CN101995222B - Device and method for measuring intrinsic brillouin line width of optical fiber - Google Patents
Device and method for measuring intrinsic brillouin line width of optical fiber Download PDFInfo
- Publication number
- CN101995222B CN101995222B CN2010105300165A CN201010530016A CN101995222B CN 101995222 B CN101995222 B CN 101995222B CN 2010105300165 A CN2010105300165 A CN 2010105300165A CN 201010530016 A CN201010530016 A CN 201010530016A CN 101995222 B CN101995222 B CN 101995222B
- Authority
- CN
- China
- Prior art keywords
- optical
- optical fiber
- signal
- output end
- waveform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims description 35
- 230000010287 polarization Effects 0.000 claims abstract description 50
- 239000000835 fiber Substances 0.000 claims abstract description 18
- 238000005259 measurement Methods 0.000 claims abstract description 14
- 238000000691 measurement method Methods 0.000 claims abstract description 7
- 230000003287 optical effect Effects 0.000 claims description 260
- 239000000523 sample Substances 0.000 claims description 12
- 230000001186 cumulative effect Effects 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 238000001228 spectrum Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 2
- 230000005684 electric field Effects 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
Images
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
光纤本征布里渊线宽测量装置及测量方法,涉及一种光纤本征布里渊线宽的测量装置及测量方法,解决了现有技术中存在的需要频率扫描设备、对光纤激光偏振态敏感以及需要考虑增益的偏振相关性问题。光纤本征布里渊线宽的测量装置,它由超窄线宽激光器、第一耦合器、EDFA、布里渊环形腔、第一可调衰减器、第一偏振控制器、强度调制器、第二可调衰减器、第二耦合器、单向隔离器、第二偏振控制器、第一环形器及示波器组成。本征布里渊线宽的测量方法基于上述测量装置实现,通过获取信号光及放大光的波形,提取信号光增益与慢光延时信息,利用最小二乘拟合,最终获得待测光纤的本征布里渊线宽。本发明可用于测量光纤中的本征布里渊线宽。
Optical fiber intrinsic Brillouin linewidth measurement device and measurement method, relates to a fiber optic intrinsic Brillouin linewidth measurement device and measurement method, which solves the problems in the prior art that require frequency scanning equipment and the polarization state of optical fiber laser Sensitive and need to consider the polarization dependence of the gain. A measuring device for the intrinsic Brillouin linewidth of an optical fiber, which consists of an ultra-narrow linewidth laser, a first coupler, an EDFA, a Brillouin ring cavity, a first adjustable attenuator, a first polarization controller, an intensity modulator, It consists of a second adjustable attenuator, a second coupler, a one-way isolator, a second polarization controller, a first circulator and an oscilloscope. The measurement method of the intrinsic Brillouin linewidth is realized based on the above-mentioned measuring device. By obtaining the waveforms of the signal light and the amplified light, the signal light gain and slow light delay information are extracted, and the least squares fitting is used to finally obtain the optical fiber to be tested. Intrinsic Brillouin linewidth. The invention can be used to measure the intrinsic Brillouin line width in the optical fiber.
Description
技术领域 technical field
本发明涉及一种光纤本征布里渊线宽的测量装置及测量方法。The invention relates to a measuring device and a measuring method for the intrinsic Brillouin line width of an optical fiber.
背景技术 Background technique
目前,针对光纤中本征布里渊线宽的测量主要利用扫谱技术实现。其利用微波信号发生器产生的高频信号驱动强度调制器,使强度调制器的输出激光相对于输入激光产生一定量的频移,频移量等于调节调制信号的频率。通过调节调制信号的频率,从而获得不同频移的光信号输出,通过测量不同频移下的光信号在布里渊放大过程中的增益,得到频移与增益关系的曲线。从该曲线中即可测得布里渊线宽。由于偏振失配的影响,此测量需要在偏振失配最大情况和最小情况两种状态下进行测量,才可测得布里渊线宽。而最大失配和最小失配两种状态要依靠人为观察确定,其准确性受激光器本身的漂动及人为因素影响较大。而且,这种方法需要测量的数据较多,误差来源也较多。此外,这种方法对设备条件的要求比较高。其中,微波信号发生器价格昂贵,使得一般的实验室不具备测量本征布里渊线宽的条件。At present, the measurement of the intrinsic Brillouin linewidth in an optical fiber is mainly realized by scanning spectrum technology. It uses the high-frequency signal generated by the microwave signal generator to drive the intensity modulator, so that the output laser of the intensity modulator produces a certain amount of frequency shift relative to the input laser, and the frequency shift is equal to the frequency of the modulation signal. By adjusting the frequency of the modulation signal, the optical signal output with different frequency shifts can be obtained, and by measuring the gain of the optical signal under different frequency shifts during the Brillouin amplification process, the curve of the relationship between the frequency shift and the gain is obtained. The Brillouin line width can be measured from this curve. Due to the influence of polarization mismatch, this measurement needs to be measured in the two states of the maximum polarization mismatch and the minimum situation to measure the Brillouin linewidth. The two states of maximum mismatch and minimum mismatch are determined by human observation, and their accuracy is greatly affected by the drift of the laser itself and human factors. Moreover, this method requires more measurement data and more sources of error. In addition, this method has relatively high requirements on equipment conditions. Among them, microwave signal generators are expensive, so that ordinary laboratories do not have the conditions to measure the intrinsic Brillouin linewidth.
综上,现有的用于测量本征布里渊线宽的方法和设备中,不仅需要频率扫描设备,而且对光纤激光偏振态敏感,需要考虑增益的偏振相关性问题。To sum up, the existing methods and equipment for measuring the intrinsic Brillouin linewidth not only require frequency scanning equipment, but also are sensitive to the polarization state of the fiber laser, and the polarization dependence of the gain needs to be considered.
发明内容 Contents of the invention
本发明的目的是解决现有的用于测量本征布里渊线宽的方法和设备中,存在的需要频率扫描设备、对光纤激光偏振态敏感以及需要考虑增益的偏振相关性问题,提供了一种光纤本征布里渊线宽的测量装置及测量方法。The purpose of the present invention is to solve the problems existing in the existing method and equipment for measuring the intrinsic Brillouin linewidth that require frequency scanning equipment, be sensitive to the polarization state of the fiber laser, and need to consider the polarization dependence of the gain, and provide A measuring device and measuring method for the intrinsic Brillouin linewidth of an optical fiber.
光纤本征布里渊线宽的测量装置,它由超窄线宽激光器、第一耦合器、EDFA、布里渊环形腔、第一可调衰减器、第一偏振控制器、强度调制器、第二可调衰减器、第二耦合器、单向隔离器、第二偏振控制器、第一环形器及示波器组成;A measuring device for the intrinsic Brillouin linewidth of an optical fiber, which consists of an ultra-narrow linewidth laser, a first coupler, an EDFA, a Brillouin ring cavity, a first adjustable attenuator, a first polarization controller, an intensity modulator, Composed of a second adjustable attenuator, a second coupler, a one-way isolator, a second polarization controller, a first circulator and an oscilloscope;
超窄线宽激光器的光输出端通过光纤与第一耦合器的光输入端相连,第一耦合器的第一光输出端通过光纤连接EDFA的光输入端,EDFA的光输出端通过光纤连接第一可调衰减器的光输入端,第一可调衰减器的光输出端通过光纤连接第一环形器的光输入端,第一环形器的光输入/输出端通过光纤与待测光纤的一端相连接,第一环形器的光输出端通过光纤与光电探头的光输入端相连接,所述光电探头的电信号输出端连接示波器第一信号输入端;The optical output end of the ultra-narrow linewidth laser is connected to the optical input end of the first coupler through an optical fiber, the first optical output end of the first coupler is connected to the optical input end of the EDFA through an optical fiber, and the optical output end of the EDFA is connected to the optical input end through an optical fiber. The optical input end of an adjustable attenuator, the optical output end of the first adjustable attenuator is connected to the optical input end of the first circulator through an optical fiber, and the optical input/output end of the first circulator is connected to one end of the optical fiber to be tested through an optical fiber connected, the optical output end of the first circulator is connected to the optical input end of the photoelectric probe through an optical fiber, and the electrical signal output end of the photoelectric probe is connected to the first signal input end of the oscilloscope;
第一耦合器的第二光输出端通过光纤连接布里渊环形腔的光输入端,布里渊环形腔的光输出端通过光纤连接第一偏振控制器的光输入端,第一偏振控制器的光输出端通过光纤连接强度调制器的光输入端,强度调制器的光输出端通过光纤连接第二可调衰减器的光输入端,第二可调衰减器的光输出端通过光纤连接第二耦合器的光输入端;The second optical output end of the first coupler is connected to the optical input end of the Brillouin ring cavity through an optical fiber, and the optical output end of the Brillouin ring cavity is connected to the optical input end of the first polarization controller through an optical fiber, and the first polarization controller The optical output end of the intensity modulator is connected to the optical input end of the intensity modulator through an optical fiber, the optical output end of the intensity modulator is connected to the optical input end of the second adjustable attenuator through an optical fiber, and the optical output end of the second adjustable attenuator is connected to the optical input end of the second adjustable attenuator through an optical fiber. The optical input end of the two couplers;
第二耦合器的第一光输出端通过光纤与光电探头的光输入端相连接,所述光电探头的电信号输出端连接示波器的第二信号输入端,第二耦合器的第二光输出端通过光纤连接单向隔离器的光输入端,单向隔离器的光输出端通过光纤连接第二偏振控制器的光输入端,第二偏振控制器的光输出端通过光纤与待测光纤的另一端相连接。The first optical output end of the second coupler is connected to the optical input end of the photoelectric probe through an optical fiber, the electrical signal output end of the photoelectric probe is connected to the second signal input end of the oscilloscope, and the second optical output end of the second coupler The optical input end of the one-way isolator is connected through an optical fiber, the optical output end of the one-way isolator is connected with the optical input end of the second polarization controller through an optical fiber, and the optical output end of the second polarization controller is connected to the other end of the optical fiber to be tested through an optical fiber. connected at one end.
光纤本征布里渊线宽的测量方法,它基于本征布里渊线宽的测量装置实现,所述测量方法的具体过程为:A method for measuring the intrinsic Brillouin linewidth of an optical fiber is implemented based on a measuring device for the intrinsic Brillouin linewidth. The specific process of the measurement method is:
步骤一、调节第一可调衰减器,使透过第一可调衰减器的光信号的光功率IP最低;令S1表示示波器的第一信号输入端接收到的光信号,S2表示示波器的第二信号输入端接收到的光信号,然后利用示波器,获得光信号S1的波形与光信号S2的波形;
步骤二、获得光信号S1的波形参数与光信号S2的波形参数,进而获得此时光信号S1和光信号S2的衰减G0和延时T0;
步骤三、在光信号S1的波形不失真的条件下,调整第一可调衰减器,使透过第一可调衰减器的光信号的光功率IP升高至I1;
步骤四、获得此时光信号S1的波形与光信号S2的波形,进而获得光信号S1的波形参数和光信号S2的波形参数;然后经过计算,获得光信号S1的增益G1及光信号S1与S2之间的实测延时T1,定义该步骤获得的数据为第1实验点的数据;
步骤五、调节第一可调衰减器,使透过第一可调衰减器的光信号的光功率IP依次下降至I2、I3、…、IQ,其中,Q为大于等于5的正整数;同时,分别在所述光功率IP为I2、I3、…、IQ时,获得每种光功率条件下的光信号S1的波形与光信号S2的波形;根据所述每种光功率条件下的光信号S1的波形与光信号S2的波形,获得每种光功率条件下的波形参数,进而计算获得每种光功率条件下的光信号S1的实测增益Gi以及光信号S1与S2之间的实测延时Ti,i=2,3,4…Q,定义光功率分别为I2、I3、…、IQ条件下所获得的数据分别为第2实验点的数据、第3实验点的数据、…、第Q实验点的数据;
步骤六、根据光功率IP分别等于I1、I2、I3、...、IQ时对应的实测延时Ti,光信号S1的实测增益Gi,以及G0和T0对布里渊线宽作最小二乘拟合,最终获得待测光纤12的布里渊线宽值。Step 6: According to the measured delay T i corresponding to when the optical power IP is equal to I 1 , I 2 , I 3 , ..., I Q respectively, the measured gain G i of the optical signal S1, and the pair of G 0 and T 0 The Brillouin linewidth is fitted by least squares, and finally the Brillouin linewidth value of the optical fiber 12 to be tested is obtained.
本发明的积极效果:本发明的光纤本征布里渊线宽的测量装置及测量方法,不需要频率扫描设备,而且对光纤激光偏振态不敏感,无需考虑增益的偏振相关性问题,其仅测量强度和时间两种物理量,测量简单易行。Positive effects of the present invention: The measuring device and measuring method of the intrinsic Brillouin linewidth of the optical fiber of the present invention do not require frequency scanning equipment, and are not sensitive to the polarization state of the fiber laser, and do not need to consider the polarization dependence of the gain. Measuring two physical quantities of intensity and time, the measurement is simple and easy.
附图说明 Description of drawings
图1为本发明的光纤本征布里渊线宽的测量装置的结构示意图;图2为本发明的光纤本征布里渊线宽的测量方法的流程图。Fig. 1 is a schematic structural diagram of a measuring device for the intrinsic Brillouin linewidth of an optical fiber of the present invention; Fig. 2 is a flowchart of a measuring method for the intrinsic Brillouin linewidth of an optical fiber of the present invention.
具体实施方式 Detailed ways
具体实施方式一:本实施方式的光纤本征布里渊线宽的测量装置,它由超窄线宽激光器1、第一耦合器2、EDFA3、布里渊环形腔4、第一可调衰减器5、第一偏振控制器6、强度调制器7、第二可调衰减器8、第二耦合器9、单向隔离器10、第二偏振控制器11、第一环形器13及示波器14组成;Specific embodiment one: the measuring device of the fiber intrinsic Brillouin linewidth of the present embodiment, it is made of
超窄线宽激光器1的光输出端通过光纤与第一耦合器2的光输入端相连,第一耦合器2的第一光输出端通过光纤连接EDFA3的光输入端,EDFA3的光输出端通过光纤连接第一可调衰减器5的光输入端,第一可调衰减器5的光输出端通过光纤连接第一环形器13的光输入端13-1,第一环形器13的光输入/输出端13-2通过光纤与待测光纤12的一端相连接,第一环形器13的光输出端13-3通过光纤与光电探头的光输入端相连接,所述光电探头的电信号输出端连接示波器14第一信号输入端;The optical output end of the
第一耦合器2的第二光输出端通过光纤连接布里渊环形腔4的光输入端,布里渊环形腔4的光输出端通过光纤连接第一偏振控制器6的光输入端,第一偏振控制器6的光输出端通过光纤连接强度调制器7的光输入端,强度调制器7的光输出端通过光纤连接第二可调衰减器8的光输入端,第二可调衰减器8的光输出端通过光纤连接第二耦合器9的光输入端;The second optical output end of the
第二耦合器9的第一光输出端通过光纤与光电探头的光输入端相连接,所述光电探头的电信号输出端连接示波器14的第二信号输入端,第二耦合器9的第二光输出端通过光纤连接单向隔离器10的光输入端,单向隔离器10的光输出端通过光纤连接第二偏振控制器11的光输入端,第二偏振控制器11的光输出端通过光纤与待测光纤12的另一端相连接。The first light output end of the
该测量装置的工作原理如下:The measuring device works as follows:
超窄线宽激光器1输出的激光束经第一耦合器2后分为两束,其中一束注入到EDFA3中,另一束注入到布里渊环形腔4中;The laser beam output by the
EDFA3将接收到的光束放大后输出放大后的光束,放大后的光束再经第一可调衰减器5衰减后入射至第一环形器13的光输入端13-1,再由第一环形器13的光输入/输出端13-2输出后作为泵浦光入射至待测光纤12的右端;EDFA3 amplifies the received light beam and outputs the amplified light beam, and the amplified light beam is attenuated by the first
入射至布里渊环形腔4中的光束发生受激布里渊散射,产生的stokes光束由布里渊环形腔4输出至第一偏振控制器6,经第一偏振控制器6调节至与强度调制器7相匹配的偏振态后,从第一偏振控制器6中输出至强度调制器7,强度调制器7将接收到的stokes光束调制成脉冲式stokes光束后输出至第二可调衰减器8,第二可调衰减器8对接收到的光进行衰减后输出至第二耦合器9,第二耦合器9将接收到的光分为两束,其中一束输出作为参考光由示波器14的一个信号端接收,另一束作为信号光经过单向隔离器10后输出至第二偏振控制器11,第二偏振控制器11对接收到的信号光进行偏振调节,使所述信号光的偏振态与泵浦光的偏振态相匹配,然后将信号光输出至待测光纤12的左端,使信号光与泵浦光在待测光纤12内发生受激布里渊放大,产生慢光延时,放大后的信号光从待测光纤12的右端输出至第一环形器13的光输入/输出端13-2,并从第一环形器13的光输出端13-3输出,由示波器14的另一个信号端接收。The light beam incident into the Brillouin
本发明的本征布里渊线宽的测量装置,不需要频率扫描设备,即可对本征布里渊线宽进行测量,而且对光纤激光偏振态不敏感,无需考虑增益的偏振相关性问题,其仅测量强度和时间两种物理量,测量简单易行。The measuring device of the intrinsic Brillouin linewidth of the present invention can measure the intrinsic Brillouin linewidth without frequency scanning equipment, and is insensitive to the polarization state of the fiber laser, without considering the polarization dependence of the gain, It only measures two physical quantities of intensity and time, and the measurement is simple and easy.
具体实施方式二:本实施方式是对实施方式一的光纤本征布里渊线宽的测量装置的进一步限定,所述超窄线宽激光器1的输出激光的波长为1550.12nm、线宽小于100kHz。Embodiment 2: This embodiment is a further limitation of the measuring device for the intrinsic Brillouin linewidth of the optical fiber in
具体实施方式三:本实施方式是对实施方式一或二的光纤本征布里渊线宽的测量装置的进一步限定,第一耦合器2的输出分光比为50%∶50%,第二耦合器9输出分光比为90%∶10%,且90%的输出端作为第二耦合器9的第二光输出端,10%的输出端作为第二耦合器9的第一光输出端。Specific embodiment three: this embodiment is a further limitation to the measurement device of the fiber intrinsic Brillouin linewidth of embodiment one or two, the output splitting ratio of the
具体实施方式四:本实施方式是对实施方式一、二或三的光纤本征布里渊线宽的测量装置的进一步限定,所述布里渊环形腔4由第二环形器4-1、第三偏振控制器4-2、增益介质光纤4-3以及第三耦合器4-4组成;Embodiment 4: This embodiment is a further limitation of the measurement device for the intrinsic Brillouin linewidth of the optical fiber in
所述第二环形器4-1的光输入端4-1-1作为布里渊环形腔4的光输入端,第二环形器4-1的光输入/输出端4-1-2通过光纤与第三偏振控制器4-2的一个光输入/输出端,第三偏振控制器4-2的另一个光输入/输出端通过光纤连接增益介质光纤4-3的一端,增益介质光纤4-3的另一端通过光纤连接第三耦合器4-4的第一光输出端;The optical input end 4-1-1 of the second circulator 4-1 is used as the optical input end of the Brillouin
所述第二环形器4-1的光输出端4-1-3通过光纤连接第三耦合器4-4的光输入端,第三耦合器4-4的第二光输出端作为布里渊环形腔4的光输出端;第三耦合器4-4的输出分光比为95%∶5%,且5%的输出端作为第三耦合器4-4的第一输出端,95%的输出端作为第三耦合器4-4的第二光输出端。The optical output end 4-1-3 of the second circulator 4-1 is connected to the optical input end of the third coupler 4-4 through an optical fiber, and the second optical output end of the third coupler 4-4 serves as a Brillouin The optical output end of the
具体实施方式五:本实施方式的光纤本征布里渊线宽的测量方法,它基于光纤本征布里渊线宽的测量装置实现,所述测量方法的具体过程为:Specific embodiment five: the method for measuring the intrinsic Brillouin linewidth of an optical fiber in this embodiment is implemented based on a measuring device for the intrinsic Brillouin linewidth of an optical fiber. The specific process of the measurement method is:
步骤一、调节第一可调衰减器5,使透过第一可调衰减器5的光信号的光功率IP最低;令S1表示示波器14的第一信号输入端接收到的光信号,S2表示示波器14的第二信号输入端接收到的光信号,然后利用示波器14,获得光信号S1的波形与光信号S2的波形;
步骤二、获得光信号S1的波形参数与光信号S2的波形参数,进而获得此时光信号S1和光信号S2的衰减G0和延时T0;
步骤三、在光信号S1的波形不失真的条件下,调整第一可调衰减器5,使透过第一可调衰减器5的光信号的光功率IP升高至I1;
步骤四、获得此时光信号S1的波形与光信号S2的波形,进而获得光信号S1的波形参数和光信号S2的波形参数;然后经过计算,获得光信号S1的增益G1及光信号S1与S2之间的实测延时T1,定义该步骤获得的数据为第1实验点的数据;
步骤五、调节第一可调衰减器5,使透过第一可调衰减器5的光信号的光功率IP依次下降至I2、I3、…、IQ,其中,Q为大于等于5的正整数;同时,分别在所述光功率IP为I2、I3、…、IQ时,获得每种光功率条件下的光信号S1的波形与光信号S2的波形;根据所述每种光功率条件下的光信号S1的波形与光信号S2的波形,获得每种光功率条件下的波形参数,进而计算获得每种光功率条件下的光信号S1的实测增益Gi以及光信号S1与S2之间的实测延时Ti,i=2,3,4…Q,定义光功率分别为I2、I3、…、IQ条件下所获得的数据分别为第2实验点的数据、第3实验点的数据、…、第Q实验点的数据;
步骤六、根据光功率IP分别等于I1、I2、I3、...、IQ时对应的实测延时Ti,光信号S1的实测增益Gi,以及G0和T0对布里渊线宽作最小二乘拟合,最终获得待测光纤12的布里渊线宽值。Step 6: According to the measured delay T i corresponding to when the optical power IP is equal to I 1 , I 2 , I 3 , ..., I Q respectively, the measured gain G i of the optical signal S1, and the pair of G 0 and T 0 The Brillouin linewidth is fitted by least squares, and finally the Brillouin linewidth value of the optical fiber 12 to be tested is obtained.
本发明的本征布里渊线宽的测量方法,不需要频率扫描设备,而且对光纤激光偏振态不敏感,无需考虑增益的偏振相关性问题,其仅测量强度和时间两种物理量,测量简单易行。The method for measuring the intrinsic Brillouin linewidth of the present invention does not require frequency scanning equipment, is insensitive to the polarization state of the fiber laser, and does not need to consider the polarization correlation problem of the gain. It only measures two physical quantities of intensity and time, and the measurement is simple easy.
具体实施方式六:本实施方式是对实施方式五的光纤本征布里渊线宽的测量方法的进一步说明,步骤二、步骤四及步骤五中所述的波形参数是指波形的峰值、峰值时间、以及脉宽三个参数。Specific embodiment six: this embodiment is a further description of the method for measuring the intrinsic Brillouin linewidth of an optical fiber in embodiment five, and the waveform parameters described in
具体实施方式七:本实施方式是对实施方式五或六的光纤本征布里渊线宽的测量方法的进一步说明,在步骤二中:Specific embodiment seven: This embodiment is a further description of the method for measuring the intrinsic Brillouin linewidth of an optical fiber in embodiment five or six, in step two:
所述的光信号S1和光信号S2的衰减其中RS1为光信号S1波形的峰值,PS2为光信号S2波形的峰值;The attenuation of the optical signal S1 and the optical signal S2 Where R S1 is the peak value of the optical signal S1 waveform, and P S2 is the peak value of the optical signal S2 waveform;
所述的延时T0,等于光信号S1波形的峰值时间减去光信号S2波形的峰值时间的差值。The time delay T 0 is equal to the difference between the peak time of the waveform of the optical signal S1 minus the peak time of the waveform of the optical signal S2 .
具体实施方式八:本实施方式是对实施方式五、六或七的光纤本征布里渊线宽的测量方法的进一步说明,步骤五中所述的计算获得每种光功率条件下的光信号S1的实测增益Gi以及光信号S1与S2之间的实测延时Ti的具体过程为:Embodiment 8: This embodiment is a further description of the method for measuring the intrinsic Brillouin linewidth of an optical fiber in
在所述每种光功率条件下,获得光信号S1和光信号S2的峰峰比值P(X),其中X=I1、I2、I3、…或IQ,则该种光功率条件下的光信号S1的增益Gi=10log(P(X))-G0;Under each optical power condition, the peak-to-peak ratio P(X) of the optical signal S1 and the optical signal S2 is obtained, where X=I 1 , I 2 , I 3 , ... or I Q , then under the optical power condition The gain G i of the optical signal S1 = 10log(P(X))-G 0 ;
同时,在所述每种光功率条件下,获得光信号S1与S2的波形的峰值时间差T(X),其中X=I1、I2、I3、…或IQ,即T(X)=光信号S1波形的峰值时间-光信号S2波形的峰值时间;At the same time, under each of the optical power conditions, the peak time difference T(X) of the waveforms of the optical signals S1 and S2 is obtained, where X=I 1 , I 2 , I 3 , ... or I Q , that is, T(X) =peak time of optical signal S1 waveform-peak time of optical signal S2 waveform;
此时光信号S1与S2之间的实测延时Ti=T(X)-T0,T(X)为光功率为X时、光信号S1波形的峰值时间减去光信号S2波形的峰值时间的差值。At this time, the measured delay between optical signals S1 and S2 is T i =T(X)-T 0 , where T(X) is the peak time of the optical signal S1 waveform minus the peak time of the optical signal S2 waveform when the optical power is X difference.
具体实施方式九:本实施方式是对实施方式五至八中的光纤任意一种本征布里渊线宽的测量方法的进一步说明,步骤六所述内容的具体过程为:Specific Embodiment Nine: This embodiment is a further description of any method for measuring the intrinsic Brillouin linewidth of an optical fiber in Embodiments five to eight, and the specific process of the content described in step six is:
步骤六一、生成线宽值序列{γ(J),J=1,2,...},所述线宽值序列由多个等间隔的线宽值组成,即γ(J+1)-γ(J)=Δ,其中Δ为固定值;Step 61. Generate a line width value sequence {γ (J) , J=1, 2, ...}, the line width value sequence is composed of a plurality of equally spaced line width values, namely γ (J+1) -γ (J) = Δ, where Δ is a fixed value;
步骤六二、根据所测得的光信号S1的脉宽,利用快速傅里叶变换(FFT),生成幅值归一化的输入信号光电场强度频谱AS(ω,0),其中信号光脉宽由实验测量数据提供;Step 62. According to the measured pulse width of the optical signal S1, the fast Fourier transform (FFT) is used to generate an amplitude-normalized optical field intensity spectrum A S (ω, 0) of the input signal, wherein the signal light The pulse width is provided by the experimental measurement data;
步骤六三、对于线宽值序列中的每一个线宽值γ(J),计算理论延时与实验测量延时的累计误差:其中Ti为实验测量得到的信号光慢光延时,Tdi为理论计算得到的慢光延时,进而获得误差延时序列{EJ,J=1,2,...};Step 63. For each line width value γ (J) in the line width value sequence, calculate the cumulative error between the theoretical delay and the experimentally measured delay: Where T i is the slow light delay of the signal light measured experimentally, Td i is the slow light delay obtained by theoretical calculation, and then the error delay sequence {E J , J=1, 2,...} is obtained;
步骤六四、在所述误差延时序列{EJ,J=1,2,...}中取最小的误差延时,则令该误差延时对应的线宽值为待测光纤的布里渊线宽值。Step 64: Take the smallest error delay in the error delay sequence {E J , J=1, 2, ...}, then let the line width corresponding to the error delay be the layout of the optical fiber to be tested Rieouin line width value.
具体实施方式十:本实施方式是对实施方式九的光纤本征布里渊线宽的测量方法的进一步说明,步骤六三所述内容的具体过程为:Specific Embodiment Ten: This embodiment is a further description of the method for measuring the intrinsic Brillouin linewidth of an optical fiber in
步骤六三一、对每一个线宽值r(J),执行步骤六三二至步骤六三六,获得对应的累计误差;Step 631, for each line width value r (J) , execute step 632 to step 636 to obtain the corresponding cumulative error;
步聚六三二、选取第1实验点数据中的增益值为目标增益,设为Gaim;令G=g0Ipz作为未知变量,选取G的取值作为试探解Gtry;Step six three two, select the gain value in the data of the first experimental point as the target gain, and set it as G aim ; make G=g 0 I p z as the unknown variable, and select the value of G as the trial solution G try ;
其中g0为光纤的增益系数,IP为泵浦光强度,z为待测光纤长度;Where g 0 is the gain coefficient of the fiber, I P is the intensity of the pump light, and z is the length of the fiber to be tested;
步骤六三三、将Gtry代入下式:Step 633, substitute G try into the following formula:
其中AS(ω,z)为输出信号光的频域电场振幅,ω为信号光频率,r(J)为布里渊线宽序列的第J项;Where A S (ω, z) is the frequency-domain electric field amplitude of the output signal light, ω is the signal light frequency, r (J) is the Jth item of the Brillouin linewidth sequence;
对上式进行傅里叶逆变换,得到经过布里渊放大后的信号光输出,计算输出的放大后的信号光的增益;Perform Fourier inverse transform on the above formula to obtain the signal light output after Brillouin amplification, and calculate the gain of the output amplified signal light;
步骤六三四、判断步骤六三三获得的增益与目标增益Gaim是否相等,若不相等,则利用二分法生成新的Gtry值,返回执行步聚六三三;若相等,则Gtry值为与该实验点数据相匹配的增益参数;令下一实验点数据中的增益值为目标增益Gaim,并重新选择G的初值作为试探解Gtry,返回执行步骤六三三,直到完成所有Q个实验点数据的匹配;然后执行步骤六三五;Step 634, judge whether the gain obtained in step 633 is equal to the target gain G aim , if not, use the dichotomy method to generate a new G try value, return to execute step 633; if equal, then G try The value is the gain parameter that matches the data of the experimental point; let the gain value in the data of the next experimental point be the target gain G aim , and reselect the initial value of G as the tentative solution G try , and return to step 633 until Complete the matching of all Q experimental point data; then perform steps six to three;
步骤六三五、对每一个实验点数据,将相匹配的增益参数Gtry代入步聚六三三中公式,并对其作傅里叶变换,计算信号光延时Tdi,并计算延时误差Ei=(Ti-Tdi)2,其中Ti为实验测量得到的信号光慢光延时,Tdi为理论计算得到的慢光延时;Step 635. For each experimental point data, substitute the matching gain parameter G try into the formula in step 633, and perform Fourier transform on it, calculate the signal light delay Td i , and calculate the delay Error E i =(T i -Td i ) 2 , where T i is the slow light delay of signal light measured experimentally, and Td i is the slow light delay obtained by theoretical calculation;
步骤六三六、计算获得线宽值r(J)对应的累计误差: Step 636, calculate and obtain the cumulative error corresponding to the line width value r (J) :
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010105300165A CN101995222B (en) | 2010-11-03 | 2010-11-03 | Device and method for measuring intrinsic brillouin line width of optical fiber |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010105300165A CN101995222B (en) | 2010-11-03 | 2010-11-03 | Device and method for measuring intrinsic brillouin line width of optical fiber |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101995222A CN101995222A (en) | 2011-03-30 |
| CN101995222B true CN101995222B (en) | 2012-06-06 |
Family
ID=43785694
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2010105300165A Expired - Fee Related CN101995222B (en) | 2010-11-03 | 2010-11-03 | Device and method for measuring intrinsic brillouin line width of optical fiber |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101995222B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102809437B (en) * | 2012-08-31 | 2014-06-04 | 哈尔滨工业大学 | Device for measuring medium brillouin gain linetype and line width and a method for measuring medium brillouin gain linetype and line width based on device |
| CN103542872B (en) * | 2013-10-24 | 2015-12-30 | 华南师范大学 | Based on distributed fiberoptic sensor and the method for sensing of excited Brillouin slow light effect |
| CN108106643B (en) * | 2017-12-15 | 2020-07-17 | 哈尔滨工业大学 | Ultrafast distributed Brillouin optical time domain analyzer based on optical chirp chain |
| CN113167980B (en) * | 2018-11-27 | 2022-08-26 | 深圳市大耳马科技有限公司 | Optical fiber sensor and light intensity loss value calculation and analysis method and device thereof |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1598480A (en) * | 2004-09-22 | 2005-03-23 | 哈尔滨工业大学 | Apparatus for measuring ultra narrow laser line width by Brillouin optical fibre ring laser and measuring method |
| EP1760424A1 (en) * | 2004-06-25 | 2007-03-07 | Neubrex Co., Ltd. | Distributed optical fiber sensor |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2589345B2 (en) * | 1988-06-24 | 1997-03-12 | 日本電信電話株式会社 | Method and apparatus for evaluating characteristics of optical fiber |
| US7003202B2 (en) * | 2003-04-28 | 2006-02-21 | The Furukawa Electric Co., Ltd. | Method and system for measuring the wavelength dispersion and nonlinear coefficient of an optical fiber, method of manufacturing optical fibers, method of measuring wavelength-dispersion distribution, method of compensating for measurement errors, and method of specifying conditions of measurement |
-
2010
- 2010-11-03 CN CN2010105300165A patent/CN101995222B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1760424A1 (en) * | 2004-06-25 | 2007-03-07 | Neubrex Co., Ltd. | Distributed optical fiber sensor |
| CN1598480A (en) * | 2004-09-22 | 2005-03-23 | 哈尔滨工业大学 | Apparatus for measuring ultra narrow laser line width by Brillouin optical fibre ring laser and measuring method |
Non-Patent Citations (1)
| Title |
|---|
| JP平2-6725A 1990.01.10 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101995222A (en) | 2011-03-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101762290A (en) | Distributed Raman amplification-based Brillouin optical time domain analysis system | |
| CN100504309C (en) | Brillouin Optical Time Domain Reflectometry Method Based on Fast Fourier Transform | |
| CN104677396B (en) | Dynamic distributed Brillouin optical fiber sensing device and method | |
| CN103335666B (en) | Dynamic distributed Brillouin light fiber sensing equipment and method | |
| CN103928835B (en) | The nonlinear response bearing calibration of a kind of semiconductor laser light source and device | |
| CN101995222B (en) | Device and method for measuring intrinsic brillouin line width of optical fiber | |
| CN103115632A (en) | Multi-wavelength brillouin optical time domain analyzer | |
| CN100570461C (en) | Chirped stretched laser pulse spectrum shaping device and method | |
| CN104977030A (en) | Dynamic distributed Brillouin sensing device based on low-frequency arbitrary waveform optical frequency agility technology and method thereof | |
| CN108614152A (en) | The measurement method of the input end face power of load balance factor system and its measured piece | |
| CN105871457A (en) | Optical time-domain reflectometer system and measuring and using method thereof | |
| CN204439100U (en) | Dynamic distributed Brillouin light fiber sensing equipment | |
| CN106840223A (en) | Wide-band microwave instantaneous spectrum measurement apparatus based on Brillouin scattering | |
| CN102967371A (en) | Device and method for measuring brillouin gain spectrum in non-scanning manner based on pumping-detection method | |
| CN116231435B (en) | Laser and Sensing System Based on Collect-Sparse Frequency Sequential Pulsed Optical Time-Domain Reflectometry Technology | |
| CN105403257A (en) | Distribution type Brillouin time domain analysis system | |
| CN103913298B (en) | A kind of apparatus and method measuring highly nonlinear optical fiber Verdet constant | |
| CN114937912B (en) | System and method for evaluating weak feedback strength of single-frequency phase modulation high-power narrow-linewidth optical fiber amplifier | |
| Zornoza et al. | Brillouin distributed sensor using RF shaping of pump pulses | |
| CN203758532U (en) | Brillouin fiber optic sensing system | |
| CN110375960B (en) | Device and method based on super-continuum spectrum light source OTDR | |
| Ma et al. | Analysis of sensing characteristics of chaotic Brillouin dynamic grating | |
| CN110542875A (en) | Device and method for amplitude and phase calibration of fiber-optic electromagnetic field probe | |
| Wang et al. | Fast peak searching method for Brillouin gain spectrum using positive-slope inflection point | |
| Sakairi et al. | Prototype double-pulse BOTDR for measuring distributed strain with 20-cm spatial resolution |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120606 Termination date: 20211103 |