CN101997413B - Power converter with synchronous rectifier and control method for synchronous rectifier - Google Patents
Power converter with synchronous rectifier and control method for synchronous rectifier Download PDFInfo
- Publication number
- CN101997413B CN101997413B CN200910166746.9A CN200910166746A CN101997413B CN 101997413 B CN101997413 B CN 101997413B CN 200910166746 A CN200910166746 A CN 200910166746A CN 101997413 B CN101997413 B CN 101997413B
- Authority
- CN
- China
- Prior art keywords
- circuit
- synchronous rectifier
- switching element
- resistor
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Dc-Dc Converters (AREA)
- Rectifiers (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种电源转换器,尤其涉及一种利用电流变压器去检测同步整流器的截止时间的具有同步整流器的电源转换器及同步整流器的控制方法。The invention relates to a power converter, in particular to a power converter with a synchronous rectifier which uses a current transformer to detect the cut-off time of the synchronous rectifier and a control method for the synchronous rectifier.
背景技术 Background technique
在各种电源转换器(power converter circuit)中,例如谐振式电源转换器等,通常会具有切换电路、变压器以及整流二极管。其中切换电路与变压器的初级绕组连接,其受一控制电路的控制而进行导通或截止。变压器则通过初级侧绕组接收电能,并且于切换电路进行导通或截止的切换时,将初级绕组的电能利用电磁感应的方式传送到变压器的次级绕组。至于整流二极管则与变压器的次级绕组连接,用以将次级绕组感应生成的交流电压整流成一直流电压,以提供给负载使用。In various power converter circuits, such as resonant power converters, etc., there are usually switching circuits, transformers and rectifier diodes. Wherein the switching circuit is connected with the primary winding of the transformer, and is controlled by a control circuit to be turned on or off. The transformer receives electric energy through the primary winding, and transmits the electric energy of the primary winding to the secondary winding of the transformer by electromagnetic induction when the switching circuit is switched on or off. As for the rectifier diode, it is connected with the secondary winding of the transformer, and is used for rectifying the AC voltage induced by the secondary winding into a DC voltage for supplying to the load.
然而由于整流二极管的正向导通压降会使得整流二极管产生相当大的导通损失,因此由晶体管所组成的同步整流器逐渐取代了整流二极管而应用于电源转换器中。相较于传统使用整流二极管的电源转换器架构,使用同步整流器来进行整流的电源转换器便可以减少功率损耗。However, since the forward conduction voltage drop of the rectifier diode will cause considerable conduction loss of the rectifier diode, the synchronous rectifier composed of transistors gradually replaces the rectifier diode and is applied in the power converter. Compared with the traditional power converter architecture using rectifier diodes, power converters using synchronous rectifiers for rectification can reduce power loss.
虽然使用同步整流器进行整流确实可使电源转换器减少功率损失,然而由于同步整流器由晶体管所组成,因此同步整流器需要精确地被控制以进行导通或截止的切换。目前同步整流器的控制方式乃是直接由一控制集成电路(control integrated circuit)控制同步整流器导通,此外,控制集成电路会采样同步整流器的漏极以及源极两端间的电压差,进而计算流过同步整流器的电流,借此控制同步整流器截止。Although using a synchronous rectifier for rectification can indeed reduce the power loss of the power converter, since the synchronous rectifier is composed of transistors, the synchronous rectifier needs to be precisely controlled to switch on or off. The current control method of the synchronous rectifier is to directly control the conduction of the synchronous rectifier by a control integrated circuit. In addition, the control integrated circuit will sample the voltage difference between the drain and the source of the synchronous rectifier, and then calculate the current The current through the synchronous rectifier is used to control the synchronous rectifier to cut off.
然而上述同步整流器的控制方式会受电源转换器的线路上的漏感影响,使得控制集成电路无法准确采样同步整流器的漏极以及源极两端间的电压差,进而导致控制集成电路无法精确的控制同步整流器的动作,例如控制集成电路可能控制同步整流器提前截止,如此一来,同步整流器便容易烧毁,且电源转换器的整体效率也较为不佳。However, the control method of the above-mentioned synchronous rectifier will be affected by the leakage inductance on the line of the power converter, so that the control integrated circuit cannot accurately sample the voltage difference between the drain and the source of the synchronous rectifier, and thus the control integrated circuit cannot accurately measure To control the operation of the synchronous rectifier, for example, the control integrated circuit may control the synchronous rectifier to cut off early, so that the synchronous rectifier is easy to burn out, and the overall efficiency of the power converter is also relatively poor.
因此,如何发展一种可改善上述公知技术缺陷的利用具有同步整流器的电源转换器及同步整流器的控制方法,实为目前迫切需要解决的问题。Therefore, how to develop a power converter with a synchronous rectifier and a control method for the synchronous rectifier that can improve the above-mentioned defects of the known technology is an urgent problem to be solved at present.
发明内容 Contents of the invention
本发明的主要目的在于提供一种具同步整流器的电源转换器及同步整流器的控制方法,以解决公知电源转换器因直接利用控制集成电路控制同步整流器的动作,故于控制集成电路受公知电源转换器的线路上的漏感影响时,会无法精确的控制同步整流器的动作,导致具有同步整流器可能烧毁以及公知电源转换器的整体效率不佳等缺陷。The main purpose of the present invention is to provide a power converter with a synchronous rectifier and a control method for the synchronous rectifier, to solve the problem that the known power converter directly uses the control integrated circuit to control the operation of the synchronous rectifier, so the control integrated circuit is affected by the known power conversion. When affected by the leakage inductance on the circuit of the synchronous rectifier, the action of the synchronous rectifier cannot be accurately controlled, resulting in defects such as possible burnout of the synchronous rectifier and poor overall efficiency of the conventional power converter.
为达上述目的,本发明的一较广义实施方式为提供一种电源转换器,其包含切换电路,接收输入电压;变压器,具有初级绕组以及次级绕组,初级绕组与切换电路的电源输出端及第一共接点连接;主控制电路,连接于切换电路的控制端,用以产生至少一主控制信号而控制切换电路运行,使输入电压的能量选择性地经由切换电路传送至初级绕组;至少一同步整流器,与变压器的次级绕组及第二共接点串接;至少一电流变压器,与同步整流器串接,用以根据流过同步整流器的电流而输出检测信号;以及至少一同步整流控制电路,与同步整流器的控制端、电流变压器以及切换电路的控制端连接,其接收对应的检测信号及对应的主控制信号,并控制同步整流器运行;其中于主控制电路控制切换电路导通时,同步整流控制电路控制同步整流器导通,且同步整流控制电路根据检测信号而控制同步整流器截止。In order to achieve the above object, a broad implementation of the present invention provides a power converter, which includes a switching circuit for receiving an input voltage; a transformer with a primary winding and a secondary winding, the primary winding and the power output end of the switching circuit and The first common contact connection; the main control circuit, connected to the control terminal of the switching circuit, is used to generate at least one main control signal to control the operation of the switching circuit, so that the energy of the input voltage is selectively transmitted to the primary winding through the switching circuit; at least one a synchronous rectifier, connected in series with the secondary winding of the transformer and the second common point; at least one current transformer, connected in series with the synchronous rectifier, for outputting a detection signal according to the current flowing through the synchronous rectifier; and at least one synchronous rectification control circuit, It is connected with the control terminal of the synchronous rectifier, the current transformer and the control terminal of the switching circuit, which receives the corresponding detection signal and the corresponding main control signal, and controls the operation of the synchronous rectifier; when the main control circuit controls the switching circuit to be turned on, the synchronous rectification The control circuit controls the synchronous rectifier to be turned on, and the synchronous rectification control circuit controls the synchronous rectifier to be turned off according to the detection signal.
为达上述目的,本发明的另一较广义实施方式为提供一种同步整流器的控制方法,用以控制电源转换器的至少一同步整流器,其中电源转换器还包含切换电路、主控制电路、变压器、至少一电流变压器以及至少一同步整流控制电路,切换电路与变压器的初级绕组连接,主控制电路与切换电路控制端连接,电流变压器及同步整流器与变压器的次级绕组串接,同步整流控制电路切换电路的控制端与同步整流控制器的控制端连接,同步整流控制电路控制方法包括,使变压器进行能量的转换:(a)通过主控制电路产生主控制信号给切换电路及该同步整流控制电路,使切换电路动作而使输入电压的能量选择性地经由切换电路传送至该变压器;(b)同步整流控制电路依据主控制信号控制同步整流器导通;(c)电流变压器检测同步整流器并传送检测信号给该同步整流控制电路;以及(d)同步整流控制电路依据检测信号而控制同步整流器截止。To achieve the above purpose, another broad implementation of the present invention is to provide a synchronous rectifier control method for controlling at least one synchronous rectifier of a power converter, wherein the power converter further includes a switching circuit, a main control circuit, a transformer , at least one current transformer and at least one synchronous rectification control circuit, the switching circuit is connected to the primary winding of the transformer, the main control circuit is connected to the control terminal of the switching circuit, the current transformer and the synchronous rectifier are connected in series with the secondary winding of the transformer, and the synchronous rectification control circuit The control terminal of the switching circuit is connected to the control terminal of the synchronous rectification controller, and the control method of the synchronous rectification control circuit includes: making the transformer perform energy conversion: (a) generating a main control signal to the switching circuit and the synchronous rectification control circuit through the main control circuit , make the switching circuit operate so that the energy of the input voltage is selectively transmitted to the transformer through the switching circuit; (b) the synchronous rectification control circuit controls the synchronous rectifier to conduct according to the main control signal; (c) the current transformer detects the synchronous rectifier and transmits the detection signal to the synchronous rectification control circuit; and (d) the synchronous rectification control circuit controls the synchronous rectifier to cut off according to the detection signal.
本发明提供一种具同步整流器的电源转换器及同步整流器的控制方法,其通过电流变压器而快速的检测出流过同步整流器的电流具反向流通的情形,使得同步整流控制电路可即时且准确的控制同步整流器截止,所以本发明的同步整流器便不易烧毁,而本发明的电源转换器的整体效率也相对提升。The present invention provides a power converter with a synchronous rectifier and a control method for the synchronous rectifier, which quickly detects the reverse flow of the current flowing through the synchronous rectifier through the current transformer, so that the synchronous rectification control circuit can be real-time and accurate The control of the synchronous rectifier cuts off, so the synchronous rectifier of the present invention is not easy to burn out, and the overall efficiency of the power converter of the present invention is relatively improved.
附图说明 Description of drawings
图1:其为本发明较佳实施例的电源转换器的电路方框示意图。FIG. 1 : It is a circuit block diagram of a power converter according to a preferred embodiment of the present invention.
图2:其为图1所示的第一同步整流控制电路的详细电路结构示意图。FIG. 2 : It is a schematic diagram of a detailed circuit structure of the first synchronous rectification control circuit shown in FIG. 1 .
图3:其为图1所示的电源转换器的电流、电压及时序状态示意图。Fig. 3: It is a schematic diagram of the current, voltage and timing states of the power converter shown in Fig. 1 .
图4:其为图2所示的比较电路的另一变化例。Fig. 4: It is another modification example of the comparing circuit shown in Fig. 2 .
图5:其为图2所示的启动电路的一变化例。Fig. 5: It is a modification example of the start-up circuit shown in Fig. 2 .
图6:其为本发明另一较佳实施例的第一同步整流控制电路的电路结构示意图。FIG. 6 is a schematic diagram of the circuit structure of the first synchronous rectification control circuit according to another preferred embodiment of the present invention.
图7:其为本发明再一较佳实施例的第一同步整流控制电路的电路结构示意图。FIG. 7 is a schematic diagram of the circuit structure of the first synchronous rectification control circuit according to another preferred embodiment of the present invention.
图8:其为图5所示的复位电路的再一变化例。FIG. 8 : It is another variation example of the reset circuit shown in FIG. 5 .
图9:其为图1所示的第一同步整流器的控制方法流程图。Fig. 9: It is a flow chart of the control method of the first synchronous rectifier shown in Fig. 1 .
图10:其为图9所示的步骤S93的子步骤。Fig. 10: It is a sub-step of step S93 shown in Fig. 9 .
上述附图中的附图标记说明如下:The reference numerals in the above-mentioned accompanying drawings are explained as follows:
1:电源转换器1: Power converter
11:切换电路11: switch circuit
12:主控制电路12: Main control circuit
13a~13b:第一~第二同步整流控制电路13a~13b: first~second synchronous rectification control circuits
14a~14b:第一~第二同步整流器14a to 14b: first to second synchronous rectifiers
15:谐振电路15: Resonant circuit
16:滤波电路16: filter circuit
20:启动电路20: Start circuit
201:图腾柱电路201: Totem Pole Circuit
21:比较电路21: Comparison circuit
210:比较单元210: Comparison unit
50:维持电路50: Sustain circuit
51:复位电路51: Reset circuit
311:电压源311: Voltage source
OP:比较器OP: Comparator
CT1~CT2:第一~第二电流变压器CT 1 ~ CT 2 : First to second current transformers
COM1~COM2:第一~第二共接点COM 1 ~ COM 2 : first to second common contact
S1~S2:第一~第二主控制信号S 1 ~ S 2 : The first ~ second main control signals
S3~S4:第一~第二同步整流控制信号S 3 ~S 4 : first to second synchronous rectification control signals
ID1~ID2:第一~第二电流I D1 ~ I D2 : 1st ~ 2nd current
Q1~Q2:第一~第二主开关元件Q 1 to Q 2 : First to second main switching elements
Q3、Q6、Q7:第一~第三辅助开关元件Q 3 , Q 6 , Q 7 : first to third auxiliary switching elements
Q4、Q5、Q8:第一~第三复位电路开关元件Q 4 , Q 5 , Q 8 : first to third reset circuit switching elements
Q1a、Q2a、Q3a、Q4a、Q5a、Q8a:第一电流传导端Q 1a , Q 2a , Q 3a , Q 4a , Q 5a , Q 8a : first current conducting terminals
Q1b、Q2b、Q3b、Q4b、Q5b、Q8b:第二电流传导端Q 1b , Q 2b , Q 3b , Q 4b , Q 5b , Q 8b : second current conducting terminals
T:变压器T: Transformer
Np:初级绕组N p : primary winding
Ns:次级绕组N s : Secondary winding
R1:启动电路电阻R 1 : Starting circuit resistance
R2:比较电路电阻R 2 : Comparator circuit resistance
R3、R4:第一~第二维持电路电阻R 3 , R 4 : 1st to 2nd sustain circuit resistors
R5、R8:第一~第二复位电路电阻R 5 , R 8 : first to second reset circuit resistors
R6~R7:第一~第二比较单元电阻R 6 ~ R 7 : first to second comparison unit resistance
D1~D2:第一~第二二极管D 1 to D 2 : first to second diodes
Vt1~Vt2:第一~第二检测信号V t1 to V t2 : First to second detection signals
B1:NPN双极结型晶体管B 1 : NPN bipolar junction transistor
B2:PNP双极结型晶体管B 2 : PNP bipolar junction transistor
T1~T4:时间T 1 ~ T 4 : time
Vin:输入电压V in : input voltage
VCC:辅助电压V CC : auxiliary voltage
Vo:输出电压V o : output voltage
Vref:参考电压V ref : Reference voltage
Lo:负载L o : load
Dsc:肖特基二极管D sc : Schottky diode
C:维持电容C: holding capacitor
Cs:供电电容C s : power supply capacitor
Cf:滤波电容C f : filter capacitor
Cr1、Cr2:第一~第二谐振电容C r1 , C r2 : first to second resonance capacitors
Lr:谐振电感L r : Resonant inductance
Lm:激磁电感L m : Magnetizing inductance
S90~93:第一同步控制器的控制方法的流程步骤S90-93: Flow steps of the control method of the first synchronous controller
S930:启动步骤S930: Startup steps
S931:比较步骤S931: comparison step
S932:维持步骤S932: maintenance step
S933:复位步骤S933: Reset step
具体实施方式 Detailed ways
体现本发明特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本发明能够在不同的方式上具有各种的变化,其都不脱离本发明的范围,且其中的说明及附图在本质上当作说明之用,而非用以限制本发明。Some typical embodiments embodying the features and advantages of the present invention will be described in detail in the description in the following paragraphs. It should be understood that the present invention is capable of various changes in different ways without departing from the scope of the present invention, and that the description and drawings therein are illustrative in nature rather than limiting the present invention.
请参阅图1,其为本发明较佳实施例的电源转换器的电路方框示意图。如图1所示,本实施例的电源转换器1连接于一负载Lo,其用以将一输入电压Vin转换为一输出电压Vo,以供给负载Lo使用。该电源转换器1包含一切换电路11、一变压器T、一主控制电路12、一谐振电路15、一滤波电路16、至少一同步整流控制电路,例如图1所示的第一同步整流控制电路13a以及第二同步整流控制电路13b、至少一同步整流器,例如图1所示的第一同步整流器14a及第二同步整流器14b,以及至少一电流变压器,例如图1所示的第一电流变压器CT1及第二电流变压器CT2。Please refer to FIG. 1 , which is a circuit block diagram of a power converter according to a preferred embodiment of the present invention. As shown in FIG. 1 , the power converter 1 of this embodiment is connected to a load L o for converting an input voltage V in into an output voltage V o for supplying the load L o . The power converter 1 includes a switching circuit 11, a transformer T, a main control circuit 12, a resonant circuit 15, a filter circuit 16, and at least one synchronous rectification control circuit, such as the first synchronous rectification control circuit shown in FIG. 1 13a and a second synchronous rectification control circuit 13b, at least one synchronous rectifier, such as the first synchronous rectifier 14a and the second synchronous rectifier 14b shown in Figure 1, and at least one current transformer, such as the first current transformer CT shown in Figure 1 1 and the second current transformer CT 2 .
切换电路11接收输入电压Vin,且切换电路11可为但不限于由第一主开关元件Q1以及第二主开关元件Q2所构成,其中第一主开关元件Q1的第一电流传导端Q1a与第二主开关元件Q2的第二电流传导端Q2b连接,而第二主开关元件Q2的第一电流传导端Q2a与第一共接点COM1连接。且在本实施例中,第一主开关元件Q1以及第二主开关元件Q2交错的进行导通或截止。The switching circuit 11 receives the input voltage V in , and the switching circuit 11 may be but not limited to be composed of a first main switching element Q1 and a second main switching element Q2 , wherein the first current conduction of the first main switching element Q1 The terminal Q1a is connected to the second current conducting terminal Q2b of the second main switching element Q2 , and the first current conducting terminal Q2a of the second main switching element Q2 is connected to the first common point COM1 . And in this embodiment, the first main switch element Q1 and the second main switch element Q2 are alternately turned on or off.
谐振电路15连接于切换电路11及变压器T的初级绕组Np之间。在本实施例中,谐振电路15包含至少一谐振电容,例如图1所示的第一谐振电容Cr1及第二谐振电容Cr2,以及一谐振电感Lr,其中第一谐振电容Cr1的一端与第一主开关元件Q1的第二电流传导端Q1b连接,第一谐振电容Cr1的另一端则与第二谐振电容Cr2的一端连接,而第二谐振电容Cr2的另一端则与第二主开关元件Q2的第一电流传导端Q2a及第一共接点COM1连接。谐振电感Lr的一端连接于第一主开关元件Q1的第一电流传导端Q1a及第二主开关元件Q2的第二电流传导端Q2b之间,谐振电感Lr的另一端则与变压器T的初级绕组Np连接。The resonant circuit 15 is connected between the switching circuit 11 and the primary winding Np of the transformer T. As shown in FIG. In this embodiment, the resonant circuit 15 includes at least one resonant capacitor, such as the first resonant capacitor C r1 and the second resonant capacitor C r2 shown in FIG. 1 , and a resonant inductor L r , wherein the first resonant capacitor C r1 One end is connected to the second current conducting end Q1b of the first main switching element Q1 , the other end of the first resonant capacitor C r1 is connected to one end of the second resonant capacitor C r2 , and the other end of the second resonant capacitor C r2 Then it is connected to the first current conducting terminal Q2a of the second main switching element Q2 and the first common contact COM1 . One end of the resonant inductor L r is connected between the first current conducting end Q1a of the first main switching element Q1 and the second current conducting end Q2b of the second main switching element Q2 , and the other end of the resonant inductor L r is It is connected with the primary winding N p of the transformer T.
变压器T具有初级绕组Np以及次级绕组Ns,其中初级绕组Np的一端与切换电路11的电源输出端,即第一主开关元件Q1的第一电流传导端Q1a以及第二主开关元件Q2的第二电流传导端Q2b连接,初级绕组Np的另一端则连接于第一共接点COM1,而变压器T的次级绕组Ns具有中心抽头并连接于负载Lo。此外,在本实施例中,初级绕组Np可为但不限于包含等效的一激磁电感Lm,其并联连接于初级绕组Np,用以等效初级绕组Np运行时对变压器T激磁产生的电感特性。The transformer T has a primary winding N p and a secondary winding N s , wherein one end of the primary winding N p is connected to the power output end of the switching circuit 11, that is, the first current conducting end Q 1a of the first main switching element Q 1 and the second main The second current conducting terminal Q 2b of the switch element Q 2 is connected, the other end of the primary winding N p is connected to the first common point COM 1 , and the secondary winding N s of the transformer T has a center tap and is connected to the load L o . In addition, in this embodiment, the primary winding Np may include, but is not limited to, an equivalent magnetizing inductance Lm , which is connected in parallel to the primary winding Np to excite the transformer T when the equivalent primary winding Np is running. resulting inductance characteristics.
滤波电路16与负载Lo并联,其用以对传送给负载Lo的电能滤波,且在本实施例中,滤波电路16可为但不限于由滤波电容Cf所构成,该滤波电容Cf的一端连接于变压器T的次级绕组Ns的中心抽头与负载Lo之间,另一端则与第二共接点COM2连接。The filter circuit 16 is connected in parallel with the load L o , which is used to filter the electric energy transmitted to the load L o , and in this embodiment, the filter circuit 16 may be but not limited to be composed of a filter capacitor C f , the filter capacitor C f One end of is connected between the center tap of the secondary winding N s of the transformer T and the load L o , and the other end is connected with the second common point COM 2 .
主控制电路12与切换电路11的控制端连接,即主控制电路12与第一主开关元件Q1的控制端以及第二主开关元件Q2的控制端连接,主控制电路12用以分别产生一第一主控制信号S1以及一第二主控制信号S2至第一主开关元件Q1的控制端及第二主开关元件Q2的控制端,以分别通过第一主控制信号S1及第二主控制信号S2而控制第一主开关元件Q1以及第二主开关元件Q2的运行,使得输入电压Vin的能量可选择性地经由该切换电路11传送至变压器T的初级绕组Np,如此一来,变压器T的次级绕组Ns便可因电磁感应而产生感应交流电压。The main control circuit 12 is connected with the control end of the switching circuit 11, that is, the main control circuit 12 is connected with the control end of the first main switching element Q1 and the control end of the second main switching element Q2 , and the main control circuit 12 is used to generate A first main control signal S 1 and a second main control signal S 2 are sent to the control terminal of the first main switching element Q 1 and the control terminal of the second main switching element Q 2 to respectively pass the first main control signal S 1 and the second main control signal S2 to control the operation of the first main switching element Q1 and the second main switching element Q2 , so that the energy of the input voltage V in can be selectively transmitted to the primary of the transformer T through the switching circuit 11 winding N p , so that the secondary winding N s of the transformer T can generate an induced AC voltage due to electromagnetic induction.
第一同步整流器14a串接于变压器T的次级绕组Ns的一端以及第二共接点COM2之间,而第二二同步整流器14b则串接于次级绕组Ns的另一端以及第二接点COM2之间,第一同步整流器14a及第二同步整流器14b用以将变压器T的次级绕组Ns所产生的感应交流电压整流成直流电压。The first synchronous rectifier 14a is connected in series between one end of the secondary winding Ns of the transformer T and the second common node COM 2 , and the second two synchronous rectifiers 14b are connected in series between the other end of the secondary winding Ns and the second node Between the COM 2 , the first synchronous rectifier 14 a and the second synchronous rectifier 14 b are used to rectify the induced AC voltage generated by the secondary winding N s of the transformer T into a DC voltage.
第一电流变压器CT1以及第二电流变压器CT2分别串接于变压器T的次级绕组Ns的两端,而第一电流变压器CT1更与第一同步整流控制电路13a以及第二共接点COM2连接,第二电流变压器CT2则更与第二同步整流控制电路13b以及第二共接点COM2连接,第一电流变压器CT1用以根据流过第一同步整流器14a的第一电流ID1而输出第一检测信号Vt1,第二电流变压器CT2则用以根据流过第二同步整流器14b的第二电流ID2而输出第二检测信号Vt2。The first current transformer CT 1 and the second current transformer CT 2 are respectively connected in series to both ends of the secondary winding N s of the transformer T, and the first current transformer CT 1 is further connected to the first synchronous
第一同步整流控制电路13a与第一同步整流器14a的控制端及第一电流变压器CT1连接,进而接收第一检测信号Vt1,且第一同步整流控制电路13a更与第一主开关元件Q1的控制端连接而接收主控制电路12输出给第一主开关元件Q1的第一主控制信号S1,第一同步整流控制电路13a用以依据第一主控制信号S1以及第一检测信号Vt1而输出一第一同步整流控制信号S3至第一同步整流器14a的控制端,以控制第一同步整流器14a进行导通或截止。而第二同步整流控制电路13b与第二同步整流器14b的控制端及第二电流变压器CT2连接,进而接收第二检测信号Vt2,且第二同步整流控制电路13b更与第二主开关元件Q2的控制端连接而接收主控制电路12输出给第二主开关元件Q2的第二主控制信号S2,第二同步整流控制电路13b用以依据第二主控制信号S2以及第二检测信号Vt2而输出一第二同步整流控制信号S4至第二同步整流器14b的控制端,以控制第二同步整流器14b进行导通或截止。The first synchronous
在本实施例中,当主控制电路12通过第一主控制信号S1而控制切换电路11的第一主开关元件Q1导通时,第一同步整流控制电路13a也根据第一主控制信号S1而控制第一同步整流器14a导通,且第一同步整流控制电路13a更根据第一电流变压器CT1输出的第一检测信号Vt1而控制第一同步整流器14a截止。同样地,当主控制电路12通过第二主控制信号S2而控制切换电路11的第二主开关元件Q2导通时,第二同步整流控制电路13b也根据第二主控制信号S2而控制第二同步整流器14b导通,且第二同步整流控制电路13b更根据第二电流变压器CT2输出的第二检测信号Vt2而控制第二同步整流器14b截止。In this embodiment, when the main control circuit 12 controls the first main switching element Q1 of the switching circuit 11 to conduct through the first main control signal S1 , the first synchronous
以下将以图2说明第一同步整流控制电路13a的内部电路结构以及连接关系。此外,由于图1及图2中部分电路元件具有相互连接的关系,因此将于图1及图2中标示相同的英文符号,以代表其相互连接。The internal circuit structure and connection relationship of the first synchronous
请参阅图2,其为图1所示的第一同步整流控制电路的详细电路结构示意图。如图所示,第一同步整流控制电路13a主要包含一启动电路20以及一比较电路21,其中启动电路20的输入端与切换电路11的第一主开关元件Q1的控制端连接而接收由主控制电路12所输出的第一主控制信号S1,启动电路20的输出端则与第一同步整流器14a的控制端连接,该启动电路20依据第一主控制信号S1而输出一第一同步整流控制信号S3至第一同步整流器14a的控制端,因此当主控制电路12通过第一主控制信号S1而控制第一主开关元件Q1导通时,启动电路20也依据第一主控制信号S1而输出使能(enable)电平的第一同步整流控制信号S3至第一同步整流器14a的控制端,以驱动第一同步整流器14a导通。此外,启动电路20更可于第一同步整流控制信号S3的电压电平被拉低时,防止第一主控制信号S1的电压电平随着第一同步整流控制信号S3的电压电平被拉低而被拉低。比较电路21与第一电流变压器CT1、第一同步整流器14a的控制端以及启动电路20的输出端连接,其接收第一电流变压器CT1所输出的第一检测信号Vt1,并当第一检测信号Vt1大于比较电路21内的一参考电压时,将启动电路20输出至第一同步整流器14a的控制端的第一同步整流控制信号S3的电压电平拉低,使得第一同步整流控制信号S3为禁能(disable)电平,进而驱动第一同步整流器14a截止。Please refer to FIG. 2 , which is a schematic diagram of a detailed circuit structure of the first synchronous rectification control circuit shown in FIG. 1 . As shown in the figure, the first synchronous
在上述实施例中,启动电路20主要包含一启动电路电阻R1,该启动电路电阻R1的一端与第一主开关元件Q1的控制端连接,启动电路电阻R1的另一端则与第一同步整流器14a的控制端连接,当第一检测信号Vt1的值大于比较电路21的参考电压的值,使得比较电路21将启动电路20输出的第一同步整流控制信号S3的电压电平拉低时,启动电路20便可通过启动电路电阻R1而防止第一主控制信号S1的电平随着第一同步整流控制信号S3的电压电平被拉低而被拉低。比较电路21包含一比较电路电阻R2、一比较单元210以及一第一二极管D1,其中比较电路电阻R2的一端与第一电流变压器CT1连接而接收第一检测信号Vt1,比较电路电阻R2的另一端与比较单元210的输入端连接,故比较单元210的输入端便经比较电路电阻R2而接收第一检测信号Vt1,所以比较单元210便依据第一检测信号Vt1的值是否大于比较单元210本身的导通电压的值而进行导通或截止。比较单元210的输出端与启动电路20的输出端、第一同步整流器14a的控制端连接,比较单元210的接地端与第二共接点COM2相连接,当第一检测信号Vt1的值大于比较单元210的导通电压的值而使得比较单元210导通时,第一同步整流控制信号S3的电压电平便会被比较电路21拉低,进而驱动第一同步整流器14a截止。由此可知,比较单元210的导通电压即设定为比较电路21用来与第一检测信号Vt1相比较的参考电压。In the above embodiment, the starting
在本实施例中,比较单元210可为但不限于由第一辅助开关元件Q3所实现,故第一辅助开关元件Q3的导通电压即为比较电路21用来与第一检测信号Vt1相比较的参考电压。而第一辅助开关元件Q3的控制端经比较单元210的输入端而与比较电路电阻R2的另一端连接,且接收第一检测信号Vt1,第一辅助开关元件Q3的第二电流传导端Q3b经比较单元210的输出端而与启动电路20的启动电路电阻R1的另一端以及第一同步整流器14a的控制端连接,而第一辅助开关元件Q3的第一电流传导端Q3a经比较单元210的接地端而与第二共接点COM2连接。第一二极管D1的阴极端连接于比较电路电阻R2的另一端以及第一辅助开关元件Q3的控制端之间,而第一二极管D1的阳极端则与第二共接点COM2连接,第一二极管D1具有钳位的作用,用以钳制第一辅助开关元件Q3的控制端及第一电流传导端Q3a间的电压,防止第一检测信号Vt1在负值时,反向电流过大而将第一辅助开关元件Q3烧毁。In this embodiment, the
在本实施例中,第二同步整流控制电路13b的内部电路结构相似于第一同步整流控制电路13a的内部电路结构,且第二同步整流控制电路13b的内部电路元件与第二主开关元件Q2、第二电流变压器CT2以及第二同步整流器14b之间的连接关系也相似于第一同步整流控制电路13a的内部电路元件与第一主开关元件Q1、第一电流变压器CT1以及第一同步整流器14a之间的连接关系,故以下将不再赘述第二同步整流控制电路13b的内部电路结构以及与第二主开关元件Q2、第二电流变压器CT2以及第二同步整流器14b之间的连接关系,也不再赘述第二同步整流控制电路13b的各种可能实施方式,仅都以第一同步整流控制电路13a为例来示范性说明本发明的技术及各种可能的实施方式。In this embodiment, the internal circuit structure of the second synchronous rectification control circuit 13b is similar to the internal circuit structure of the first synchronous
在上述实施例中,第一主开关元件Q1、第二主开关元件Q2、第一辅助开关元件Q3、第一同步整流器14a以及第二同步整流器14b都可为金属氧化物半导体场效应晶体管(MOSFET)所构成,但并不以此为限,且第一主开关元件Q1、第二主开关元件Q2、第一辅助开关元件Q3、第一同步整流器14a以及第二同步整流器14b更可依实际电路需求而采用N型或P型金属氧化物半导体场效应晶体管。In the above embodiments, the first main switching element Q 1 , the second main switching element Q 2 , the first auxiliary switching element Q 3 , the first synchronous rectifier 14a and the second synchronous rectifier 14b can all be metal oxide semiconductor field effect Transistor (MOSFET), but not limited thereto, and the first main switching element Q 1 , the second main switching element Q 2 , the first auxiliary switching element Q 3 , the first synchronous rectifier 14a and the second synchronous rectifier 14b can further use N-type or P-type metal-oxide-semiconductor field effect transistors according to actual circuit requirements.
以下将说明本发明的电源转换器的运行原理。请参阅图3,并配合图1及图2,其中图3为图1所示的电源转换器的电流、电压及时序状态示意图。如图3所示,当例如于时间T1时,主控制电路12会输出为使能电平的第一主控制信号S1至切换电路11的第一主开关元件Q1的控制端,使得第一主开关元件Q1开始导通,故第一同步整流控制电路13a便依据第一主控制信号S1而输出为使能电平的第一同步整流控制信号S3至第一同步整流器14a的控制端,进而控制第一同步整流器14a导通,如此一来,流过第一同步整流器14a的第一电流ID1便开始上升,因此第一电流变压器CT1所输出的第一检测信号Vt1便对应于第一电流ID1而为负值。此外,由于第一同步整流器14a由金属氧化物半导体场效应晶体管所构成,因此第一电流ID1于时间T1之前便会因第一同步整流器14a的本体二极管(body diode)而由零开始上升。The operation principle of the power converter of the present invention will be described below. Please refer to FIG. 3 , together with FIG. 1 and FIG. 2 , wherein FIG. 3 is a schematic diagram of the current, voltage and timing states of the power converter shown in FIG. 1 . As shown in FIG. 3, when, for example, at time T1 , the main control circuit 12 will output the first main control signal S1 at the enable level to the control terminal of the first main switching element Q1 of the switching circuit 11 , so that The first main switching element Q1 starts to conduct, so the first synchronous
当经过一段时间而至时间T2时,此时,流过第一同步整流器14a的第一电流ID1已下降至零而即将改变流向,第一电流变压器CT1所输出的第一检测信号Vt1便会对应第一电流ID1的改向而由负值转变为正值,且形成一脉冲(pulse),此时第一检测信号Vt1会经比较电路21内的比较电路电阻R2而传送至第一辅助开关元件Q3的控制端,且于第一检测信号Vt1的值大于第一辅助开关元件Q3的导通电压值时驱动第一辅助开关元件Q3导通,如此一来,比较电路21便会将第一同步整流控制信号S3的电压电平拉低,使得第一同步整流控制信号S3由使能电平改变为禁能电平,所以第一同步整流器14a便会截止。由上可知,当流过本发明的第一同步整流器14a的第一电流ID1即将反向流通时,第一电流变压器CT1的便可快速的检测到该情况,并将检测结果通知第一同步整流控制电路13a,使得第一同步整流控制电路13a即时控制地第一同步整流器14a截止。When a period of time passes until time T2 , at this time, the first current ID1 flowing through the first synchronous rectifier 14a has dropped to zero and is about to change its flow direction, the first detection signal V output by the first current transformer CT1 t1 will change from a negative value to a positive value corresponding to the redirection of the first current ID1 , and form a pulse (pulse). At this time, the first detection signal V t1 will be converted by the comparison circuit resistor R2 in the
请参阅图4并配合图3,其中图4为图2所示的比较电路的另一变化例。如图4所示,本实施例的比较电路21相较于图2所示的比较电路21,仅具有比较电路电阻R2以及比较单元210,且在本实施例中,比较单元210改由比较器OP以及一电压源311所构成。其中,比较电路电阻R2的一端与第一电流变压器CT1连接而接收第一检测信号Vt1,比较电路电阻R2的另一端则经比较单元210的输入端而与比较器OP的反相输入端连接,电压源311串接于比较器OP的非反向输入端以及比较单元210的接地端之间,且经比较单元210的接地端而与第二共接点COM2连接,其用以提供一参考电压Vref至比较器OP的非反向输入端,至于比较器OP的输出端则经比较单元210的输出端而与启动电路20的启动电路电阻R1的另一端以及第一同步整流器14a的控制端连接,比较器OP用以比较第一检测信号Vt1以及参考电压Vref,并于第一检测信号Vt1的值大于参考电压Vref的值时,于输出端输出一低电压电平的信号而将启动电路20输出的第一同步整流控制信号S3的电压电平拉低,使得第一同步整流控制信号S3为禁能电平,进而驱动第一同步整流器14a截止。Please refer to FIG. 4 together with FIG. 3 , wherein FIG. 4 is another modification example of the comparing circuit shown in FIG. 2 . As shown in Figure 4, compared with the
因此如图3所示,当例如于时间T1时,第一同步整流器14a接收为使能电平的第一同步整流控制信号S3而呈现导通状态,而当经过一段时间,使得流过第一同步整流器14a的第一电流ID1开始逐渐下降时,第一电流变压器CT1所输出的第一检测信号Vt1便会对应地开始逐渐上升,且当第一检测信号Vt1的值实质上大于参考电压Vref的值,例如于时间T2时,比较器OP便会输出一低电平的信号而将启动电路20输出的第一同步整流控制信号S3的电压电平拉低,使得第一同步整流控制信号S3转变为禁能电平,如此一来,便可驱动第一同步整流器14a截止。所以利用本实施例的比较电路211的第一同步整流控制电路13a同样可依据第一电流变压器CT1的检测结果而即时控制地第一同步整流器14a截止。Therefore, as shown in FIG. 3, when, for example, at time T1 , the first synchronous rectifier 14a receives the first synchronous rectification control signal S3 at the enable level and assumes a conduction state, and after a period of time, the flow through When the first current ID1 of the first synchronous rectifier 14a begins to gradually decrease , the first detection signal V t1 output by the first current transformer CT 1 will correspondingly start to gradually increase, and when the value of the first detection signal V t1 is substantially is greater than the value of the reference voltage Vref , for example, at time T2 , the comparator OP will output a low-level signal to pull down the voltage level of the first synchronous rectification control signal S3 output by the start-up
至于第二主开关元件Q2、第二电流变压器CT2、第二同步整流控制电路13b以及第二同步整流器14b的动作方式都分别与第一主开关元件Q1、第一电流变压器CT1、第一同步整流控制电路13a以及第一同步整流器14a的动作方式相似,故于此不再赘述。As for the action modes of the second main switching element Q 2 , the second current transformer CT 2 , the second synchronous rectification control circuit 13b and the second synchronous rectifier 14b are respectively the same as the first main switching element Q 1 , the first current transformer CT 1 , The operation modes of the first synchronous
由于电流变压器具有可迅速检测出电流变化的特性,所以本发明的电源转换器1通过第一电流变压器CT1及第二电流变压器CT2便可分别快速的检测出流过第一同步整流器14a的第一电流ID1及第二同步整流器14b的第二电流ID2有具反向流通的情形,使得第一同步整流控制电路13a及第二同步整流控制电路13b可即时且准确的控制第一同步整流器14a以及第二同步整流器14b截止,如此一来,第一同步整流器14a以及第二同步整流器14b便不易烧毁,而本发明的电源转换器1的整体效率也相对提升。Since the current transformer has the characteristic of rapidly detecting current changes, the power converter 1 of the present invention can quickly detect the current flowing through the first synchronous rectifier 14a through the first current transformer CT1 and the second current transformer CT2 respectively. The first current ID1 and the second current ID2 of the second synchronous rectifier 14b have a situation of reverse flow, so that the first synchronous
以下将进一步说明本发明的第一同步整流控制电路13a及第二同步整流控制电路13b的其它可能的实施方式。而由于第二同步整流控制电路13a与第一同步整流控制电路13b的电路结构以及连接关系相似,故以下仅以第一同步整流控制电路13a为例来示范性说明。此外,由于以下附图内的部分电路元件与图1的部分电路元件具有相互连接的关系,因此将于图1及以下图示标示相同的英文符号,以代表其相互连接。Other possible implementations of the first synchronous
在一些实施例中,为了加强电源转换器1的内部电路的驱动能力,如图5所示,第一同步整流控制电路13a的启动电路20还包含一图腾柱(totem pole)电路201,该图腾柱电路201连接于该切换电路11的控制端,即第一主开关元件Q1的控制端及启动电路20的启动电路电阻R1之间,且包含一NPN双极结型晶体管B1以及一PNP双极结型晶体管B2,其中NPN双极结型晶体管B1的基极与PNP双极结型晶体管B2的基极及第一主开关元件Q1的控制端连接,NPN双极结型晶体管B1的集电极接收一辅助电压Vcc,NPN双极结型晶体管B1的发射极与启动电路20的启动电路电阻R1连接,PNP双极结型晶体管B2的发射极连接于NPN双极结型晶体管B1的发射极及启动电路电阻R1之间,PNP双极结型晶体管B2的集电极与第二共接点COM2连接。在本实施例中,NPN双极结型晶体管B1以及PNP双极结型晶体管B2分别受第一主控制信号S1的控制而进行导通或截止,进而使得图腾柱电路201可加强电源转换器1的内部电路的驱动能力。当然,图腾柱电路201并不局限于需使用于图5所示的第一同步整流控制电路13a的启动电路20中,也可适用于上述其它实施例或是以下所述的实施例的第一同步整流控制电路的启动电路中。In some embodiments, in order to enhance the driving capability of the internal circuit of the power converter 1, as shown in FIG. The
在其他实施例中,当第一同步整流器14a截止时,由于电源转换器1的线路上的漏电感与第一同步整流器14a所具有的杂散电容可能会振荡,导致第一电流变压器CT1所输出的第一检测信号Vt1也跟着持续变动,使得第一同步整流器14a会反复的进行导通或截止而无法维持于截止的状态,所以为了避免上述可能的情形,可设置一维持(hold)电路50于图2所示的第一同步整流控制13a的比较电路21中而形成如图6所示的电路结构。该维持电路50连接于比较电路电阻R2以及比较单元210的控制端之间,该维持电路50用以经比较电路电阻R2接收第一检测信号Vt1,并使第一检测信号Vt1在由负值转变为正值而形成的脉冲维持一特定时间。因此如图3所示,当于时间T2,而流过第一同步整流器14a的第一电流ID1由正值下降至零而欲反向流通,且第一检测信号Vt1由负值转变为正值而形成一脉冲时,维持电路50便会将第一检测信号Vt1的脉冲状态及电平维持一特定时间,如此一来,第一同步整流器14a便对应于第一检测信号Vt1而维持截止状态于该特定时间,所以第一同步整流器14a便不受电源转换器1的线路上的漏电感与第一同步整流器14a所具有的杂散电容振荡的影响而无法维持于截止状态的情况。In other embodiments, when the first synchronous rectifier 14a is turned off, the leakage inductance on the line of the power converter 1 and the stray capacitance of the first synchronous rectifier 14a may oscillate, causing the first current transformer CT1 to The output first detection signal V t1 also changes continuously, so that the first synchronous rectifier 14a will be repeatedly turned on or off and cannot be kept in the off state, so in order to avoid the above possible situation, a hold can be set The
在上述实施例中,维持电路50可包含一第二二极管D2、一维持电容C、一第一维持电路电阻R3以及一第二维持电路电阻R4,其中第二二极管D2的阳极端与比较电路21的比较电路电阻R2的另一端以及第一二极管D1的阴极端连接,第二二极管D2的阴极端与第一维持电路电阻R3的一端以及维持电容C的一端连接,第一维持电路电阻R3的另一端与第一辅助开关元件Q3的控制端以及第二维持电路电阻R4的一端连接,第二维持电路电阻R4的另一端以及维持电容C的另一端则与第二共接点COM2连接,且在本实施例中,第二维持电路电阻R4的电阻值可为但不限于大于第一维持电路电阻R3的电阻值。In the above embodiment, the sustain
以下将约略说明图6所示的维持电路50的动作方式。请参阅图3及图6,当于时间T2,而流过第一同步整流器14a的第一电流ID1由正值下降至零而欲反向流通时,第一电流变压器CT1的第一检测信号Vt1便会由负值转变为正值而形成一脉冲,并经比较电路电阻R2及第二二极管D2而对维持电容C充电。而当电源转换器1的线路上的漏电感与第一同步整流器14a所具有的杂散电容振荡,导致第一电流变压器CT1所输出的第一检测信号Vt1跟着持续变动时,例如下降至零时,第一检测信号Vt1便会停止对维持电容C充电,此时,由于第一维持电路电阻R3以及第二维持电路电阻R4的阻抗关系,维持电容C上便无法放电,使得维持电容C的电压会持续维持于一高电平状态,故第一辅助开关元件Q3仍会维持于导通的状态,如此一来,第一同步整流器14a便不会受电源转换器1的线路上的漏电感与第一同步整流器14a所具有的杂散电容振荡的影响而持续地维持于截止的状态。The operation of the sustain
此外,由于维持电路50会使得第一同步整流器14a维持于截止状态,所以为了使第一同步整流器14a于第一主开关元件Q1的下一个开关周期内可正常地由截止状态转变为导通状态,而不是一直维持在截止状态,于一些实施例中,如图6所示,第一同步整流控制电路13a对应于维持电路50而更具有一复位电路51,该复位电路51与该维持电路50的输出端及切换电路11的第一主开关元件Q1的控制端相连接,用以复位维持电路50,使得第一同步整流器14于第一主开关元件Q1的下一个开关周期内可正常地由截止状态转变为导通状态。In addition, since the maintaining
复位电路51可包含一第一复位电路开关元件Q4、一第二复位电路开关元件Q5及一第一复位电路电阻R5,其中第一复位电路开关元件Q4的控制端与切换电路11的第一主开关元件Q1的控制端连接而接收由主控制电路12所输出的第一主控制信号S1,第一复位电路开关元件Q4的第一电流传导端Q4a连接于第二共接端COM2,第一复位电路开关元件Q4的第二电流传导端Q4b与第一复位电路电阻R5的一端以及第二复位电路开关元件Q5的控制端连接,第二复位电路开关元件Q5的第一电流传导端Q5a与第二共接点COM2连接,第二复位电路开关元件Q5的第二电流传导端Q5b与比较电路21的第一辅助开关元件Q3的控制端、第一维持电路电阻R3的另一端以及第二维持电路电阻R4的一端连接,第一复位电路电阻R5的另一端则接收辅助电压源VCC。此外,在一些实施例中,第一复位电路开关元件Q4及第二复位电路开关元件Q5可为但不限于由金属氧化物半导体场效应晶体管所构成,且第一复位电路开关元件Q4及第二复位电路开关元件Q5更可依电路实际需求而采用N型或P型金属氧化物半导体场效应晶体管。The
以下将约略说明图6所示的复位电路51的动作方式。请参阅图3及图6,当于时间T1至时间T2时,第一主控制信号S1维持在使能电平,而第一检测信号Vt1会由负值而变为正值且形成一脉冲,而该脉冲会因维持电路50而由时间T2开始维持一特定时间。当到达时间T3时,第一主控制信号S1便会由使能电平变为禁能电平,此时第一复位电路开关元件Q4会对应于第一主控制信号S1而截止,因此辅助电压VCC便会经第一复位电路电阻R5而驱动第二复位电路开关元件Q5导通,因此维持电容C便会通过第二复位电路开关元件Q5的导通将电能放光,如此一来,第一辅助开关元件Q3便会截止,即维持电路50被复位电路51复位,所以当于时间T4而第一主控制信号S1由禁能电平再次变为使能电平时,启动电路20便会依据第一主控制信号S1而输出使能电平的第一同步整流控制信号S3至第一同步整流器14a的控制端,故第一同步整流器14a便可于第一主开关元件Q1的下一个开关周期内正常地由截止状态转转变为导通状态。The operation of the
请参阅图7,其为本发明再一较佳实施例的第一同步整流控制电路的电路结构示意图。如图所示,本实施例的第一同步整流控制电路的部分电路结构与图6所的同步整流控制电路的部分电路结构相似,且相同标记的元件代表结构与功能相似,故元件特征、动作方式于此不再赘述。与图6相较,本实施例的比较电路21中的比较单元210改由一第二辅助开关元件Q6、一第三辅助开关元件Q7、一第一比较单元电阻R6以及一第二比较单元电阻R7所构成,借此比较单元210及维持电路50便会构成一互锁电路。其中第二辅助开关元件Q6可为但不限于为PNP双极结型晶体管,且第二辅助开关元件Q6的基极与第二比较单元电阻R7的一端以及第三辅助开关元件Q7的集电极连接,且经比较单元210的输出端而与第一同步整流器14a的控制端及启动电路20的输出端连接,第二辅助开关元件Q6的发射极与第一比较单元电阻R6的一端连接,第二辅助开关元件Q6的集电极经比较单元210的输入端与维持电路50的输出端,即第一维持电路电阻R3的另一端及第二维持电路电阻R4的一端连接,第三辅助开关元件Q7可为但不限于为NPN双极结型晶体管,且第三辅助开关元件Q7的基极经比较单元210的输入端与维持电路50的输出端,即第一维持电路电阻R3的另一端及第二维持电路电阻R4的一端连接,第三辅助开关元件Q7的集电极与第二比较单元电阻R7的一端及第二辅助开关元件Q6的基极连接,且经比较单元210的输出端而与第一同步整流器14a的控制端连接,第三辅助开关元件Q7的发射极经比较单元210的接地端而与第二共接点COM2连接,第一比较单元电阻R6的另一端与第二比较单元电阻R7的另一端彼此连接而接收辅助电压VCC。Please refer to FIG. 7 , which is a schematic diagram of the circuit structure of the first synchronous rectification control circuit according to another preferred embodiment of the present invention. As shown in the figure, the partial circuit structure of the first synchronous rectification control circuit of this embodiment is similar to the partial circuit structure of the synchronous rectification control circuit shown in FIG. The method will not be repeated here. Compared with Fig. 6, the
此外,与图6相较,本实施例的维持电路50的维持电容C改与第二维持电路电阻R4并联,且维持电容C的一端与第一维持电路电阻R3的另一端、第二维持电路电阻R4的一端以及比较单元210的输入端连接,而维持电容C的另一端则与第二维持电路电阻R4的另一端以及第二共接点COM2连接,而本实施例的维持电路50同样可达到如图6所示的维持电路50相同的功效。In addition, compared with FIG. 6, the sustaining capacitor C of the sustaining
以下将约略说明图7所示的同步整流控制电路13a的动作方式。请参阅图3及图7,当例如于时间T1时,第一同步整流器14a接收为使能电平的第一同步整流控制信号S3而呈现导通状态,而当经过一段时间,使得流过第一同步整流器14a的第一电流ID1开始逐渐下降时,第一电流变压器CT1所输出的第一检测信号Vt1便会对应地开始逐渐上升,且当第一检测信号Vt1的值实质上大于第三辅助开关元件Q7的导通电压时,例如于时间T2时,,第三辅助开关元件Q7便会导通,此时第二辅助开关元件Q6的基极会被拉低,导致第二辅助开关元件Q6导通,因此第三辅助开关元件Q7的基极便会经第一比较单元电阻R6而接收辅助电压VCC,导致第三辅助开关元件Q7维持在导通的状态,使得第一同步整流控制信号S3被拉低,且由于维持电路50的作用,第一同步整流控制信号S3便会持续的被拉低,导致第一同步整流器14a不会受电源转换器1的线路上的漏电感与第一同步整流器14a所具有的杂散电容振荡的影响而持续地维持于截止的状态。由上可知,比较电路21会在第一检测信号Vt1大于第三辅助开关元件Q7的导通电压时将第一同步控制信号S3拉低,所以第三辅助开关元件Q7的导通电压即为比较电路21用来与第一检测信号Vt1相比较的参考电压。The operation of the synchronous
在一些实施例中,图7所示的维持电路50也可应用于如图4所示的比较电路21中而形成如图8所示的电路结构。在所述实施例中,维持电路50连接于比较电路电阻R2与比较单元210输入端之间。In some embodiments, the holding
当然,在其他实施例中,第一比较单元电阻R6以及第二比较单元电阻R7的并不局限于如图7所示接收辅助电压Vcc,在其他实施例中,第一比较单元电阻R6及第二比较单元电阻R7的另一端也可改与切换电路11的控制端,即第一主开关元件Q1的控制端连接而接收第一主控制信号S1,而此实施方式同样可使维持电路50达到相同的功效。此外,在一些实施例中,维持电路50更可为但不限于由一RS触发器所构成。Of course, in other embodiments, the resistance of the first comparison unit R 6 and the second comparison unit resistance R 7 are not limited to receiving the auxiliary voltage V cc as shown in FIG. 7 . In other embodiments, the resistance of the first comparison unit The other end of R 6 and the second comparison unit resistor R 7 can also be connected to the control end of the switching circuit 11, that is, the control end of the first main switching element Q 1 to receive the first main control signal S 1 , and this embodiment Likewise, the holding
当然,复位电路内部的电路结构也不局限于如图6所示的实施方式,也可具有如图7至图8所示的不同变化。请参阅图7,在本实施例中,复位电路51由一肖特基二极管Dsc所构成,该肖特基二极管Dsc的阴极端与第一主开关元件Q1的控制端连接而接收第一主控制信号S1,肖特基二极管Dsc的阳极端与第一维持电路电阻R3以及第二维持电路电阻R4连接。而当第一主控制信号S1为禁能电平时,复位电路51便可通过肖特基二极管Dsc而复位维持电路50,使维持电容C将储存的电能放光。Certainly, the internal circuit structure of the reset circuit is not limited to the embodiment shown in FIG. 6 , and may also have different changes as shown in FIGS. 7 to 8 . Please refer to FIG. 7, in this embodiment, the
请参阅图8,其为图6所示的复位电路的再一变化例。如图所示,在本实施例中,复位电路51包含一第二复位电路电阻R8以及第三复位电路开关元件Q8,其中第二复位电路电阻R8的一端与切换电路11的控制端,即第一主开关元件Q1的控制端连接而接收第一主控制信号S1,第二复位电路电阻R8的另一端与第三复位电路开关元件Q8的控制端连接。第三复位电路开关元件Q8可为一P型金属氧化物半导体场效应晶体管所构成,但不以此为限,也可为PNP双极结型场效应晶体管所构成,第三复位电路开关元件Q8的第一电流传导端Q8a与第二共接点COM2连接,第三复位电路开关元件Q8的第二电流传导端Q8b与第一维持电路电阻R3的另一端以及第二维持电路电阻R4的一端连接。因此通过上述的电路结构,复位电路51于第一主控制信号S1为禁能电平时,便可复位维持电路50,使维持电容C将储存的电能放光。Please refer to FIG. 8 , which is another variation example of the reset circuit shown in FIG. 6 . As shown in the figure, in this embodiment, the
当然,在其他实施例中,第二复位电路电阻R8的一端可改与切换电路11的另一控制端,即第二主开关元件Q2的控制端连接而接收第二主控制信号S2,而第三复位电路开关元件Q8则需对应地改为一N型金属氧化物半导体场效应晶体管所构成,而此实施方式也可使复位电路51达到相同的功效。Of course, in other embodiments, one end of the resistor R8 of the second reset circuit can be changed to be connected to the other control end of the switch circuit 11, that is, the control end of the second main switching element Q2 to receive the second main control signal S2 , The switch element Q 8 of the third reset circuit needs to be correspondingly changed to an NMOS field effect transistor, and this embodiment can also make the
当然,图2所示的比较电路21、图4所示的比较电路21及图7所示的比较电路21可相互替换,图2所示的比较单元210及图5所示的比较单元210可相互替换,图6所示的维持电路50及图7与图8所示的维持电路50可相互替换,图6的复位电路51、图7的复位电路51以及图8的复位电路51可相互替换,但都不以此为限。Of course, the
以下将进一步说明图1所示的第一同步整流器的控制方法的流程步骤。请参阅图9,并配合图2,其中图9为图1所示的第一同步整流器14a的控制方法流程图。如图9所示,首先,如步骤S90所示,通过主控制电路12产生第一主控制信号S1给切换电路11及该第一同步整流控制电路13a,使切换电路11动作而驱使变压器T进行能量的转换。接着,如步骤S91所示,通过电流变压器CT传送第一检测信号Vt1给第一同步整流控制电路13a。然后,如步骤S92所示,依据第一主控制信号S1使得第一同步整流控制电路13a控制第一同步整流器14a导通。最后,如步骤S93所示,依据第一检测信号Vt1而使得第一同步整流控制电路13a控制第一同步整流器14a截止。The flow steps of the method for controlling the first synchronous rectifier shown in FIG. 1 will be further described below. Please refer to FIG. 9 , together with FIG. 2 , wherein FIG. 9 is a flowchart of a control method of the first synchronous rectifier 14 a shown in FIG. 1 . As shown in Figure 9, first, as shown in step S90, the main control circuit 12 generates the first main control signal S1 to the switching circuit 11 and the first synchronous
此外,在一些实施例中,如图10所示,步骤S93内更具有四个子步骤,依序为启动步骤S930、比较步骤S931、维持步骤S932以及复位步骤S932。首先,进行启动步骤S930,即通过启动电路20接收第一主控制信号S1,并依据第一主控制信号S1而输出一第一同步整流控制信号S3至第一同步整流器14a的控制端,且防止第一主控制信号S1的电压电平随着第一同步整流控制信号S3的电压电平被拉低而被拉低。接着,进行比较步骤S931,即通过比较单元210将检测信号Vt与参考电压进行比较,以当检测信号Vt的电平大于参考电压的电平时,驱使第一同步整流器14a截止。然后,进行维持步骤S932,即通过维持电路50而使检测信号Vt在由负值转变为正值而形成的脉冲维持一特定时间。最后,进行复位步骤S933,即通过复位电路51复位维持电路50,使第一同步整流器14a于切换电路11的下一个开关周期内可正常地由截止状态转变为导通状态。In addition, in some embodiments, as shown in FIG. 10 , there are four sub-steps in the step S93 , which are the starting step S930 , the comparing step S931 , the maintaining step S932 and the resetting step S932 . Firstly, the start-up step S930 is performed, that is, the start-up circuit 20 receives the first main control signal S1, and outputs a first synchronous rectification control signal S3 to the control terminal of the first synchronous rectifier 14a according to the first main control signal S1 , and prevent the voltage level of the first main control signal S1 from being pulled down as the voltage level of the first synchronous rectification control signal S3 is pulled down. Next, a comparison step S931 is performed, that is, the
而图1所示的第二同步整流器14b的控制方法相似于第一同步整流器14a,故于此不再赘述。由于本发明的电源转换器1通过第一电流变压器CT1及第二电流变压器CT2可即时且准确的控制第一同步整流器14a以及第二同步整流器14b截止,所以第一同步整流器14a以及第二同步整流器14b便不易烧毁,而本发明的电源转换器1的整体效率也相对提升。The control method of the second synchronous rectifier 14b shown in FIG. 1 is similar to that of the first synchronous rectifier 14a, so it will not be repeated here. Since the power converter 1 of the present invention can instantly and accurately control the cut-off of the first synchronous rectifier 14a and the second synchronous rectifier 14b through the first current transformer CT1 and the second current transformer CT2 , the first synchronous rectifier 14a and the second synchronous rectifier 14a The synchronous rectifier 14b is not easy to burn out, and the overall efficiency of the power converter 1 of the present invention is relatively improved.
综上所述,本发明提供一种具同步整流器的电源转换器及同步整流器的控制方法,其通过电流变压器而快速的检测出流过同步整流器的电流具反向流通的情形,使得同步整流控制电路可即时且准确的控制同步整流器截止,所以本发明的同步整流器便不易烧毁,而本发明的电源转换器的整体效率也相对提升。本发明得由熟习本领域普通技术人员任施匠思而为诸般修饰,然都不脱如附权利要求所欲保护的范围。To sum up, the present invention provides a power converter with a synchronous rectifier and a control method for the synchronous rectifier, which quickly detects the reverse flow of the current flowing through the synchronous rectifier through the current transformer, so that the synchronous rectifier control The circuit can immediately and accurately control the cut-off of the synchronous rectifier, so the synchronous rectifier of the present invention is not easy to burn out, and the overall efficiency of the power converter of the present invention is relatively improved. The present invention can be modified in various ways by those skilled in the art without departing from the protection scope of the appended claims.
Claims (21)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200910166746.9A CN101997413B (en) | 2009-08-12 | 2009-08-12 | Power converter with synchronous rectifier and control method for synchronous rectifier |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200910166746.9A CN101997413B (en) | 2009-08-12 | 2009-08-12 | Power converter with synchronous rectifier and control method for synchronous rectifier |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101997413A CN101997413A (en) | 2011-03-30 |
| CN101997413B true CN101997413B (en) | 2014-03-05 |
Family
ID=43787150
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200910166746.9A Expired - Fee Related CN101997413B (en) | 2009-08-12 | 2009-08-12 | Power converter with synchronous rectifier and control method for synchronous rectifier |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101997413B (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014090534A (en) * | 2012-10-29 | 2014-05-15 | Sanken Electric Co Ltd | Synchronous rectification circuit |
| KR101501854B1 (en) * | 2013-12-20 | 2015-03-11 | 엘에스산전 주식회사 | Driver device of synchronous rectifier |
| CN105099230B (en) | 2014-04-16 | 2018-07-31 | 华为技术有限公司 | Controlled resonant converter and its synchronous rectification translation circuit |
| CN106993359A (en) * | 2016-01-21 | 2017-07-28 | 金宝橱有限公司 | Synchronous controlled series lamp |
| CN107196513A (en) * | 2017-06-21 | 2017-09-22 | 国电南瑞科技股份有限公司 | The LLC resonant transform circuits and its method of a kind of suitable wide range output |
| CN110199465B (en) * | 2018-09-30 | 2021-07-13 | 深圳欣锐科技股份有限公司 | Synchronous rectification circuit and rectification device |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1407701A (en) * | 2001-08-17 | 2003-04-02 | Tdk株式会社 | Switch power supply device |
| CN101132150A (en) * | 2006-08-24 | 2008-02-27 | 台达电子工业股份有限公司 | Flyback Power Converter with Synchronous Rectifier |
| CN101425751A (en) * | 2007-11-02 | 2009-05-06 | 台达电子工业股份有限公司 | Resonance converter system and control method thereof |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI220084B (en) * | 2003-06-09 | 2004-08-01 | Acbel Polytech Inc | Synchronous rectifying power converter controlled by current transformer |
| JP4862432B2 (en) * | 2006-02-28 | 2012-01-25 | ミツミ電機株式会社 | Switching power supply |
-
2009
- 2009-08-12 CN CN200910166746.9A patent/CN101997413B/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1407701A (en) * | 2001-08-17 | 2003-04-02 | Tdk株式会社 | Switch power supply device |
| CN101132150A (en) * | 2006-08-24 | 2008-02-27 | 台达电子工业股份有限公司 | Flyback Power Converter with Synchronous Rectifier |
| CN101425751A (en) * | 2007-11-02 | 2009-05-06 | 台达电子工业股份有限公司 | Resonance converter system and control method thereof |
Non-Patent Citations (1)
| Title |
|---|
| JP特开2007-236058A 2007.09.13 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101997413A (en) | 2011-03-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI379497B (en) | Power converter having synchronizing rectifier and control method of synchronizing rectifier | |
| CN101471609B (en) | Three-terminal integrated synchronous rectifier and flyback synchronous rectification circuit | |
| CN101997413B (en) | Power converter with synchronous rectifier and control method for synchronous rectifier | |
| TWI539735B (en) | Inverting apparatus | |
| JP3447471B2 (en) | Switching power supply and surge voltage absorbing method using the switching power supply | |
| CN101355306B (en) | Synchronous rectification circuit and method for power converter | |
| TW201822449A (en) | Control method and control device for Flyback converter circuit | |
| JP5832177B2 (en) | Power factor correction circuit | |
| CN102957304A (en) | Driving circuit of triode and driving method thereof | |
| CN103915997A (en) | Switching power supply conversion device | |
| US20180183346A1 (en) | Active clamp circuit for switched mode power supplies | |
| TW201711363A (en) | Voltage converter | |
| TW202101890A (en) | Power converters, and methods and controllers for controlling same | |
| CN112769340A (en) | Auxiliary winding detection method and circuit | |
| CN203278620U (en) | Isolated drive circuit with clamp function | |
| CN105207457A (en) | Synchronous rectification circuit and LLC resonance converter possessing the synchronous rectification circuit | |
| US20090231886A1 (en) | Power supply and bootstrap circuit thereof | |
| Fernández et al. | New self-driven synchronous rectification system for converters with a symmetrically driven transformer | |
| CN106169862A (en) | Management circuit of power supply and management method of power supply | |
| US8213196B2 (en) | Power supply circuit with protecting circuit having switch element for protecting pulse width modulation circuit | |
| JP6485366B2 (en) | Phase shift type full bridge type power supply circuit | |
| CN101252317B (en) | Self Oscillating Power Converter | |
| JP4484006B2 (en) | Switching power supply | |
| CN212677086U (en) | LLC resonant converter and control circuit thereof | |
| JP2022036061A (en) | Drive circuit and switching power supply device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140305 Termination date: 20180812 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |