CN101806627A - Method for measuring influence of background factors to infrared temperature measurement - Google Patents
Method for measuring influence of background factors to infrared temperature measurement Download PDFInfo
- Publication number
- CN101806627A CN101806627A CN 201010136718 CN201010136718A CN101806627A CN 101806627 A CN101806627 A CN 101806627A CN 201010136718 CN201010136718 CN 201010136718 CN 201010136718 A CN201010136718 A CN 201010136718A CN 101806627 A CN101806627 A CN 101806627A
- Authority
- CN
- China
- Prior art keywords
- temperature measurement
- infrared
- influence
- black body
- background
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009529 body temperature measurement Methods 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000001931 thermography Methods 0.000 claims abstract description 18
- 238000002474 experimental method Methods 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Landscapes
- Radiation Pyrometers (AREA)
Abstract
本发明公开了一种背景因素对红外测温影响的测量方法。将标定实验数据存储于测量背景因素对红外测温影响的软件系统中;启动黑体、红外热像组件、工控机以及测量软件系统;当黑体恒定在某温度T后,软件系统通过图像采集卡采集并显示热图像视频,此时调整红外热像组件参数,待热图像清晰后,以bmp格式保存热图像;打开所保存的热图像,选择热图像中的黑体区域,系统读取黑体平均灰度,然后调用数据库查找T温度对应的标定灰度,再求平均灰度与标定灰度之差,差值定量反映了背景环境对红外测温影响的大小。本发明能定量测量出实际测温时背景对红外测温的影响,这一结果可以被运用到测温补偿中,最终能够提高测温的准确性。
The invention discloses a method for measuring the influence of background factors on infrared temperature measurement. Store the calibration experiment data in the software system that measures the influence of background factors on infrared temperature measurement; start the black body, infrared thermal imaging components, industrial computer and measurement software system; when the black body is constant at a certain temperature T, the software system collects it through the image acquisition card And display the thermal image video. At this time, adjust the parameters of the infrared thermal imaging component. After the thermal image is clear, save the thermal image in bmp format; open the saved thermal image, select the black body area in the thermal image, and the system reads the average gray level of the black body , and then call the database to find the calibration gray level corresponding to the T temperature, and then calculate the difference between the average gray level and the calibration gray level. The difference quantitatively reflects the influence of the background environment on the infrared temperature measurement. The invention can quantitatively measure the influence of the background on the infrared temperature measurement during the actual temperature measurement, and this result can be applied to the temperature measurement compensation, and finally the accuracy of the temperature measurement can be improved.
Description
技术领域technical field
本发明涉及辐射测温和红外热成像测温方法,尤其是涉及一种背景因素对红外测温影响的测量方法。The invention relates to a radiation temperature measurement method and an infrared thermal imaging temperature measurement method, in particular to a method for measuring the influence of background factors on infrared temperature measurement.
背景技术Background technique
自然界一切温度高于绝对零度的物体都向外发射红外辐射,红外测温就是利用接收物体发出的辐射能量来测定物体的温度。以前的资料都是定性的说明外界背景环境对红外测温有影响,因为实际测温时,物体都处于一定的背景环境下,因此背景引起的辐射进入红外测温仪器后不可避免影响测温准确性。如果能定量测量出实际测温时背景对红外测温的影响,就可以进行相应的补偿,最终能够提高测温的准确性。All objects with a temperature higher than absolute zero in nature emit infrared radiation. Infrared temperature measurement is to measure the temperature of an object by receiving the radiant energy emitted by the object. The previous data are qualitatively indicating that the external background environment has an impact on infrared temperature measurement, because the actual temperature measurement, the object is in a certain background environment, so the radiation caused by the background will inevitably affect the accuracy of temperature measurement after entering the infrared temperature measurement instrument sex. If the influence of the background on the infrared temperature measurement during the actual temperature measurement can be quantitatively measured, corresponding compensation can be carried out, and the accuracy of temperature measurement can be improved in the end.
发明内容Contents of the invention
本发明的目的在于提供一种背景因素对红外测温影响的测量方法,任何温度高于绝对零度的物体都发出红外辐射,红外焦平面阵列接收到红外辐射后经信号处理,最后合成“热图像”,本发明就是利用热图像的灰度变化来定量测量背景对红外测温的影响。The purpose of the present invention is to provide a method for measuring the influence of background factors on infrared temperature measurement. Any object with a temperature higher than absolute zero emits infrared radiation. After receiving the infrared radiation, the infrared focal plane array undergoes signal processing and finally synthesizes a "thermal image". ", the present invention is to quantitatively measure the influence of the background on infrared temperature measurement by using the gray scale change of the thermal image.
本发明采用的技术方案是,该测量方法包括:The technical solution adopted in the present invention is that the measuring method comprises:
a)进行温度灰度标定实验,将标定实验数据以数据库形式预先存储于测量背景环境对红外测温影响软件系统中;a) Carry out the temperature grayscale calibration experiment, and pre-store the calibration experiment data in the form of a database in the software system that measures the influence of the background environment on infrared temperature measurement;
b)启动步骤:用以启动黑体、红外热像组件、工控机以及测量软件系统;b) Starting step: to start the black body, infrared thermal imaging components, industrial computer and measurement software system;
c)图像采集步骤:当黑体恒定在某温度T后,软件系统通过图像采集卡采集到黑体图像,根据软件系统显示热图像视频,调整红外热像组件参数,待热图像清晰后,以bmp格式保存热图像;c) Image acquisition step: when the black body is constant at a certain temperature T, the software system collects the black body image through the image acquisition card, displays the thermal image video according to the software system, adjusts the parameters of the infrared thermal imaging component, and after the thermal image is clear, it is displayed in bmp format save the thermal image;
d)测量步骤:打开所保存的热图像,鼠标左键选择热图像中的黑体区域,系统读取黑体平均灰度,然后调用数据库查找T温度对应的标定灰度,再求平均灰度与标定灰度之差,差值定量反映了背景环境对红外测温影响的大小;d) Measurement steps: Open the saved thermal image, select the black body area in the thermal image with the left mouse button, the system reads the average gray level of the black body, then calls the database to find the calibration gray level corresponding to the T temperature, and then calculates the average gray level and calibration The difference in gray scale, the difference quantitatively reflects the influence of the background environment on infrared temperature measurement;
e)结束步骤:用以停止测量装置。e) End step: used to stop the measuring device.
本发明具有的有益效果是:The beneficial effects that the present invention has are:
本发明以黑体为被测对象,在实验室标定环境和现场环境下使用热像组件分别测量相同温度的黑体对应的灰度,由黑体的特殊性,环境温度对图像灰度没有影响,影响因素仅是黑体所处的背景,因此,只要求得两种环境中黑体的灰度差,也就定量地得到了背景对红外测温的影响。The present invention takes the black body as the measured object, and uses thermal imaging components to measure the gray scale corresponding to the black body at the same temperature in the laboratory calibration environment and the field environment. Due to the particularity of the black body, the ambient temperature has no influence on the gray scale of the image, and the influencing factors It is only the background where the black body is located. Therefore, only the gray level difference of the black body in the two environments is required, and the influence of the background on infrared temperature measurement can be obtained quantitatively.
本发明能定量测量出实际测温时背景对红外测温的影响,这一结果可以被运用到测温补偿中,最终能够提高测温的准确性。The invention can quantitatively measure the influence of the background on the infrared temperature measurement during the actual temperature measurement, and this result can be applied to the temperature measurement compensation, and finally the accuracy of the temperature measurement can be improved.
附图说明Description of drawings
图1为测量背景对红外测温影响的装置示意图。Figure 1 is a schematic diagram of the device for measuring the influence of background on infrared temperature measurement.
图2为热像组件采集到的黑体图像。Figure 2 is the black body image collected by the thermal imaging component.
其中,1、红外热像组件,2、工控机,3、黑体,4、背景区域,5、黑体区域。Among them, 1. Infrared thermal imaging component, 2. Industrial computer, 3. Blackbody, 4. Background area, 5. Blackbody area.
具体实施方式Detailed ways
黑体在辐射测温中具有一定的特殊性,即,对于黑体,环境温度的改变对红外探测器输出信号的影响为0,反映在热图像上则图像灰度没有变化。证明过程如下:Black bodies have certain particularities in radiation temperature measurement, that is, for black bodies, the impact of changes in ambient temperature on the output signal of the infrared detector is zero, and the image grayscale does not change when reflected on the thermal image. The proof process is as follows:
公式(1)是一个红外测温系统的基本公式:Formula (1) is the basic formula of an infrared temperature measurement system:
Vs=K[εf(T0)+(1-ε)f(Tu)]…(1)V s =K[εf(T 0 )+(1-ε)f(T u )]...(1)
式中Vs是红外探测器输出的电压信号,K为常数,ε是物体的发射率,T0为物体表面真实温度,Tu为当时的环境温度。In the formula, V s is the voltage signal output by the infrared detector, K is a constant, ε is the emissivity of the object, T 0 is the real temperature of the object surface, and T u is the ambient temperature at that time.
若红外测温系统在不同的环境温度T1,T2下进行测温实验,其他实验条件不改变,则由式(1)可以得到If the infrared temperature measurement system conducts temperature measurement experiments at different ambient temperatures T 1 and T 2 , and other experimental conditions remain unchanged, then formula (1) can be obtained
Vs1=K[εf(T0)+(1-ε)f(T1)]…(2)V s1 =K[εf(T 0 )+(1-ε)f(T 1 )]...(2)
Vs2=K[εf(T0)+(1-ε)f(T2)]…(3)V s2 =K[εf(T 0 )+(1-ε)f(T 2 )]...(3)
式(3)减去式(2)可得Subtract formula (2) from formula (3) to get
V′=K(1-ε)[f(T2)-f(T1)]…(4)V'=K(1-ε)[f(T 2 )-f(T 1 )]...(4)
上式表明,特殊情况下例如被测目标就是黑体(ε=1),则V′=0。因此,对于黑体,环境温度的改变对热像输出信号的影响为0,就热图像而言,图像灰度变化为0,即环境温度对热图像灰度没有影响,影响因素仅是黑体所处的背景,因此,只要求得两种环境中黑体的灰度差,也就定量地得到了背景对红外测温的影响。The above formula shows that in special cases such as the measured object is a black body (ε=1), then V'=0. Therefore, for a black body, the change of the ambient temperature has zero influence on the output signal of the thermal image. As far as the thermal image is concerned, the change of the gray scale of the image is 0, that is, the ambient temperature has no effect on the gray scale of the thermal image, and the only influencing factor is the location of the black body. Therefore, only the gray difference of the black body in the two environments is required, and the influence of the background on the infrared temperature measurement is obtained quantitatively.
a)在实验室进行温度灰度标定实验,将标定实验数据以数据库形式预先存储于测量背景环境对红外测温影响软件系统中。所谓标定就是建立灰度和温度之间一一对应的关系。具体标定过程为:如图1所示连接各仪器:图像采集卡正确安装于工控机PCI插槽中,红外热像组件1镜头对准黑体3,红外热像组件1的输出信号接到工控机2内采集卡输入端,接通电源,启动黑体3、红外热像组件1、工控机2以及测量软件系统,设定黑体温度,待其稳定后,记录当前温度灰度数据;重复改变黑体温度,待其稳定后,记录下一组温度灰度数据。由以上步骤就可以得到温度灰度标定数据如表1。a) Carry out the temperature grayscale calibration experiment in the laboratory, and store the calibration experiment data in the form of a database in the software system that measures the influence of the background environment on infrared temperature measurement. The so-called calibration is to establish a one-to-one correspondence between gray scale and temperature. The specific calibration process is: connect each instrument as shown in Figure 1: the image acquisition card is correctly installed in the PCI slot of the industrial computer, the lens of the infrared
表1温度与灰度对应关系实验数据Table 1 Experimental data of the corresponding relationship between temperature and gray scale
标定完毕关闭仪器、切断电源。以后各步骤均在现场环境下进行。After calibration, turn off the instrument and cut off the power. All subsequent steps are carried out under the on-site environment.
b)启动步骤:如图1所示连接各仪器并启动黑体、红外热像组件、工控机以及测量软件系统;b) Start-up steps: connect each instrument as shown in Figure 1 and start the black body, infrared thermal imaging components, industrial computer and measurement software system;
c)图像采集步骤:设置黑体温度T,约20分钟热像组件已预热完毕,黑体温度也达到T并恒定,软件系统通过图像采集卡采集到红外图像,它由黑体区域5和背景区域4组成,根据软件系统显示的红外图像视频,调整红外热像组件参数,待红外图像清晰后,以bmp格式保存红外图像(如图2);c) Image acquisition step: set the blackbody temperature T, the thermal imaging component has been preheated in about 20 minutes, and the blackbody temperature has reached T and is constant. The software system collects the infrared image through the image acquisition card, which consists of the blackbody area 5 and the
d)测量步骤:打开所保存的热图像,鼠标左键选择热图像中的黑体区域,选择某区域是通过从按下鼠标左键并拖动到鼠标左键弹起的过程中这两点构成的矩形区域得到的,本系统将自动画出矩形来表示区域。系统计算黑体上所选矩形区域的平均灰度H2,然后从系统数据库中查找标定时黑体T温度对应的标定灰度H1,再求平均灰度与标定灰度之差H1-H2,差值定量反映了背景环境对红外测温影响的大小;d) Measurement steps: open the saved thermal image, select the black body area in the thermal image with the left mouse button, and select a certain area from the process of pressing the left mouse button and dragging until the left mouse button pops up. The rectangular area obtained, the system will automatically draw a rectangle to represent the area. The system calculates the average gray level H 2 of the selected rectangular area on the black body, and then searches the calibration gray level H 1 corresponding to the temperature of the black body T during calibration from the system database, and calculates the difference between the average gray level and the calibration gray level H 1 -H 2 , the difference quantitatively reflects the influence of the background environment on infrared temperature measurement;
e)结束步骤:用以停止测量装置,切断电源。e) End step: used to stop the measuring device and cut off the power supply.
所述黑体的温度分辨率为0.1℃,温度稳定性为±(0.1~0.2)℃/30min,有效发射率为0.97±0.02。The temperature resolution of the blackbody is 0.1°C, the temperature stability is ±(0.1-0.2)°C/30min, and the effective emissivity is 0.97±0.02.
所述红外热像组件的输出为PAL制式视频信号,场频为50HZ。The output of the infrared thermal imaging component is a PAL video signal with a field frequency of 50HZ.
所述图像采集卡位深为8bit,输入为PAL制式视频信号,采集速度为25帧/秒。The bit depth of the image acquisition card is 8 bits, the input is a PAL video signal, and the acquisition speed is 25 frames/second.
所述黑体的温度分辨率为0.1℃,温度稳定性为±(0.1~0.2)℃/30min,有效发射率为0.97±0.02。The temperature resolution of the blackbody is 0.1°C, the temperature stability is ±(0.1-0.2)°C/30min, and the effective emissivity is 0.97±0.02.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201010136718 CN101806627A (en) | 2010-03-30 | 2010-03-30 | Method for measuring influence of background factors to infrared temperature measurement |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201010136718 CN101806627A (en) | 2010-03-30 | 2010-03-30 | Method for measuring influence of background factors to infrared temperature measurement |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN101806627A true CN101806627A (en) | 2010-08-18 |
Family
ID=42608518
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201010136718 Pending CN101806627A (en) | 2010-03-30 | 2010-03-30 | Method for measuring influence of background factors to infrared temperature measurement |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101806627A (en) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102798475A (en) * | 2012-08-02 | 2012-11-28 | 电子科技大学 | Method for determining temperature of object according to standard infrared video image |
| CN102809433A (en) * | 2011-05-30 | 2012-12-05 | 喜利得股份公司 | Imaging measurement system and measurement method for measuring thermal output by target object |
| CN103196564A (en) * | 2013-03-25 | 2013-07-10 | 北京航空航天大学 | Infrared thermal imaging temperature measuring method by correcting surface emissivity through image segmentation |
| CN103728026A (en) * | 2013-12-26 | 2014-04-16 | 四川长虹电器股份有限公司 | Environment temperature testing system |
| CN104251738A (en) * | 2013-06-25 | 2014-12-31 | 南京理工大学 | Helmet type infrared temperature measurer and method |
| CN106768347A (en) * | 2016-11-17 | 2017-05-31 | 中国航空工业集团公司洛阳电光设备研究所 | A kind of temp measuring method of the uncooled ir temperature measurer of uncompensated device |
| CN107238440A (en) * | 2016-03-29 | 2017-10-10 | 广州斯摩莱信息科技有限公司 | The temperature correction method of infrared thermal imaging detecting system |
| CN108871583A (en) * | 2018-07-03 | 2018-11-23 | 中铝瑞闽股份有限公司 | A kind of accurate measurement method of the aluminium volume temperature based on thermal infrared imaging technology |
| CN109798981A (en) * | 2019-02-18 | 2019-05-24 | 浙江大华技术股份有限公司 | Temperature determining method, temperature measuring equipment, storage medium |
| CN110726475A (en) * | 2019-10-12 | 2020-01-24 | 浙江大华技术股份有限公司 | Infrared temperature measurement calibration method and device, infrared thermal imaging equipment and storage device |
| CN111928953A (en) * | 2020-09-15 | 2020-11-13 | 深圳市商汤科技有限公司 | Temperature measuring method and device, electronic equipment and storage medium |
| CN112013966A (en) * | 2020-08-24 | 2020-12-01 | 电子科技大学 | Power equipment infrared image processing method based on measured temperature |
| CN112556856A (en) * | 2020-11-16 | 2021-03-26 | 烟台艾睿光电科技有限公司 | Infrared temperature measurement correction method and device and electronic equipment |
| CN113029525A (en) * | 2021-03-18 | 2021-06-25 | 哈尔滨新光光电科技股份有限公司 | Infrared scene simulation system, infrared scene simulation method and DMD control method |
| CN113405665A (en) * | 2020-03-16 | 2021-09-17 | 杭州海康威视数字技术股份有限公司 | Temperature measurement method and device and temperature measurement equipment |
| CN113447131A (en) * | 2020-03-25 | 2021-09-28 | 山东大学 | Infrared thermal imaging field temperature measurement calibration device and method |
| CN115096453A (en) * | 2022-06-28 | 2022-09-23 | 成都鼎屹信息技术有限公司 | Method, device and equipment for improving temperature measurement stability and storage medium |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1505387A (en) * | 2002-06-25 | 2004-06-16 | 北京科技大学 | A kind of image processing method for the image of plug-in kiln camera |
-
2010
- 2010-03-30 CN CN 201010136718 patent/CN101806627A/en active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1505387A (en) * | 2002-06-25 | 2004-06-16 | 北京科技大学 | A kind of image processing method for the image of plug-in kiln camera |
Non-Patent Citations (1)
| Title |
|---|
| 《激光与红外》 20100228 孙志远等 红外辐射特性测量中环境影响的修正研究 162-165 1-4 第40卷, 第2期 2 * |
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102809433A (en) * | 2011-05-30 | 2012-12-05 | 喜利得股份公司 | Imaging measurement system and measurement method for measuring thermal output by target object |
| CN102809433B (en) * | 2011-05-30 | 2016-09-14 | 喜利得股份公司 | For measuring imaging measurement system and the measuring method of the heat radiation at target object |
| CN102798475B (en) * | 2012-08-02 | 2014-04-30 | 电子科技大学 | Method for determining temperature of object according to standard infrared video image |
| CN102798475A (en) * | 2012-08-02 | 2012-11-28 | 电子科技大学 | Method for determining temperature of object according to standard infrared video image |
| CN103196564A (en) * | 2013-03-25 | 2013-07-10 | 北京航空航天大学 | Infrared thermal imaging temperature measuring method by correcting surface emissivity through image segmentation |
| CN103196564B (en) * | 2013-03-25 | 2015-04-29 | 北京航空航天大学 | Infrared thermal imaging temperature measuring method by correcting surface emissivity through image segmentation |
| CN104251738B (en) * | 2013-06-25 | 2018-09-25 | 南京理工大学 | A kind of helmet-type infrared radiation thermometer and its method |
| CN104251738A (en) * | 2013-06-25 | 2014-12-31 | 南京理工大学 | Helmet type infrared temperature measurer and method |
| CN103728026A (en) * | 2013-12-26 | 2014-04-16 | 四川长虹电器股份有限公司 | Environment temperature testing system |
| CN107238440A (en) * | 2016-03-29 | 2017-10-10 | 广州斯摩莱信息科技有限公司 | The temperature correction method of infrared thermal imaging detecting system |
| CN106768347B (en) * | 2016-11-17 | 2019-03-05 | 中国航空工业集团公司洛阳电光设备研究所 | A kind of temp measuring method of the uncooled ir temperature measurer of uncompensated device |
| CN106768347A (en) * | 2016-11-17 | 2017-05-31 | 中国航空工业集团公司洛阳电光设备研究所 | A kind of temp measuring method of the uncooled ir temperature measurer of uncompensated device |
| CN108871583A (en) * | 2018-07-03 | 2018-11-23 | 中铝瑞闽股份有限公司 | A kind of accurate measurement method of the aluminium volume temperature based on thermal infrared imaging technology |
| CN109798981A (en) * | 2019-02-18 | 2019-05-24 | 浙江大华技术股份有限公司 | Temperature determining method, temperature measuring equipment, storage medium |
| CN110726475B (en) * | 2019-10-12 | 2020-12-04 | 浙江大华技术股份有限公司 | Infrared temperature measurement calibration method and device, infrared thermal imaging equipment and storage device |
| CN110726475A (en) * | 2019-10-12 | 2020-01-24 | 浙江大华技术股份有限公司 | Infrared temperature measurement calibration method and device, infrared thermal imaging equipment and storage device |
| CN113405665A (en) * | 2020-03-16 | 2021-09-17 | 杭州海康威视数字技术股份有限公司 | Temperature measurement method and device and temperature measurement equipment |
| CN113405665B (en) * | 2020-03-16 | 2022-09-02 | 杭州海康威视数字技术股份有限公司 | Temperature measurement method and device and temperature measurement equipment |
| CN113447131A (en) * | 2020-03-25 | 2021-09-28 | 山东大学 | Infrared thermal imaging field temperature measurement calibration device and method |
| CN112013966A (en) * | 2020-08-24 | 2020-12-01 | 电子科技大学 | Power equipment infrared image processing method based on measured temperature |
| CN112013966B (en) * | 2020-08-24 | 2021-07-06 | 电子科技大学 | A kind of infrared image processing method of power equipment based on measured temperature |
| CN111928953A (en) * | 2020-09-15 | 2020-11-13 | 深圳市商汤科技有限公司 | Temperature measuring method and device, electronic equipment and storage medium |
| CN112556856A (en) * | 2020-11-16 | 2021-03-26 | 烟台艾睿光电科技有限公司 | Infrared temperature measurement correction method and device and electronic equipment |
| CN113029525A (en) * | 2021-03-18 | 2021-06-25 | 哈尔滨新光光电科技股份有限公司 | Infrared scene simulation system, infrared scene simulation method and DMD control method |
| CN115096453A (en) * | 2022-06-28 | 2022-09-23 | 成都鼎屹信息技术有限公司 | Method, device and equipment for improving temperature measurement stability and storage medium |
| CN115096453B (en) * | 2022-06-28 | 2025-07-25 | 成都鼎屹信息技术有限公司 | Method, device, equipment and storage medium for improving temperature measurement stability |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101806627A (en) | Method for measuring influence of background factors to infrared temperature measurement | |
| TWI600324B (en) | Infrared Focal Plane Array Module Performance Parameters Measurement Method and Detection of Dead pixels | |
| CN103983361B (en) | Online network temperature-measuring thermal imager calibration method | |
| CN112798110A (en) | Calibration fitting-based temperature detection method for infrared thermal imaging equipment | |
| CN110057399B (en) | Temperature field and displacement field synchronous measurement system and measurement method based on 3D-DIC | |
| CN104580894B (en) | The multi-point correcting method and system of a kind of infrared focus plane | |
| CN106124062A (en) | A kind of infrared measurement of temperature automatic compensating method based on historical data | |
| CN107677375A (en) | Calibration device and calibration method for infrared radiation measurement system | |
| CN111751003A (en) | Thermal imager temperature correction system and method and thermal imager | |
| RU2012130166A (en) | METHOD AND SYSTEM OF CORRECTION ON THE BASIS OF QUANTUM THEORY TO INCREASE THE ACCURACY OF THE RADIATION THERMOMETER | |
| CN103335717B (en) | High-precision temperature drift resistance temperature measurement method of thermal infrared imager based on variable integral mode | |
| WO2022104816A1 (en) | Temperature compensation method and system for thermal camera | |
| WO2014146373A1 (en) | Method and system for measuring response time of liquid crystal display | |
| CN111707382A (en) | A dynamic optical compensation method and device for simultaneous measurement of temperature deformation | |
| TWI716229B (en) | High-precision non-contact temperature measuring device | |
| CN105628208A (en) | Temperature measurement method based on infrared imaging system | |
| CN116819811B (en) | Method and system for measuring response time of liquid crystal display | |
| CN117268578A (en) | Device and method for non-contact temperature detection based on phosphorescent material | |
| CN112504463A (en) | Temperature measurement system and temperature measurement method thereof | |
| CN114878004A (en) | Distance sensing constant-temperature thermal imaging device and calibration and temperature measurement method | |
| CN109212449B (en) | Oscilloscope and image processing method thereof | |
| CN113506351B (en) | ToF camera calibration method, device, electronic device and storage medium | |
| CN111207833B (en) | Temperature measurement method based on image data normalization technology | |
| CN110307904A (en) | A kind of temperature measuring equipment and temp measuring method of infrared thermal imaging camera lens | |
| CN119290172A (en) | A correction method for infrared temperature measurement based on radiation source size effect |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20100818 |