[go: up one dir, main page]

CN101789919A - Channel parameter estimation method based on classical fractional Fourier transformation - Google Patents

Channel parameter estimation method based on classical fractional Fourier transformation Download PDF

Info

Publication number
CN101789919A
CN101789919A CN 201010132111 CN201010132111A CN101789919A CN 101789919 A CN101789919 A CN 101789919A CN 201010132111 CN201010132111 CN 201010132111 CN 201010132111 A CN201010132111 A CN 201010132111A CN 101789919 A CN101789919 A CN 101789919A
Authority
CN
China
Prior art keywords
mrow
msub
mover
exp
πkt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010132111
Other languages
Chinese (zh)
Inventor
沙学军
唐珣
吴少川
迟永钢
吴宣利
白旭
高玉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CN 201010132111 priority Critical patent/CN101789919A/en
Publication of CN101789919A publication Critical patent/CN101789919A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

一种基于经典分数傅立叶变换的信道参数估计方法,涉及无线通信领域中的信道参数估计方法。它解决现有的信道估计不能很好地满足快速变化的无线信道环境的估计要求的问题。本发明使用中心频率相同、调频率互为相反数的两段切普信号相加作为探测信号,接收端得到的是来自不同传输路径的探测信号的组合,对接收信号进行一次分数傅立叶变换,检测分数域幅度谱上的峰值位置及峰值处的幅度值和相位值估计各路径的幅度、相位、时延和多普勒频移。本发明适用于信道的参数估计。

Figure 201010132111

A channel parameter estimation method based on classical fractional Fourier transform, relating to channel parameter estimation methods in the field of wireless communication. It solves the problem that the existing channel estimation cannot well meet the estimation requirements of the rapidly changing wireless channel environment. The present invention uses the addition of two chip signals with the same center frequency and opposite modulation frequencies as the detection signal, and what the receiving end obtains is a combination of detection signals from different transmission paths, and performs a fractional Fourier transform on the received signal to detect The peak position on the magnitude spectrum in the fractional domain and the magnitude and phase values at the peak are used to estimate the magnitude, phase, time delay and Doppler shift of each path. The present invention is applicable to channel parameter estimation.

Figure 201010132111

Description

一种基于经典分数傅立叶变换的信道参数估计方法 A Channel Parameter Estimation Method Based on Classical Fractional Fourier Transform

技术领域technical field

本发明涉及无线通信领域中的信道参数估计方法。The invention relates to a channel parameter estimation method in the field of wireless communication.

背景技术Background technique

无线电波信号在传播过程中遇到建筑物、车辆以及其它障碍物,产生波的反射、衍射和散射,接收到的信号是来自不同路径信号的叠加,通常是一组无限多的被衰减、延迟、相移的传输信号的总和,相对于原发射信号产生了时间衰落和频率选择性衰落,极大地影响了信号的正确接收。为降低信道对信号的失真影响,通常使用均衡技术,而准确的信道估计是均衡技术有效应用的前提。已有的信道估计方法或者需要信道的先验知识或统计特性,或者需要复杂的盲计算过程,仍不能很好地满足快速变化的无线信道环境的估计要求。The radio wave signal encounters buildings, vehicles, and other obstacles during the propagation process, resulting in wave reflection, diffraction, and scattering. The received signal is the superposition of signals from different paths, usually a set of infinitely attenuated, delayed , The sum of the phase-shifted transmission signals produces time fading and frequency selective fading relative to the original transmitted signal, which greatly affects the correct reception of the signal. In order to reduce the distortion effect of the channel on the signal, an equalization technique is usually used, and accurate channel estimation is a prerequisite for the effective application of the equalization technique. Existing channel estimation methods either require prior knowledge or statistical characteristics of the channel, or require a complex blind calculation process, which still cannot well meet the estimation requirements of the rapidly changing wireless channel environment.

发明内容Contents of the invention

本发明是为了解决现有的信道估计不能很好地满足快速变化的无线信道环境的估计要求的问题,从而提出一种基于经典分数傅立叶变换的信道参数估计方法。The present invention aims to solve the problem that the existing channel estimation cannot well meet the estimation requirements of the fast-changing wireless channel environment, and thus proposes a channel parameter estimation method based on classical fractional Fourier transform.

一种基于经典分数傅立叶变换的信道参数估计方法,它由以下步骤实现:A channel parameter estimation method based on classical fractional Fourier transform, which is realized by the following steps:

步骤一、将中心频率相同、调频率互为相反数的两段切普信号相加之后作为信道探测信号,并将所述信道探测信号从发射端发射;所述信道探测信号的表达式为s(t)=cos(2πf0t+πkt2)+cos(2πf0t-πkt2);所述信道探测信号s(t)分解表示为4个复切普信号加和的形式,即:Step 1, add the two sections of chip signals with the same center frequency and the opposite number of modulation frequencies as the channel detection signal, and transmit the channel detection signal from the transmitter; the expression of the channel detection signal is s (t)=cos(2πf 0 t+πkt 2 )+cos(2πf 0 t-πkt 2 ); the channel detection signal s(t) is decomposed and expressed as the sum of 4 complex chop signals, namely:

sthe s (( tt )) == 11 22 expexp [[ jj (( 22 ππ ff 00 tt ++ πkπk tt 22 )) ]] ++ 11 22 expexp [[ -- jj (( 22 ππ ff 00 tt ++ πkπk tt 22 )) ]]

++ 11 22 expexp [[ jj (( 22 ππ ff 00 tt -- πkπk tt 22 )) ]] ++ 11 22 expexp [[ -- jj (( 22 ππ ff 00 tt -- πkπk tt 22 )) ]]

式中-T/2≤t≤T/2,T为信道探测信号s(t)的持续时间;Where -T/2≤t≤T/2, T is the duration of the channel sounding signal s(t);

步骤二、接收端接收发射端发射的信道探测信号,记为r(t),并对信道探测信号r(t)进行变换阶数为p=acot(-k)/(π/2)的分数傅立叶变换,获得信道探测信号的分数域幅度谱,所述分数域幅度谱上共包括i组幅度谱曲线,每一组幅度谱曲线均对应一条路径的信道探测信号;所述每组幅度谱曲线上均包含两个峰值,所述两个峰值分别位于分数域坐标中心的两侧;Step 2, the receiving end receives the channel sounding signal transmitted by the transmitting end, denoted as r(t), and transforms the channel sounding signal r(t) into a fraction of p=acot(-k)/(π/2) Fourier transform to obtain the fractional domain amplitude spectrum of the channel sounding signal, the fractional domain amplitude spectrum includes i groups of amplitude spectrum curves, each group of amplitude spectrum curves corresponds to the channel sounding signal of a path; each group of amplitude spectrum curves Both contain two peaks, and the two peaks are respectively located on both sides of the coordinate center of the fraction domain;

步骤三、检测步骤二所述的i组幅度谱曲线的两个峰值,获得每组幅度谱曲线的两个峰值的位置坐标

Figure GSA00000062017700021
幅度值和相位值
Figure GSA00000062017700023
所述每组幅度谱曲线的两个峰值分别对应两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)];Step 3, detect the two peaks of the i group of amplitude spectrum curves described in step 2, and obtain the position coordinates of the two peaks of each group of amplitude spectrum curves
Figure GSA00000062017700021
amplitude value and phase value
Figure GSA00000062017700023
The two peaks of each group of amplitude spectrum curves correspond to two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] respectively;

步骤四、根据步骤三获得的第i组幅度谱曲线的两个峰值的位置坐标

Figure GSA00000062017700024
幅度值
Figure GSA00000062017700025
和相位值
Figure GSA00000062017700026
估计接收到的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率
Figure GSA00000062017700027
幅度
Figure GSA00000062017700028
Figure GSA00000062017700029
和相位 Step 4, according to the position coordinates of the two peaks of the i-th group of amplitude spectrum curves obtained in step 3
Figure GSA00000062017700024
amplitude value
Figure GSA00000062017700025
and phase value
Figure GSA00000062017700026
Estimate the center frequencies of the received two complex chip signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path
Figure GSA00000062017700027
amplitude
Figure GSA00000062017700028
Figure GSA00000062017700029
and phase

步骤五、根据步骤四获得的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率

Figure GSA000000620177000211
幅度
Figure GSA000000620177000212
和相位获得第i条路径的时延
Figure GSA000000620177000214
的估计值、多普勒频移
Figure GSA000000620177000215
的估计值、相位的估计值和幅度
Figure GSA000000620177000217
的估计值;Step 5. According to the center frequency of the two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path obtained in step 4
Figure GSA000000620177000211
amplitude
Figure GSA000000620177000212
and phase Get the delay of the i-th path
Figure GSA000000620177000214
Estimated value of Doppler frequency shift
Figure GSA000000620177000215
Estimated value, phase The estimated value and magnitude of
Figure GSA000000620177000217
estimated value of

所述f0为信道探测信号中心频率;k为切普信号的调频率,α为分数傅立叶变换角;i为整数。The f 0 is the center frequency of the channel detection signal; k is the modulation frequency of the chip signal, and α is the fractional Fourier transform angle; i is an integer.

步骤四中所述的根据步骤三获得的第i组幅度谱曲线的两个峰值的位置坐标幅度值

Figure GSA000000620177000219
和相位值估计接收到的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率
Figure GSA000000620177000221
是根据公式:The position coordinates of the two peaks of the i-th group of amplitude spectrum curves obtained according to step 3 described in step 4 amplitude value
Figure GSA000000620177000219
and phase value Estimate the center frequencies of the received two complex chip signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path
Figure GSA000000620177000221
is according to the formula:

ff ^^ 00 == uu ^^ pp csccsc αα

实现的。Achieved.

步骤四中所述的根据步骤三获得的第i组幅度谱曲线的两个峰值的位置坐标

Figure GSA000000620177000223
幅度值和相位值
Figure GSA000000620177000225
估计接收到的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的幅度
Figure GSA000000620177000226
是根据公式:The position coordinates of the two peaks of the i-th group of amplitude spectrum curves obtained according to step 3 described in step 4
Figure GSA000000620177000223
amplitude value and phase value
Figure GSA000000620177000225
Estimate the received amplitudes of the two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path
Figure GSA000000620177000226
is according to the formula:

aa ^^ == || ff pp (( uu ^^ pp )) || TT // || sinsin αα ||

实现的。Achieved.

步骤四中所述的根据步骤三获得的第i组幅度谱曲线的两个峰值的位置坐标

Figure GSA00000062017700032
幅度值
Figure GSA00000062017700033
和相位值
Figure GSA00000062017700034
估计接收到的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的相位
Figure GSA00000062017700035
是根据公式:The position coordinates of the two peaks of the i-th group of amplitude spectrum curves obtained according to step 3 described in step 4
Figure GSA00000062017700032
amplitude value
Figure GSA00000062017700033
and phase value
Figure GSA00000062017700034
Estimate the phases of the received two complex chip signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path
Figure GSA00000062017700035
is according to the formula:

φφ ^^ == argarg [[ ff pp (( uu ^^ pp )) ee jj (( αα 22 ++ ππ 44 ++ ππ uu ^^ pp 22 cotcot αα )) ]]

实现的。Achieved.

步骤五中所述根据步骤四获得的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率

Figure GSA00000062017700037
幅度
Figure GSA00000062017700038
和相位获得第i条路径的时延
Figure GSA000000620177000310
的估计值是通过公式:The center of the two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path obtained in step 5 according to step 4 frequency
Figure GSA00000062017700037
amplitude
Figure GSA00000062017700038
and phase Get the delay of the i-th path
Figure GSA000000620177000310
The estimated value of is given by the formula:

ττ ^^ ii == ff ^^ 00 (( ii ,, 11 )) ++ ff ^^ 00 (( ii ,, 22 )) -- 22 kk

实现的。Achieved.

步骤五中所述根据步骤四获得的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率

Figure GSA000000620177000312
幅度
Figure GSA000000620177000313
和相位
Figure GSA000000620177000314
获得第i条路径的多普勒频移
Figure GSA000000620177000315
的估计值是通过公式:The center of the two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path obtained in step 5 according to step 4 frequency
Figure GSA000000620177000312
amplitude
Figure GSA000000620177000313
and phase
Figure GSA000000620177000314
Get the Doppler shift of the i-th path
Figure GSA000000620177000315
The estimated value of is given by the formula:

ΔΔ ff ^^ ii == ff ^^ 00 (( ii ,, 11 )) -- ff ^^ 00 (( ii ,, 22 )) 22 -- ff 00

实现的。Achieved.

步骤五中所述根据步骤四获得的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率

Figure GSA000000620177000317
幅度
Figure GSA00000062017700041
和相位
Figure GSA00000062017700042
获得第i条路径的相位
Figure GSA00000062017700043
的估计值是通过公式:The center of the two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path obtained in step 5 according to step 4 frequency
Figure GSA000000620177000317
amplitude
Figure GSA00000062017700041
and phase
Figure GSA00000062017700042
Get the phase of the i-th path
Figure GSA00000062017700043
The estimated value of is given by the formula:

φφ ^^ ii == (( φφ ^^ (( ii ,, 11 )) -- φφ ^^ (( ii ,, 22 )) ++ 44 ππ ff 00 ττ ^^ ii )) // 22

实现的。Achieved.

步骤五中所述根据步骤四获得的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率幅度

Figure GSA00000062017700046
和相位
Figure GSA00000062017700047
获得第i条路径的幅度
Figure GSA00000062017700048
的估计值是通过公式:The center of the two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path obtained in step 5 according to step 4 frequency amplitude
Figure GSA00000062017700046
and phase
Figure GSA00000062017700047
Get the magnitude of the i-th path
Figure GSA00000062017700048
The estimated value of is given by the formula:

aa ^^ ii == (( aa ^^ (( ii ,, 11 )) ++ aa ^^ (( ii ,, 22 )) )) // 22

实现的。Achieved.

本发明使用中心频率相同、调频率互为相反数的两个切普信号加和作为探测信号,接收端得到的是来自不同传输路径的探测信号的组合,对接收信号进行一次分数傅立叶变换,检测分数域幅度谱上的峰值位置及峰值处的幅度值和相位值估计各路径的幅度、相位、时延和多普勒频移,无需信道的先验知识、计算过程简单,很好地满足快速变化的无线信道环境的估计要求。The present invention uses the sum of two chip signals with the same center frequency and opposite modulation frequencies as the detection signal, and what the receiving end obtains is a combination of detection signals from different transmission paths, and performs a fractional Fourier transform on the received signal to detect Estimate the amplitude, phase, delay and Doppler frequency shift of each path based on the peak position on the amplitude spectrum in the fractional domain and the amplitude and phase values at the peak, without prior knowledge of the channel, and the calculation process is simple, which satisfies the fast Estimation requirements for changing wireless channel environments.

附图说明Description of drawings

图1是本发明的信道探测信号经两径信道作用后在分数域上的幅度谱。Fig. 1 is the amplitude spectrum in the fractional domain of the channel detection signal of the present invention after being acted on by a two-path channel.

具体实施方式Detailed ways

具体实施方式一、一种基于经典分数傅立叶变换的信道参数估计方法,它由以下步骤实现:The specific embodiment one, a kind of channel parameter estimation method based on classical fractional Fourier transform, it is realized by the following steps:

步骤一、将中心频率相同、调频率互为相反数的两段切普信号相加之后作为信道探测信号,并将所述信道探测信号从发射端发射;所述信道探测信号的表达式为s(t)=cos(2πf0t+πkt2)+cos(2πf0t-πkt2);所述信道探测信号s(t)分解表示为4个复切普信号加和的形式,即:Step 1, add the two sections of chip signals with the same center frequency and the opposite number of modulation frequencies as the channel detection signal, and transmit the channel detection signal from the transmitter; the expression of the channel detection signal is s (t)=cos(2πf 0 t+πkt 2 )+cos(2πf 0 t-πkt 2 ); the channel detection signal s(t) is decomposed and expressed as the sum of 4 complex chop signals, namely:

sthe s (( tt )) == 11 22 expexp [[ jj (( 22 ππ ff 00 tt ++ πkπk tt 22 )) ]] ++ 11 22 expexp [[ -- jj (( 22 ππ ff 00 tt ++ πkπk tt 22 )) ]]

++ 11 22 expexp [[ jj (( 22 ππ ff 00 tt -- πkπk tt 22 )) ]] ++ 11 22 expexp [[ -- jj (( 22 ππ ff 00 tt -- πkπk tt 22 )) ]]

式中-T/2≤t≤T/2,T为信道探测信号s(t)的持续时间;Where -T/2≤t≤T/2, T is the duration of the channel sounding signal s(t);

步骤二、接收端接收发射端发射的信道探测信号,记为r(t),并对信道探测信号r(t)进行变换阶数为p=acot(-k)/(π/2)的分数傅立叶变换,获得信道探测信号的分数域幅度谱,所述分数域幅度谱上共包括i组幅度谱曲线,每一组幅度谱曲线均对应一条路径的信道探测信号;所述每组幅度谱曲线上均包含两个峰值,所述两个峰值分别位于分数域坐标中心的两侧;Step 2, the receiving end receives the channel sounding signal transmitted by the transmitting end, denoted as r(t), and transforms the channel sounding signal r(t) into a fraction of p=acot(-k)/(π/2) Fourier transform to obtain the fractional domain amplitude spectrum of the channel sounding signal, the fractional domain amplitude spectrum includes i groups of amplitude spectrum curves, each group of amplitude spectrum curves corresponds to the channel sounding signal of a path; each group of amplitude spectrum curves Both contain two peaks, and the two peaks are respectively located on both sides of the coordinate center of the fraction domain;

步骤三、检测步骤二所述的i组幅度谱曲线的两个峰值,获得每组幅度谱曲线的两个峰值的位置坐标幅度值

Figure GSA00000062017700052
和相位值
Figure GSA00000062017700053
所述每组幅度谱曲线的两个峰值分别对应两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)];Step 3, detect the two peaks of the i group of amplitude spectrum curves described in step 2, and obtain the position coordinates of the two peaks of each group of amplitude spectrum curves amplitude value
Figure GSA00000062017700052
and phase value
Figure GSA00000062017700053
The two peaks of each group of amplitude spectrum curves correspond to two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] respectively;

步骤四、根据步骤三获得的第i组幅度谱曲线的两个峰值的位置坐标幅度值

Figure GSA00000062017700055
和相位值估计接收到的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率
Figure GSA00000062017700057
幅度
Figure GSA00000062017700058
和相位
Figure GSA00000062017700059
Step 4, according to the position coordinates of the two peaks of the i-th group of amplitude spectrum curves obtained in step 3 amplitude value
Figure GSA00000062017700055
and phase value Estimate the center frequencies of the received two complex chip signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path
Figure GSA00000062017700057
amplitude
Figure GSA00000062017700058
and phase
Figure GSA00000062017700059

步骤五、根据步骤四获得的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率

Figure GSA000000620177000510
幅度和相位获得第i条路径的时延的估计值、多普勒频移
Figure GSA000000620177000514
的估计值、相位
Figure GSA000000620177000515
的估计值和幅度
Figure GSA000000620177000516
的估计值;Step 5. According to the center frequency of the two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path obtained in step 4
Figure GSA000000620177000510
amplitude and phase Get the delay of the i-th path Estimated value of Doppler frequency shift
Figure GSA000000620177000514
Estimated value, phase
Figure GSA000000620177000515
The estimated value and magnitude of
Figure GSA000000620177000516
estimated value of

所述f0为信道探测信号中心频率;k为切普信号的调频率,α为分数傅立叶变换角;i为整数。The f 0 is the center frequency of the channel detection signal; k is the modulation frequency of the chip signal, and α is the fractional Fourier transform angle; i is an integer.

步骤四中所述的根据步骤三获得的第i组幅度谱曲线的两个峰值的位置坐标

Figure GSA000000620177000517
幅度值
Figure GSA000000620177000518
和相位值
Figure GSA000000620177000519
估计接收到的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率是根据公式:The position coordinates of the two peaks of the i-th group of amplitude spectrum curves obtained according to step 3 described in step 4
Figure GSA000000620177000517
amplitude value
Figure GSA000000620177000518
and phase value
Figure GSA000000620177000519
Estimate the center frequencies of the received two complex chip signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path is according to the formula:

ff ^^ 00 == uu ^^ pp csccsc αα

实现的。Achieved.

步骤四中所述的根据步骤三获得的第i组幅度谱曲线的两个峰值的位置坐标

Figure GSA000000620177000522
幅度值
Figure GSA000000620177000523
和相位值估计接收到的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的幅度
Figure GSA00000062017700061
是根据公式:The position coordinates of the two peaks of the i-th group of amplitude spectrum curves obtained according to step 3 described in step 4
Figure GSA000000620177000522
amplitude value
Figure GSA000000620177000523
and phase value Estimate the received amplitudes of the two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path
Figure GSA00000062017700061
is according to the formula:

aa ^^ == || ff pp (( uu ^^ pp )) || TT // || sinsin αα ||

实现的。Achieved.

步骤四中所述的根据步骤三获得的第i组幅度谱曲线的两个峰值的位置坐标

Figure GSA00000062017700063
幅度值和相位值
Figure GSA00000062017700065
估计接收到的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的相位是根据公式:The position coordinates of the two peaks of the i-th group of amplitude spectrum curves obtained according to step 3 described in step 4
Figure GSA00000062017700063
amplitude value and phase value
Figure GSA00000062017700065
Estimate the phases of the received two complex chip signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path is according to the formula:

φφ ^^ == argarg [[ ff pp (( uu ^^ pp )) ee jj (( αα 22 ++ ππ 44 ++ ππ uu ^^ pp 22 cotcot αα )) ]]

实现的。Achieved.

步骤五中所述根据步骤四获得的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率

Figure GSA00000062017700068
幅度
Figure GSA00000062017700069
和相位
Figure GSA000000620177000610
获得第i条路径的时延
Figure GSA000000620177000611
的估计值是通过公式:The center of the two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path obtained in step 5 according to step 4 frequency
Figure GSA00000062017700068
amplitude
Figure GSA00000062017700069
and phase
Figure GSA000000620177000610
Get the delay of the i-th path
Figure GSA000000620177000611
The estimated value of is given by the formula:

ττ ^^ ii == ff ^^ 00 (( ii ,, 11 )) ++ ff ^^ 00 (( ii ,, 22 )) -- 22 kk

实现的。Achieved.

步骤五中所述根据步骤四获得的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率

Figure GSA000000620177000613
幅度
Figure GSA000000620177000614
和相位获得第i条路径的多普勒频移
Figure GSA000000620177000616
的估计值是通过公式:The center of the two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path obtained in step 5 according to step 4 frequency
Figure GSA000000620177000613
amplitude
Figure GSA000000620177000614
and phase Get the Doppler shift of the i-th path
Figure GSA000000620177000616
The estimated value of is given by the formula:

ΔΔ ff ^^ ii == ff ^^ 00 (( ii ,, 11 )) -- ff ^^ 00 (( ii ,, 22 )) 22 -- ff 00

实现的。Achieved.

步骤五中所述根据步骤四获得的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率

Figure GSA00000062017700071
幅度
Figure GSA00000062017700072
和相位
Figure GSA00000062017700073
获得第i条路径的相位的估计值是通过公式:The center of the two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path obtained in step 5 according to step 4 frequency
Figure GSA00000062017700071
amplitude
Figure GSA00000062017700072
and phase
Figure GSA00000062017700073
Get the phase of the i-th path The estimated value of is given by the formula:

φφ ^^ ii == (( φφ ^^ (( ii ,, 11 )) -- φφ ^^ (( ii ,, 22 )) ++ 44 ππ ff 00 ττ ^^ ii )) // 22

实现的。Achieved.

步骤五中所述根据步骤四获得的第i条路径上的两个复切普信号exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]的中心频率

Figure GSA00000062017700076
幅度和相位
Figure GSA00000062017700078
获得第i条路径的幅度
Figure GSA00000062017700079
的估计值是通过公式:The center of the two complex chop signals exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] on the i-th path obtained in step 5 according to step 4 frequency
Figure GSA00000062017700076
amplitude and phase
Figure GSA00000062017700078
Get the magnitude of the i-th path
Figure GSA00000062017700079
The estimated value of is given by the formula:

aa ^^ ii == (( aa ^^ (( ii ,, 11 )) ++ aa ^^ (( ii ,, 22 )) )) // 22

实现的。Achieved.

步骤三中每条路径上的两个峰值中的复切普信号exp[j(2πf0t+πkt2)]和复切普信号exp[-j(2πf0t-πkt2)]受信道影响,这两个复切普信号的参数均已发生变化,但是其中心频率仍为一正一负。The complex chip signal exp[j(2πf 0 t+πkt 2 )] and the complex chip signal exp[-j(2πf 0 t-πkt 2 )] in the two peaks on each path in step 3 are affected by the channel , the parameters of the two complex chop signals have changed, but their center frequencies are still one positive and one negative.

分数傅立叶变换是一种广义的傅立叶变换,信号在分数阶傅立叶域上的表示,同时包含了信号在时域和频域的信息。经典分数傅立叶变换的积分形式定义为:Fractional Fourier transform is a generalized Fourier transform, which represents the signal in the fractional Fourier domain, and contains the information of the signal in the time domain and frequency domain. The integral form of the classical fractional Fourier transform is defined as:

ff pp (( uu )) == 11 -- jj cotcot αα 22 ππ ∫∫ -- ∞∞ ++ ∞∞ {{ ff (( tt )) ·&Center Dot; expexp [[ jj (( uu 22 ++ tt 22 22 cotcot αα -- utout csccsc αα )) ]] }} dtdt ,, αα ≠≠ qπqπ ff (( tt )) ,, αα == 22 qπqπ ff (( -- tt )) ,, αα == (( 22 qq ±± 11 )) ππ

其中f(t)为信号的时域表达形式,f(t)的p阶分数傅立叶变换为fp(u),u为分数域坐标,α=pπ/2为分数傅立叶变换角,p为变换阶数,q为任意整数。当α=π/2时fp(u)为普通的傅立叶变换。由于分数傅立叶变换是信号在一组正交的切普(chirp)基上的展开,因此分数傅立叶变换在某个分数阶傅立叶域中对给定的切普信号具有最好的能量聚集特性,即一个切普信号在适当的分数阶傅立叶变换域中将表现为一个冲击函数。复切普信号的表达式为:Where f(t) is the time-domain expression of the signal, the p-order fractional Fourier transform of f(t) is f p (u), u is the coordinate in the fractional domain, α=pπ/2 is the fractional Fourier transform angle, and p is the transformation Order, q is any integer. When α=π/2, f p (u) is an ordinary Fourier transform. Since the fractional Fourier transform is the expansion of the signal on a set of orthogonal chirp bases, the fractional Fourier transform has the best energy aggregation characteristics for a given chirp signal in a certain fractional Fourier domain, namely A chip signal will appear as an impulse function in the appropriate fractional Fourier transform domain. The expression of the complex chip signal is:

Figure GSA00000062017700081
(-T/2≤t≤T/2)
Figure GSA00000062017700081
(-T/2≤t≤T/2)

参数

Figure GSA00000062017700082
f0、k、A分别表示切普信号的相位,中心频率,频率变化率和幅度。k与带宽B的关系为B=kT,其中T为切普信号时域宽度。复切普信号的分数傅立叶变换表达式为parameter
Figure GSA00000062017700082
f 0 , k, and A represent the phase, center frequency, frequency change rate, and amplitude of the Chip signal, respectively. The relationship between k and the bandwidth B is B=kT, where T is the time domain width of the Chip signal. The fractional Fourier transform expression of the complex Chepp signal is

ff pp (( uu )) == AA (( 11 -- jj cotcot αα )) 11 22 ∫∫ -- TT // 22 TT // 22 expexp [[ jπjπ (( tt 22 cotcot αα -- 22 utout csccsc αα )) ]] expexp (( jπujπu tt 22 )) dtdt

== AA (( sinsin αα )) 11 22 expexp [[ jj (( αα 22 ++ ππ 44 ++ ππ uu 22 cotcot αα )) ]] ∫∫ -- TT // 22 TT // 22 expexp [[ jπjπ tt 22 (( cotcot αα ++ kk )) ]] expexp [[ jj 22 πtπt (( ff 00 -- uu csccsc αα )) ]] dtdt

可知,当k=-cotα,f0=ucscα时,分数域出现峰值。It can be seen that when k=-cotα, f 0 =ucscα, the peak appears in the fraction domain.

本发明使用中心频率相同、调频率互为相反数的两个切普信号加和作为探测信号,接收端得到的是来自不同传输路径的探测信号的组合,对接收信号进行一次分数傅立叶变换,检测分数域幅度谱上的峰值位置及峰值处的幅度值和相位值即可计算出各路径的幅度、相位、时延和多普勒频移。相对于传统信道参数估计方法,既不需要信道的先验知识和统计特性,也没有复杂的计算过程,且分数傅立叶算法可用快速傅立叶变换实现,系统复杂度低。The present invention uses the sum of two chip signals with the same center frequency and opposite modulation frequencies as the detection signal, and what the receiving end obtains is a combination of detection signals from different transmission paths, and performs a fractional Fourier transform on the received signal to detect The amplitude, phase, delay and Doppler frequency shift of each path can be calculated from the peak position on the amplitude spectrum in the fractional domain and the amplitude and phase values at the peak. Compared with the traditional channel parameter estimation method, neither prior knowledge and statistical characteristics of the channel are required, nor a complicated calculation process, and the fractional Fourier algorithm can be realized by fast Fourier transform, and the system complexity is low.

时变信道的冲击响应可以使用参数模型进行描述,如式(1):The impulse response of a time-varying channel can be described using a parametric model, such as formula (1):

hh (( tt ,, ττ )) == ΣΣ ii == 11 NN aa ii ·&Center Dot; ee jj φφ ii ·&Center Dot; ee jj 22 πΔπΔ ff ii tt ·&Center Dot; δδ (( tt -- ττ ii )) -- -- -- (( 11 ))

其中i是多径序号,N是多径总数,ai,φi,Δfi和τi分别是各路径的幅度、相位、多普勒频移和时延。假设发射信号为x(t),则接收信号r(t)可表示为(2):Where i is the multipath number, N is the total number of multipaths, a i , φ i , Δf i and τ i are the amplitude, phase, Doppler frequency shift and time delay of each path, respectively. Assuming that the transmitted signal is x(t), the received signal r(t) can be expressed as (2):

rr (( tt )) == ∫∫ -- ∞∞ ∞∞ hh (( tt ,, ττ )) xx (( tt -- ττ )) dτdτ ++ nno (( tt ))

== ΣΣ ii == 11 NN aa ii ·&Center Dot; ee jj φφ ii ·&Center Dot; ee jj 22 πΔπΔ ff ii tt ·&Center Dot; xx (( tt -- ττ ii )) ++ nno (( tt )) -- -- -- (( 22 ))

其中n(t)是加性高斯白噪声。本发明使用的信道探测信号为中心频率相同、调频率互为相反数的两个切普信号加和,表达式如(3):where n(t) is additive white Gaussian noise. The channel sounding signal used by the present invention is the sum of two cutting signals whose central frequency is the same and the modulation frequency is the opposite number to each other, and the expression is as (3):

s(t)=cos(2πf0t+πkt2)+cos(2πf0t-πkt2)(-T/2≤t≤T/2)    (3)s(t)=cos(2πf 0 t+πkt 2 )+cos(2πf 0 t-πkt 2 )(-T/2≤t≤T/2) (3)

s(t)可以分解表示为4个复切普信号加和(4)s(t) can be decomposed and expressed as the sum of 4 complex chip signals (4)

sthe s (( tt )) == 11 22 expexp [[ jj (( 22 ππ ff 00 tt ++ πkπk tt 22 )) ]] ++ 11 22 expexp [[ -- jj (( 22 ππ ff 00 tt ++ πkπk tt 22 )) ]]

++ 11 22 expexp [[ jj (( 22 ππ ff 00 tt -- πkπk tt 22 )) ]] ++ 11 22 expexp [[ -- jj (( 22 ππ ff 00 tt -- πkπk tt 22 )) ]] ,, (( -- TT // 22 ≤≤ tt ≤≤ TT // 22 )) -- -- -- (( 44 ))

其中具有+k调频率的复切普信号有两项,分别为exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)];具有-k调频率的复切普信号有两项,分别为exp[-j(2πf0t+πkt2)]和exp[j(2πf0t-πkt2)]。根据分数傅立叶变换特性,当变换阶数p=acot(-k)/(π/2)时,具有+k调频率的复切普信号将在分数域上产生能量聚集,即exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]将产生峰值,且由于这两个复切普信号的中心频率不同,分别为±f0,所以两个峰值在分数域分别位于中心两侧;此时具有-k调频率的复切普信号不会产生能量聚集,在分数域上表现为相对平坦的部分。由于本发明是基于切普信号在相应分数域上的能量聚集特性,所以以下分析将关注exp[j(2πf0t+πkt2)]和exp[-j(2πf0t-πkt2)]两项,其余两项视为干扰项,则s(t)可以表示为(5):Among them, there are two items of the complex chop signal with +k modulation frequency, respectively exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )]; There are two items in the complex chip signal, which are exp[-j(2πf 0 t+πkt 2 )] and exp[j(2πf 0 t-πkt 2 )]. According to the characteristics of fractional Fourier transform, when the transformation order p=acot(-k)/(π/2), the complex chop signal with +k modulation frequency will generate energy accumulation in the fractional domain, that is, exp[j(2πf 0 t+πkt 2 )] and exp[-j(2πf 0 t-πkt 2 )] will generate peaks, and since the center frequencies of the two complex chop signals are different, respectively ±f 0 , the two peaks are at The fractional domain is located on both sides of the center; at this time, the complex chop signal with -k modulation frequency will not produce energy accumulation, and it appears as a relatively flat part in the fractional domain. Since the present invention is based on the energy aggregation characteristics of the Chip signal in the corresponding fractional domain, the following analysis will focus on the two item, and the other two items are regarded as interference items, then s(t) can be expressed as (5):

sthe s (( tt )) == 11 22 qq (( tt )) ++ II (( tt )) -- -- -- (( 55 ))

其中,in,

q(t)=exp[j(2πf0t+πkt2)]+exp[j(-2πf0t+πkt2)]    (6)q(t)=exp[j(2πf 0 t+πkt 2 )]+exp[j(-2πf 0 t+πkt 2 )] (6)

II (( tt )) == 11 22 expexp [[ -- jj (( 22 ππ ff 00 tt ++ πkπk tt 22 )) ]] ++ 11 22 expexp [[ jj (( 22 ππ ff 00 tt -- πkπk tt 22 )) ]] -- -- -- (( 77 ))

将式(5)代入式(2)中,同时考虑接收信号实数形式和复数形式的一致性,我们得到接收信号r(t)的表达式为:Substituting Equation (5) into Equation (2), and considering the consistency of the real and complex forms of the received signal, we get the expression of the received signal r(t) as:

rr (( tt )) == 11 22 (( ΣΣ ii == 11 NN aa ii ·· expexp [[ jj (( πkπk tt 22 ++ 22 ππ (( ff 00 ++ ΔfΔ f -- kk ττ ii )) tt ++ (( πkπk ττ ii 22 -- 22 ππ ff 00 ττ ii ++ φφ ii )) )) ]]

++ ΣΣ ii == 11 NN aa ii ·&Center Dot; expexp [[ jj (( πkπk tt 22 ++ 22 ππ (( -- ff 00 -- ΔfΔf -- kk ττ ii )) tt ++ (( πkπk ττ ii 22 ++ 22 ππ ff 00 ττ ii -- φφ ii )) )) ]] )) ++ II (( tt )) ** hh (( tt ,, ττ )) ++ nno (( tt )) -- -- -- (( 88 ))

从(8)中可以看出,接收信号可以看做由两组能够产生能量聚集的切普信号,与干扰项和噪声组成,同时由于受信道影响,接收信号中的复切普信号的幅度、相位、中心频率相对于原探测信号都发生了改变,其中具有正的中心频率的一组切普信号的幅度、相位、中心频率分别为:It can be seen from (8) that the received signal can be regarded as composed of two groups of chip signals that can generate energy aggregation, interference items and noise. At the same time, due to the influence of the channel, the amplitude of the complex chip signal in the received signal Compared with the original detection signal, the phase and center frequency have changed, and the amplitude, phase and center frequency of a group of chip signals with positive center frequency are respectively:

a(i,1)=ai                      (9)a (i, 1) = a i (9)

φ(i,1)=(πkτi 2-2πf0τii)     (10)φ (i, 1) =(πkτ i 2 -2πf 0 τ ii ) (10)

f0(i,1)=(f0+Δf-kτi)          (11)f 0(i, 1) = (f 0 +Δf-kτ i ) (11)

具有负的中心频率的一组切普信号的幅度、相位、中心频率分别为:The amplitude, phase, and center frequency of a group of chip signals with a negative center frequency are:

a(i,2)=ai    (12)a (i, 2) = a i (12)

φ(i,2)=(πkτi 2+2πf0τii)    (13)φ (i, 2) = (πkτ i 2 +2πf 0 τ ii ) (13)

f0(i,2)=(-f0-Δf-kτi)            (14)f 0(i, 2) =(-f 0 -Δf-kτ i ) (14)

可以看到,新的复切普信号的幅度、相位、中心频率表达式包含着信道参数,若能够估计出新的复切普信号的参数,即可计算出信道参数。It can be seen that the expressions of the amplitude, phase, and center frequency of the new complex chip signal contain channel parameters. If the parameters of the new complex chip signal can be estimated, the channel parameters can be calculated.

对接收信号进行p=acot(-k)/(π/2)阶分数傅立叶变换,对于每一条路径i由于两复切普信号中心频率的正负号不同,在分数域中心两侧将分别产生两个峰值。根据已有研究结论,利用峰值点的位置坐标

Figure GSA00000062017700101
幅度值
Figure GSA00000062017700102
和相位值
Figure GSA00000062017700103
对切普信号的中心频率、幅度、相位的估计公式为Perform p=acot(-k)/(π/2) order fractional Fourier transform on the received signal. For each path i, due to the different signs of the center frequencies of the two complex chop signals, the two sides of the center of the fractional domain will generate two peaks. According to the existing research conclusions, using the position coordinates of the peak point
Figure GSA00000062017700101
amplitude value
Figure GSA00000062017700102
and phase value
Figure GSA00000062017700103
The estimation formulas for the center frequency, amplitude and phase of the chip signal are

ff ^^ 00 == uu ^^ pp csccsc αα -- -- -- (( 1515 ))

aa ^^ == || ff pp (( uu ^^ pp )) || TT // || sinsin αα || -- -- -- (( 1616 ))

φφ ^^ == argarg [[ ff pp (( uu ^^ pp )) ee jj (( αα 22 ++ ππ 44 ++ ππ uu ^^ pp 22 cotcot αα )) ]] -- -- -- (( 1717 ))

则对接收信号进行分数傅立叶变换后,检测并记录每一个峰值的位置坐标,幅度值和相位值,代入公式(15)-(17),即可以计算出每一个峰值所代表的复切普信号的中心频率、幅度和相位。又由于每条路径对应两个峰值,令代表第i条路径的两复切普信号的中心频率估计值分别记为

Figure GSA00000062017700107
幅度估计值分别为
Figure GSA00000062017700108
相位估计值分别为
Figure GSA00000062017700109
根据切普信号参数值与信道参数之间的关系,如式(9)-(14)所示,各路径信道参数估计值可写为Then, after fractional Fourier transform of the received signal, detect and record the position coordinates, amplitude value and phase value of each peak value, and substitute them into formulas (15)-(17), the complex chip signal represented by each peak value can be calculated center frequency, amplitude and phase. And because each path corresponds to two peaks, let the center frequency estimates of the two complex chip signals representing the i-th path be recorded as
Figure GSA00000062017700107
The amplitude estimates are
Figure GSA00000062017700108
The phase estimates are
Figure GSA00000062017700109
According to the relationship between chip signal parameter values and channel parameters, as shown in equations (9)-(14), the estimated channel parameter values of each path can be written as

ττ ^^ ii == ff ^^ 00 (( ii ,, 11 )) ++ ff ^^ 00 (( ii ,, 22 )) -- 22 kk -- -- -- (( 1818 ))

ΔΔ ff ^^ ii == ff ^^ 00 (( ii ,, 11 )) -- ff ^^ 00 (( ii ,, 22 )) 22 -- ff 00 -- -- -- (( 1919 ))

φφ ^^ ii == (( φφ ^^ (( ii ,, 11 )) -- φφ ^^ (( ii ,, 22 )) ++ 44 ππ ff 00 ii ττ ^^ ii )) // 22 -- -- -- (( 2020 ))

aa ^^ ii == (( aa ^^ (( ii ,, 11 )) ++ aa ^^ (( ii ,, 22 )) )) // 22 -- -- -- (( 21twenty one ))

以下通过仿真说明方法的有效性The effectiveness of the method is illustrated by simulation

仿真参数设定:探测信号中心频率f0=247.5kHz,采样频率fs=1MHz,调频率分别为k=±400MHz/s,带宽B=400KHz,持续时间T=1ms,幅度为1,初相位为0,则探测信号s(t)的表达式为s(t)=cos(2π·247500t+π·4×108t2)+cos(2π·247500t-π·4×108t2)。假设信道有两条多径,路径A幅度为1,相位为π,时延17μs,多普勒频移120Hz,路径B幅度为1,相位为π,时延35μs,多普勒频移-90Hz,信噪比10dB。Simulation parameter setting: detection signal center frequency f 0 =247.5kHz, sampling frequency f s =1MHz, modulation frequency k=±400MHz/s, bandwidth B=400KHz, duration T=1ms, amplitude 1, initial phase is 0, the expression of detection signal s(t) is s(t)=cos(2π·247500t+π·4×10 8 t 2 )+cos(2π·247500t-π·4×10 8 t 2 ) . Assume that the channel has two multipaths, path A has an amplitude of 1, a phase of π, a delay of 17 μs, and a Doppler frequency shift of 120 Hz, path B has an amplitude of 1, a phase of π, a delay of 35 μs, and a Doppler frequency shift of -90 Hz , SNR 10dB.

对接收到的探测信号进行如步骤二所述的分数傅立叶变换,得到的分数域幅度谱如图1,可以看到对应于每一条路径,在分数域上都出现了两个峰值,两条路径共有4个峰值。路径A在分数域前半段的峰值记为PA1,路径A在分数域后半段的峰值记为PA2,路径B在分数域前半段的峰值记为PB1,路径B在分数域后半段的峰值记为PB2。各峰值的幅度、相位、位置坐标如表1:Perform the fractional Fourier transform as described in step 2 on the received detection signal, and the obtained fractional domain amplitude spectrum is shown in Figure 1. It can be seen that corresponding to each path, two peaks appear in the fractional domain, and the two paths There are 4 peaks in total. The peak value of path A in the first half of the fractional domain is marked as PA1, the peak value of path A in the second half of the fractional domain is marked as PA2, the peak value of path B in the first half of the fractional domain is marked as PB1, and the peak value of path B in the second half of the fractional domain Denote it as PB2. The amplitude, phase and position coordinates of each peak are shown in Table 1:

表1Table 1

  PA1PA1   PA2PA2   PB 1PB 1   PB2PB2   幅度Amplitude   10.2510.25   10.1510.15   10.3310.33   10.1510.15   相位Phase   2.3722.372   -0.8609-0.8609   0.10550.1055   0.0530.053   位置坐标 Position coordinates   44174417   56175617   44344434   56355635

按步骤三所述,将表1的结果代入公式(15-17)估计接收信号中产生能量聚集的两复切普信号的中心频率、幅度、相位,然后将此结果代入到公式(18-21),得到信道中各多径的时延、多普勒频移、相位、幅度估计值,计算结果如表2,从表2中可以看到本发明提出的信道参数估计方法具有很高的准确度。As described in step 3, substitute the results in Table 1 into formula (15-17) to estimate the center frequency, amplitude, and phase of the two complex chip signals that generate energy aggregation in the received signal, and then substitute this result into formula (18-21 ), obtain the time delay, Doppler frequency shift, phase, amplitude estimation value of each multipath in the channel, calculation result is as table 2, can see from table 2 that the channel parameter estimation method that the present invention proposes has very high accuracy Spend.

表2Table 2

  幅度Amplitude   相位Phase   时延Latency   多普勒频移Doppler shift  路径A真实值True value of path A   1 1   3.14163.1416   17μs17μs   -90Hz-90Hz

  幅度Amplitude   相位Phase   时延Latency   多普勒频移Doppler shift  路径A估计值Estimated value of path A   1.00491.0049   3.17013.1701   16.993μs16.993μs   -90.2Hz-90.2Hz  相对误差 Relative error   0.49%0.49%   0.91%0.91%   0.04%0.04%   0.2%0.2%  路径B真实值True value of path B   1 1   3.14163.1416   3.5000e-0053.5000e-005   120Hz120Hz  路径B估计值Path B estimate   1.01161.0116   3.23073.2307   3.5015e-0053.5015e-005   120.2Hz120.2Hz  相对误差 Relative error   1.16%1.16%   2.84%2.84%   0.04%0.04%   0.17%0.17%

Claims (8)

1. A channel parameter estimation method based on classical fractional Fourier transform is characterized in that: the method is realized by the following steps:
adding two sections of chirp signals with the same center frequency and opposite frequency modulation rates to serve as a channel detection signal, and transmitting the channel detection signal from a transmitting end; the expression of the channel detection signal is s (t) cos (2 pi f)0t+πkt2)+cos(2πf0t-πkt2) (ii) a The channel detection signal s (t) is decomposed into a form of 4 complex chirp signals added, that is:
<math><mrow><mi>s</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>exp</mi><mo>[</mo><mi>j</mi><mrow><mo>(</mo><mn>2</mn><mi>&pi;</mi><msub><mi>f</mi><mn>0</mn></msub><mi>t</mi><mo>+</mo><mi>&pi;</mi><msup><mi>kt</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>]</mo><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>exp</mi><mo>[</mo><mo>-</mo><mi>j</mi><mrow><mo>(</mo><mn>2</mn><mi>&pi;</mi><msub><mi>f</mi><mn>0</mn></msub><mi>t</mi><mo>+</mo><mi>&pi;</mi><msup><mi>kt</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>]</mo></mrow></math>
<math><mrow><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>exp</mi><mo>[</mo><mi>j</mi><mrow><mo>(</mo><mn>2</mn><mi>&pi;</mi><msub><mi>f</mi><mn>0</mn></msub><mi>t</mi><mo>-</mo><mi>&pi;</mi><msup><mi>kt</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>]</mo><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>exp</mi><mo>[</mo><mo>-</mo><mi>j</mi><mrow><mo>(</mo><mn>2</mn><mi>&pi;</mi><msub><mi>f</mi><mn>0</mn></msub><mi>t</mi><mo>-</mo><mi>&pi;</mi><msup><mi>kt</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>]</mo></mrow></math>
wherein T is more than or equal to T/2 and less than or equal to T/2, and T is the duration of the channel detection signal s (T);
step two, the receiving end receives the channel detection signal transmitted by the transmitting end, and the channel detection signal is recorded as r (t), and fractional Fourier transform with the transformation order p ═ acot (-k)/(pi/2) is carried out on the channel detection signal r (t), so as to obtain a fractional domain amplitude spectrum of the channel detection signal, wherein the fractional domain amplitude spectrum comprises i groups of amplitude spectrum curves, and each group of amplitude spectrum curves corresponds to the channel detection signal of one path; each group of amplitude spectrum curves comprises two peak values, and the two peak values are respectively positioned on two sides of the coordinate center of the fractional domain;
step three, detecting the i groups of amplitude spectra curves in the step twoTwo peaks of the line, the position coordinates of the two peaks of each set of amplitude spectrum curves being obtained
Figure FSA00000062017600013
Magnitude value
Figure FSA00000062017600014
Sum phase value
Figure FSA00000062017600015
Two peak values of each group of amplitude spectrum curves respectively correspond to two complex chirp signals exp [ j (2 pi f)0t+πkt2)]And exp [ -j (2 π f)0t-πkt2)];
Step four, according to the position coordinates of two peak values of the ith group of amplitude spectrum curves obtained in the step three
Figure FSA00000062017600016
Magnitude value
Figure FSA00000062017600017
Sum phase value
Figure FSA00000062017600018
Estimating two received complex chirp signals exp [ j (2 pi f) on ith path0t+πkt2)]And exp [ -j (2 π f)0t-πkt2)]Center frequency ofAmplitude of
Figure FSA000000620176000110
And phase
Figure FSA000000620176000111
Step five, obtaining two complex chirp signals exp [ j (2 pi f) on the ith path according to the step four0t+πkt2)]And exp [ -j (2 π f)0t-πkt2)]Center frequency ofAmplitude of
Figure FSA000000620176000113
And phase
Figure FSA000000620176000114
Obtaining the delay of the ith path
Figure FSA000000620176000115
Estimated value of (1), Doppler shiftEstimated value of (1), phase
Figure FSA000000620176000117
Estimate and amplitude of
Figure FSA000000620176000118
An estimated value of (d);
f is0Detecting a signal center frequency for the channel; k is the frequency modulation rate of the chirp signal, and alpha is the fractional Fourier transform angle; i is an integer.
2. The method of claim 1, wherein the position coordinates of two peaks of the ith set of amplitude spectrum curves obtained according to the step three are obtained in the step four
Figure FSA00000062017600021
Magnitude value
Figure FSA00000062017600022
Sum phase value
Figure FSA00000062017600023
Estimating two received complex chirp signals exp [ j (2 pi f) on ith path0t+πkt2)]And exp [ -j (2 π f)0t-πkt2)]Center frequency ofAccording to the formula:
<math><mrow><msub><mover><mi>f</mi><mo>^</mo></mover><mn>0</mn></msub><mo>=</mo><msub><mover><mi>u</mi><mo>^</mo></mover><mi>p</mi></msub><mi>csc</mi><mi>&alpha;</mi></mrow></math>
and (4) realizing.
3. The method of claim 1, wherein the position coordinates of two peaks of the ith set of amplitude spectrum curves obtained according to the step three are obtained in the step four
Figure FSA00000062017600026
Magnitude value
Figure FSA00000062017600027
Sum phase value
Figure FSA00000062017600028
Estimating two received complex chirp signals exp [ j (2 pi f) on ith path0t+πkt2)]And exp [ -j (2 π f)0t-πkt2)]Amplitude of (2)
Figure FSA00000062017600029
According to the formula:
<math><mrow><mover><mi>a</mi><mo>^</mo></mover><mo>=</mo><mfrac><mrow><mo>|</mo><msub><mi>f</mi><mi>p</mi></msub><mrow><mo>(</mo><msub><mover><mi>u</mi><mo>^</mo></mover><mi>p</mi></msub><mo>)</mo></mrow><mo>|</mo></mrow><mrow><mi>T</mi><mo>/</mo><msqrt><mo>|</mo><mi>sin</mi><mi>&alpha;</mi><mo>|</mo></msqrt></mrow></mfrac></mrow></math>
and (4) realizing.
4. The method of claim 1, wherein the position coordinates of two peaks of the ith set of amplitude spectrum curves obtained according to the step three are obtained in the step four
Figure FSA000000620176000211
Magnitude value
Figure FSA000000620176000212
Sum phase value
Figure FSA000000620176000213
Estimating two received complex chirp signals exp [ j (2 pi f) on ith path0t+πkt2)]And exp [ -j (2 π f)0t-πkt2)]Phase of
Figure FSA000000620176000214
According to the formula:
<math><mrow><mover><mi>&phi;</mi><mo>^</mo></mover><mo>=</mo><mi>arg</mi><mo>[</mo><mfrac><mrow><msub><mi>f</mi><mi>p</mi></msub><mrow><mo>(</mo><msub><mover><mi>u</mi><mo>^</mo></mover><mi>p</mi></msub><mo>)</mo></mrow></mrow><msup><mi>e</mi><mrow><mi>j</mi><mrow><mo>(</mo><mfrac><mi>&alpha;</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>&pi;</mi><mn>4</mn></mfrac><mo>+</mo><mi>&pi;</mi><msup><msub><mover><mi>u</mi><mo>^</mo></mover><mi>p</mi></msub><mn>2</mn></msup><mi>cot</mi><mi>&alpha;</mi><mo>)</mo></mrow></mrow></msup></mfrac><mo>]</mo></mrow></math>
and (4) realizing.
5. The method as claimed in claim 1, wherein the step five of estimating channel parameters based on classical fractional fourier transform is implemented by obtaining two complex chirp signals exp [ j (2 π f) on ith path according to the step four0t+πkt2)]And exp [ -j (2 π f)0t-πkt2)]Center frequency of
Figure FSA00000062017600031
Amplitude ofAnd phase
Figure FSA00000062017600033
Obtaining the delay of the ith path
Figure FSA00000062017600034
Is estimated by the formula:
<math><mrow><msub><mover><mi>&tau;</mi><mo>^</mo></mover><mi>i</mi></msub><mo>=</mo><mfrac><mrow><msub><mover><mi>f</mi><mo>^</mo></mover><mrow><mn>0</mn><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></msub><mo>+</mo><msub><mover><mi>f</mi><mo>^</mo></mover><mrow><mn>0</mn><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></msub></mrow><mrow><mo>-</mo><mn>2</mn><mi>k</mi></mrow></mfrac></mrow></math>
and (4) realizing.
6. The method as claimed in claim 1, wherein the step five of estimating channel parameters based on classical fractional fourier transform is implemented by obtaining two complex chirp signals exp [ j (2 π f) on ith path according to the step four0t+πkt2)]And exp [ -j (2)πf0t-πkt2)]Center frequency ofAmplitude ofAnd phase
Figure FSA00000062017600038
Obtaining Doppler shift of ith path
Figure FSA00000062017600039
Is estimated by the formula:
<math><mrow><mi>&Delta;</mi><msub><mover><mi>f</mi><mo>^</mo></mover><mi>i</mi></msub><mo>=</mo><mfrac><mrow><msub><mover><mi>f</mi><mo>^</mo></mover><mrow><mn>0</mn><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></msub><mo>-</mo><msub><mover><mi>f</mi><mo>^</mo></mover><mrow><mn>0</mn><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></msub></mrow><mn>2</mn></mfrac><mo>-</mo><msub><mi>f</mi><mn>0</mn></msub></mrow></math>
and (4) realizing.
7. The method as claimed in claim 1, wherein the step five of estimating channel parameters based on classical fractional fourier transform is implemented by obtaining two complex chirp signals exp [ j (2 π f) on ith path according to the step four0t+πkt2)]And exp [ -j (2 π f)0t-πkt2)]Center frequency of
Figure FSA000000620176000311
Amplitude of
Figure FSA000000620176000312
And phase
Figure FSA000000620176000313
Obtaining the phase of the ith pathIs estimated by the formula:
<math><mrow><msub><mover><mi>&phi;</mi><mo>^</mo></mover><mi>i</mi></msub><mo>=</mo><mrow><mo>(</mo><msub><mover><mi>&phi;</mi><mo>^</mo></mover><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow></msub><mo>-</mo><msub><mover><mi>&phi;</mi><mo>^</mo></mover><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></msub><mo>+</mo><mn>4</mn><mi>&pi;</mi><msub><mi>f</mi><mn>0</mn></msub><msub><mover><mi>&tau;</mi><mo>^</mo></mover><mi>i</mi></msub><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></math>
and (4) realizing.
8. The method as claimed in claim 1, wherein the step five of estimating channel parameters based on classical fractional fourier transform is implemented by obtaining two complex chirp signals exp [ j (2 π f) on ith path according to the step four0t+πkt2)]And exp [ -j (2 π f)0t-πkt2)]Center frequency of
Figure FSA000000620176000316
Amplitude of
Figure FSA000000620176000317
And phase
Figure FSA000000620176000318
Obtaining the amplitude of the ith path
Figure FSA000000620176000319
Is estimated by the formula:
a ^ i = ( a ^ ( i , 1 ) + a ^ ( i , 2 ) ) / 2
and (4) realizing.
CN 201010132111 2010-03-25 2010-03-25 Channel parameter estimation method based on classical fractional Fourier transformation Pending CN101789919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010132111 CN101789919A (en) 2010-03-25 2010-03-25 Channel parameter estimation method based on classical fractional Fourier transformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010132111 CN101789919A (en) 2010-03-25 2010-03-25 Channel parameter estimation method based on classical fractional Fourier transformation

Publications (1)

Publication Number Publication Date
CN101789919A true CN101789919A (en) 2010-07-28

Family

ID=42532979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010132111 Pending CN101789919A (en) 2010-03-25 2010-03-25 Channel parameter estimation method based on classical fractional Fourier transformation

Country Status (1)

Country Link
CN (1) CN101789919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547747A (en) * 2012-02-09 2012-07-04 哈尔滨工业大学 An Interference Suppression Method Based on Classical Fractional Fourier Transform
CN102857454A (en) * 2011-06-02 2013-01-02 哈尔滨工程大学 One-third continuous phase chip keying modulation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181549A1 (en) * 2000-02-22 2002-12-05 Linnartz Johan Paul Marie Gerard Multicarrier receiver with channel estimator
CN101217333A (en) * 2007-12-30 2008-07-09 哈尔滨工业大学 A transmission mode and receiving method of channel resource multiplexing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181549A1 (en) * 2000-02-22 2002-12-05 Linnartz Johan Paul Marie Gerard Multicarrier receiver with channel estimator
CN101217333A (en) * 2007-12-30 2008-07-09 哈尔滨工业大学 A transmission mode and receiving method of channel resource multiplexing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《电子学报》 20051231 陈恩庆等 一种基于分数阶傅立叶变换的时变信道参数估计方法 第33卷, 第12期 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857454A (en) * 2011-06-02 2013-01-02 哈尔滨工程大学 One-third continuous phase chip keying modulation method
CN102857454B (en) * 2011-06-02 2014-12-03 哈尔滨工程大学 One-third continuous phase chip keying modulation method
CN102547747A (en) * 2012-02-09 2012-07-04 哈尔滨工业大学 An Interference Suppression Method Based on Classical Fractional Fourier Transform
CN102547747B (en) * 2012-02-09 2014-06-04 哈尔滨工业大学 Interference suppression method based on classical fractional Fourier transform

Similar Documents

Publication Publication Date Title
CN103888168B (en) A kind of Doppler Compensation Method for synthetic aperture underwater sound communication and system
CN101388877A (en) A non-coherent demodulation method based on Chirp spread spectrum technology based on fractional Fourier transform
CN105227512A (en) Impulsive noise method of estimation in a kind of OFDM underwater sound communication system
CN101997807B (en) Channel estimation method and device
CN102508206A (en) Linear frequency modulation (FM) signal parameter estimation method based on small-wave-packet denoising and power spectral entropy
CN101166066A (en) A mobile water sound communication method
CN103323667B (en) The method for parameter estimation of the SFM signal that Bessel function combines with virtual array
CN102299894A (en) Superimposed-periodic-sequence-based channel estimation method for asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) wireless optical communication system
CN101645865A (en) Multipath time delay and Doppler frequency shift estimation method in signal channel based on fractional Fourier transform and system for implementing method
CN108037494A (en) A kind of radar target method for parameter estimation under impulse noise environment
CN106249208A (en) Signal detecting method under amplitude modulated jamming based on Fourier Transform of Fractional Order
CN105024951A (en) Power delay spectrum PDP estimation method and device
CN107800659A (en) LFM signal modulation method for parameter estimation under Alpha Stable distritation noises
CN104506465A (en) Power line communication channel estimation method
CN102841337A (en) Method for removing non-linear phase pollution from sky wave OTHR (over-the-horizon radar) echo signal
CN104378319A (en) Channel estimation method based on short wave channel MIMO-OFDM communication system
CN101789919A (en) Channel parameter estimation method based on classical fractional Fourier transformation
CN101945063B (en) Method and system for estimating ultra-wideband channel of MB-OFDM (Multiband-Orthogonal Frequency Division Multiplexing) system
CN102413080B (en) Method for estimating channel in high-speed moving TDD-LTE (time division duplex-long time evolution) uplink
CN103236993B (en) A kind of channel estimation methods based on multipath delay profiles
CN103795660A (en) Double-stage frequency estimation method based on noise approximate processing
CN103905348B (en) Method for estimating double-phase frequency based on correlation function linear prediction and Taylor decomposition
CN103354538B (en) A kind of method that Doppler effect correction is carried out to the receipt signal in underwater sound communication
CN101247141B (en) A Time Difference Estimation Method for Frequency Hopping Signals
CN101606328A (en) Moving velocity and Doppler frequency estimation using cyclostationarity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100728