CN101971004B - 用于测量粘度的移液管系统和方法 - Google Patents
用于测量粘度的移液管系统和方法 Download PDFInfo
- Publication number
- CN101971004B CN101971004B CN200980108800.2A CN200980108800A CN101971004B CN 101971004 B CN101971004 B CN 101971004B CN 200980108800 A CN200980108800 A CN 200980108800A CN 101971004 B CN101971004 B CN 101971004B
- Authority
- CN
- China
- Prior art keywords
- piston
- pressure
- slope
- intake chamber
- viscosity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 17
- 239000012530 fluid Substances 0.000 claims abstract description 28
- 238000009530 blood pressure measurement Methods 0.000 claims abstract description 13
- 239000007788 liquid Substances 0.000 claims description 57
- 230000035945 sensitivity Effects 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 5
- 230000001133 acceleration Effects 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 4
- 238000012797 qualification Methods 0.000 claims 2
- 230000006870 function Effects 0.000 description 16
- 238000005259 measurement Methods 0.000 description 16
- 238000004891 communication Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000003860 storage Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000005219 brazing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
- G01N11/02—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
- G01N11/04—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/02—Burettes; Pipettes
- B01L3/021—Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
- B01L3/0217—Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids of the plunger pump type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/023—Adapting objects or devices to another adapted for different sizes of tubes, tips or container
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/14—Process control and prevention of errors
- B01L2200/143—Quality control, feedback systems
- B01L2200/146—Employing pressure sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0633—Valves, specific forms thereof with moving parts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
- G01N11/02—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
- G01N11/04—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
- G01N11/08—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture by measuring pressure required to produce a known flow
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sampling And Sample Adjustment (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Devices For Use In Laboratory Experiments (AREA)
- Measuring Fluid Pressure (AREA)
- Measuring Volume Flow (AREA)
Abstract
本发明提供了一种用于确定流体的粘度的系统。系统包括吸入腔室、管、活塞、促动器、传感器和处理器。管与吸入腔室连通,并包括槽道,该槽道包括具有恒定直径截面的圆柱形部分。活塞安装在吸入腔室中。促动器设置成使得活塞在时间窗口中以恒定速度在吸入腔室中运动,以便调节圆柱形部分中的流体。传感器设置成在时间窗口中多次测量压力,以便限定多个压力测量值。处理器设置成接收所限定的多个压力测量值,以便确定与所接收的多个压力测量值相关联的斜率,并根据该确定斜率来确定流体的粘度。
Description
相关申请的交叉引用
根据巴黎公约,本申请要求法国专利申请No.0851120的优先权,该法国专利申请No.0851120的申请日为2008年2月21日,该文献整个被本文参引。
背景技术
当使用移液管时,一定容积的液体吸入移液管中。然后,该容积的液体分配至一个或多个分配容积中。活塞驱动机构通过使得活塞运动而控制特定容积中液体的吸入和分配。活塞的运动由活塞驱动机构施加的推力来控制。移液管可以以人工模式来操作,其中,用户人工或者以机动模式控制液体的吸入或分配的速度和容积,其中,马达控制液体的吸入和/或分配。通过使用输入界面,各种参数(包括速度、容积、吸入的次数、分配的次数等)可以进行选择。多槽道移液系统包括多槽道移液管,该多槽道移液管包括多个活塞。移液管还可以在液体的吸入和分配过程中保持在操作人员的手中,或者可以作为自动系统的一部分。
发明内容
在示例性实施例中,提供了一种用于确定流体的粘度的系统。该系统包括但不局限于:吸入腔室、管、活塞、促动器、传感器和处理器。管与吸入腔室连通,并包括槽道,该槽道包括具有恒定直径截面的圆柱形部分。活塞安装在吸入腔室中。促动器设置成使得活塞在时间窗口中以恒定速度在吸入腔室中运动,以便调节圆柱形部分中的流体。传感器设置成在时间窗口中多次测量压力,以便限定多个压力测量值。处理器设置成接收限定的多个压力测量值,以便确定与接收的多个压力测量值相关联的斜率,并根据该确定的斜率来确定流体的粘度。
在另一示例性实施例,提供了一种用于确定流体的粘度的方法。安装在吸入腔室中的活塞在第一时间窗口中以第一恒定速度沿第一方向促动,以便将流体吸入管的槽道的圆柱形部分中。槽道与吸入腔室连通。圆柱形部分有恒定直径截面。在第一时间窗口中测量压力第一多次,以便限定第一多个压力测量值。确定与该限定的第一多个压力测量值相关联的第一斜率。活塞沿与第一方向相对的第二方向促动,以便从管分配一部分吸入流体。活塞在第二时间窗口中以第二恒定速度沿第一方向促动,以便将流体吸入管的槽道的圆柱形部分中。在第二时间窗口中测量压力第二多次,以便限定第二多个压力测量值。确定与该限定的第二多个压力测量值相关联的第二斜率。根据确定的第一斜率和确定的第二斜率来确定流体的粘度。
本领域技术人员通过阅读下面的附图、详细说明和附加权利要求将清楚本发明的其它主要特征和优点。
附图说明
下面将参考附图介绍本发明的示例性实施例,附图中,相同参考标号表示相同元件。
图1表示了根据示例性实施例的粘度计的侧视图。
图2表示了根据第一示例性实施例的、图1的粘度计的移液管的底部部分的示意图。
图3表示了根据示例性实施例在移液操作过程中作为时间函数的函数ΔP(t)的曲线图。
图4表示了根据第二示例性实施例的、图1的粘度计的移液管的底部部分的示意图。
图5表示了根据第三示例性实施例的、图1的粘度计的移液管的底部部分的部分示意图。
图6表示了根据示例性实施例在使用图5的粘度计的移液管的底部部分的移液操作过程中作为时间函数的函数ΔP(t)的曲线图。
图7表示了根据第四示例性实施例的、图1的粘度计的移液管的底部部分的部分示意图。
图8表示了根据示例性实施例在使用图7的粘度计的移液管的底部部分的移液操作过程中作为时间函数的函数ΔP(t)的曲线图。
图9表示了根据第二示例性实施例的、图1的粘度计的管的示意图。
图10包括与根据示例性实施例使用图1的粘度计来确定牛顿液体的粘度的不同阶段相关的一系列曲线图。
图11包括与根据示例性实施例使用图1的粘度计来确定非牛顿液体对于不同剪切速率的粘度的不同阶段相关的一系列曲线图。
具体实施方式
参考图1,图中表示了根据示例性实施例的粘度计1的侧视图。粘度计1设置成确定液体的粘度。粘度计1可以包括移液管2和管10,该管10安装在移液管2上。这里使用的术语“安装”包括结合、联合、连接、相连、插入、悬挂、保持、粘附、附连、紧固、捆绑、粘贴、固定、螺栓连接、螺钉连接、铆接、钎焊、焊接、压配合、模制和其它类似术语。管10可以可拆卸地安装在移液管2上,例如利用压配合。移液管2可以包括马达驱动的单槽道或多槽道移液管。移液管2还可以是可手持的电子控制移液管。因此,移液管2可以为便携式和小尺寸。任何普通移液管可以进行变化,以便形成粘度计1。
移液管2可以包括顶部部分4和底部部分6,该底部部分6安装在顶部部分4上。底部部分6可以可拆卸地安装在顶部部分4上,例如使用螺母结构。底部部分6可以包括端部件8,用于保持管10。例如,管10可以以可拆卸的方式滑动至端部件8上。顶部部分4可以包括形成手柄的本体,该手柄由用户保持。
顶部部分4可以包括显示器12、输入装置14、处理器16、计算机可读介质18、促动器19和电源20。显示器12向移液管2的用户显示信息。输入装置14提供用于将信息输入移液管2内的机构。输入装置14可以包括利用各种输入技术的一个或多个输入机构,这些输入技术包括但不局限于:键盘、笔和触摸屏、鼠标、跟踪球、触摸屏、小键盘、指轮、按钮等,以便允许用户将信息输入移液管2内,或者从显示器12显示的项中进行选择。
计算机可读介质18是用于信息的电子保存位置或存储器,这样,信息可以由处理器16存取。移液管2可以有使用相同或不同存储技术的一个或多个计算机可读介质。存储技术包括但不局限于任意类型的随机存取存储器(RAM)、任意类型的只读存储器、任意类型的闪存等。移液管2还可以有一个或多个驱动器,该驱动器支持计算机可读介质的装载,例如光盘或数字视频光盘。移液管2还可以有一个或多个通信界面,该通信界面能够与外部装置通信,该外部装置可以包括一个或多个计算机可读介质。
处理器16执行指令,如本领域技术人员已知。指令可以通过专用目的的计算机、逻辑电路或硬件电路来执行。因此,处理器16可以在硬件、固件、软件或者这些方法的任意组合中执行。术语“执行”是运行应用的处理或执行由指令要求的操作。指令可以利用一种或多种编程语言、脚本语言、汇编语言等来书写。处理器16执行指令,意思是它执行由该指令要求的操作。处理器16与显示器12、输入装置14、计算机可读介质18和任意通信界面可操作地连接,以便接收、发送和处理信息。处理器16可以从永久性存储器装置中取回一组指令(例如粘度计应用),并将这些指令以可执行的形式拷贝至临时存储器装置中,该临时存储器装置通常为某些形式的RAM。移液管2可以包括多个处理器,这些处理器使用相同或不同的处理技术。
粘度计应用可以执行与确定液体的粘度相关的操作。随后介绍的一些或全部操作和界面可以体现在粘度计应用中。操作可以使用硬件、固件、软件或者这些方法的任意组合来实施。粘度计应用可以利用一种或多种编程语言、汇编语言、脚本语言等来书写。
促动器19可以是马达,它设置成在粘度计应用和处理器16的控制下对控制杆的运动进行控制。在示例性实施例中,促动器19可以使用各种机电装置来实施,如本领域技术人员已知。电源20可以包括电池,以便向移液管2的各个部件供电。
底部部分6可以包括吸入腔室22,该吸入腔室22与端部件8的孔24连通。孔24大致与移液管2的纵向轴线26平行或重合地延伸。孔24的第一端开口于吸入腔室22中,第二端开口于外部环境或管10(当安装在端部件8上时)。活塞30安装成在吸入腔室22内沿平行于纵向轴线26的滑动方向32滑动。在已知方式中,例如使用促动器19来控制活塞30沿滑动方向32的运动,以便分配和吸入液体。
在示例性实施例中,管10由玻璃或塑料形成,并可以在每次使用后丢弃。管10包括槽道36,液体通过该槽道36来吸入和分配。在示例性实施例中,槽道36包括具有恒定截面的至少一部分,例如圆柱形部分,当安装于移液管2上时,该部分大致与纵向轴线26垂直。在图1所示的示例中,槽道36在它的整个长度上为圆柱形,因此形成恒定截面的单个部分,尽管并不需要这样。例如,槽道36可以包括底端,该底端为圆锥形,并与圆柱形部分连通。作为另一示例,槽道36可以包括多个圆柱形部分,这些圆柱形部分有不同直径,并与圆锥形部分连接,该圆锥形部分在不同直径之间逐渐过渡,或者在不同直径之间突然变化。
粘度计1还可以包括测量装置。例如,参考图1,粘度计1可以包括相对压力传感器38,该相对压力传感器38安装在吸入腔室22内部,因此在移液管2的死区容积(dead volume)内。相对压力传感器38设置成提供吸入腔室22内部的压力P相对于移液管2外部的大气压力Po的数据值。因此,相对压力传感器38可以设置成监测作为时间函数ΔP(t)=Po-P(t)的压力。粘度计1还可以包括绝对压力传感器40,该绝对压力传感器40例如安装在端部件8的外部,以便测量大气压力Po。在可选实施例中,粘度计1可以不包括相对压力传感器,这样,P(t)被测量,并用于计算作为多个压力测量值的函数的ΔP(t)。绝对压力传感器40可以当吸入腔室22与外部空气连通时测量大气压力Po。当使用时,相对压力传感器38可以安装在移液管2的其它位置或者靠近该移液管2。
相对压力传感器38和绝对压力传感器40可以由移液管2的电源20来供电。相对压力传感器38和绝对压力传感器40还可以连接成向用于由移液管2的处理器16存取的计算机可读介质18发送测量数据。在另一实施例中,测量装置可以与在移液管2外部的计算机和/或电源连接。另外,相对压力传感器38和绝对压力传感器40可以包含在顶部部分4中,并利用合适的导管与底部部分6连接。
粘度计1可以用于确定牛顿或非牛顿流体的粘度。参考图2,移液管2定位成使得管10的槽道36的底端37位于包含在容器41中的液体39的表面下面几毫米处。使用移液管2开始移液操作,使得通过在吸入腔室22中升高活塞30来进行液体吸入,如箭头42所示。在该操作过程中,活塞30以恒定速度控制,这样,液体39也以恒定速度进入管10的槽道36的圆柱形部分中。
同时,相对压力传感器38测量函数值ΔP(t)=Po-P(t),并将该测量值发送给用于由移液管2的处理器16存取的计算机可读介质18。例如,相对压力传感器38在液体吸入管10的槽道36的圆柱形部分中的过程中在多个时间瞬时测量函数ΔP(t)的相对压力值。为了提高粘度的精确性,在活塞30的向上冲程过程中进行很多次测量。
由于管10的槽道36的圆柱形部分的圆柱形特性和活塞30的恒定速度,函数ΔP(t)是导引系数λ的线性时间函数,对应于函数ΔP(t)的导数,因此对应于ΔP(t)的斜度。例如,如参考图3所示,λ可以计算为λ=(ΔP2-ΔP1)/(t2-t1)。通过使用由相对压力传感器38在不同时间接收的多个相对压力值,处理器16设置成通过本领域技术人员已知的任何方法来确定导引系数λ的值。例如,处理器16可以执行粘度计用途,它设置成执行与导引系数λ或导引系数-λ的值的计算相关联的操作。
导引系数λ的确定值可以用于方程式(1)中,以便非常精确地确定液体39的粘度η
η=(d2/32k2)((P0/V0)qp-((P0/V0)(πd2/4)+Pg)k) (1)
其中,k=(qp-V0λ/P0)(4/πd2),qp是由活塞30扫过的容积,并等于活塞30的速度与活塞30相对纵向轴线26的横截面积的乘积,d是管10的槽道36的圆柱形部分的直径,ρ是液体39的密度,g是重力加速度,V0是移液管2在测量时间t=0时的死区容积,P0是大气压力。
粘度计1可以适应液体39的性质。例如,管10可以从具有不同直径的多个管中选择,和/或活塞30可以从具有不同直径的多个活塞中选择,和/或促动器19可以用于控制活塞30的速度,以便以在不同阶段恒定的不同速度来操作;和/或移液管2的死区容积可以调节。通过增加槽道36的直径,可以测试更高粘度的液体,反之亦然。移液管2的多个可互换的底部部分可以用于选择不同的活塞直径。活塞30直径的增加将增大由活塞30扫过的容积,从而导致液体39的剪切速率增加,因此用于测量更低粘度。而且,更大直径的活塞通常与具有较大通道直径的管相关联,以便保证它们将充满和进行粘性液体的更有效清除。也可选择,活塞直径的选择可以使用多级活塞来提供。通过增加活塞30的速度,液体39的剪切速率增加,因此增加粘性力的值,因此可以测量具有较低粘度的液体。优选地采用较低活塞速度,这样,管10中的液体39的流动保持层状,测量值并不包括由于湍流引起的液压降。
为了支持这样的适用性,底部部分6可以拆卸和更换,以便支承不同管尺寸和/或形状和/或包括不同直径的活塞。也可选择,参考图4的示例性实施例,活塞30可以包括多级活塞,例如在转让给本申请的受让人的美国专利申请No.11/619882中所述,该文献整个被本文参引。在图4的示例性实施例中,活塞30包括多个不同直径的部分,它们分别与由一个或多个电动阀46连接在一起的吸入腔室匹配。最底侧的吸入腔室22与端部件8连通。用户可以控制电动阀46,以便选择所需的活塞直径。
为了获得精确的λ值和因此获得流体粘度,希望具有较小的死区容积,其中,死区容积可以由管的槽道36的、在相对压力传感器38和吸入腔室22之间的流体连通装置的、端部件8的孔24的和延伸至环绕活塞30的密封环35的吸入腔室22的容积总和来确定。在示例性实施例中,使用较小的死区容积,以便在确定粘度时提高精度,因为死区容积越低,吸入腔室22中的真空越大,因此函数ΔP(t)的斜率更陡峭,并更容易确定。在可以由用户改变的上述参数中,活塞30的直径以及管10的槽道36的直径对死区容积有直接影响。
不过,较小的死区容积可能导致吸入腔室22中有高压力,相对压力传感器38可能无法接受该高压力。为了克服这一可能问题,可以使用图5中所示的第一可选实施例。参考图5的示例性实施例,相对压力传感器38由第一传感器38a和第二传感器38b来代替。第一传感器38a和第二传感器38b具有不同的灵敏度范围,这样,它们各自能够确定不同压力范围上的ΔP(t)的值。该不同压力范围可以重叠。第一传感器38a和第二传感器38b连接在一起,这样,当由更高灵敏度范围的第一传感器38a测量的压力达到阈值(该阈值预先确定并可以接近第一传感器38a的饱和压力)时,具有最低灵敏度范围的第二传感器38b自动执行压力测量。例如,可以使用电动阀50,该电动阀50首先通过导管52而与吸入腔室22连通,并交替地与第一传感器38a和第二传感器38b中的每一个连通。因此,只要压力不超过前述阈值,具有比第二传感器38b更高灵敏度范围的第一传感器38a保持操作,并将测量值ΔP(t)发送给用于由移液管2的处理器16存取的计算机可读介质18。在测量的任意时刻t’处(压力达到预定阈值),电动阀50自动转换成操作第二传感器38b,该第二传感器38b的灵敏度范围低于第一传感器38a。
如参考图6所示,值ΔP(t)的曲线保持具有斜率λ的直线形式,甚至在测量过程中进行转换也是如此。因此,用于确定斜率λ的值可以在转换时间t′之前和/或之后来获取。
也可选择,可以提供较小的死区容积,以便获得良好的测量精度,并可以在测量过程中保持增大它的能力(当吸入腔室22中有过大压力时)。因此,图7中所示的第二可选实施例表示了相对压力传感器38通过具有不同直径的第一导管56a和第二导管56b而与吸入腔室22连接。例如,如图7的示例性实施例中所示,第一导管56a具有比第二导管56b更小的直径。电动阀58与相对压力传感器38连接,并可选择地与第一导管56a和第二导管56b(它们与吸入腔室22连通)连接。默认的是,在相对压力传感器38和吸入腔室22之间的连通可以利用具有更小直径导管的第一导管56a来进行,以便形成较小死区容积,并提供较高测量精度。当在吸入腔室22中有过大压力时,电动阀58自动转换成改变在相对压力传感器38和吸入腔室22之间的连通,以便使用具有更大直径的第二导管56b。在该时刻t″,结果是在吸入腔室22中有压力降,因此有不同斜率λ,如图8的曲线图中所示。在瞬时时刻t″之后获得的斜率λ由移液管2的处理器16选择为用于确定值λ。再有,可以通过使得测量压力与相对压力传感器38的饱和压力比较来实现连通。
其它方法可以用于在测量过程中改变死区容积,例如改变活塞,利用如图4中所示的多级活塞等。
如公式(1)中所示,粘度值取决于液体39的密度ρ,该密度ρ可以在最初储存在计算机可读介质18中,和/或由用户输入。参考图9,当ρ为未知时,槽道36的管10可以设置成包括圆柱形的水平部分36′。水平部分36′大致与活塞30的滑动方向32垂直。利用该结构,当液体39越过恒定部分36′的水平部分时,压力ΔP(t)只由流体的粘度而产生,而对于流体静压不再敏感,该流体静压取决于流体的密度,如同例如液体在管10的垂直底部部分中升高时的情况那样。因此,信号ΔP(t)只考虑粘度分量。因此,为了利用公式(1)来确定液体粘度,值ρ设置为零。
作为另一示例,液体39的密度ρ可以在移液操作结束时当槽道36包含高度h的液柱时、当活塞30不动时和当压力变化ΔP稳定时通过测量吸入腔室22中的流体液压而利用下面的公式(2)来确定。
ρ=ΔP/gh (2)
对于牛顿流体,另一选择取决于在不同的实验条件下执行两个测试,以便推导出用于这两个测试的每一个的值λ,并对于各自由公式(1)导出的两个公式的系统进行求解,其中,要确定的两个未知参数是η和ρ。假定液体39的牛顿特征的意思是不管试验条件如何粘度都相同,则通过使得两个公式相等而获得解值。在这一点,通过改变槽道36的圆柱形部分的直径和/或活塞30的速度和/或活塞30的直径和/或通过死区容积的任何其它变化,试验条件可以在两个测试之间改变。
参考图10,图中表示的示例性实施例用于进行单独的试验,以便推导出值λ和对于两个未知参数η和ρ求解由公式(1)得出的两个公式系统。在使得液体39保持在槽道36中的两个连续吸入冲程的每一个中的值ΔP(t)的测量利用第一向上冲程、向下冲程和第二向上冲程(设计成用于吸入液体39)来进行,它们都通过将液体39保持在槽道36中进行,但是例如通过在第二向上冲程过程中降低活塞30的速度。在图10的示例性实施例中,在第一时间窗口上的第一阶段60与以给定活塞速度V1实施的活塞30的第一向上冲程相关联,它产生了升高的直线Δ1P(t),从而得出值λ1,它自身通过方程式(1)而与粘度η相关连。在第二时间窗口上的第二阶段62中,活塞30的向下冲程导致分配位于槽道36中的液体39。在示例性实施例中,在第二阶段62中并不进行测量。在第三时间窗口上的第三阶段64中,当液体39保持少量存在于槽道36中时,以速度V2执行活塞30的第二向上冲程,速度V2例如通过相对于速度V1减小一半来执行,这产生了直线Δ2P(t),从而得出值λ2,它自身通过公式(1)而与粘度η相关连。使得两个公式相等将确定粘度η和密度ρ。
图10中所示的处理可以执行任意次数。因此,当没有确定大气压力P0时,例如当并不使用绝对压力传感器40时,可以使用与第一和第二向上冲程不同条件的、活塞30的第三向上冲程来求解由方程式(1)导出的三个公式系统,其中,要确定的三个未知参数是η、ρ和P0。
更通常是,对于牛顿液体,除了粘度外,对于N次不同试验条件(严格大于1)的值λ可以用于确定N′=N-1个还未知参数的各值。因此,例如确定粘度和N-1个其它未知参数可以通过求解具有N个未知数的N个公式系统来进行,各公式使用通过与施加的特殊试验条件相关的数据而完成的公式(1)来建立。
由于能够在连续向上冲程阶段进行测量,因此可以确定非牛顿液体的流变图,即剪切值。参考图11,所示的示例性方法表示了剪切速率在活塞30的每个新的向上冲程中通过施加相应的活塞速度而变化。对于所涉及的剪切速率,第一阶段70与以给定活塞速度V1执行的活塞30的第一向上冲程相关联,这产生了升高的直线Δ1P(t),从而得出值λ1,它自身通过公式(1)而与粘度η1相关连。在第二阶段72中,活塞30的第一向下冲程导致分配位于槽道36中的液体39。在示例性实施例中,在第二阶段72中并不进行测量。对于所涉及的新的剪切速率,在第三阶段74中,当液体39保持少量存在于槽道36中时,以速度V2执行活塞30的第二向上冲程,速度V2例如相对于速度V1加倍,这产生了直线Δ2P(t),从而得出值λ2,它自身通过公式(1)而与粘度η相关连。在第四阶段76中,活塞30的第二向下冲程导致分配位于槽道36中的液体39。对于所涉及的新的剪切塑料,在示例性实施例中,在第四阶段76中并不进行测量。在第五阶段78中,当液体39保持少量存在于槽道36中时,以速度V3执行活塞30的第三向上冲程,速度V3例如相对于速度V2加倍,这产生了直线Δ3P(t),从而得出值λ3,它自身通过公式(1)而与粘度η相关连。通过使液体39保持在管10的槽道36中,可以用这样的方式按需要继续这种方法多次。
根据另一可选实施例,液体39的流速可以在活塞30的给定吸入冲程中变化,在该过程中,获得函数ΔP(t)或函数P(t)的斜率的多个测量值,以便确定不同剪切速率的粘度。液体39的速度(因此液体39的剪切速率)可以通过布置成使得液体39连续通过布置在管10中的、不同直径的槽道36的圆柱形分段部分而自动变化。非牛顿液体和牛顿液体的粘度可以利用该方法来确定。
非牛顿液体的粘度可以通过改变液体39在槽道36的圆柱形部分内的流速而对于不同剪切速率进行计算。通过在各阶段后充满和然后完全排空管10,各个阶段一个接一个地进行,其中,各阶段向液体施加给定流速,它自身与给定剪切速率相对应。用于改变液体速度的参数包括活塞30的速度和/或管10的直径和/或活塞30的直径。
这里使用的措辞“示例”的意思是用作示例、例证或图示。这里介绍为“示例”的任意方面或设计并不必须构成为比其它方面或设计更优选或有利。而且,在本说明书中,除非另外特别说明,“一”的意思是“一个或多个”。
本发明示例性实施例的前述说明是用于举例说明的目的。它并不是穷举或将本发明限制为所述精确形式,根据上述教导或者根据本发明的实际需要可以进行多种变化和改变。实施例进行了选择和介绍,以便解释本发明的原理和本发明的实际应用,以便使得本领域技术人员能够以适合特殊应用的各种实施例和各种变化形式来实现本发明。本发明的范围将由附加权利要求和它们的等同物来确定。
Claims (19)
1.一种用于确定流体的粘度的系统,该系统包括:
吸入腔室;
管,该管与吸入腔室连通并包括槽道,其中该槽道包括具有恒定直径截面的圆柱形部分;
活塞,该活塞安装在吸入腔室中;
促动器,该促动器设置成使得活塞在时间窗口中以恒定速度在吸入腔室中运动,以便将流体吸入槽道的圆柱形部分中;
相对压力传感器,该相对压力传感器安装至吸入腔室,并且设置成在时间窗口中多次测量吸入腔室中的压力,以便限定多个压力测量值,以及绝对压力传感器,该绝对压力传感器安装在端部件的外部,以便测量大气压力P0;该端部件包括孔,该孔提供吸入腔室和槽道之间的连通,以及
处理器,该处理器设置成接收所限定的多个压力测量值,以便确定与接收的多个压力测量值相关联的斜率,并根据该确定的斜率来确定流体的粘度,
其中:粘度根据η=(d2/32k2)((P0/V0)qp-((P0/V0)(πd2/4)+ρg)k)来计算,其中,k=(qp-V0λ/P0)(4/πd2),qp是每单位时间由活塞扫过的容积,d是圆柱形部分的直径,ρ是液体的密度,g是重力加速度,V0是管和吸入腔室的死区容积,P0是大气压力,而λ是所确定的斜率。
2.根据权利要求1所述的系统,其中:圆柱形部分大致与活塞的运动方向垂直。
3.根据权利要求1所述的系统,其中:圆柱形部分大致与活塞的运动方向平行。
4.根据权利要求1所述的系统,其中:所测量的压力是相对压力。
5.根据权利要求1所述的系统,其中:所测量的压力是绝对压力,斜率是利用由多个绝对压力测量值计算的多个相对压力测量值来确定的。
6.根据权利要求1所述的系统,其中:所述处理器还设置成控制所述促动器的速度。
7.根据权利要求1所述的系统,其中:所述活塞是多级活塞。
8.根据权利要求1所述的系统,其中:所述管可拆卸地安装至所述端部件。
9.根据权利要求1所述的系统,其中,所述相对压力传感器包括:第一传感器,该第一传感器设置成以第一灵敏度范围测量第一压力;以及第二传感器,该第二传感器设置成以第二灵敏度范围测量第二压力,第一灵敏度范围低于第二灵敏度范围。
10.根据权利要求9所述的系统,还包括:电动阀,该电动阀连接于吸入腔室、在第一传感器和第二传感器之间,其中,该电动阀设置成根据所测量的压力、第一灵敏度范围和第二灵敏度范围而将与吸入腔室的连接自动地从第一传感器转换至第二传感器。
11.根据权利要求1所述的系统,还包括:电动阀,该电动阀通过第一导管和第二导管而连接于所述吸入腔室和所述相对压力传感器之间,其中,所述第一导管具有与所述第二导管不同的直径,所述电动阀设置成根据所测量的压力而在第一导管和第二导管之间转换。
12.根据权利要求1所述的系统,其中:所述吸入腔室、活塞和促动器安装在移液管中,所述相对压力传感器安装至所述移液管的壳体。
13.根据权利要求12所述的系统,其中:所述处理器也安装在移液管中。
14.根据权利要求13所述的系统,其中:所述移液管为手持的。
15.一种确定流体的粘度的方法,该方法包括:
在第一时间窗口中以第一恒定速度沿第一方向促动安装在吸入腔室中的活塞,以便将流体吸入管的槽道的圆柱形部分中,其中,所述槽道与所述吸入腔室连通,所述圆柱形部分具有恒定直径截面;
在所述第一时间窗口中测量压力第一多次,以便限定第一多个压力测量值;
确定与该限定的第一多个压力测量值相关联的第一斜率;
沿与所述第一方向相反的第二方向促动所述活塞,以便从所述管分配出一部分所吸入的流体;
在第二时间窗口中以第二恒定速度沿第一方向促动活塞,以便将流体吸入所述管的槽道的圆柱形部分中;
在第二时间窗口中测量压力第二多次,以便限定第二多个压力测量值;
确定与该限定的第二多个压力测量值相关联的第二斜率;以及
根据确定的第一斜率和确定的第二斜率来确定流体的粘度,
所述粘度根据η=(d2/32k2)((P0/V0)qp-((P0/V0)(πd2/4)+ρg)k)来计算,其中,k=(qp-V0λ/P0)(4/πd2),qp是每单位时间由所述活塞扫过的容积,d是圆柱形部分的直径,ρ是液体的密度,g是重力加速度,V0是管和吸入腔室的死区容积,P0是大气压力,λ是所确定的第一斜率或所确定的第二斜率。
16.根据权利要求15所述的方法,其中:所述第一恒定速度小于所述第二恒定速度。
17.根据权利要求15所述的方法,其中:所述流体是牛顿流体,从包括每单位时间由活塞扫过的容积、圆柱形部分的直径、液体的密度、管和吸入腔室的死区容积以及大气压力的组中选定的参数为未知的,利用确定的第一斜率和确定的第二斜率通过对η和未知参数的公式η=(d2/32k2)((P0/V0)qp-((P0/V0)(πd2/4)+ρg)k)进行求解来计算粘度,其中k=(qp-V0λ/P0)(4/πd2),qp是每单位时间由活塞扫过的容积,d是圆柱形部分的直径,ρ是液体的密度,g是重力加速度,V0是管和吸入腔室的死区容积,P0是大气压力,以及λ是确定的第一斜率或确定的第二斜率。
18.根据权利要求15所述的方法,其中:粘度包括根据确定的第一斜率确定的第一粘度以及根据确定的第二斜率确定的第二粘度。
19.根据权利要求18所述的方法,其中:所述第一恒定速度大于所述第二恒定速度。
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0851120 | 2008-02-21 | ||
| FR0851120A FR2927999B1 (fr) | 2008-02-21 | 2008-02-21 | Viscosimetre comprenant un systeme de pipetage, a precision amelioree et conception simplifiee |
| PCT/IB2009/000154 WO2009104065A1 (en) | 2008-02-21 | 2009-01-29 | Pipette system and method for measuring viscosity |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101971004A CN101971004A (zh) | 2011-02-09 |
| CN101971004B true CN101971004B (zh) | 2012-09-12 |
Family
ID=39862921
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200980108800.2A Active CN101971004B (zh) | 2008-02-21 | 2009-01-29 | 用于测量粘度的移液管系统和方法 |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US7904258B2 (zh) |
| EP (1) | EP2245440A1 (zh) |
| JP (1) | JP5714332B2 (zh) |
| KR (1) | KR101613325B1 (zh) |
| CN (1) | CN101971004B (zh) |
| BR (1) | BRPI0907531A2 (zh) |
| CA (1) | CA2715759C (zh) |
| FR (1) | FR2927999B1 (zh) |
| TW (1) | TW200942799A (zh) |
| WO (1) | WO2009104065A1 (zh) |
Families Citing this family (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9791386B2 (en) | 2009-01-20 | 2017-10-17 | Spectro Scientific, Inc. | Integrated, portable sample analysis system and method |
| US20100252451A1 (en) * | 2009-04-01 | 2010-10-07 | Warburton P Richard | Gas monitor |
| FR2952682B1 (fr) * | 2009-11-13 | 2017-08-25 | Pulssar Tech | Dispositif pour surveiller un prelevement a l'aide d'une pompe a piston. |
| US20130045498A1 (en) | 2010-03-01 | 2013-02-21 | Novozymes A/S | Viscosity pressure assay |
| CN103080724B (zh) | 2010-04-26 | 2016-04-13 | 电流感应器公司 | 便携式粘度计 |
| CN102374960B (zh) * | 2010-08-10 | 2013-11-06 | 中国石油化工集团公司 | 一种变径管式钻井液流变性测量方法 |
| FR2977317B1 (fr) | 2011-06-28 | 2013-08-02 | Gilson Sas | Procede de detection d'anomalies lors du remplissage d'un dispositif de dosage de liquide et dispositif de dosage de liquide |
| US20130104630A1 (en) * | 2011-10-31 | 2013-05-02 | Freeslate, Inc. | Automated capillary viscometer |
| WO2013121097A1 (en) * | 2012-02-13 | 2013-08-22 | Thermo Fisher Scientific Oy | Electronic pipette |
| JP5564074B2 (ja) * | 2012-06-11 | 2014-07-30 | 住友ゴム工業株式会社 | 流体のシミュレーション方法 |
| CN102866081A (zh) * | 2012-09-28 | 2013-01-09 | 哈尔滨理工大学 | 同步快速检测金属熔体粘度和密度的装置和方法 |
| WO2014144668A2 (en) * | 2013-03-15 | 2014-09-18 | Brookfield Engineering Laboratories, Inc. | Measurement instrument having touchscreen user interface and method for measuring viscosity |
| USD786279S1 (en) | 2013-03-15 | 2017-05-09 | Brookfield Engineering Laboratories, Inc. | Display screen with graphical user interface for a viscometer or rheometer |
| EP3120930A4 (en) * | 2014-03-20 | 2017-11-22 | National Institute Of Advanced Industrial Science | Pipette device and liquid treatment system |
| CN113155673B (zh) | 2014-04-11 | 2025-02-25 | 电流感应器公司 | 粘度计和使用该粘度计的方法 |
| KR102251084B1 (ko) * | 2015-02-03 | 2021-05-14 | 한국전자통신연구원 | 휴대용 점도 측정장치 및 점도 측정용 모세관 제조 방법 |
| CA2972890C (en) | 2015-03-26 | 2019-09-24 | Halliburton Energy Services, Inc. | Viscosity measurement |
| JP6842242B2 (ja) * | 2016-03-22 | 2021-03-17 | 株式会社アイカムス・ラボ | 分注システム |
| WO2017188462A1 (ko) * | 2016-04-25 | 2017-11-02 | 주식회사 디엠엑스 | 휴대용 점도 측정 장치 |
| EP3526580B1 (en) * | 2016-10-11 | 2024-03-27 | Rheosense Inc. | Viscometer and methods for using the same |
| AT518658B1 (de) * | 2017-01-12 | 2017-12-15 | Wolfgang Belitsch Dr | Viskosimeter zur Bestimmung der dynamischen und der kinematischen Viskosität |
| CN106950155B (zh) * | 2017-05-23 | 2024-05-28 | 甘肃瑞峰伟业电子科技有限公司 | 一种十字形牛顿液体粘度应力传感器 |
| WO2019060716A1 (en) | 2017-09-25 | 2019-03-28 | Freenome Holdings, Inc. | SAMPLE EXTRACTION METHODS AND SYSTEMS |
| EP3502656B1 (en) * | 2017-12-22 | 2022-09-21 | Tecan Trading Ag | A pipetting apparatus, a liquid handling system and a method of controlling pipetting |
| CN111855494A (zh) * | 2019-04-28 | 2020-10-30 | 上海美创力罗特维尔电子机械科技有限公司 | 一种喷码机油墨检测系统 |
| US11435274B2 (en) * | 2020-06-04 | 2022-09-06 | Saudi Arabian Oil Company | Continuous mud rheology monitoring |
| CN112881236B (zh) * | 2021-01-14 | 2022-03-01 | 青岛理工大学 | 一种液-液萃取界面剪切流变研究装置 |
| EP4337285A4 (en) | 2021-05-10 | 2025-03-26 | RheoSense, Inc. | Viscometer with reduced dead-volume and high dynamic range |
| CN116116475A (zh) * | 2022-11-25 | 2023-05-16 | 深圳市慧流体生物科技有限公司 | 一种变导向长度的密封结构及移液系统 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3990295A (en) * | 1974-09-16 | 1976-11-09 | Boehringer Ingelheim Gmbh | Apparatus and method for the performance of capillary viscosimetric measurements on non-homogeneous liquids |
| CN1063556A (zh) * | 1990-12-28 | 1992-08-12 | 株式会社日硝 | 用于测量液体粘度的方法和装置 |
| WO2006066565A1 (de) * | 2004-12-23 | 2006-06-29 | Georg-August-Universität Göttingen | Verfahren zur bestimmung der viskosität und viskosimeter hierfür |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3193148A (en) | 1962-07-02 | 1965-07-06 | Warner Lambert Pharmaceutical | Sample handling apparatus |
| US3835874A (en) | 1967-12-22 | 1974-09-17 | F Dellasala | Method of introducing liquid doses |
| US3640434A (en) | 1970-05-15 | 1972-02-08 | Sherwood Medical Ind Inc | Variable capacity fluid-dispensing device |
| JPS56164957A (en) * | 1980-05-23 | 1981-12-18 | Aloka Co Ltd | Automatic dispenser |
| DE3236488A1 (de) | 1982-10-01 | 1984-04-05 | Richard 8221 Hufschlag Haslberger | Dosiereinrichtung |
| JPS6157833A (ja) * | 1984-08-29 | 1986-03-24 | Babcock Hitachi Kk | 石炭・水スラリの連続式粘度測定法 |
| US4679446A (en) | 1985-09-09 | 1987-07-14 | Baxter Travenol Laboratories, Inc. | Multi-volume displacement pipette |
| JP2552408B2 (ja) * | 1991-10-18 | 1996-11-13 | アロカ株式会社 | 液体粘性測定装置 |
| JPH0674887A (ja) * | 1992-08-26 | 1994-03-18 | Mitsubishi Heavy Ind Ltd | プロセス粘度測定装置 |
| US20050220676A1 (en) | 2004-04-02 | 2005-10-06 | Tran Nathaniel T | Multi-range pipette |
| FR2895920B1 (fr) * | 2006-01-06 | 2008-04-18 | Gilson Sas Soc Par Actions Sim | Pipette multivolumes. |
| JP2007199031A (ja) * | 2006-01-30 | 2007-08-09 | Yaskawa Electric Corp | 分注装置およびその制御方法 |
-
2008
- 2008-02-21 FR FR0851120A patent/FR2927999B1/fr active Active
-
2009
- 2009-01-29 BR BRPI0907531A patent/BRPI0907531A2/pt not_active Application Discontinuation
- 2009-01-29 EP EP09712237A patent/EP2245440A1/en not_active Withdrawn
- 2009-01-29 CN CN200980108800.2A patent/CN101971004B/zh active Active
- 2009-01-29 WO PCT/IB2009/000154 patent/WO2009104065A1/en active Application Filing
- 2009-01-29 JP JP2010547264A patent/JP5714332B2/ja active Active
- 2009-01-29 KR KR1020107020844A patent/KR101613325B1/ko not_active Expired - Fee Related
- 2009-01-29 CA CA2715759A patent/CA2715759C/en active Active
- 2009-02-17 TW TW098105008A patent/TW200942799A/zh unknown
- 2009-02-19 US US12/389,061 patent/US7904258B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3990295A (en) * | 1974-09-16 | 1976-11-09 | Boehringer Ingelheim Gmbh | Apparatus and method for the performance of capillary viscosimetric measurements on non-homogeneous liquids |
| CN1063556A (zh) * | 1990-12-28 | 1992-08-12 | 株式会社日硝 | 用于测量液体粘度的方法和装置 |
| WO2006066565A1 (de) * | 2004-12-23 | 2006-06-29 | Georg-August-Universität Göttingen | Verfahren zur bestimmung der viskosität und viskosimeter hierfür |
Also Published As
| Publication number | Publication date |
|---|---|
| KR101613325B1 (ko) | 2016-04-18 |
| BRPI0907531A2 (pt) | 2018-11-06 |
| FR2927999B1 (fr) | 2010-09-17 |
| TW200942799A (en) | 2009-10-16 |
| EP2245440A1 (en) | 2010-11-03 |
| JP2011512538A (ja) | 2011-04-21 |
| US7904258B2 (en) | 2011-03-08 |
| CN101971004A (zh) | 2011-02-09 |
| US20090216465A1 (en) | 2009-08-27 |
| CA2715759A1 (en) | 2009-08-27 |
| JP5714332B2 (ja) | 2015-05-07 |
| CA2715759C (en) | 2017-10-31 |
| FR2927999A1 (fr) | 2009-08-28 |
| WO2009104065A1 (en) | 2009-08-27 |
| KR20100138936A (ko) | 2010-12-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101971004B (zh) | 用于测量粘度的移液管系统和方法 | |
| KR101831303B1 (ko) | 점도계 및 액체 점도 측정 방법 | |
| US8231842B2 (en) | Positive displacement pump with pressure sensor | |
| US8435464B2 (en) | System and method for pipetting of fluids, method for calibrating the system | |
| US9482563B2 (en) | Real time measurements of fluid volume and flow rate using two pressure transducers | |
| JP2013525799A5 (zh) | ||
| JP2013525799A (ja) | 携帯型粘度計 | |
| US5183765A (en) | Means and method of measuring and dispensing | |
| CN101251547A (zh) | 自动分析装置 | |
| US10768192B2 (en) | Device and method to sample liquids with high-precision in an automated sample analyzer | |
| JP5825344B2 (ja) | マイクロチップ送液システム | |
| JP3787578B2 (ja) | マイクロチップの微細流路における液体送液方法 | |
| US6805015B1 (en) | Dual resolution syringe | |
| EP3502656B1 (en) | A pipetting apparatus, a liquid handling system and a method of controlling pipetting | |
| US20100059549A1 (en) | Apparatus and method for dosing of liquids in gas filled spaces | |
| CN114137244B (zh) | 自动化微升液体定量分配装置及方法 | |
| CN210279198U (zh) | 一种通用手动移液器辅助装置 | |
| JP5748447B2 (ja) | 計量装置、計量方法、及びプログラム | |
| JP2008290039A (ja) | 液体吐出方法および装置 | |
| CN118356993A (zh) | 一种耐腐蚀的便携式数字化移液枪 | |
| JP2010145311A (ja) | 計量ポンプ | |
| Lisec et al. | Controlled Pipetting of Liquids in the Sub-µL-Range Based on the Level Detection Inside a Capillary |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |