的技术问题是:提供一种平面全息光栅制作中光栅基底的零级光定位方法。解决技术问题的技术方案为:步骤一,配备一套平面全息光栅曝光装置,该装置与背景技术中的全息光栅曝光装置完全一致,如图2所示,包括激光光源1、第一平面反射镜2、第二平面反射镜3、空间滤波器4、准直反射镜5、第三平面反射镜6、第四平面反射镜7、第五平面反射镜8、第六平面反射镜9、半反半透镜10、标准机刻反射光栅11和接收屏12;该光路结构及调整与背景技术中的描述完全一致,在接收屏12上能够观察到铅直并清晰可见的干涉条纹;步骤二,在平面全息光栅曝光装置中,在正对标准机刻反射光栅11的一侧置有监测激光器13,在监测激光器13的出射光路前方置有第一分划板14,如图2所示,监测激光器13的出射光束穿过第一分划板14中心正入射到标准机刻反射光栅11上,零级衍射光原路返回第一分划板14中心;步骤三,如图3所示,取下图2中标准机刻反射光栅11、第五平面反射镜8和第六平面反射镜9,并确保半反半透镜10、接收屏12、监测激光器13和第一分划板14的位置不变,这时调节第三平面反射镜6和第四平面反射镜7的反射光分别经半反半透镜10透射和反射后叠加,使接收屏12上的干涉条纹的方向和数量分别与标准机刻反射光栅11所产生的干涉条纹相同,在监测激光器13的出射光束的传播方向上半反半透镜10的另一侧远处放置第二分划板15,使监测激光器13的出射光束穿过第二分划板15的中心,这时将监测激光器13移到第二分划板15后方并使其出射光束先后通过第二分划板15和第一分划板14的中心;步骤四,如图4所示,取下图3所示的半反半透镜10、接收屏12和第一分划板14,将涂有光刻胶的待制作光栅基底16放置到标准机刻反射光栅11的位置,光栅基底16的装卡具安装在能够调整旋转、俯仰的精密调整台上,调整光栅基底16使监测激光器13的出射光束经光栅基底16的反射光原路返回第二分划板15的中心,此时进行曝光就能制作出具有标准光栅常数的平面全息光栅。 The technical problem to be solved by the present invention is to provide a zero-order light positioning method for the grating substrate in the manufacture of the planar holographic grating. The technical solution to solve the technical problem is:
本发明工作原理说明:以具有标准光栅常数的机刻光栅做为基准,使干涉条纹周期与具有标准光栅常数的机刻光栅的光栅常数一致,调整待制作光栅基底使其与干涉条纹垂直,从而使制得的平面全息光栅的光栅常数与具有标准光栅常数的机刻光栅相同。步骤一,调整第六平面反射镜9,使它的反射光经半反半透镜10后分为两束光,一束为反射光,另一束为透射光。半反半透镜10的反射光以+1级自准直方向入射到标准机刻反射光栅11上,根据自准直原理,衍射光按其入射方向原路返回至半反半透镜10,其中一半透过半反半透镜10到达接收屏12;半反半透镜10的透射光以-1级自准直方向入射到标准机刻反射光栅11上,衍射光按其入射方向原路返回至半反半透镜10,其中一半经半反半透镜10反射到达接收屏12,到达接收屏12的两束相干光束叠加形成干涉条纹。步骤二,在正对标准机刻反射光栅11的一侧放置监测激光器13,使其出射光通过第一分划板14的中心正入射到标准机刻反射光栅11上,零级衍射光原路返回第一分划板14中心。步骤三,取下标准机刻反射光栅11、第五平面反射 镜8和第六平面反射镜9,用第三平面反射镜6和第四平面反射镜7的反射光代替标准机刻反射光栅11自准直状态下的+1级和-1级衍射光,第三平面反射镜6的反射光透过半反半透镜10到达接收屏12,第四平面反射镜7的反射光经半反半透镜10反射到达接收屏12,两束光干涉形成干涉条纹,由步骤一和步骤三获得的相干光有相同的传播方向和光程差,必然有相同的干涉条纹。在监测激光器13的出射光束传播方向上半反半透镜10的另一侧远处放置第二分划板15,使监测激光器13的出射光束穿过第二分划板15的中心,这样第一分划板14和第二分划板15的中心连线方向就是标准机刻反射光栅11的法线方向,将监测激光器13移到第二分划板15后方,使其出射光束先后穿过第二分划板15和第一分划板14的中心。步骤四,取下半反半透镜10、接收屏12和第一分划板14,将涂有光刻胶的待制作光栅基底16放置到标准机刻反射光栅11的位置,调整光栅基底16的旋转、俯仰使监测激光器13入射在光栅基底16上的激光束的反射光返回第二分划板15的中心,使光栅基底16的法线与标准机刻反射光栅11的法线方向相同,从而制作出的平面全息光栅的光栅常数与标准机刻反射光栅11相同。 Description of the working principle of the present invention: take the machine-engraved grating with standard grating constants as a reference, make the interference fringe period consistent with the grating constant of the machine-engraved grating with standard grating constants, and adjust the grating substrate to be made to be perpendicular to the interference fringes, thereby The grating constant of the prepared planar holographic grating is the same as that of the machine-engraved grating with the standard grating constant.
本发明的积极效果:可以快速准确地调整平面全息光栅曝光装置中干涉场的干涉条纹周期,并将干涉条纹周期准确的转移到涂有光刻胶的光栅基底上,从而大大的提高了平面全息光栅的光栅常数的精确度。 The positive effect of the present invention: the interference fringe period of the interference field in the planar holographic grating exposure device can be adjusted quickly and accurately, and the interference fringe period can be accurately transferred to the grating substrate coated with photoresist, thereby greatly improving the performance of the planar holographic grating The precision of the grating constant. the
附图说明Description of drawings
图1是已有技术中平面全息光栅曝光装置光路结构及干涉条纹调整示意图; Figure 1 is a schematic diagram of the optical path structure and interference fringe adjustment of a planar holographic grating exposure device in the prior art;
图2是本发明中平面全息光栅曝光装置光路结构及零级光定位装置示意图; Fig. 2 is a schematic diagram of the optical path structure of the planar holographic grating exposure device and the zero-order light positioning device in the present invention;
图3是从图2所示光路中去掉第五平面反射镜8、第六平面反射镜9和标准机刻反射光栅11后所形成的干涉光路及零级光定位装置示意图; Fig. 3 is from the optical path shown in Fig. 2 and removes the interference optical path and the zero-order light positioning device schematic diagram formed after the
图4是在图3所示光路中去掉半反半透镜10、接收屏12和第一分划板14,将待制作光栅基底16置入干涉场并进行零级光定位示意图。 FIG. 4 is a schematic diagram of removing the half-
具体实施方式Detailed ways
本发明按图1、2、3、4所示光路结构和按上述步骤一、步骤二、步骤三、步骤四方法步骤实施,激光光源1采用氪离子激光器,波长为413.1nm,第一平面反射镜2、第二平面反射镜3、第三平面反射镜6、第四平面反射镜7、第五平面反射镜8和第六平面反射镜9均为玻璃基底镀铝反射镜,空间滤波器4由显微物镜和针孔组成,准直反射镜5的口径为φ320mm、焦距为1.2m,半反半透镜10为薄的半反射半透射分束镜片,标准机刻反射光栅11的刻线密度及尺寸根据需要选择,接收屏12采用普通白色毛玻璃,监测激光器13采用He-Ne激光器,出射波长为632.8nm,第一分划板14和第二分划板15为透明标有十字刻度的圆板,光栅基底16采用K9光学玻璃,K9光学玻璃上涂敷的光致抗蚀剂为日本产的Shipley 1805型光致抗蚀剂。 The present invention is implemented according to the optical path structure shown in Figures 1, 2, 3, and 4 and by the method steps of the above-mentioned
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200910217814XA CN101718884B (en) | 2009-11-05 | 2009-11-05 | Zero-level light optical locating method of optical grating substrate in manufacturing of plane holographic grating |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200910217814XA CN101718884B (en) | 2009-11-05 | 2009-11-05 | Zero-level light optical locating method of optical grating substrate in manufacturing of plane holographic grating |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101718884A CN101718884A (en) | 2010-06-02 |
| CN101718884B true CN101718884B (en) | 2011-05-18 |
Family
ID=42433486
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200910217814XA Active CN101718884B (en) | 2009-11-05 | 2009-11-05 | Zero-level light optical locating method of optical grating substrate in manufacturing of plane holographic grating |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101718884B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102540298B (en) * | 2012-02-01 | 2013-10-16 | 中国科学技术大学 | Soft X-ray double-frequency gratings and manufacture method thereof |
| CN114371548B (en) * | 2021-12-28 | 2023-03-21 | 中国科学院长春光学精密机械与物理研究所 | Two-dimensional large-view-field imaging plane symmetrical free-form surface optical system |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0682272A2 (en) * | 1987-12-28 | 1995-11-15 | Matsushita Electric Industrial Co., Ltd. | Diffraction grating manufacturing method and apparatus |
| US6547919B2 (en) * | 2000-06-29 | 2003-04-15 | Samsung Electronics Co., Ltd. | Device and method for fabricating diffractive gratings |
| CN1544994A (en) * | 2003-11-26 | 2004-11-10 | 中国科学院长春光学精密机械与物理研 | A Method of Accurately Controlling the Line Density in the Fabrication of Planar Holographic Gratings |
| CN101430395A (en) * | 2008-12-29 | 2009-05-13 | 中国科学院长春光学精密机械与物理研究所 | Real-time monitoring device for light exposure in holographic grating production |
-
2009
- 2009-11-05 CN CN200910217814XA patent/CN101718884B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0682272A2 (en) * | 1987-12-28 | 1995-11-15 | Matsushita Electric Industrial Co., Ltd. | Diffraction grating manufacturing method and apparatus |
| US6547919B2 (en) * | 2000-06-29 | 2003-04-15 | Samsung Electronics Co., Ltd. | Device and method for fabricating diffractive gratings |
| CN1544994A (en) * | 2003-11-26 | 2004-11-10 | 中国科学院长春光学精密机械与物理研 | A Method of Accurately Controlling the Line Density in the Fabrication of Planar Holographic Gratings |
| CN101430395A (en) * | 2008-12-29 | 2009-05-13 | 中国科学院长春光学精密机械与物理研究所 | Real-time monitoring device for light exposure in holographic grating production |
Non-Patent Citations (2)
| Title |
|---|
| JP昭57-150805A 1982.09.17 |
| 刘香茹 等.全息光栅制作光路的比较研究.《大学物理实验》.2008,第21卷(第1期),20-22. * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101718884A (en) | 2010-06-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3926264B2 (en) | Apparatus and method for measuring aspheric surface with concave surface and hologram | |
| CN102620842B (en) | Detection device for detecting optical surface shape of small hole diffraction spherical wave | |
| CN101793988A (en) | Method for accurately adjusting groove density in light path for making holographic grating | |
| CN102087481B (en) | Method for adjusting real-time monitor device in exposure path of concave holographic grating | |
| CN101382611A (en) | A preparation method of large-area holographic grating based on secondary exposure of reference grating | |
| CN105403941B (en) | A kind of near-field holography ion beam etching preparation method of Variable line-space gratings | |
| CN103335615A (en) | Device and method for aligning optical element in optical axis direction | |
| CN103698836B (en) | The method in accurate adjustment interference fringe direction in scan exposure light path | |
| CN104483817A (en) | Device for detecting system wave aberration of photoetchingprojection objective | |
| WO2018064827A1 (en) | System wave aberration measurement method capable of calibrating system error | |
| CN102103269B (en) | Method for adjusting collimated light in holographic grating exposure light path by using Moire fringes | |
| CN104515470A (en) | Displacement and oscillating angle measuring light path structure for two-dimensional holographic scanning exposure workbench | |
| CN102902192B (en) | Computer-generated holographic element for adjusting or detecting optical elements | |
| CN100371834C (en) | A Method of Accurately Controlling the Line Density in the Fabrication of Planar Holographic Gratings | |
| CN101819323A (en) | Method for adjusting verticality between Lloyd mirror and grating substrate in Lloyd mirror device | |
| CN101718884B (en) | Zero-level light optical locating method of optical grating substrate in manufacturing of plane holographic grating | |
| CN110007385B (en) | Holographic exposure system and method for manufacturing grating | |
| CN101295553B (en) | X ray holography diffraction grating beam divider | |
| WO2013078638A1 (en) | Device and method for detecting wave aberration of projection lens system of lithography machine | |
| CN101750649A (en) | Groove spacing accurately adjusting device in holographic grating manufacturing light path | |
| CN100489696C (en) | Method for determining angle between two laser beam in concave surface holographic grating production light path | |
| CN1737612A (en) | Manufacturing method of grating strain rosette | |
| CN103472512B (en) | The debugging device of holographic Variable line-space gratings exposure light path | |
| CN102564342A (en) | Method for accurately measuring surface shape accuracy of large-caliber optical plane-based free-form surface | |
| Poleshchuk | Computer generated holograms for aspheric optics testing |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| EE01 | Entry into force of recordation of patent licensing contract |
Assignee: Kun Hong Science and Technology Ltd. of Shenzhen Assignor: Changchun Inst. of Optics and Fine Mechanics and Physics, Chinese Academy of Sci Contract record no.: 2011440020542 Denomination of invention: Zero-level light optical locating method of optical grating substrate in manufacturing of plane holographic grating Granted publication date: 20110518 License type: Exclusive License Open date: 20100602 Record date: 20111229 |