CN101834762B - A Network-Based On-line Monitoring Numerical Control System - Google Patents
A Network-Based On-line Monitoring Numerical Control System Download PDFInfo
- Publication number
- CN101834762B CN101834762B CN2010101804878A CN201010180487A CN101834762B CN 101834762 B CN101834762 B CN 101834762B CN 2010101804878 A CN2010101804878 A CN 2010101804878A CN 201010180487 A CN201010180487 A CN 201010180487A CN 101834762 B CN101834762 B CN 101834762B
- Authority
- CN
- China
- Prior art keywords
- monitoring
- data
- numerical control
- information
- online monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 146
- 230000005540 biological transmission Effects 0.000 claims abstract description 44
- 238000012545 processing Methods 0.000 claims abstract description 27
- 230000003993 interaction Effects 0.000 claims abstract description 10
- 230000003750 conditioning effect Effects 0.000 claims abstract description 8
- 238000003745 diagnosis Methods 0.000 claims description 30
- 238000012423 maintenance Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 12
- 238000004891 communication Methods 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 201000005947 Carney Complex Diseases 0.000 description 26
- 238000005516 engineering process Methods 0.000 description 6
- 238000007726 management method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004171 remote diagnosis Methods 0.000 description 1
Images
Landscapes
- Testing And Monitoring For Control Systems (AREA)
- Numerical Control (AREA)
Abstract
Description
技术领域 technical field
本发明属于制造业的数控系统技术领域,特别是涉及数控系统的在线监测、故障诊断、智能控制及网络化远程维护。The invention belongs to the technical field of numerical control systems in the manufacturing industry, and in particular relates to online monitoring, fault diagnosis, intelligent control and networked remote maintenance of the numerical control system.
背景技术 Background technique
先进制造技术领域对制造质量要求的提高,使作为高精数字化加工基础的在线监测、状态辨识及智能控制技术凸显其重要性。在数控系统上搭建在线监测软、硬件平台,是进行多种加工物理状态预警、控制,进而实现机床整机性能维护的基础。目前现有的在线监测诊断系统,包括可实现机床电气系统、开关量类型故障检测的西门子ePS[1],FANUC 18i系列[2]以及如瑞士Kistler公司的切削力监测[3],德国ARTIS的刀具监控[4]等面向单项功能部件的监测诊断系统。其存在的主要问题有,传统的在线监测设备存在由于体积制约导致的安装复杂性和设备外置性特点,而定制的专用嵌入式监测模块又存在研发周期长、开放性差和监测功能单一等缺陷,难以适应高档数控系统开放式架构和功能模块可重构的发展需求。针对上述问题,具有机床整机故障的多物理信息状态预警功能,同时兼具可重构性和开放性的功能模块化嵌入式智能测控系统的开发,是国内外数控机床故障诊断领域亟待解决的关键技术之一。The improvement of manufacturing quality requirements in the field of advanced manufacturing technology has highlighted the importance of online monitoring, status identification and intelligent control technology as the basis of high-precision digital processing. Building an online monitoring software and hardware platform on the CNC system is the basis for early warning and control of various processing physical states, and then to realize the performance maintenance of the machine tool. At present, the existing online monitoring and diagnosis systems include Siemens ePS[1], which can realize the fault detection of machine tool electrical system and switch type, FANUC 18i series[2], and the cutting force monitoring of Swiss Kistler company[3], Germany ARTIS’s Tool monitoring [4] and other monitoring and diagnosis systems for single functional components. The main problems are that the traditional online monitoring equipment has the characteristics of installation complexity and external equipment due to volume constraints, while the customized special embedded monitoring module has defects such as long development cycle, poor openness and single monitoring function. , It is difficult to adapt to the development needs of the open architecture and reconfigurable functional modules of high-end CNC systems. In view of the above problems, the development of a functional modular embedded intelligent measurement and control system that has the early warning function of multi-physics information status of machine tool faults and has both reconfigurability and openness is an urgent problem to be solved in the field of fault diagnosis of CNC machine tools at home and abroad. One of the key technologies.
[1].ePS Network Services,SIEMENS,www.automation.siemens.com/SIEMENS网站.[1]. ePS Network Services, SIEMENS, www.automation.siemens.com/SIEMENS website.
[2]16i/18i/2li远程及故障诊断系统,www.bj-fanuc.com.cn/发那科网站.[2] 16i/18i/2li remote and fault diagnosis system, www.bj-fanuc.com.cn/Fanuc website.
[3].Kistler切削工具监测,www.kistler.com/cn_cn-cn/441_CuttingToolMonitoring/Cutting-Tool-Monitoring.html/Kistler刀具监测网站.[3]. Kistler cutting tool monitoring, www.kistler.com/cn_cn-cn/441_CuttingToolMonitoring/Cutting-Tool-Monitoring.html/Kistler tool monitoring website.
[4].SINUMERIK 810D powerline,www.automation.siemens.com/SIEMENS网站.[4]. SINUMERIK 810D powerline, www.automation.siemens.com/SIEMENS website.
发明内容 Contents of the invention
基于上述现有技术存在的缺陷,本发明提出了一种基于网络构建的在线监测数控系统,通过开发通用接口,在开放式数控系统构架与模块化可重构嵌入式监测单元信息无缝交互的基础上,基于网络构建出具有在机监测和智能维护功能的数控机床整机系统,一体化地实现了高档数控机床的状态可显示、故障可诊断、性能可预报、远程可监控的嵌入式状态监测诊断系统。Based on the above-mentioned defects in the prior art, the present invention proposes a network-based online monitoring numerical control system. By developing a general interface, the open numerical control system framework and the modular reconfigurable embedded monitoring unit seamlessly interact with each other. Based on the network, a CNC machine tool system with on-machine monitoring and intelligent maintenance functions is built, and the embedded status of high-end CNC machine tools can be displayed, faults can be diagnosed, performance can be predicted, and remote monitoring can be integrated. Monitoring diagnostic system.
为了达到上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种基于网络架构的在线监测数控系统,包括数控机床、嵌入式在线监测单元、远程故障诊断中心以及标准接口,其中,所述嵌入式在线监测单元具有单独的中央处理器独立设置于该系统中,该单元包括PC/104总线、信号调理模块、数据采集卡和系统在线监测模块:An online monitoring numerical control system based on a network architecture, including a numerical control machine tool, an embedded online monitoring unit, a remote fault diagnosis center and a standard interface, wherein the embedded online monitoring unit has a separate central processing unit and is independently set in the system , the unit includes PC/104 bus, signal conditioning module, data acquisition card and system online monitoring module:
所述信号调理模块,用于进行传感器输出电压、电流的放大和滤波运算,以满足输出模拟信号的降噪精度及A/D采集芯片的要求;The signal conditioning module is used to amplify and filter the sensor output voltage and current to meet the requirements of the noise reduction accuracy of the output analog signal and the A/D acquisition chip;
所述数据采集卡,用于实现多通道电压和电流的A/D数据转换;The data acquisition card is used to realize the A/D data conversion of multi-channel voltage and current;
所述系统在线监测模块,用于对A/D采集到的数字信号进行实时显示和相应故障诊断算法下的报警和在线监测);以及The system online monitoring module is used for real-time display of the digital signal collected by the A/D and alarm and online monitoring under the corresponding fault diagnosis algorithm); and
所述嵌入式在线监测单元与所述数控机床通过TDNC-Connect传输协议提供的标准化接口构建弱耦合连接的数据传输;所述在线监测单元通过标准接口和远程故障诊断中心连接,采用TDNC-Connect传输协议进行故障数据传输;以及所述数控机床与所述远程故障诊断中心通过标准接口实现连接,采用TDNC-Connect传输协议实现信息交互;TDNC-Connect传输协议是建立在通用网络通信协议基础上的基于软件的轻量级通信协议,该协议据对数控系统加工状态的信息反馈,将传输内容及格式分为故障诊断信息数据流传输协议及机床加工状态信息数据流传输协议;故障诊断信息的数据流传输协议采用“工厂-监测单元-测点-监测量”的状态信息描述方法,在嵌入式在线监测单元、数控系统及远程监控系统软件中构建监测信息数据库,实现状态信息型数据的测点信息精确定位;该协议主要包括以下4部分内容:(1)监测起始数据段:标识监测数据的起始,包括监测日期、监测时间;(2)监测全局数据段:提供状态的获取参数设置信息,包括分析频率、采样点数、增益、总通道数、通道的参数设置;(3)监测信息数据段:监测到的具体机床状态信号、波形;(4)数据结束标识段:标识监测数据包的结束;机床加工状态信息数据流传输协议是针对机床状态信息反馈过程中故障识别信息建立的传输协议,其传输对象包括波形、频谱显示型数据信息,包括以下4部分内容:(1)设备信息数据段包括:机床编号、名称、车间位置、故障发生时间和机床管理人员信息;(2)监测数据指标数据段:加工状态监测位置测点号、监测数据最大值和报警阈值;(3)故障机理分析数据段:故障位置、产生原因和发生概率;(4)故障维修报表数据段:故障维修具体方案、维修计划、维修报表。The embedded on-line monitoring unit and the numerically controlled machine tool construct weakly coupled connection data transmission through a standardized interface provided by the TDNC-Connect transmission protocol; the on-line monitoring unit is connected to a remote fault diagnosis center through a standard interface, using TDNC-Connect transmission protocol for fault data transmission; and the CNC machine tool and the remote fault diagnosis center are connected through a standard interface, and the TDNC-Connect transmission protocol is used to realize information interaction; the TDNC-Connect transmission protocol is based on a general network communication protocol. The lightweight communication protocol of the software, which divides the transmission content and format into fault diagnosis information data flow transmission protocol and machine tool processing state information data flow transmission protocol according to the information feedback on the processing status of the CNC system; the data flow of fault diagnosis information The transmission protocol adopts the state information description method of "factory-monitoring unit-measuring point-monitoring quantity", builds the monitoring information database in the embedded online monitoring unit, numerical control system and remote monitoring system software, and realizes the measuring point information of state information type data Precise positioning; the agreement mainly includes the following four parts: (1) Monitoring start data segment: identifies the start of monitoring data, including monitoring date and monitoring time; (2) Monitoring global data segment: provides status acquisition parameter setting information , including analysis frequency, number of sampling points, gain, total number of channels, and channel parameter settings; (3) Monitoring information data section: the monitored specific machine tool status signals and waveforms; (4) Data end identification section: identifying the monitoring data packet End; the machine tool processing status information data flow transmission protocol is a transmission protocol established for fault identification information in the process of machine tool status information feedback, and its transmission objects include waveform and spectrum display data information, including the following 4 parts: (1) equipment information data The section includes: machine tool number, name, workshop location, failure time and machine tool management personnel information; (2) monitoring data index data section: processing status monitoring position measurement point number, monitoring data maximum value and alarm threshold; (3) failure mechanism Analysis data segment: fault location, cause and probability of occurrence; (4) fault maintenance report data segment: fault maintenance specific plan, maintenance plan, maintenance report.
所述标准接口采用以太网数控系统现场总线、Internet网络或USB、串口方式。The standard interface adopts Ethernet numerical control system field bus, Internet network or USB, serial port mode.
所述嵌入式在线监测单元同时适用于DSP主处理芯片和FPGA协处理器的双CPU结构嵌入式。The embedded on-line monitoring unit is suitable for embedding in a dual-CPU structure of a DSP main processing chip and an FPGA co-processor.
该系统还包括上位机,将故障诊断、智能维护的大量任务交由上位机实现,弥补在线监测单元运行处理能力的限制。The system also includes a host computer, which assigns a large number of tasks of fault diagnosis and intelligent maintenance to the host computer to make up for the limitation of the online monitoring unit's operation and processing capacity.
与现有技术相比,本发明采用的嵌入式在线监测单元具有独立于数控系统的中央处理器,在实际加工过程中能够保证状态监测功能模块和数控指令功能模块各自独立运行,提高了数控、测控系统的信息处理能力,确保数控指令实施和测控在线监测功能的实时性;同时,本发明采用的TDNC-Connect信息交互通用调用接口,强调了数控系统的开放性,具有数控单元可移植性优的特点;TDNC-Connect传输协议实现了嵌入式在线监测单元和远程故障诊断中心的信息交互,将故障诊断、智能维护的大量任务交由上位机实现,弥补了在线监测单元运行处理能力的限制;上述要素快速构建出了具有通用接口、可实现数控系统与可重构嵌入式监测单元信息无缝交互的数控机床整机监测平台,并将其作为设备信息网的一个节点或终端,一体化地实现高档数控机床的状态可显示、故障可诊断、性能可预报、远程可监控。Compared with the prior art, the embedded on-line monitoring unit used in the present invention has a central processor independent of the numerical control system, which can ensure that the state monitoring function module and the numerical control command function module operate independently in the actual processing process, which improves the numerical control, The information processing capability of the measurement and control system ensures the real-time performance of the implementation of numerical control instructions and the online monitoring function of measurement and control; at the same time, the TDNC-Connect information interaction universal call interface adopted in the present invention emphasizes the openness of the numerical control system and has excellent portability of numerical control units. The TDNC-Connect transmission protocol realizes the information interaction between the embedded online monitoring unit and the remote fault diagnosis center, transfers a large number of tasks of fault diagnosis and intelligent maintenance to the host computer, and makes up for the limitation of the online monitoring unit’s operation and processing capacity; The above elements quickly build a CNC machine tool monitoring platform with a common interface that can realize seamless interaction between the CNC system and the reconfigurable embedded monitoring unit information, and use it as a node or terminal of the equipment information network, integratedly Realize the status display, fault diagnosis, performance prediction and remote monitoring of high-end CNC machine tools.
附图说明 Description of drawings
图1是本发明的一种基于网络架构的在线监测数控系统结构图;Fig. 1 is a kind of online monitoring numerical control system structural diagram based on network framework of the present invention;
图2是一种基于网络架构的在线监测数控系统的嵌入式在线监测单元硬件结构图;Fig. 2 is a kind of embedded online monitoring unit hardware structural diagram of the online monitoring numerical control system based on network architecture;
图3是一种基于网络架构的在线监测数控系统的远程网络系统构架示意图;3 is a schematic diagram of a remote network system architecture of an online monitoring numerical control system based on a network architecture;
图中:1、备份服务器2、专家系统3、internet/intranet 4、远程故障诊断中心5、主控单元6、机床n 7、机床28、机床19、故障信息10、总线/网线/USB 11、嵌入式在线监测单元12、信号调理单元13、数据采集卡14、PC/104总线15、CF卡、硬盘接口16、显示接口17、串口18嵌入式主板19、USB接口20、网络接口21备份服务器22、防火墙23、WWW服务器24远程故障诊断中心25、专家26、企业ERP 27设备管理信息网28、设备状态监测与诊断网29、嵌入式在线监测单元30、数控系统31、HUBIn the figure: 1,
具体实施方式 Detailed ways
为了进一步了解本发明的技术方案,结合国家科技重大专项(2009ZX04014-101-05)-“数控机床故障预警诊断技术及基于功能部件的可重构监测诊断系统”子课题“基于自主数控系统的机床整机监测诊断实验平台”项目的具体实施,配合附图说明具体的实施方式:In order to further understand the technical solution of the present invention, combined with the National Science and Technology Major Project (2009ZX04014-101-05) - "Numerical Control Machine Tool Fault Early Warning and Diagnosis Technology and Reconfigurable Monitoring and Diagnosis System Based on Functional Components" sub-project "Machine Tool Based on Independent CNC System" The specific implementation of the "Complete Machine Monitoring and Diagnosis Experimental Platform" project, with the accompanying drawings to illustrate the specific implementation method:
图1至图3中,本发明的基于网络架构的在线监测数控系统结构包括:嵌入式在线监测单元11与具有独立的中央处理器的数控机床主控单元5。在线监测过程中,嵌入式监测单元11通过数据采集卡13和信号调理12外接振动、力、电流等多物理量传感器,实现机床整机状态的实时监测,进而通过PC/104总线14、CF卡、硬盘接口15、显示接口16进行监测数据的存储、显示。嵌入式监测单元通过串口17、USB接口19、网络接口20与主控单元5、HUB 31连接,通过TDNC-Connect信息交互通用调用协议,实现基于监测数据和故障信息的数控系统-嵌入式在线监测单元-远程网络监控系统的三方通讯。In Fig. 1 to Fig. 3, the structure of the online monitoring numerical control system based on the network architecture of the present invention includes: an embedded
开放式数控系统下具有模块化可重构特点的嵌入式在线监测单元诊断系统构架:具有独立于数控系统的中央处理器,在加工过程的在线监测中,状态监测功能模块和数控指令功能模块各自独立运行,以确保数控指令实施和测控在线监测功能的实时性。The embedded online monitoring unit diagnostic system architecture with modular reconfigurable characteristics under the open CNC system: it has a central processor independent of the CNC system. In the online monitoring of the processing process, the status monitoring function module and the CNC command function module Independent operation to ensure the real-time performance of CNC command implementation and measurement and control online monitoring functions.
嵌入式在线监测单元与数控系统的连接:采用基于Ethernet数控系统现场总线、Internet网络、USB及串口等多种传输技术的监测信息通用调用接口,实现在线监测单元和数控系统信息的实时传输与交互,构建了弱耦合无缝连接条件下的高速信息传输框架。该信息交互方式的运用强调了数据传输实时性,具有测控单元开放性、可移植性优的特点。The connection between the embedded online monitoring unit and the numerical control system: the monitoring information general call interface based on various transmission technologies such as Ethernet numerical control system field bus, Internet network, USB and serial port is adopted to realize the real-time transmission and interaction of the online monitoring unit and the numerical control system information , constructing a high-speed information transmission framework under the condition of weak coupling and seamless connection. The application of this information interaction method emphasizes the real-time nature of data transmission, and has the characteristics of openness and excellent portability of the measurement and control unit.
嵌入式在线监测单元与远程网络监控系统的连接:采用Internet进行嵌入式在线监测单元与网络构架下状态监测诊断系统的监测数据上传及故障诊断代码下载等实时性要求不高的信息交互。网络架构下面向复杂设备管理的状态监测与诊断系统采用C/S与B/S的混合架构搭建,该系统提供多种常用的网络数据库供选择(如SqlServer,Oracle等),整个系统框架可以分为三层网络,包括基于C/S模式的设备状态监测与故障诊断网、基于B/S模式的设备管理信息网以及企业网,并最终构建在企业的ERP系统中。The connection between the embedded online monitoring unit and the remote network monitoring system: use the Internet to carry out information interaction with low real-time requirements such as monitoring data upload and fault diagnosis code download of the embedded online monitoring unit and the condition monitoring and diagnosis system under the network framework. The status monitoring and diagnosis system for complex equipment management under the network architecture is built with a mixed architecture of C/S and B/S. The system provides a variety of commonly used network databases for selection (such as SqlServer, Oracle, etc.), and the entire system framework can be divided into It is a three-layer network, including equipment status monitoring and fault diagnosis network based on C/S mode, equipment management information network and enterprise network based on B/S mode, and is finally built in the enterprise's ERP system.
嵌入式在线监测单元与数控系统及远程监控系统的数据传输协议:以数控系统、嵌入式监测单元、远程监控系统为传输协议服务对象的TDNC-Connect传输协议,是建立在通用网络通信协议基础上的基于软件的轻量级通信协议。该协议据对数控系统加工状态的信息反馈,将传输内容及格式分为故障诊断信息数据流传输协议及机床加工状态信息数据流传输协议。故障诊断信息的数据流传输协议采用“工厂-监测单元-测点-监测量”的状态信息描述方法,在嵌入式在线监测单元、数控系统及远程监控系统软件中构建监测信息数据库,实现状态信息型数据的测点信息精确定位。该协议主要包括以下4部分内容:(1)监测起始数据段:标识监测数据的起始,包括监测日期、监测时间等。(2)监测全局数据段:提供状态的获取参数设置信息,如分析频率、采样点数、增益、总通道数、通道的参数设置。(3)监测信息数据段:监测到的具体机床状态信号、波形。(4)数据结束标识段:标识监测数据包的结束。机床加工状态信息数据流传输协议是针对机床状态信息反馈过程中故障识别信息建立的传输协议,其传输对象为波形、频谱等实时性要求相对较低的显示型数据信息,主要包括以下4部分内容:(1)设备信息数据段:机床编号、名称、车间位置、故障发生时间和机床管理人员信息等。(2)监测数据指标数据段:加工状态监测位置测点号、监测数据最大值和报警阈值等。(3)故障机理分析数据段:故障位置、产生原因和发生概率等具体故障诊断结论等。(4)故障维修报表数据段:故障维修具体方案、维修计划、维修报表等。该数据交换协议具有2种连接方式:(1)在Ethernet网线传输的专用数据接口基础上实现点对点联接,实现数控系统与嵌入式监测单元的弱耦合无缝连接。(2)在网络、USB、串口等通用数据交换接口基础上实现一(嵌入式监测单元)对多的星型联接,构建基于数字化制造环境的嵌入式加工中心在线监测远程维护系统。Data transmission protocol between the embedded online monitoring unit and the CNC system and remote monitoring system: the TDNC-Connect transmission protocol, which takes the CNC system, embedded monitoring unit, and remote monitoring system as the transmission protocol service object, is based on the general network communication protocol A lightweight software-based communication protocol. According to the information feedback on the processing state of the CNC system, the protocol divides the transmission content and format into a fault diagnosis information data flow transmission protocol and a machine tool processing state information data flow transmission protocol. The data flow transmission protocol of fault diagnosis information adopts the state information description method of "factory-monitoring unit-measuring point-monitoring quantity", and builds a monitoring information database in the embedded online monitoring unit, numerical control system and remote monitoring system software to realize the status information Accurate positioning of measuring point information for type data. The agreement mainly includes the following four parts: (1) Monitoring start data segment: identifies the start of monitoring data, including monitoring date and monitoring time. (2) Monitor the global data segment: provide status acquisition parameter setting information, such as analysis frequency, number of sampling points, gain, total number of channels, and channel parameter settings. (3) Monitoring information data segment: the monitored specific machine tool status signals and waveforms. (4) Data end identification segment: identifies the end of the monitoring data packet. Machine tool processing status information data stream transmission protocol is a transmission protocol established for fault identification information in the process of machine tool status information feedback. Its transmission objects are display data information with relatively low real-time requirements such as waveforms and spectrums. It mainly includes the following 4 parts : (1) Equipment information data section: machine tool number, name, workshop location, fault occurrence time and machine tool manager information, etc. (2) Monitoring data index data segment: processing status monitoring position measuring point number, monitoring data maximum value and alarm threshold, etc. (3) Fault mechanism analysis data segment: specific fault diagnosis conclusions such as fault location, cause and probability of occurrence, etc. (4) Fault maintenance report data segment: breakdown maintenance specific plan, maintenance plan, maintenance report, etc. The data exchange protocol has two connection modes: (1) Point-to-point connection is realized on the basis of the dedicated data interface transmitted by the Ethernet network cable, and the weakly coupled seamless connection between the numerical control system and the embedded monitoring unit is realized. (2) On the basis of common data exchange interfaces such as network, USB, and serial ports, realize one-to-many star connection, and build an embedded machining center online monitoring remote maintenance system based on a digital manufacturing environment.
嵌入式在线监测单元的构建:包括独立的PC104 PLUS总线架构的嵌入式工控主板,自主开发的信号调理模块、数据采集卡、安装在CF卡上的嵌入式操作系统XPE和在线监测软件,作为装备运行状态监测、先进信号处理、故障诊断、智能维护功能和远程监控的数控机床现场端应用平台,实现了其硬件功能设计(数据采集模块、与数控系统接口、与远程故障诊断中心接口等)和软件功能(数据采集软件、在线监测软件、与数控系统通讯协议、与远程故障诊断中心通讯协议等)的集成,测控单元针对在数控机床上构建的力、振动、噪声、温度综合监测信息获取平台,融合多种信号处理及故障诊断的方法,实现了多传感器信息下的诊断与智能维护,确保了数控机床高精高效的运行。同时,通过测控单元或数控系统的网络接口及TDNC-Connect传输协议,使数控系统成为工厂自动化网络中的一个智能节点或终端,实现了多台开放式数控系统与故障诊断网的信息交互、网络化数据管理、专家系统和远程诊断功能的实现。Construction of embedded online monitoring unit: including embedded industrial control motherboard with independent PC104 PLUS bus architecture, self-developed signal conditioning module, data acquisition card, embedded operating system XPE and online monitoring software installed on CF card, as equipment The on-site application platform of CNC machine tools for operation status monitoring, advanced signal processing, fault diagnosis, intelligent maintenance functions and remote monitoring has realized its hardware function design (data acquisition module, interface with CNC system, interface with remote fault diagnosis center, etc.) and Integration of software functions (data acquisition software, online monitoring software, communication protocol with the CNC system, communication protocol with the remote fault diagnosis center, etc.), the measurement and control unit is aimed at the force, vibration, noise, temperature comprehensive monitoring information acquisition platform built on the CNC machine tool , integrating a variety of signal processing and fault diagnosis methods, realizes diagnosis and intelligent maintenance under multi-sensor information, and ensures the high-precision and efficient operation of CNC machine tools. At the same time, through the network interface of the measurement and control unit or the CNC system and the TDNC-Connect transmission protocol, the CNC system becomes an intelligent node or terminal in the factory automation network, and the information exchange and network connection between multiple open CNC systems and the fault diagnosis network are realized. Realization of data management, expert system and remote diagnosis functions.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010101804878A CN101834762B (en) | 2010-05-24 | 2010-05-24 | A Network-Based On-line Monitoring Numerical Control System |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010101804878A CN101834762B (en) | 2010-05-24 | 2010-05-24 | A Network-Based On-line Monitoring Numerical Control System |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101834762A CN101834762A (en) | 2010-09-15 |
| CN101834762B true CN101834762B (en) | 2012-04-18 |
Family
ID=42718698
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2010101804878A Active CN101834762B (en) | 2010-05-24 | 2010-05-24 | A Network-Based On-line Monitoring Numerical Control System |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101834762B (en) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101956578B (en) * | 2010-09-25 | 2013-08-14 | 浙江大学 | Vibration data collection and fault analysis system of networking portable type steam turbine set |
| CN102841586A (en) * | 2012-09-04 | 2012-12-26 | 昆山铁牛衬衫厂 | Monitoring system for spinning production |
| CN102930706A (en) * | 2012-11-12 | 2013-02-13 | 武钢集团昆明钢铁股份有限公司 | Remote concentration measurement multi-protocol data acquisition system and method |
| CN103076183A (en) * | 2012-12-24 | 2013-05-01 | 中国北车集团大连机车研究所有限公司 | Function test bed of driver display unit of electric locomotive |
| CN103105819B (en) * | 2012-12-31 | 2019-10-11 | 深圳市配天智造装备股份有限公司 | Digital control system, the control method of digital control system |
| CN104391480B (en) * | 2014-12-04 | 2017-04-19 | 宁波市华正信息技术有限公司 | Expert system based numerically-controlled machine tool fault diagnosis system |
| CN105067031A (en) * | 2015-07-21 | 2015-11-18 | 同济大学 | Multichannel numerical control machine tool energy consumption data acquisition bench |
| CN106383494A (en) * | 2016-11-01 | 2017-02-08 | 南京微米易数控科技股份有限公司 | Embedded remote machine tool state monitoring system |
| CN108805300A (en) * | 2018-05-30 | 2018-11-13 | 上海理工大学 | Numerically controlled machine remote live collaboration fault diagnosis and maintenance system |
| CN108873830A (en) * | 2018-05-31 | 2018-11-23 | 华中科技大学 | A kind of production scene online data collection analysis and failure prediction system |
| CN110362037A (en) * | 2019-07-05 | 2019-10-22 | 南京简睿捷软件开发有限公司 | A kind of integrated maintenance system platform for numerically-controlled machine tool |
| CN112327753A (en) * | 2020-11-09 | 2021-02-05 | 上海中船三井造船柴油机有限公司 | Local area network remote monitoring system based on SIEMENS840D numerical control system |
| CN112631204A (en) * | 2020-12-14 | 2021-04-09 | 成都航天科工大数据研究院有限公司 | Health management platform, terminal, system and method for numerical control machine tool |
| TWI795298B (en) * | 2022-05-24 | 2023-03-01 | 東訊股份有限公司 | Integrated system for customized machine tool detection |
| CN116155704A (en) * | 2022-12-05 | 2023-05-23 | 深圳供电局有限公司 | Abnormality monitoring system, abnormality monitoring method, and computer readable storage medium for communication board |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6839660B2 (en) * | 2002-04-22 | 2005-01-04 | Csi Technology, Inc. | On-line rotating equipment monitoring device |
| CN1873570A (en) * | 2006-05-25 | 2006-12-06 | 天津大学 | Modularized reconfigurable networked digital control system in open type |
-
2010
- 2010-05-24 CN CN2010101804878A patent/CN101834762B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6839660B2 (en) * | 2002-04-22 | 2005-01-04 | Csi Technology, Inc. | On-line rotating equipment monitoring device |
| CN1873570A (en) * | 2006-05-25 | 2006-12-06 | 天津大学 | Modularized reconfigurable networked digital control system in open type |
Non-Patent Citations (1)
| Title |
|---|
| 蒋永翔等.基于嵌入式PC的数控设备在线监测系统.《中国科技论文在线》.2009,第4卷(第8期),第577-581页. * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101834762A (en) | 2010-09-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101834762B (en) | A Network-Based On-line Monitoring Numerical Control System | |
| CN100492232C (en) | Embedded rotating machinery operation monitoring protection device and setting method | |
| CN103203277B (en) | Ball mill monitoring system based on smart cloud computing platform and monitoring method | |
| CN101488202A (en) | Flexibly customized energy monitoring and auditing method and its synthetic integration system | |
| CN104391480B (en) | Expert system based numerically-controlled machine tool fault diagnosis system | |
| CN101520662A (en) | Process industrial dispersion type equipment failure diagnosis system for process industrial dispersion type equipment | |
| CN105785961A (en) | Forging press machine operation condition information acquisition and analysis system based on the internet of things technology | |
| CN102735329A (en) | Device and method for monitoring vibration state of marine rotary mechanical shaft system | |
| CN102073304B (en) | Machine tool functional component reconfigurable monitoring system and method | |
| CN207457811U (en) | A kind of numerically-controlled machine tool intelligent trouble diagnosis device | |
| CN201251708Y (en) | An online diagnosis and management system of HART instrument | |
| CN210143024U (en) | Energy consumption management system applied to waste incineration power plant | |
| CN108227652A (en) | A kind of energy consumption data collecting system based on MTConnect agreements | |
| CN205080419U (en) | Equipment running state automatic acquisition records query engine device | |
| CN102299827A (en) | Environmental protection device intelligent monitoring diagnosis system | |
| CN214196402U (en) | A Tunneling Information Collection Platform That Can Collect All-round Information | |
| CN207851578U (en) | A kind of parking systems remote oscillation data acquisition device | |
| CN1458533A (en) | Distributed intelligent motor detection system | |
| CN202711036U (en) | Integrated data acquisition system based on DSP and FPGA | |
| CN115097797A (en) | Distributed energy cloud management and control system based on internet | |
| CN202631101U (en) | Vibration state monitoring device for marine rotary mechanical shaft system | |
| CN112859725A (en) | Plant equipment state characteristic signal monitoring system | |
| Ūselis et al. | Developing a Machinery Fault Prediction Solution in Resource-Constrained Environments | |
| CN106817398A (en) | A kind of Embedded monitoring of tools alarm terminal device | |
| CN219918970U (en) | Modular combined type internet of things terminal |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| ASS | Succession or assignment of patent right |
Owner name: TIANJIN TAISEN NUMERICAL CONTROL TECHNOLOGY CO., L Free format text: FORMER OWNER: TIANJIN UNIVERSITY Effective date: 20131021 |
|
| C41 | Transfer of patent application or patent right or utility model | ||
| COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 300072 NANKAI, TIANJIN TO: 300457 HANGU, TIANJIN |
|
| TR01 | Transfer of patent right |
Effective date of registration: 20131021 Address after: Three road 300457 Tianjin Haitai Huayuan Industrial Zone Branch No. 1 No. 2 floor A block -1-408-6 Patentee after: Tianjin Tyson CNC Technology Co., Ltd. Address before: 300072 Tianjin City, Nankai District Wei Jin Road No. 92 Patentee before: Tianjin University |
|
| EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20100915 Assignee: TIANJIN TIANSEN INTELLIGENT EQUIPMENT CO., LTD. Assignor: Tianjin Tyson CNC Technology Co., Ltd. Contract record no.: 2018120000005 Denomination of invention: Online monitoring numerical-control system based on network architecture Granted publication date: 20120418 License type: Exclusive License Record date: 20180416 |
|
| EE01 | Entry into force of recordation of patent licensing contract |