CN101964366A - Photoelectric conversion element - Google Patents
Photoelectric conversion element Download PDFInfo
- Publication number
- CN101964366A CN101964366A CN 201010253232 CN201010253232A CN101964366A CN 101964366 A CN101964366 A CN 101964366A CN 201010253232 CN201010253232 CN 201010253232 CN 201010253232 A CN201010253232 A CN 201010253232A CN 101964366 A CN101964366 A CN 101964366A
- Authority
- CN
- China
- Prior art keywords
- layer
- photoelectric conversion
- conversion element
- light
- doped semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 119
- 239000010410 layer Substances 0.000 claims description 166
- 239000004065 semiconductor Substances 0.000 claims description 51
- 239000000463 material Substances 0.000 claims description 10
- 239000011241 protective layer Substances 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 3
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 3
- 229910021424 microcrystalline silicon Inorganic materials 0.000 claims description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 3
- 229920005591 polysilicon Polymers 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明涉及一种光电转换元件,适于将一光线转换为一光电流。前述的光电转换元件包括一光转换层、一顶导电层以及一底导电层。光转换层具有一底平面、相对于底平面的一顶平面以及连接于底平面与顶平面之间的一光入射侧面,其中底平面与光入射侧面的夹角为θ,且64°≤θ≤79°。顶导电层配置于光转换层的顶平面上,而底导电层则配置于光转换层的底平面下。
The present invention relates to a photoelectric conversion element, which is suitable for converting a light into a photocurrent. The aforementioned photoelectric conversion element includes a photoelectric conversion layer, a top conductive layer and a bottom conductive layer. The photoelectric conversion layer has a bottom plane, a top plane relative to the bottom plane, and a light incident side surface connected between the bottom plane and the top plane, wherein the angle between the bottom plane and the light incident side surface is θ, and 64°≤θ≤79°. The top conductive layer is arranged on the top plane of the photoelectric conversion layer, and the bottom conductive layer is arranged below the bottom plane of the photoelectric conversion layer.
Description
技术领域technical field
本发明是有关于一种光电转换元件,且特别是有关于一种垂直式(vertical type)的光电转换元件。The present invention relates to a photoelectric conversion element, and in particular to a vertical type photoelectric conversion element.
背景技术Background technique
近年来,太阳能电池、光感测器等光电转换元件已被大量地运用于人类的生活环境中。伴随着环保节能议题,太阳能电池成为最具潜力的绿色替代能源,而光感测器则已被应用于平面显示器中。通过光感测器,平面显示器能够侦测外界光线强度以调整显示的亮度。此外,光感测器使得平面显示器具备触控功能及/或扫描功能,让平面显示器更为多功能。In recent years, photoelectric conversion elements such as solar cells and photosensors have been widely used in human living environments. With the issue of environmental protection and energy saving, solar cells have become the most potential green alternative energy, and light sensors have been applied in flat panel displays. Through the light sensor, the flat panel display can detect the intensity of external light to adjust the brightness of the display. In addition, the light sensor enables the flat panel display to have a touch function and/or a scanning function, making the flat panel display more multifunctional.
基板上,光电转换元件依照其结构可被粗略地分为两大类型:一为水平式光电转换元件,而另一为垂直式光电转换元件。与垂直式光电转换元件相较,水平式光电转换元件的工艺较为复杂,但由于光线较容易照射到水平式光电转换元件的光转换层,故水平式光电转换元件具有较佳的灵敏度及光电转换效率。垂直式光电转换元件的工艺相对简单,但由于光线较不容易照射到垂直式光电转换元件的光转换层,故垂直式光电转换元件的灵敏度及光电转换效率较差。因此,如何改善垂直式光电转换元件的灵敏度及光电转换效率,实为本领域技术人员亟欲解决的问题之一。On the substrate, the photoelectric conversion elements can be roughly divided into two types according to their structures: one is a horizontal photoelectric conversion element, and the other is a vertical photoelectric conversion element. Compared with the vertical photoelectric conversion element, the process of the horizontal photoelectric conversion element is more complicated, but because the light is easier to irradiate the light conversion layer of the horizontal photoelectric conversion element, the horizontal photoelectric conversion element has better sensitivity and photoelectric conversion. efficiency. The process of the vertical photoelectric conversion element is relatively simple, but since light is less likely to irradiate the light conversion layer of the vertical photoelectric conversion element, the sensitivity and photoelectric conversion efficiency of the vertical photoelectric conversion element are poor. Therefore, how to improve the sensitivity and photoelectric conversion efficiency of the vertical photoelectric conversion element is one of the problems that those skilled in the art want to solve urgently.
发明内容Contents of the invention
本发明提供一种光电转换元件,其光转换层具有一倾斜的光入射侧面,以有效增进灵敏度(sensitivity)及光电转换效率。The invention provides a photoelectric conversion element, the phototransformation layer of which has an inclined light incident side to effectively improve sensitivity and photoelectric conversion efficiency.
本发明提供一种光电转换元件,适于将一光线转换为一光电流。前述的光电转换元件包括一光转换层、一顶导电层以及一底导电层。光转换层具有一底平面、相对于底平面的一顶平面以及连接于底平面与顶平面之间的一光入射侧面,其中底平面与光入射侧面的夹角为θ,且64°≤θ≤79°。顶导电层配置于光转换层的顶平面上,而底导电层则配置于光转换层的底平面下。The invention provides a photoelectric conversion element suitable for converting a light into a photocurrent. The aforementioned photoelectric conversion element includes a photo conversion layer, a top conductive layer and a bottom conductive layer. The light conversion layer has a bottom plane, a top plane relative to the bottom plane, and a light incident side connected between the bottom plane and the top plane, wherein the angle between the bottom plane and the light incident side is θ, and 64°≤θ ≤79°. The top conductive layer is configured on the top plane of the light conversion layer, and the bottom conductive layer is configured under the bottom plane of the light conversion layer.
在本发明的一实施例中,光线入射前述的光入射侧面的入射角为θi,且θ等于θi。In an embodiment of the present invention, the incident angle of the light incident on the aforementioned light incident side is θ i , and θ is equal to θ i .
在本发明的一实施例中,前述的光转换层例如为一本征半导体层。In an embodiment of the present invention, the aforementioned light conversion layer is, for example, an intrinsic semiconductor layer.
在本发明的一实施例中,前述的光转换层例如为一非晶硅层、一微晶硅层、一多晶硅层、一外延硅层、一富硅材料层、一硅锗层、一镓砷层或其叠层。In an embodiment of the present invention, the aforementioned light conversion layer is, for example, an amorphous silicon layer, a microcrystalline silicon layer, a polysilicon layer, an epitaxial silicon layer, a silicon-rich material layer, a silicon germanium layer, a gallium Arsenic layers or stacks thereof.
在本发明的一实施例中,前述的光电转换元件可进一步包括一第一型掺杂半导体层以及一第二型掺杂半导体层,其中第一型掺杂半导体层配置于底导电层与光转换层之间,而第二型掺杂半导体层则配置于顶导电层与光转换层之间。In an embodiment of the present invention, the aforementioned photoelectric conversion element may further include a first-type doped semiconductor layer and a second-type doped semiconductor layer, wherein the first-type doped semiconductor layer is disposed between the bottom conductive layer and the optical between the conversion layers, and the second-type doped semiconductor layer is disposed between the top conductive layer and the light conversion layer.
在本发明的一实施例中,当第一型掺杂半导体层为N型掺杂半导体层时,第二型掺杂半导体层为P型掺杂半导体层。反之,当第一型掺杂半导体层为P型掺杂半导体层时,第二型掺杂半导体层为N型掺杂半导体层。In an embodiment of the present invention, when the first-type doped semiconductor layer is an N-type doped semiconductor layer, the second-type doped semiconductor layer is a P-type doped semiconductor layer. Conversely, when the first-type doped semiconductor layer is a P-type doped semiconductor layer, the second-type doped semiconductor layer is an N-type doped semiconductor layer.
在本发明的一实施例中,前述的光电转换元件可进一步包括一反射层,此反射层配置于第一型掺杂半导体层与底导电层之间。In an embodiment of the present invention, the aforementioned photoelectric conversion element may further include a reflective layer disposed between the first-type doped semiconductor layer and the bottom conductive layer.
在本发明的一实施例中,前述的顶导电层具有一粗糙面,且粗糙面未与光转换层的顶平面接触。In an embodiment of the present invention, the aforementioned top conductive layer has a rough surface, and the rough surface is not in contact with the top plane of the light conversion layer.
在本发明的一实施例中,75°≤θ≤79°。In an embodiment of the present invention, 75°≤θ≤79°.
在本发明的一实施例中,前述的光电转换元件可进一步包括一保护层,以覆盖光入射侧面上。In an embodiment of the present invention, the aforementioned photoelectric conversion element may further include a protective layer to cover the light incident side.
在本发明的一实施例中,前述的保护层的材质例如是氮硅化物或氧硅化物。此外,当光入射侧面上覆盖有保护层时,64°≤θ≤69°。In an embodiment of the present invention, the aforementioned protection layer is made of silicon nitride or silicon oxide, for example. Furthermore, when the light incident side is covered with a protective layer, 64°≦θ≦69°.
在本发明的一实施例中,前述的底平面与顶平面的形状为多边形、圆形或椭圆形。In an embodiment of the present invention, the shapes of the aforementioned bottom plane and top plane are polygonal, circular or elliptical.
在本发明的一实施例中,前述的顶导电层为一透明导电层,而底导电层为一反射导电层。In an embodiment of the present invention, the aforementioned top conductive layer is a transparent conductive layer, and the bottom conductive layer is a reflective conductive layer.
由于本发明的光电转换元件中的光转换层具有一倾斜的光入射侧面,因此本发明的光电转换元件具有良好的灵敏度及光电转换效率。Since the light conversion layer in the photoelectric conversion device of the present invention has an inclined light incident side, the photoelectric conversion device of the present invention has good sensitivity and photoelectric conversion efficiency.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.
附图说明Description of drawings
为让本发明的上述和其他目的、特征、优点与实施例能更明显易懂,所附附图的说明如下:In order to make the above and other objects, features, advantages and embodiments of the present invention more comprehensible, the accompanying drawings are described as follows:
图1为本发明一实施例的光电转换元件的立体示意图;FIG. 1 is a schematic perspective view of a photoelectric conversion element according to an embodiment of the present invention;
图2A至图5A以及图2B至图5B为本发明不同实施例的光电转换元件的剖面示意图。2A to 5A and 2B to 5B are schematic cross-sectional views of photoelectric conversion elements according to different embodiments of the present invention.
其中,附图标记Among them, reference signs
100、100a~100f:光电转换元件 110:光转换层100, 100a~100f: photoelectric conversion element 110: light conversion layer
110a:底平面 110b:顶平面110a:
110c:光入射侧面 120:底导电层110c: Light incident side 120: Bottom conductive layer
130:顶导电层 130a:粗糙面130: top
140:第一型掺杂半导体层 150:第二型掺杂半导体层140: Type 1 doped semiconductor layer 150: Type 2 doped semiconductor layer
160:保护层 170:反射层160: Protective layer 170: Reflective layer
θi:入射角 θr:折射角θ i : angle of incidence θ r : angle of refraction
θ:夹角 L:光线θ: Angle L: Light
R:反射光R: reflected light
具体实施方式Detailed ways
图1为本发明一实施例的光电转换元件的立体示意图,而图2A至图5A以及图2B至图5B为本发明不同实施例的光电转换元件的剖面示意图。1 is a schematic perspective view of a photoelectric conversion device according to an embodiment of the present invention, and FIGS. 2A to 5A and 2B to 5B are cross-sectional schematic views of photoelectric conversion devices according to different embodiments of the present invention.
请参照图1与图2A,本实施例的光电转换元件100适于将一光线L转换为一光电流。本实施例的光电转换元件100包括一光转换层110、一底导电层120以及一顶导电层130。光转换层110具有一底平面110a、相对于底平面110a的一顶平面110b以及连接于底平面110a与顶平面110b之间的一光入射侧面110c,其中底平面110a与光入射侧面110c的夹角为θ,且64°≤θ≤79°。底导电层120配置于光转换层110的底平面110a上,而顶导电层130则配置于光转换层110的顶平面110b下。Referring to FIG. 1 and FIG. 2A , the
在本实施例中,底平面110a与顶平面110b的形状矩形。当然,在其他可行的实施例中。底平面110a与顶平面110b可为多边形(如三角形、五边形、六边形等)、圆形、椭圆形、环形或是同心圆的多重环形。此外,本实施例的顶导电层130例如为一透明导电层以利光线L通过而照射于光转换层110上,而底导电层120例如为一反射导电层以将光线L反射回光转换层110。In this embodiment, the shape of the
在本实施例中,光转换层110例如为一本征半导体层,而光转换层110例如为一非晶硅层、一微晶硅层、一多晶硅层、一外延硅层、一富硅材料层、一硅锗层、一镓砷层或其叠层。当光转换层110由一本征半导体层所构成时,光电转换元件100可用以作为光感测器。当然,本实施例不限定光转换层110的材质与型态,光转换层110可以是其他材质或具有其他型态。In this embodiment, the
在其他可行的实施例中,为了进一步增进光电转换元件100的光电转换效率,光电转换元件100可进一步包括一第一型掺杂半导体层140以及一第二型掺杂半导体层150,其中第一型掺杂半导体层140配置于顶导电层130与光转换层110之间,而第二型掺杂半导体层150则配置于底导电层120与光转换层110之间。举例而言,当第一型掺杂半导体层140为N型掺杂半导体层时,第二型掺杂半导体层150为P型掺杂半导体层。反之,当第一型掺杂半导体层140为P型掺杂半导体层时,第二型掺杂半导体层150为N型掺杂半导体层。当光电转换元件100包含有第一型掺杂半导体层140以及第二型掺杂半导体层150时,光电转换元件100可用以作为太阳能电池。值得注意的是,第一型掺杂半导体层140以及第二型掺杂半导体层150为光电转换元件100中的选择性构件,此领域技术人员可根据产品设计需求而选择性制作第一型掺杂半导体层140以及第二型掺杂半导体层150。In other feasible embodiments, in order to further improve the photoelectric conversion efficiency of the
为了使光线L能够顺利入射至光转换层110中,本实施例令底平面110a与光入射侧面110c为夹角θ,且较佳是64°≤θ≤79°。其中,夹角θ等于光线L入射光入射侧面110c的入射角θi。详言之,夹角θ更佳是符合布鲁斯特角(Brewster’s angle)的定义,当光线L的入射角θi与折射角θr的总和为π/2(即θi+θr=π/2)时,反射光R的比例接近0,且光线L从光入射侧面110c入射至光转换层110中的比例接近100%。假设光线由折射率为n1的介质入射至折射率为n2的光转换层110,当入射角θi满足布鲁斯特角的条件(即θi+θr=π/2)时,可由下列算式推得夹角θ等于入射角θi。In order to make the light L incident into the
n1·sinθi=n2·sinθr n1·sinθ i =n2·sinθ r
→n1·sinθi=n2·sin(π/2-θi)→n1·sinθ i =n2·sin(π/2-θ i )
→n1·sinθi=n2·cosθi →n1·sinθ i =n2·cosθ i
→θi=tan-1(n2/n1)=θ→ θi = tan -1 (n2/n1) = θ
一般而言,当光线L由空气直接入射光转换层110时,夹角θ介于75°至79°之间。由于夹角θ符合布鲁斯特角的条件,因此可以有更佳的光入射比例。以下将以表1记录光线L的波长、光转换层110的材质及其折射率以及夹角θ的相对关系。Generally speaking, when the light L is directly incident on the
表1Table 1
接着请参照图2B,图2B中的光电转换元件100a与图2A中的光电转换元件100类似,但二者主要差异在于:光电转换元件100a进一步包括一保护层160,以覆盖光入射侧面110c上。在本实施例中,保护层160的材质例如是氮硅化物或氧硅化物。当光入射侧面110c上覆盖有保护层160时,而光线L经保护层160入射光转换层110时,夹角θ较佳介于64°至69°之间。以下将以表2记录光线L的波长、保护层170的材质(氮硅化物)及其折射率、光转换层110的材质及其折射率以及夹角θ的相对关系。Next please refer to FIG. 2B. The
表2Table 2
接着请参照图3A,图3A中的光电转换元件100b与图2A中的光电转换元件100类似,但二者主要差异在于:光电转换元件100b进一步包括一反射层170,此反射层170配置于第一型掺杂半导体层150与底导电层120之间。当底导电层120上设置有反射层170时,底导电层120的材质选择将更有弹性,详言之,底导电层120可以选择透明导电材质或是反射导电材质。Next please refer to FIG. 3A, the photoelectric conversion element 100b in FIG. 3A is similar to the
接着请参照图3B,图3B中的光电转换元件100c与图3A中的光电转换元件100b类似,但二者主要差异在于:光电转换元件100c进一步包括一保护层160,以覆盖光入射侧面110c上。Next please refer to FIG. 3B. The
最后请参照图4A、图4B、图5A与图5B,从图4A、图4B、图5A与图5B可知,光电转换元件100d、100e、100f、100g分别与光电转换元件100、100a、100b、100c类似,但主要差异在于:光电转换元件100d、100e、100f、100g中的顶导电层130具有一粗糙面130a,且此粗糙面130a未与光转换层110的顶平面110b接触。在变化实施例中,保护层亦可覆盖顶导电层130,在其表面制作粗糙面,可减少光的反射。Finally, please refer to FIG. 4A, FIG. 4B, FIG. 5A and FIG. 5B. It can be seen from FIG. 4A, FIG. 4B, FIG. 5A and FIG. 100c is similar, but the main difference is that: the top
由于本发明的光电转换元件中的光转换层具有一倾斜的光入射侧面,使光线入射至光转换层的入射角满足布鲁斯特角的条件,因此本发明的光电转换元件具有良好的灵敏度及光电转换效率。Since the light conversion layer in the photoelectric conversion element of the present invention has an inclined light incident side, the incident angle of light incident on the light conversion layer satisfies the condition of Brewster's angle, so the photoelectric conversion element of the present invention has good sensitivity and photoelectricity. conversion efficiency.
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Certainly, the present invention also can have other multiple embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding Changes and deformations should belong to the scope of protection of the appended claims of the present invention.
Claims (16)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201010253232 CN101964366A (en) | 2010-08-11 | 2010-08-11 | Photoelectric conversion element |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201010253232 CN101964366A (en) | 2010-08-11 | 2010-08-11 | Photoelectric conversion element |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN101964366A true CN101964366A (en) | 2011-02-02 |
Family
ID=43517182
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201010253232 Pending CN101964366A (en) | 2010-08-11 | 2010-08-11 | Photoelectric conversion element |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101964366A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109716535A (en) * | 2016-04-01 | 2019-05-03 | 太阳能公司 | Three-layer semiconductor for patterned features on the solar cell stacks |
| CN109830562A (en) * | 2019-01-11 | 2019-05-31 | 惠科股份有限公司 | Detector, manufacturing method of detector and display device |
| JPWO2019043864A1 (en) * | 2017-08-31 | 2020-09-24 | 株式会社京都セミコンダクター | End face incident type light receiving element |
| CN114122184A (en) * | 2021-11-23 | 2022-03-01 | 京东方科技集团股份有限公司 | Photoelectric conversion structure, manufacturing method thereof, image sensor and electronic device |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04263477A (en) * | 1991-02-19 | 1992-09-18 | Nec Corp | Semiconductor photodetector |
| EP0629005A2 (en) * | 1993-06-08 | 1994-12-14 | Nec Corporation | Avalanche photodiode with an improved multiplication layer |
| CN1195426A (en) * | 1996-06-13 | 1998-10-07 | 古河电气工业株式会社 | Semiconductor waveguide type photosensitive element and manufacturing method thereof |
| CN101315955A (en) * | 2007-05-31 | 2008-12-03 | 中国科学院微电子研究所 | A kind of photodetector with oblique light receiving |
| CN101355115A (en) * | 2008-09-16 | 2009-01-28 | 刘志勇 | High-efficiency solar omnirange condensation battery component |
| CN101438418A (en) * | 2006-04-28 | 2009-05-20 | 株式会社半导体能源研究所 | Photoelectric conversion element and method for manufacturing photoelectric conversion element |
| CN101459202A (en) * | 2009-01-12 | 2009-06-17 | 友达光电股份有限公司 | Photocell element and display panel |
| CN101493542A (en) * | 2008-01-25 | 2009-07-29 | 北京航空航天大学 | Flat plate type photovoltaic cell light intensifier based on microprism structure |
| CN201315553Y (en) * | 2008-12-17 | 2009-09-23 | 中国科学院西安光学精密机械研究所 | One-dimensional line focusing concentrated photovoltaic power generation device |
| CN101609851A (en) * | 2009-07-07 | 2009-12-23 | 苏州益能光伏科技有限公司 | Low concentrating device of solar battery |
| TWM381072U (en) * | 2009-12-11 | 2010-05-21 | Yun-Ning Shi | Light condensing lens, light condensing module, and photoelectric thansducing apparatus thereof |
-
2010
- 2010-08-11 CN CN 201010253232 patent/CN101964366A/en active Pending
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04263477A (en) * | 1991-02-19 | 1992-09-18 | Nec Corp | Semiconductor photodetector |
| EP0629005A2 (en) * | 1993-06-08 | 1994-12-14 | Nec Corporation | Avalanche photodiode with an improved multiplication layer |
| CN1195426A (en) * | 1996-06-13 | 1998-10-07 | 古河电气工业株式会社 | Semiconductor waveguide type photosensitive element and manufacturing method thereof |
| CN101438418A (en) * | 2006-04-28 | 2009-05-20 | 株式会社半导体能源研究所 | Photoelectric conversion element and method for manufacturing photoelectric conversion element |
| CN101315955A (en) * | 2007-05-31 | 2008-12-03 | 中国科学院微电子研究所 | A kind of photodetector with oblique light receiving |
| CN101493542A (en) * | 2008-01-25 | 2009-07-29 | 北京航空航天大学 | Flat plate type photovoltaic cell light intensifier based on microprism structure |
| CN101355115A (en) * | 2008-09-16 | 2009-01-28 | 刘志勇 | High-efficiency solar omnirange condensation battery component |
| CN201315553Y (en) * | 2008-12-17 | 2009-09-23 | 中国科学院西安光学精密机械研究所 | One-dimensional line focusing concentrated photovoltaic power generation device |
| CN101459202A (en) * | 2009-01-12 | 2009-06-17 | 友达光电股份有限公司 | Photocell element and display panel |
| CN101609851A (en) * | 2009-07-07 | 2009-12-23 | 苏州益能光伏科技有限公司 | Low concentrating device of solar battery |
| TWM381072U (en) * | 2009-12-11 | 2010-05-21 | Yun-Ning Shi | Light condensing lens, light condensing module, and photoelectric thansducing apparatus thereof |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109716535A (en) * | 2016-04-01 | 2019-05-03 | 太阳能公司 | Three-layer semiconductor for patterned features on the solar cell stacks |
| US11355654B2 (en) | 2016-04-01 | 2022-06-07 | Sunpower Corporation | Tri-layer semiconductor stacks for patterning features on solar cells |
| CN109716535B (en) * | 2016-04-01 | 2023-06-02 | 迈可晟太阳能有限公司 | Three-layer semiconductor stack for patterning features on solar cells |
| US11935972B2 (en) | 2016-04-01 | 2024-03-19 | Maxeon Solar Pte. Ltd. | Tri-layer semiconductor stacks for patterning features on solar cells |
| JPWO2019043864A1 (en) * | 2017-08-31 | 2020-09-24 | 株式会社京都セミコンダクター | End face incident type light receiving element |
| CN109830562A (en) * | 2019-01-11 | 2019-05-31 | 惠科股份有限公司 | Detector, manufacturing method of detector and display device |
| CN109830562B (en) * | 2019-01-11 | 2021-08-06 | 惠科股份有限公司 | Detector, manufacturing method of detector and display device |
| CN114122184A (en) * | 2021-11-23 | 2022-03-01 | 京东方科技集团股份有限公司 | Photoelectric conversion structure, manufacturing method thereof, image sensor and electronic device |
| CN114122184B (en) * | 2021-11-23 | 2025-01-24 | 京东方科技集团股份有限公司 | Photoelectric conversion structure, manufacturing method thereof, image sensor and electronic device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109659377B (en) | Single photon avalanche diode and manufacturing method, detector array, image sensor | |
| US11721714B2 (en) | Pixel isolation elements, devices and associated methods | |
| US9190547B2 (en) | Photo-electric device with inverse pyramid shaped recesses | |
| US8120027B2 (en) | Backside nanoscale texturing to improve IR response of silicon solar cells and photodetectors | |
| KR101443423B1 (en) | Photovoltaic device | |
| KR20120081812A (en) | Photodiode device based on wide band-gap material layer, and back side illumination(bsi) cmos image sensor and solar cell comprising the photodiode device | |
| TWI659246B (en) | Image detection display device, device and preparation method thereof | |
| CN101964366A (en) | Photoelectric conversion element | |
| TW202018924A (en) | Image detection display device, device and preparation method thereof | |
| CN110379864B (en) | Photodiode, method for making the same, and array substrate | |
| CN209216974U (en) | A kind of image sensing cell, imaging sensor | |
| CN117577704A (en) | Solar cell and photovoltaic module | |
| KR20120038625A (en) | Solar cell | |
| TWI423456B (en) | Photoelectric transducer | |
| KR101434716B1 (en) | Stacked image sensor and method to manufacture thereof | |
| CN110299438A (en) | A kind of LED chip and preparation method thereof with high reflectance composite membrane | |
| CN101562206B (en) | solar cell module | |
| CN100454586C (en) | Light sensing element and manufacturing method thereof | |
| CN103956404B (en) | A kind of Radix Rumicis photodetector of photodetector preparation method and preparation | |
| US20120204953A1 (en) | Optical structure with a flat apex | |
| TWI411114B (en) | A solar cell structure with discontinuous stacks | |
| CN116147769A (en) | detection receiver | |
| WO2022077456A1 (en) | Single photon avalanche diode, image sensor and electronic device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20110202 |