CN101770981A - Zero drift compensation method of Hall magnetic sensor - Google Patents
Zero drift compensation method of Hall magnetic sensor Download PDFInfo
- Publication number
- CN101770981A CN101770981A CN200810209819A CN200810209819A CN101770981A CN 101770981 A CN101770981 A CN 101770981A CN 200810209819 A CN200810209819 A CN 200810209819A CN 200810209819 A CN200810209819 A CN 200810209819A CN 101770981 A CN101770981 A CN 101770981A
- Authority
- CN
- China
- Prior art keywords
- hall
- magnetic sensor
- photolithography
- oxidation
- zero
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000000206 photolithography Methods 0.000 claims description 41
- 230000003647 oxidation Effects 0.000 claims description 34
- 238000007254 oxidation reaction Methods 0.000 claims description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 28
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 24
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 24
- 229920005591 polysilicon Polymers 0.000 claims description 24
- 229910052710 silicon Inorganic materials 0.000 claims description 24
- 239000010703 silicon Substances 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 22
- 229910052681 coesite Inorganic materials 0.000 claims description 14
- 229910052906 cristobalite Inorganic materials 0.000 claims description 14
- 239000000377 silicon dioxide Substances 0.000 claims description 14
- 235000012239 silicon dioxide Nutrition 0.000 claims description 14
- 229910052682 stishovite Inorganic materials 0.000 claims description 14
- 229910052905 tridymite Inorganic materials 0.000 claims description 14
- 238000004140 cleaning Methods 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 150000002500 ions Chemical class 0.000 claims description 9
- 238000002513 implantation Methods 0.000 claims description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 239000011574 phosphorus Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000011010 flushing procedure Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 238000005275 alloying Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000000779 smoke Substances 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 1
- 239000003814 drug Substances 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 18
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
Images
Landscapes
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
霍尔磁传感器零点漂移进行补偿的方法,目前,公知的Hall磁传感器在外加磁场B=0时,由于霍尔电极几何位置不对称、电极欧姆接触不良、电阻率不均匀、温度不均匀等因素使霍尔输出电压VH不等于零,产生零位误差VHO。为消除零位误差,主要采用外加补偿电路对零位漂移进行补偿,该种方法不易于磁传感器向小型化、智能化方向发展。本发明是通过CMOS工艺制作MOSFETHall霍尔磁传感器的沟道四个等效电阻阻值随外加栅压而变化。本发明应用在医学、汽车等领域。
The method for compensating the zero point drift of the Hall magnetic sensor. At present, when the external magnetic field B=0 of the known Hall magnetic sensor, due to factors such as asymmetrical geometric position of the Hall electrode, poor ohmic contact of the electrode, uneven resistivity, and uneven temperature Make the Hall output voltage VH not equal to zero, resulting in a zero error VHO. In order to eliminate the zero error, an external compensation circuit is mainly used to compensate the zero drift. This method is not easy for the magnetic sensor to develop in the direction of miniaturization and intelligence. In the present invention, the resistance values of the four equivalent resistances of the channels of the MOSFET Hall Hall magnetic sensor manufactured by a CMOS process change with the external grid voltage. The invention is applied in the fields of medicine, automobile and the like.
Description
技术领域:Technical field:
本发明涉及一种通过栅极偏置电压调整MOSFET Hall磁传感器导电沟道等效电阻,对MOSFET Hall磁传感器进行零位补偿方法。The invention relates to a zero compensation method for the MOSFET Hall magnetic sensor by adjusting the equivalent resistance of the conduction channel of the MOSFET Hall magnetic sensor through a gate bias voltage.
背景技术:Background technique:
目前,公知的Hall磁传感器在外加磁场B=0时,由于霍尔电极几何位置不对称、电极欧姆接触不良、电阻率不均匀、温度不均匀等因素使霍尔输出电压VH不等于零,产生零位误差VHO。为消除零位误差,主要采用外加补偿电路对零位漂移进行补偿,该种方法不易于磁传感器向小型化、智能化方向发展。At present, when the known Hall magnetic sensor is applied with a magnetic field B=0, the Hall output voltage VH is not equal to zero due to factors such as geometric asymmetry of the Hall electrode, poor ohmic contact of the electrode, uneven resistivity, and uneven temperature, resulting in zero Bit Error VHO. In order to eliminate the zero error, an external compensation circuit is mainly used to compensate the zero drift. This method is not easy for the magnetic sensor to develop in the direction of miniaturization and intelligence.
发明内容:Invention content:
本发明的目的是提供一种克服外加补偿电路等方法对MOSFET Hall磁传感器性能影响的零点漂移进行补偿的方法。The purpose of the present invention is to provide a method for compensating the zero-point drift that overcomes the influence of external compensation circuits and other methods on the performance of MOSFET Hall magnetic sensors.
上述的目的通过以下的技术方案实现:Above-mentioned purpose realizes by following technical scheme:
霍尔磁传感器零点漂移进行补偿的方法,通过CMOS工艺制作MOSFET Hall霍尔磁传感器的沟道四个等效电阻阻值随外加栅压而变化。The method of compensating the zero-point drift of the Hall magnetic sensor is to manufacture the MOSFET Hall Hall magnetic sensor through the CMOS process. The resistance values of the four equivalent resistances of the channel of the Hall magnetic sensor change with the external gate voltage.
霍尔磁传感器零点漂移进行补偿的方法,:所述的CMOS工艺包括冲洗、第一次氧化、第一次光刻、第二次氧化、制成P型掺杂、第三次氧化、二-五次光刻;The method for compensating the zero-point drift of the Hall magnetic sensor: the CMOS process includes flushing, first oxidation, first photolithography, second oxidation, P-type doping, third oxidation, two- Five photolithography;
所述的冲洗是将厚度为450μm的N型双面抛光高阻(ρ>100Ω·cm)单晶硅片用浓硫酸煮至冒白烟,冷却后用大量去离子水冲洗,再分别采用电子清洗液DZ-1、DZ-2各清洗两次,用大量去离子水冲洗,放入甩干机中甩干;The flushing is to boil the N-type double-sided polished high-resistance (ρ>100Ω·cm) single crystal silicon wafer with a thickness of 450 μm in concentrated sulfuric acid until white smoke is emitted, rinse it with a large amount of deionized water after cooling, and then use electronic Cleaning solution DZ-1 and DZ-2 are washed twice respectively, rinsed with a large amount of deionized water, and dried in a spin dryer;
所述的第一次氧化是将清洗好的单晶硅片放入高温氧化炉中,采用热氧化工艺生长SiO2层,氧化炉温度1180℃,生长SiO2层厚度650nm;The first oxidation is to put the cleaned single crystal silicon wafer into a high-temperature oxidation furnace, and use a thermal oxidation process to grow a SiO2 layer. The temperature of the oxidation furnace is 1180 ° C, and the thickness of the grown SiO2 layer is 650 nm;
所述的第一次光刻是采用光刻机进行光刻,光刻工艺流程为涂胶、前烘、曝光、显影、坚膜、腐蚀和去胶,光刻出有源区窗口,采用上述硅片清洗方法清洗硅片;The first photolithography is to use a photolithography machine to carry out photolithography. The photolithography process is glue coating, pre-baking, exposure, development, film hardening, corrosion and degumming, and the active area window is photoetched. The silicon wafer cleaning method cleans the silicon wafer;
所述的第二次氧化是将清洗后硅片进行采用热氧化工艺生长SiO2层,在一次光刻的有源区窗口重新生长厚度50nm的SiO2层;The second oxidation is to grow a SiO2 layer by thermal oxidation process on the silicon wafer after cleaning, and re-grow a SiO2 layer with a thickness of 50nm in the active area window of a photolithography;
制成P型掺杂是采用离子注入机注入B离子,注入能量为40KeV,注入剂量为6.0×1013,获得P型掺杂;采用湿法腐蚀去除厚度50nm的SiO2层;P-type doping is made by implanting B ions with an ion implanter, the implantation energy is 40KeV, and the implantation dose is 6.0×10 13 to obtain P-type doping; the SiO 2 layer with a thickness of 50nm is removed by wet etching;
所述的第三次氧化是将该硅片采用上述清洗方法进行清洗,进行三次氧化,生长栅极氧化层,厚度50nm;采用LPCVD生长多晶硅栅极并进行多晶硅栅极磷扩散;The third oxidation is to clean the silicon wafer by the above-mentioned cleaning method, perform three oxidations, and grow a grid oxide layer with a thickness of 50nm; use LPCVD to grow a polysilicon gate and perform polysilicon gate phosphorus diffusion;
所述的第二次光刻是采用上述光刻方法进行光刻,刻蚀多晶硅,形成多晶硅栅极并进行硼注入,通过多晶硅栅极自对准技术,实现MOSFET源极、漏极和两个霍尔输出端杂质掺杂;The second photolithography is to use the above photolithography method to perform photolithography, etch the polysilicon, form the polysilicon gate and perform boron implantation, and realize the MOSFET source, drain and two through the polysilicon gate self-alignment technology Hall output terminal impurity doping;
所述的第三次光刻是通过上述光刻方法进行光刻,光刻出衬底杂质掺杂窗口;The third photolithography is carried out by the above photolithography method, and the substrate impurity doped window is photoetched;
采用离子注入机进行磷注入,衬底形成N+;通过H2+O2合成氧化法进行多晶硅栅极氧化,生长SiO2层厚度200nm;Phosphorus is implanted with an ion implanter, and N + is formed on the substrate; the polysilicon gate is oxidized by the H 2 +O 2 synthesis oxidation method, and a SiO 2 layer is grown with a thickness of 200nm;
所述的第四次光刻是刻蚀MOSFET Hall磁传感器源极、漏极、栅极、衬底和霍尔输出端接触孔;硅片正面磁控溅射铝电极,铝电极厚度1μm;The fourth photolithography is to etch the source, drain, gate, substrate, and Hall output contact holes of the MOSFET Hall magnetic sensor; the aluminum electrode is magnetron sputtered on the front side of the silicon wafer, and the thickness of the aluminum electrode is 1 μm;
所述的第五次光刻是反刻铝,分别形成源极、漏极、衬底、栅极和两个霍尔输出端电极;将硅片放入高温真空炉中,在400℃进行合金化处理,时间30min,使源极、漏极、衬底、霍尔输出端等形成良好的欧姆接触。The fifth photolithography is to reverse-etch aluminum to form the source, drain, substrate, gate and two Hall output terminals respectively; put the silicon wafer into a high-temperature vacuum furnace and carry out alloying at 400°C. chemical treatment for 30 minutes to form a good ohmic contact between the source, drain, substrate, and Hall output terminals.
所述的霍尔磁传感器零点漂移进行补偿的方法,可以采用P型衬底硅片制作n-MOSFET Hall磁传感器,也可以采用N型衬底硅片制作p-MOSFET Hall磁传感器。The method for compensating the zero drift of the Hall magnetic sensor can use a P-type substrate silicon chip to make an n-MOSFET Hall magnetic sensor, or use an N-type substrate silicon chip to make a p-MOSFET Hall magnetic sensor.
所述的霍尔磁传感器零点漂移进行补偿的方法,两个欧姆接触的霍尔输出端在多晶硅栅上行程凹性结构,不位于沟道中央位置。In the method for compensating the zero-point drift of the Hall magnetic sensor, the two ohmic-contact Hall output terminals have a concave structure on the polysilicon gate and are not located in the center of the channel.
这个技术方案有以下有益效果:This technical solution has the following beneficial effects:
1.本发明实现当外加磁场等于零时,随外加栅压MOSFET Hall磁传感器沟道等效电路桥路输出电压变化,在一定的栅压下,实现MOSFET Hall磁传感器零点漂移补偿。1. The present invention realizes that when the applied magnetic field is equal to zero, the output voltage of the channel equivalent circuit bridge of the MOSFET Hall magnetic sensor channel with the external grid voltage changes, and under a certain grid voltage, the zero drift compensation of the MOSFET Hall magnetic sensor is realized.
2.本发明目的克服外加补偿电路等方法对MOSFET Hall磁传感器性能影响。2. The purpose of the present invention is to overcome the impact of methods such as external compensation circuits on the performance of MOSFET Hall magnetic sensors.
3.本发明通过采用MOSFET Hall磁传感器栅极偏置电压VGS调整导电沟道等效电阻使桥臂对称的方法,使外加磁场B=0时,磁传感器不等位电势VHO接近零位输出,实现MOSFET Hall磁传感器零位补偿智能化。3. The present invention adjusts the conductive channel equivalent resistance to make the bridge arms symmetrical by adopting the MOSFET Hall magnetic sensor gate bias voltage V GS , so that when the applied magnetic field B=0, the magnetic sensor unequal potential V HO is close to zero Output to realize intelligent zero compensation of MOSFET Hall magnetic sensor.
附图说明:Description of drawings:
附图1是本发明中MOSFET Hall磁传感器掩膜光刻版图。图中分别给出MOSFET Hall磁传感器源极(S)、漏极(D)、栅极(G)、衬底(B)和霍尔输出端VH1、VH2。Accompanying drawing 1 is the lithography layout of MOSFET Hall magnetic sensor mask among the present invention. The figure shows the source (S), drain (D), gate (G), substrate (B) and Hall output terminals VH1 and VH2 of the MOSFET Hall magnetic sensor respectively.
附图2是本发明中MOSFET Hall磁传感器沟道等效电路图。Accompanying drawing 2 is the equivalent circuit diagram of MOSFET Hall magnetic sensor channel among the present invention.
本发明的具体实施方式:The specific embodiment of the present invention:
实施例1:Example 1:
霍尔磁传感器零点漂移进行补偿的方法,通过CMOS工艺制作MOSFET Hall霍尔磁传感器的沟道四个等效电阻阻值随外加栅压而变化。The method of compensating the zero-point drift of the Hall magnetic sensor is to manufacture the MOSFET Hall Hall magnetic sensor through the CMOS process. The resistance values of the four equivalent resistances of the channel of the Hall magnetic sensor change with the external gate voltage.
所述的CMOS工艺包括冲洗、第一次氧化、第一次光刻、第二次氧化、制成P型掺杂、第三次氧化、二一五次光刻。The CMOS process includes flushing, first oxidation, first photolithography, second oxidation, P-type doping, third oxidation, and 215 photolithography.
参见附图1,厚度为450μm的N型双面抛光高阻(ρ>100Ω·cm)单晶硅片,用浓硫酸煮至冒白烟,冷却后用大量去离子水冲洗,再分别采用清洗液DZ-1、DZ-2各清洗两次,用大量去离子水冲洗,放入甩干机中甩干;Referring to Figure 1, N-type double-sided polished high-resistance (ρ>100Ω·cm) monocrystalline silicon wafers with a thickness of 450 μm are boiled with concentrated sulfuric acid until white smoke is emitted, rinsed with a large amount of deionized water after cooling, and then cleaned with Liquids DZ-1 and DZ-2 were washed twice respectively, rinsed with a large amount of deionized water, and dried in a spin dryer;
将清洗好的单晶硅片放入高温氧化炉中进行一次氧化,采用热氧化工艺生长SiO2层,氧化炉温度1180℃,生长SiO2层厚度650nm;Put the cleaned monocrystalline silicon wafer into a high-temperature oxidation furnace for primary oxidation, and use a thermal oxidation process to grow a SiO2 layer. The temperature of the oxidation furnace is 1180°C, and the thickness of the grown SiO2 layer is 650nm;
采用光刻机进行一次光刻,光刻工艺流程为涂胶、前烘、曝光、显影、坚膜、腐蚀和去胶,光刻出有源区窗口,采用上述硅片清洗方法清洗硅片;Use a photolithography machine to perform one-time photolithography. The photolithography process is glue coating, pre-baking, exposure, development, film hardening, corrosion and degumming. Photolithography is used to form the active area window, and the silicon wafer is cleaned by the above-mentioned silicon wafer cleaning method;
将清洗后硅片进行二次氧化,采用热氧化工艺生长SiO2层,在一次光刻的有源区窗口重新生长厚度50nm的SiO2层,以提高离子注入均匀性;The cleaned silicon wafer is subjected to secondary oxidation, and the thermal oxidation process is used to grow the SiO2 layer, and the SiO2 layer with a thickness of 50nm is re-grown in the active area window of the primary photolithography to improve the uniformity of ion implantation;
采用离子注入机注入B离子,注入能量为40KeV,注入剂量为6.0×1013,获得P型掺杂;Use an ion implanter to implant B ions, the implantation energy is 40KeV, and the implantation dose is 6.0×1013 to obtain P-type doping;
采用湿法腐蚀去除厚度50nm的SiO2层;The SiO2 layer with a thickness of 50nm is removed by wet etching;
将该硅片采用上述清洗方法进行清洗,再进行三次氧化,生长栅极氧化层,厚度50nm;The silicon wafer is cleaned by the above cleaning method, and then oxidized three times to grow a gate oxide layer with a thickness of 50nm;
采用LPCVD生长多晶硅栅极并进行多晶硅栅极磷扩散,以降低多晶硅栅极电阻率;Using LPCVD to grow the polysilicon gate and perform polysilicon gate phosphorus diffusion to reduce the polysilicon gate resistivity;
采用上述光刻方法进行二次光刻,刻蚀多晶硅,形成多晶硅栅极并进行硼注入,通过多晶硅栅极自对准技术,实现MOSFET源极、漏极和两个霍尔输出端杂质掺杂;The above photolithography method is used for secondary photolithography, polysilicon is etched, polysilicon gate is formed and boron is implanted, and the source, drain and two Hall output terminals of MOSFET are impurity doped through self-alignment technology of polysilicon gate ;
通过上述光刻方法进行三次光刻,光刻出衬底杂质掺杂窗口;Perform photolithography three times by the above photolithography method, and photoetch out the substrate impurity-doped window;
采用离子注入机进行磷注入,衬底形成N+;通过H2+O2合成氧化法进行多晶硅栅极氧化,生长SiO2层厚度200nm,实现多多晶硅栅极保护;Phosphorus is implanted with an ion implanter, and N+ is formed on the substrate; the polysilicon gate is oxidized by the H2+O2 synthesis oxidation method, and the SiO2 layer is grown with a thickness of 200nm to realize multi-polysilicon gate protection;
通过四次光刻,刻蚀MOSFET Hall磁传感器源极、漏极、栅极、衬底和霍尔输出端接触孔;Through four photolithography, etch the MOSFET Hall magnetic sensor source, drain, gate, substrate and Hall output contact holes;
硅片正面磁控溅射铝电极,铝电极厚度1μm;Magnetron sputtering aluminum electrodes on the front of the silicon wafer, the thickness of the aluminum electrodes is 1 μm;
五次光刻,反刻铝,分别形成源极、漏极、衬底、栅极和两个霍尔输出端电极;Five times of photolithography, anti-etch aluminum, respectively form the source, drain, substrate, gate and two Hall output electrodes;
将硅片放入高温真空炉中,在400℃进行合金化处理,时间30min,使源极、漏极、衬底、霍尔输出端等形成良好的欧姆接触。Put the silicon wafer into a high-temperature vacuum furnace, and carry out alloying treatment at 400°C for 30 minutes, so that the source, drain, substrate, Hall output terminal, etc. form a good ohmic contact.
采用P型衬底硅片制作n-MOSFET Hall磁传感器,或者采用N型衬底硅片制作p-MOSFET Hall磁传感器。Use P-type substrate silicon wafers to make n-MOSFET Hall magnetic sensors, or use N-type substrate silicon wafers to make p-MOSFET Hall magnetic sensors.
两个欧姆接触的霍尔输出端在多晶硅栅上行程凹性结构,不位于沟道中央位置。The Hall output ends of the two ohmic contacts have a concave structure on the polysilicon gate and are not located in the center of the channel.
工作原理:working principle:
MOSFET Hall磁传感器源极(S)、漏极(D)和霍尔输出端VH1、VH2四个电极之间将沟道等效为四个电阻R1、R2、R3和R4。R1、R2、R3和R4随外加栅压发生变化,致使桥路输出电压进行调整。Between the MOSFET Hall magnetic sensor source (S), drain (D) and Hall output terminals VH1, VH2, the channel is equivalent to four resistors R1, R2, R3 and R4. R1, R2, R3 and R4 change with the external grid voltage, resulting in the adjustment of the output voltage of the bridge.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200810209819A CN101770981A (en) | 2008-12-29 | 2008-12-29 | Zero drift compensation method of Hall magnetic sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200810209819A CN101770981A (en) | 2008-12-29 | 2008-12-29 | Zero drift compensation method of Hall magnetic sensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN101770981A true CN101770981A (en) | 2010-07-07 |
Family
ID=42503750
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200810209819A Pending CN101770981A (en) | 2008-12-29 | 2008-12-29 | Zero drift compensation method of Hall magnetic sensor |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101770981A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102243126A (en) * | 2011-04-14 | 2011-11-16 | 黑龙江大学 | Nano silicon thin film transistor pressure sensor |
| CN102445671A (en) * | 2010-10-13 | 2012-05-09 | 北京中科信电子装备有限公司 | Hall device error compensation circuit |
| CN102636761A (en) * | 2011-02-08 | 2012-08-15 | 英飞凌科技股份有限公司 | Low offset spinning current hall plate and method to operate it |
| CN103874929A (en) * | 2011-10-10 | 2014-06-18 | ams有限公司 | Hall sensor |
| US8896303B2 (en) | 2011-02-08 | 2014-11-25 | Infineon Technologies Ag | Low offset vertical Hall device and current spinning method |
| CN108987392A (en) * | 2018-08-14 | 2018-12-11 | 黑龙江大学 | A kind of composite magnetic field sensor and its manufacture craft |
| CN114137464A (en) * | 2021-11-15 | 2022-03-04 | 北京森社电子有限公司 | Zero setting system of Hall current sensor |
| CN119375513A (en) * | 2024-12-27 | 2025-01-28 | 合肥美镓传感科技有限公司 | Acceleration sensor and method for manufacturing the same |
-
2008
- 2008-12-29 CN CN200810209819A patent/CN101770981A/en active Pending
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102445671B (en) * | 2010-10-13 | 2015-12-16 | 北京中科信电子装备有限公司 | A kind of Hall device error compensation circuit |
| CN102445671A (en) * | 2010-10-13 | 2012-05-09 | 北京中科信电子装备有限公司 | Hall device error compensation circuit |
| US8829900B2 (en) | 2011-02-08 | 2014-09-09 | Infineon Technologies Ag | Low offset spinning current hall plate and method to operate it |
| US9261572B2 (en) | 2011-02-08 | 2016-02-16 | Infineon Technologies Ag | Low offset spinning current hall plate and method to operate it |
| US9423471B2 (en) | 2011-02-08 | 2016-08-23 | Infineon Technologies Ag | Low offset vertical hall device and current spinning method |
| CN102636761B (en) * | 2011-02-08 | 2014-10-22 | 英飞凌科技股份有限公司 | Low offset spinning current hall plate and method to operate it |
| US8896303B2 (en) | 2011-02-08 | 2014-11-25 | Infineon Technologies Ag | Low offset vertical Hall device and current spinning method |
| US9116196B2 (en) | 2011-02-08 | 2015-08-25 | Infineon Technologies Ag | Low offset vertical hall device and current spinning method |
| CN102636761A (en) * | 2011-02-08 | 2012-08-15 | 英飞凌科技股份有限公司 | Low offset spinning current hall plate and method to operate it |
| CN102243126A (en) * | 2011-04-14 | 2011-11-16 | 黑龙江大学 | Nano silicon thin film transistor pressure sensor |
| CN103874929A (en) * | 2011-10-10 | 2014-06-18 | ams有限公司 | Hall sensor |
| CN103874929B (en) * | 2011-10-10 | 2016-08-17 | ams有限公司 | Hall sensor |
| US9575141B2 (en) | 2011-10-10 | 2017-02-21 | Ams Ag | Hall sensor with hall sensor elements that respectively comprise element terminals and are interconnected in a circuit lattice |
| CN108987392A (en) * | 2018-08-14 | 2018-12-11 | 黑龙江大学 | A kind of composite magnetic field sensor and its manufacture craft |
| CN108987392B (en) * | 2018-08-14 | 2024-01-02 | 黑龙江大学 | Composite magnetic field sensor and manufacturing process thereof |
| CN114137464A (en) * | 2021-11-15 | 2022-03-04 | 北京森社电子有限公司 | Zero setting system of Hall current sensor |
| CN119375513A (en) * | 2024-12-27 | 2025-01-28 | 合肥美镓传感科技有限公司 | Acceleration sensor and method for manufacturing the same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101770981A (en) | Zero drift compensation method of Hall magnetic sensor | |
| CN105810722B (en) | A kind of silicon carbide MOSFET device and preparation method thereof | |
| TWI627759B (en) | Integrated circuit with capacitor and method of manufacturing same | |
| CN103578933B (en) | The device of bias temperature unstability (BTI) with reduction | |
| CN103199100B (en) | A kind of Single-Chip Integration manufacture method of silica-based composite enhanced photodetector | |
| CN101217158A (en) | Structure and manufacturing method for reducing the capacitance of transistor extension electrodes | |
| CN109728096B (en) | Ferroelectric field effect transistor based on nanocrystal embedded in alumina material and preparation method | |
| JPS6080269A (en) | Manufacturing method of semiconductor devices | |
| CN107093624A (en) | Low In components InGaAsMOSFET devices and preparation method based on flexible substrate | |
| KR20000042385A (en) | Silicon on insulator device free from floating body effect and fabrication method thereof | |
| CN111509037A (en) | Silicon carbide MOS device with groove type JFET and preparation process thereof | |
| CN104882415A (en) | LTPS array substrate and manufacturing method thereof | |
| CN110739308A (en) | silicon carbide CMOS transistors and structure manufacturing method thereof | |
| JPH02271673A (en) | semiconductor equipment | |
| CN108987392B (en) | Composite magnetic field sensor and manufacturing process thereof | |
| CN110061063A (en) | Field effect transistor tube preparation method and field effect transistor | |
| CN112382692B (en) | Semiconductor wavelength detector based on double-photoelectric grid structure and preparation method thereof | |
| JP5003322B2 (en) | SOI wafer evaluation method | |
| JPH0325931B2 (en) | ||
| CN110473786A (en) | A kind of production method of high reliability VDMOS power device | |
| CN105024649B (en) | Silicon substrate low-leakage current cantilever beam gate metal oxide field-effect transistor nor gate | |
| CN116666440B (en) | Bottom gate MOS tube and manufacturing method | |
| CN115497816B (en) | Semiconductor field effect integrated circuit and preparation method thereof | |
| CN116913970B (en) | MOSFET providing internal resistance detection and manufacturing method of MOSFET | |
| TW200416959A (en) | Manufacturing method of CMOS thin film transistor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20100707 |