[go: up one dir, main page]

CN102026090A - Node positioning method in IOT (Internet of things) and node - Google Patents

Node positioning method in IOT (Internet of things) and node Download PDF

Info

Publication number
CN102026090A
CN102026090A CN2010102286861A CN201010228686A CN102026090A CN 102026090 A CN102026090 A CN 102026090A CN 2010102286861 A CN2010102286861 A CN 2010102286861A CN 201010228686 A CN201010228686 A CN 201010228686A CN 102026090 A CN102026090 A CN 102026090A
Authority
CN
China
Prior art keywords
node
area
location
inquirer
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102286861A
Other languages
Chinese (zh)
Other versions
CN102026090B (en
Inventor
殷丽华
方滨兴
贾焰
刘文懋
李爱平
樊华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Hetian Huizhi Information Technology Co Ltd
Beijing Computer Network And Information Security Research Center Of Harbin Institute Of Technology
National University of Defense Technology
Original Assignee
Beijing Hetian Huizhi Information Technology Co Ltd
Beijing Computer Network And Information Security Research Center Of Harbin Institute Of Technology
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Hetian Huizhi Information Technology Co Ltd, Beijing Computer Network And Information Security Research Center Of Harbin Institute Of Technology, National University of Defense Technology filed Critical Beijing Hetian Huizhi Information Technology Co Ltd
Priority to CN201010228686.1A priority Critical patent/CN102026090B/en
Publication of CN102026090A publication Critical patent/CN102026090A/en
Application granted granted Critical
Publication of CN102026090B publication Critical patent/CN102026090B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种物联网中的节点定位方法及节点,属于通信技术领域。所述方法包括:接收来自查询者的定位节点的请求;获取所述查询者的信息;在所述节点预先根据查询者置信度存储的用户精度控制表中,查找与所述查询者的信息对应的位置信息;将所述位置信息提供给所述查询者。所述节点包括:接收模块、获取模块、查找模块和发送模块。本发明通过在节点上预先定义用户精度控制表,实现在节点级别针对不同查询者返回不同精度的位置信息,可提供多个精度的位置服务,从而增强了节点的位置隐私性。

Figure 201010228686

The invention discloses a node positioning method and a node in the Internet of Things, belonging to the technical field of communication. The method includes: receiving a request from a queryer's positioning node; obtaining the information of the queryer; and searching for information corresponding to the queryer's information in the user precision control table stored by the node in advance according to the confidence level of the queryer. location information; providing the location information to the queryer. The node includes: a receiving module, an acquiring module, a searching module and a sending module. The present invention predefines the user precision control table on the node, realizes returning position information of different precisions for different inquirers at the node level, and can provide multiple precision position services, thus enhancing the position privacy of the node.

Figure 201010228686

Description

一种物联网中的节点定位方法及节点 A node positioning method and node in the Internet of Things

技术领域technical field

本发明涉及通信技术领域,特别是涉及一种物联网中的节点定位方法及节点。The invention relates to the field of communication technologies, in particular to a node positioning method and nodes in the Internet of Things.

背景技术Background technique

互联网将分布在世界各地的资源连接起来,在全世界范围内形成一个虚拟网络,人与人之间的交互变得快捷高效,为人类的生活带来巨大的变化。而预测中的下一代互联网将会有上万亿个相连的节点组成,这些节点不同于传统的服务器、个人计算机,而是拥有存储、处理和通信能力的智能终端设备,如智能手机、智能家电和标签阅读器等。智能终端的加入,使得互联网中,除了人与人的交互外,还形成人与物的交互,甚至是物与物的交互。The Internet connects resources distributed all over the world, forming a virtual network all over the world, making the interaction between people fast and efficient, and bringing great changes to human life. The predicted next-generation Internet will consist of trillions of connected nodes. These nodes are different from traditional servers and personal computers, but smart terminal devices with storage, processing and communication capabilities, such as smart phones and smart home appliances. and tag readers etc. The addition of smart terminals makes the Internet, in addition to the interaction between people, also forms the interaction between people and things, and even the interaction between things and things.

由智能物体接入的互联网称为物联网(The Internet of things),它是通过射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。The Internet connected by smart objects is called the Internet of things (The Internet of things). It uses radio frequency identification, infrared sensors, global positioning systems, laser scanners and other information sensing devices to connect any item A network that connects the Internet for information exchange and communication to realize intelligent identification, positioning, tracking, monitoring and management.

物联网是一种特殊的网络,它将信息时代的互联网和传统意义上的物体结合起来,使得物体变成了智能的主体,而日常生活的应用通过互联网的计算和存储资源,变得更加方便高效,引发了互联网和现实应用两大领域的重大变革。随着互联网技术越来越融入到传统的应用,物联网也越来越受到重视,物联网技术也越来越多的出现在各种商业应用中,极大的提高了企业的效率和商业利润。The Internet of Things is a special network that combines the Internet in the information age with objects in the traditional sense, making objects become intelligent subjects, and the applications of daily life become more convenient through the computing and storage resources of the Internet. High efficiency has triggered major changes in the two fields of the Internet and real-world applications. As Internet technology is more and more integrated into traditional applications, the Internet of Things is getting more and more attention, and more and more Internet of Things technologies are appearing in various commercial applications, which greatly improves the efficiency and business profits of enterprises. .

现在,物联网已经在一些领域中使用,如物流公司在运输过程中阅读物体上的条形码,来实时更新物体位置;智能手机使用GPS(Global Positioning System,全球定位系统)或移动基站获得当前位置,通过移动网络接入互联网,用户可以使用网络中各种基于位置的LBS(Location Based Service,基于位置的服务)服务。今后,物联网应用会逐渐出现在很多新型的场景中,如医院、家庭、商场等。某些医院在所有区域都部署了WIFI(WirelessFidelity,无线保真)或RFID(Radio Frequency Identification,射频识别)阅读器,随时跟踪病人的行踪;越来越多的家庭会采用智能化的家电产品,人们可以随时随地在网站中查询和控制自家的空调、暖气等设备;商场也会通过近距离阅读附在产品上的电子标签和顾客手机卡上的电子标签,来实现快速付款。Now, the Internet of Things has been used in some fields, such as logistics companies reading barcodes on objects during transportation to update the location of objects in real time; smartphones use GPS (Global Positioning System, Global Positioning System) or mobile base stations to obtain the current location, By accessing the Internet through a mobile network, users can use various location-based LBS (Location Based Service, location-based service) services in the network. In the future, IoT applications will gradually appear in many new scenarios, such as hospitals, homes, and shopping malls. Some hospitals have deployed WIFI (Wireless Fidelity, wireless fidelity) or RFID (Radio Frequency Identification, radio frequency identification) readers in all areas to track the whereabouts of patients at any time; more and more families will use intelligent home appliances, People can check and control their own air conditioners, heating and other equipment on the website anytime and anywhere; shopping malls will also realize fast payment by reading the electronic tags attached to the products and the electronic tags on the customer's mobile phone card at close range.

在大部分物联网应用中,都涉及到物体定位的问题,如物流应用中需要查询指定物体当前所在的物流中转站点,而病人监控应用则需要确定病人当前具体的位置,如经纬度,或具体楼层等信息。而现有的物联网应用中,大多是针对某一个特定机构的有限应用,如产品物流跟踪等。目前物联网中常使用RFID作为物体与阅读器通信的方式,而物体所携带的RFID标签通常有两种:无源标签和有源标签,前者没有电源,不能实施复杂的交互过程,而后者有电源,可以处理信息和数据,与阅读器进行交互。In most Internet of Things applications, the problem of object positioning is involved. For example, in logistics applications, it is necessary to query the logistics transfer station where the specified object is currently located, while in patient monitoring applications, it is necessary to determine the current specific location of the patient, such as latitude and longitude, or a specific floor. and other information. Most of the existing Internet of Things applications are limited applications for a specific organization, such as product logistics tracking. At present, RFID is often used in the Internet of Things as a way for objects to communicate with readers. There are usually two types of RFID tags carried by objects: passive tags and active tags. The former has no power and cannot implement complex interaction processes, while the latter has power. , can process information and data, and interact with the reader.

在对无源标签的定位应用中,常常记录与标签交互的最近的阅读器的位置,以该位置为圆心,阅读器通信距离为半径的圆就可以认为是物体所在的区域,如果有多个阅读器同时与物体交互,最终获得的物体位置更加精确。但是这种应用中,物体往往没有隐私性可言,其只能在阅读器前表明身份,阅读器可以将其身份和位置建立映射。In the positioning application of passive tags, the position of the nearest reader that interacts with the tag is often recorded. With this position as the center of the circle, the circle with the communication distance of the reader as the radius can be considered as the area where the object is located. If there are multiple The reader interacts with the object at the same time, resulting in a more accurate position of the object. But in this kind of application, the object often has no privacy at all, it can only show its identity in front of the reader, and the reader can establish a mapping between its identity and location.

对于有源标签的定位应用,物体也是向阅读器表明身份,但是由于有源标签可以进行数据处理,因此通过自身的隐私策略管理,物体的隐私可以在物体的标签级别得到控制。For the positioning application of active tags, the object also indicates its identity to the reader, but since the active tag can perform data processing, through its own privacy policy management, the privacy of the object can be controlled at the tag level of the object.

但是在不同的应用场景中,需要物体所提供的位置信息的精度应该是不同的,如普通情况下,一般人是不希望向其他人提供自己的位置信息的,而家长却希望时时了解自己孩子的行踪,同样医院中护士也需要知道病人的位置。However, in different application scenarios, the accuracy of the location information provided by the object should be different. For example, under normal circumstances, ordinary people do not want to provide their own location information to others, but parents want to know their children’s location information from time to time. Whereabouts, nurses in hospitals also need to know the location of patients.

在对现有技术进行分析后,发明人发现现有技术至少具有如下缺点:物体自身不能对不同的访问者返回不同精度的位置信息,无法实现定位精度控制。After analyzing the prior art, the inventor found that the prior art has at least the following disadvantages: the object itself cannot return location information with different accuracy to different visitors, and cannot realize positioning accuracy control.

发明内容Contents of the invention

本发明的主要目的在于实现物体定位的精度控制,提供一种物联网中的节点定位方法及节点。所述技术方案如下:The main purpose of the present invention is to realize the precision control of object positioning, and to provide a node positioning method and nodes in the Internet of Things. Described technical scheme is as follows:

一种物联网中的节点定位方法,所述方法包括:A node location method in the Internet of Things, said method comprising:

接收来自查询者的定位节点的请求;receiving a request from a queryer's location node;

获取所述查询者的信息;Obtain information about the inquirer;

在所述节点预先根据查询者置信度存储的用户精度控制表中,查找与所述查询者的信息对应的位置信息;Searching for location information corresponding to the information of the inquirer in the user precision control table stored by the node in advance according to the inquirer's confidence;

将所述位置信息提供给所述查询者。The location information is provided to the inquirer.

接收来自查询者的定位节点的请求,包括:Receive requests from queriers for locating nodes, including:

节点接收数据阅读器发送的来自查询者的定位所述节点的请求;The node receives the request from the queryer to locate the node sent by the data reader;

相应地,将所述位置信息提供给所述查询者,包括:Correspondingly, providing the location information to the queryer includes:

所述节点将所述位置信息通过所述数据阅读器返回给所述查询者。The node returns the location information to the queryer through the data reader.

接收来自查询者的定位节点的请求,获取所述查询者的信息,包括:Receive the request from the location node of the queryer, and obtain the information of the queryer, including:

客户端接收来自查询者的定位节点的请求,在用户分组表中查找所述查询者所属的用户分组信息;The client receives the request from the location node of the inquirer, and looks up the user group information to which the inquirer belongs in the user group table;

相应地,在所述节点预先根据查询者置信度存储的用户精度控制表中,查找与所述查询者的信息对应的位置信息,包括:Correspondingly, searching the location information corresponding to the information of the queryer in the user precision control table stored by the node in advance according to the confidence of the queryer, including:

所述客户端根据所述用户分组信息,在所述节点预先根据查询者置信度存储的用户精度控制表中,查找与所述查询者的信息对应的位置信息。According to the user grouping information, the client searches for the location information corresponding to the information of the inquirer in the user precision control table stored by the node in advance according to the inquirer's confidence.

在所述节点预先根据查询者置信度存储的用户精度控制表中,查找与所述查询者的信息对应的位置信息之前,还包括:Before searching the position information corresponding to the information of the inquirer in the user precision control table stored by the node in advance according to the inquirer's confidence, it also includes:

所述节点指定N个查询者,并设置每个查询者的置信度;其中,N为自然数;The node specifies N inquirers, and sets the confidence level of each inquirer; wherein, N is a natural number;

所述节点获取自身当前所在的位置信息,确定模糊区域并计算所述模糊区域的位置信息;The node acquires its current location information, determines the blurred area and calculates the location information of the blurred area;

所述节点在已计算出的位置信息中,根据置信度为每个查询者确定一个对应的位置信息,并存储每个查询者和位置信息的对应关系,得到所述用户精度控制表。The node determines a corresponding location information for each inquirer according to the confidence degree in the calculated location information, and stores the corresponding relationship between each inquirer and the location information, and obtains the user precision control table.

确定模糊区域,包括:Identify areas of ambiguity, including:

所述节点根据地标阅读器确定静态位置区域,并计算所述静态位置区域的位置模糊度;The node determines a static location area based on a landmark reader, and calculates a location ambiguity for the static location area;

所述节点根据历史位置信息确定动态位置区域,并计算所述动态位置区域的位置模糊度;The node determines a dynamic location area according to historical location information, and calculates a location ambiguity of the dynamic location area;

所述节点将所述静态位置区域和动态位置区域组成模糊区域。The node composes the static location area and the dynamic location area into a fuzzy area.

所述节点根据地标阅读器确定静态位置区域,包括:The node determines a static location area based on a landmark reader, including:

所述节点将与自身交互的地标阅读器所在的区域确定为静态位置区域;或者,The node determines the area where the landmark reader interacting with itself is located as a static location area; or,

所述节点将与自身交互的地标阅读器所在的区域,以及未与自身交互的地标阅读器所在的区域确定为静态位置区域。The node determines the area where the landmark reader that interacts with itself is located and the area where the landmark reader that is not interacting with itself is located as a static location area.

所述节点根据历史位置信息确定动态位置区域,包括:The node determines a dynamic location area according to historical location information, including:

所述节点在已存储的自身所在的历史位置信息中,查找与选定时刻最接近的历史时刻的历史位置信息;The node searches for the historical location information of the historical moment closest to the selected moment in the stored historical location information of itself;

根据所述最接近的历史时刻的历史位置信息,确定动态位置区域。A dynamic location area is determined according to the historical location information at the closest historical moment.

所述节点在已计算出的位置信息中,根据置信度为每个查询者确定一个对应的位置信息,包括:In the calculated location information, the node determines a corresponding location information for each queryer according to the confidence degree, including:

所述节点判断每个查询者的置信度是否高于指定值,如果是,则建立该查询者与所述当前所在的位置信息的对应关系;否则,建立该查询者与所述模糊区域的位置信息的对应关系。The node judges whether the confidence of each inquirer is higher than a specified value, and if so, establishes the corresponding relationship between the inquirer and the current location information; otherwise, establishes the position of the inquirer and the fuzzy area information correspondence.

建立该查询者与所述模糊区域的位置信息的对应关系,包括:Establishing the corresponding relationship between the inquirer and the location information of the blurred area, including:

如果所述模糊区域有多个,则将每个模糊区域的位置模糊度与该查询者的置信度作比较,确定差值最小的模糊区域,建立该查询者与所述差值最小的模糊区域的位置信息的对应关系。If there are multiple fuzzy areas, compare the position ambiguity of each fuzzy area with the confidence of the inquirer, determine the fuzzy area with the smallest difference, and establish the fuzzy area with the smallest difference between the inquirer and the inquirer The corresponding relationship of the location information.

所述节点获取自身当前所在的位置信息,确定模糊区域并计算所述模糊区域的位置信息,包括:The node acquires its current location information, determines the blurred area and calculates the location information of the blurred area, including:

所述节点按照预设的周期定期或当预设的条件成立时获取自身当前所在的位置信息,以及确定模糊区域并计算所述模糊区域的位置信息。The node acquires its current location information periodically according to a preset period or when a preset condition is met, and determines a blurred area and calculates the location information of the blurred area.

一种物联网中的节点,所述节点包括:A node in the Internet of Things, said node comprising:

接收模块,用于接收来自查询者的定位节点的请求;A receiving module, configured to receive a request from a location node of an inquirer;

获取模块,用于获取所述查询者的信息;An acquisition module, configured to acquire the information of the inquirer;

查找模块,用于在所述节点预先根据查询者置信度存储的用户精度控制表中,查找与所述查询者的信息对应的位置信息;A search module, configured to search for the location information corresponding to the information of the inquirer in the user precision control table stored by the node in advance according to the inquirer's confidence;

发送模块,用于将所述位置信息提供给所述查询者。A sending module, configured to provide the location information to the inquirer.

所述接收模块具体用于接收数据阅读器发送的来自查询者的定位所述节点的请求;相应地,所述发送模块具体用于将所述位置信息通过所述数据阅读器返回给所述查询者。The receiving module is specifically configured to receive a request from the queryer for locating the node sent by the data reader; correspondingly, the sending module is specifically configured to return the location information to the query through the data reader By.

所述节点还包括:The nodes also include:

设置模块,用于指定N个查询者,并设置每个查询者的置信度;其中,N为自然数;A setting module is used to specify N inquirers and set the confidence level of each inquirer; wherein, N is a natural number;

计算模块,用于获取所述节点自身当前所在的位置信息,确定模糊区域并计算所述模糊区域的位置信息;A calculation module, configured to obtain the current location information of the node itself, determine the blurred area and calculate the location information of the blurred area;

建立及存储模块,用于在已计算出的位置信息中,根据置信度为每个查询者确定一个对应的位置信息,并存储每个查询者和位置信息的对应关系,得到所述用户精度控制表。The establishment and storage module is used to determine a corresponding position information for each inquirer according to the confidence level in the calculated position information, and store the corresponding relationship between each inquirer and the position information, and obtain the user precision control surface.

所述计算模块包括:The calculation module includes:

模糊区域确定单元,用于根据地标阅读器确定静态位置区域,并计算所述静态位置区域的位置模糊度,根据历史位置信息确定动态位置区域,并计算所述动态位置区域的位置模糊度,将所述静态位置区域和动态位置区域组成模糊区域。An ambiguous area determining unit, configured to determine a static location area according to a landmark reader, and calculate a position ambiguity of the static location area, determine a dynamic location area according to historical location information, and calculate a position ambiguity of the dynamic location area, The static location area and the dynamic location area form a fuzzy area.

所述模糊区域确定单元包括:The fuzzy area determination unit includes:

静态位置区域确定子单元,用于将与所述节点交互的地标阅读器所在的区域确定为静态位置区域;或者,将与所述节点交互的地标阅读器,以及未与所述节点交互的地标阅读器所在的区域确定为静态位置区域。A static location area determining subunit, configured to determine the area where the landmark reader interacting with the node is located as a static location area; or, the landmark reader interacting with the node and the landmark not interacting with the node The area where the reader is located is determined as the static location area.

所述模糊区域确定单元包括:The fuzzy area determination unit includes:

动态位置区域确定子单元,用于在所述节点已存储的自身所在的历史位置信息中,查找与选定时刻最接近的历史时刻的历史位置信息,根据所述最接近的历史时刻的历史位置信息,确定动态位置区域。The dynamic location area determination subunit is used to search the historical location information of the closest historical moment to the selected moment in the historical location information stored by the node itself, and according to the historical location information of the closest historical moment information to determine the dynamic location area.

所述建立及存储模块包括:The establishment and storage module includes:

对应关系建立单元,用于判断每个查询者的置信度是否高于指定值,如果是,则建立该查询者与所述当前所在的位置信息的对应关系;否则,建立该查询者与所述模糊区域的位置信息的对应关系。A correspondence relationship establishing unit, configured to determine whether the confidence of each inquirer is higher than a specified value, and if so, establish a correspondence between the inquirer and the current location information; otherwise, establish a correspondence between the inquirer and the The corresponding relationship of the position information of the fuzzy area.

所述对应关系建立单元用于如果所述模糊区域有多个,则将每个模糊区域的位置模糊度与该查询者的置信度作比较,确定差值最小的模糊区域,建立该查询者与所述差值最小的模糊区域的位置信息的对应关系。The correspondence establishing unit is used to compare the position ambiguity of each fuzzy region with the confidence of the inquirer if there are multiple fuzzy regions, determine the fuzzy region with the smallest difference, and establish the relationship between the inquirer and the inquirer. The corresponding relationship of the position information of the fuzzy area with the smallest difference.

所述计算模块用于按照预设的周期定期或当预设的条件成立时获取自身当前所在的位置信息,以及确定模糊区域并计算所述模糊区域的位置信息。The calculation module is used to obtain the current location information of itself periodically according to a preset period or when a preset condition is satisfied, determine a blurred area and calculate the location information of the blurred area.

本发明实施例提供的技术方案的有益效果是:通过在节点上预先定义用户精度控制表,实现了在节点级别针对不同查询者返回不同精度的位置信息,可提供多个精度的位置服务,从而增强了节点的位置隐私性。The beneficial effect of the technical solution provided by the embodiment of the present invention is: by pre-defining the user precision control table on the node, the location information of different precisions can be returned to different inquirers at the node level, and multiple precision location services can be provided, thereby The location privacy of nodes is enhanced.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort.

图1为本发明实施例提供的基于物联网节点定位系统的结构示意图;FIG. 1 is a schematic structural diagram of a node positioning system based on the Internet of Things provided by an embodiment of the present invention;

图2为本发明实施例1提供的物联网中的节点定位方法流程图;FIG. 2 is a flowchart of a node positioning method in the Internet of Things provided by Embodiment 1 of the present invention;

图3为本发明实施例2提供的物联网中的节点定位方法流程图;FIG. 3 is a flowchart of a node positioning method in the Internet of Things provided by Embodiment 2 of the present invention;

图4为本发明实施例2提供的建立用户精度控制表的流程图;FIG. 4 is a flow chart of establishing a user precision control table provided by Embodiment 2 of the present invention;

图5为本发明实施例3提供的物联网中的节点定位方法流程图;FIG. 5 is a flowchart of a node positioning method in the Internet of Things provided by Embodiment 3 of the present invention;

图6为本发明实施例提供的模糊区域的确定过程流程图;FIG. 6 is a flow chart of the determination process of the blurred area provided by the embodiment of the present invention;

图7为本发明实施例4提供的物联网中的节点结构图。FIG. 7 is a node structure diagram in the Internet of Things provided by Embodiment 4 of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the implementation manner of the present invention will be further described in detail below in conjunction with the accompanying drawings.

本实施例提供的一种物联网中的节点定位方法是基于一种物联网节点定位系统,物联网节点定位系统包括:地标网络,用于提供位置信息,由若干个具有位置自我感知能力的阅读器组成的,当节点进入其通信范围内时,地标阅读器向节点发送其所在的位置信息;数据传输网络,用于传输节点与互联网之间的通信数据,由若干个提供数据转发功能的阅读器组成的,当接收到数据时,使用路由算法,向下一跳转发该数据;身份管理服务器,用于存放和管理相关应用中所涉及到的所有节点、设备、服务器和用户的身份和用户精度信息,存放所有参与角色实体的身份信息。实现CA(Certificate Authority,电子商务认证中心)的功能,为每个实体分配公私钥,如果采用基于身份加密方式,公钥即实体ID(Identity,身份标识),身份管理服务器只需设置算法参数,并为计算出实体ID对应的私钥即可;位置信息服务器,用于存放和查询节点的信息,可以是云状的分布式机群,也可以是散布在互联网中的不同主机,通过p2p(peer-to-peer,对等联网)的形式组织起来的虚拟存储网络。当位置信息服务器是散布在互联网中的不同主机时,位置信息服务器和身份管理服务器可以互相独立,用户只要不将某位置信息服务器设置为可获得自己位置信息的用户,该位置信息服务器则不能获得节点的位置明文信息,从而保护了节点的位置隐私。A node positioning method in the Internet of Things provided by this embodiment is based on a node positioning system of the Internet of Things. The node positioning system of the Internet of Things includes: a landmark network for providing position information, and several readers with position self-awareness capabilities When the node enters its communication range, the landmark reader sends its location information to the node; the data transmission network is used to transmit the communication data between the node and the Internet, and several readers that provide data forwarding function When data is received, it uses a routing algorithm to forward the data to the next hop; the identity management server is used to store and manage the identities and identities of all nodes, devices, servers and users involved in related applications User precision information, which stores the identity information of all participating role entities. Realize the function of CA (Certificate Authority, e-commerce certification center), and assign public and private keys to each entity. If the identity-based encryption method is adopted, the public key is the entity ID (Identity, identity identification), and the identity management server only needs to set the algorithm parameters. And it is enough to calculate the private key corresponding to the entity ID; the location information server is used to store and query the information of the node, which can be a cloud-like distributed cluster, or different hosts scattered in the Internet, through p2p (peer -to-peer, a virtual storage network organized in the form of peer-to-peer networking). When the location information server is different hosts scattered in the Internet, the location information server and the identity management server can be independent of each other. As long as the user does not set a location information server as a user who can obtain his own location information, the location information server cannot obtain The plaintext information of the node's location protects the location privacy of the node.

地标网络和数据传输网络中的阅读器节点可同时具有地标功能和数据传输功能,阅读器之间彼此连接,构成一个或多个ad-hoc(自组网)网络。网络与互联网相连的节点为ad-hoc网络的网关,网关承担节点和互联网数据中转的功能。网关节点开启标准的HTTP(HyperTextTransferProtocol,超文本传输协议)代理或socks(电路级的底层网关)代理服务,接受外部网络与本ad-hoc网络之间的数据传输请求和响应。The reader nodes in the landmark network and the data transmission network can simultaneously have the landmark function and the data transmission function, and the readers are connected to each other to form one or more ad-hoc (ad hoc network) networks. The node connected to the Internet is the gateway of the ad-hoc network, and the gateway undertakes the data transfer function between the node and the Internet. The gateway node opens a standard HTTP (HyperTextTransferProtocol, hypertext transfer protocol) proxy or socks (circuit-level underlying gateway) proxy service to accept data transmission requests and responses between the external network and the ad-hoc network.

参见图1,本实施例基于物联网节点定位系统的结构示意图。架构分为两层,上层为互联网中的应用,包括物联网的基于位置应用和数据服务器,物联网应用主要为基于位置服务的应用程序、Web服务和门户站点等;数据服务器主要存放与位置有关的数据,并有相应的计算逻辑模块进行底层的数据处理。架构下层为物理环境,主要由阅读器ad-hoc网络构成,阅读器网络是由不同机构部署的阅读器组成,阅读器主要有指示位置功能的地标阅读器和负责转发数据的数据阅读器,其中有一些数据阅读器与互联网直接相连,这些特殊的数据阅读器充当了ad-hoc网关的角色。Referring to FIG. 1 , this embodiment is a schematic structural diagram of a node positioning system based on the Internet of Things. The architecture is divided into two layers. The upper layer is the application in the Internet, including location-based applications and data servers of the Internet of Things. The applications of the Internet of Things are mainly location-based service applications, Web services, and portal sites, etc.; the data server mainly stores location-related information. data, and have corresponding calculation logic modules for underlying data processing. The lower layer of the architecture is the physical environment, which is mainly composed of an ad-hoc network of readers. The reader network is composed of readers deployed by different organizations. The readers mainly include landmark readers for indicating location functions and data readers for forwarding data. Some data readers are directly connected to the Internet, and these special data readers act as ad-hoc gateways.

互联网应用,向上主要与逻辑主体的用户交互,向下主要与物理主体的阅读器网络交互;上述的物理环境,向上主要与应用主体的服务交互,向下主要与物理主体的设备智能标签交互。The Internet application mainly interacts with the user of the logical subject upward, and mainly interacts with the reader network of the physical subject downward; the above-mentioned physical environment mainly interacts with the service of the application subject upward, and mainly interacts with the device smart label of the physical subject downward.

本发明实施例中涉及的节点是指待定位的目标,它可以是物联网中的任一个节点,如可以是携带智能标签的终端、货物、病人、孩童等。该智能标签可以接收来自查询者的定位节点的请求,并在获取查询者的信息后,在所述节点预先根据查询者置信度存储的用户精度控制表中,查找与所述查询者的信息对应的位置信息,最后将对应的位置信息提供给查询者。The node involved in the embodiment of the present invention refers to the target to be positioned, which can be any node in the Internet of Things, such as a terminal carrying a smart label, goods, patients, children, etc. The smart label can receive the request from the inquirer's positioning node, and after obtaining the inquirer's information, search for information corresponding to the inquirer's information in the user precision control table stored by the node in advance according to the inquirer's confidence. location information, and finally provide the corresponding location information to the queryer.

实施例1Example 1

参见图2,本实施例提供了一种物联网中的节点定位方法,包括:Referring to Fig. 2, the present embodiment provides a node positioning method in the Internet of Things, including:

步骤1:接收来自查询者的定位节点的请求;Step 1: Receive the request from the location node of the queryer;

步骤2:获取所述查询者的信息;Step 2: Obtain the information of the inquirer;

步骤3:在节点预先根据查询者置信度存储的用户精度控制表中,查找与查询者的信息对应的位置信息;Step 3: Find the location information corresponding to the information of the inquirer in the user precision control table stored by the node in advance according to the inquirer's confidence;

步骤4:将位置信息提供给所述查询者。Step 4: Provide location information to the inquirer.

本实施例中,接收来自查询者的定位节点的请求,包括:In this embodiment, receiving a request from a queryer's positioning node includes:

节点接收数据阅读器发送的来自查询者的定位节点的请求;The node receives the request from the queryer to locate the node sent by the data reader;

相应地,将位置信息提供给查询者,包括:Accordingly, location information is provided to the enquirer, including:

节点将位置信息通过数据阅读器返回给查询者。The node returns the location information to the queryer through the data reader.

本实施例中,接收来自查询者的定位节点的请求,获取查询者的信息,包括:In this embodiment, the request from the location node of the inquirer is received to obtain the information of the inquirer, including:

客户端接收来自查询者的定位节点的请求,在用户分组表中查找查询者所属的用户分组信息;The client receives the request from the location node of the queryer, and searches the user grouping information of the queryer in the user grouping table;

相应地,在节点预先根据查询者置信度存储的用户精度控制表中,查找与查询者的信息对应的位置信息,包括:Correspondingly, in the user precision control table stored by the node in advance according to the confidence of the inquirer, the location information corresponding to the information of the inquirer is searched, including:

客户端根据用户分组信息,在节点预先根据查询者置信度存储的用户精度控制表中,查找与查询者的信息对应的位置信息。According to the user group information, the client searches for the location information corresponding to the information of the inquirer in the user precision control table stored by the node in advance according to the inquirer's confidence.

本实施例中,在节点预先根据查询者置信度存储的用户精度控制表中,查找与查询者的信息对应的位置信息之前,还包括:In this embodiment, before the node searches for the location information corresponding to the information of the inquirer in the user precision control table stored in advance according to the inquirer's confidence, it also includes:

节点指定N个查询者,并设置每个查询者的置信度;其中,N为自然数;The node specifies N inquirers, and sets the confidence level of each inquirer; where N is a natural number;

节点获取自身当前所在的位置信息,确定模糊区域并计算所述模糊区域的位置信息;The node obtains its current location information, determines the blurred area and calculates the location information of the blurred area;

节点在已计算出的位置信息中,根据置信度为每个查询者确定一个对应的位置信息,并存储每个查询者和位置信息的对应关系,得到用户精度控制表。In the calculated location information, the node determines a corresponding location information for each inquirer according to the confidence degree, and stores the corresponding relationship between each inquirer and the location information, and obtains the user precision control table.

其中,确定模糊区域,包括:Among them, determine the blurred area, including:

节点根据地标阅读器确定静态位置区域,并计算所述静态位置区域的位置模糊度;The node determines a static location area based on the landmark reader, and calculates a location ambiguity for the static location area;

节点根据历史位置信息确定动态位置区域,并计算动态位置区域的位置模糊度;The node determines the dynamic location area according to the historical location information, and calculates the location ambiguity of the dynamic location area;

节点将静态位置区域和动态位置区域组成模糊区域。The node composes the static location area and the dynamic location area into a fuzzy area.

其中,节点根据地标阅读器确定静态位置区域,包括:Among them, the node determines the static location area according to the landmark reader, including:

节点将与自身交互的地标阅读器所在的区域确定为静态位置区域;或者,The node determines the area where the landmark reader it interacts with is located as the static location area; or,

节点将与自身交互的地标阅读器所在的区域,以及未与自身交互的地标阅读器所在的区域确定为静态位置区域。The node determines the area where the landmark readers that interact with itself and the area where the landmark readers that do not interact with itself are located as static location areas.

其中,节点根据历史位置信息确定动态位置区域,包括:Among them, the node determines the dynamic location area according to the historical location information, including:

节点在已存储的自身所在的历史位置信息中,查找与选定时刻最接近的历史时刻的历史位置信息;The node searches the historical location information of the closest historical moment to the selected moment in the stored historical location information of itself;

根据最接近的历史时刻的历史位置信息,确定动态位置区域。The dynamic location area is determined according to the historical location information at the closest historical moment.

本实施例中,节点在已计算出的位置信息中,根据置信度为每个查询者确定一个对应的位置信息,包括:In this embodiment, the node determines a corresponding location information for each queryer according to the confidence degree in the calculated location information, including:

节点判断每个查询者的置信度是否高于指定值,如果是,则建立该查询者与当前所在的位置信息的对应关系;否则,建立该查询者与所述模糊区域的位置信息的对应关系。The node judges whether the confidence of each inquirer is higher than the specified value, if so, establishes the corresponding relationship between the inquirer and the current location information; otherwise, establishes the corresponding relationship between the inquirer and the location information of the fuzzy area .

其中,建立该查询者与所述模糊区域的位置信息的对应关系,包括:Wherein, establishing the corresponding relationship between the inquirer and the position information of the blurred area includes:

如果模糊区域有多个,则将每个模糊区域的位置模糊度与该查询者的置信度作比较,确定差值最小的模糊区域,建立该查询者与所述差值最小的模糊区域的位置信息的对应关系。If there are multiple fuzzy areas, compare the position ambiguity of each fuzzy area with the confidence of the inquirer, determine the fuzzy area with the smallest difference, and establish the position of the inquirer and the fuzzy area with the smallest difference information correspondence.

其中,节点获取自身当前所在的位置信息,确定模糊区域并计算所述模糊区域的位置信息,包括:Wherein, the node obtains its current location information, determines the blurred area and calculates the location information of the blurred area, including:

节点按照预设的周期定期或当预设的条件成立时获取自身当前所在的位置信息,以及确定模糊区域并计算模糊区域的位置信息。The node acquires its current location information periodically according to a preset cycle or when a preset condition is satisfied, and determines the blurred area and calculates the location information of the blurred area.

本实施例提供的方法通过在节点上预先定义用户精度控制表,实现了在节点级别针对不同查询者返回不同精度的位置信息,可提供多个精度的位置服务,从而增强了节点的位置隐私性。The method provided in this embodiment implements the return of location information with different accuracy for different queryers at the node level by pre-defining the user accuracy control table on the node, and can provide location services with multiple accuracy, thereby enhancing the location privacy of the node .

实施例2Example 2

参见图3,本实施例提供了一种物联网中的节点定位方法,节点的位置信息在自身缓存,用户直接向节点提交查询位置请求,节点根据用户的身份,通过身份控制选择性的返回不同精度的位置信息。具体包括步骤101-104:Referring to Fig. 3, this embodiment provides a node location method in the Internet of Things, the location information of the node is cached in itself, the user directly submits a location query request to the node, and the node selectively returns different information through identity control according to the identity of the user. Accurate location information. Specifically include steps 101-104:

步骤101:建立ad-hoc网络,阅读器之间定时发送Beacon信息,彼此成为邻居,建立一个ad-hoc网络;地标节点通过数据传输节点中转,彼此获知自己和对方ad-hoc网络中的位置,从而了解整个ad-hoc网络的位置和半径,以及接入互联网的ad-hoc网关。Step 101: Establish an ad-hoc network, the readers send Beacon information regularly, and become neighbors to each other, and establish an ad-hoc network; the landmark nodes are transferred through the data transmission node, and each other knows the position of itself and the other party in the ad-hoc network, In order to understand the location and radius of the entire ad-hoc network, as well as the ad-hoc gateways connected to the Internet.

例如,当阅读器A被部署完毕之后,开始监听;当A接收到阅读器B的Beacon消息后,解析B的消息,其中必需项应有B的编号、B的证书和颁发B证书的CA,还可有可选项如B的从属机构等;节点A向颁发节点B证书的CA验证,如果节点B的身份非法,CA返回失败,节点A继续监听;否则节点A在自身的邻居节点列表中添加节点B的信息,节点A和节点B彼此成为邻居。以此方法,各个节点之间建立了ad-hoc网络。For example, after reader A is deployed, it starts listening; when A receives the Beacon message from reader B, it parses B's message, and the required items include B's number, B's certificate, and the CA that issued B's certificate. There are also options such as B’s subordinate organization, etc.; node A verifies to the CA that issued the node B’s certificate. If the identity of node B is illegal, the CA returns failure, and node A continues to listen; otherwise, node A adds Node B's information, Node A and Node B become neighbors to each other. In this way, an ad-hoc network is established between the various nodes.

步骤102:节点预先建立用户精度控制表,其中存储有查询者身份和对应的位置信息。参见图4,本步骤102具体包括步骤201-207:Step 102: The node pre-establishes a user accuracy control table, which stores the identity of the queryer and the corresponding location information. Referring to Fig. 4, this step 102 specifically includes steps 201-207:

步骤201:物主在节点上设置默认位置精度。Step 201: The owner sets the default location accuracy on the node.

步骤202:物主判断是否需要在节点上新建控制项,如果是,则执行步骤203,否则,结束。Step 202: The owner judges whether a new control item needs to be created on the node, if yes, execute step 203, otherwise, end.

步骤203:物主选择节点的查询者。Step 203: The owner selects the queryer of the node.

步骤204:物主决定查询者的位置精度。Step 204: The owner determines the location accuracy of the inquirer.

步骤205:物主将查询者的身份和位置精度作为二元组存入用户精度控制表中,然后返回步骤202,继续建立用户精度控制表。Step 205: The owner stores the identity and location accuracy of the inquirer into the user accuracy control table as a 2-tuple, and then returns to step 202 to continue building the user accuracy control table.

用户精度控制表有三列,第一列为编号,第二列为查询者身份,第三列为精度。精度项中为每个查询者对应的位置信息,节点指定N个查询者,并设置每个查询者的置信度,其中N为自然数。设定查询者的置信度指定值为1,如果查询者的置信度大于等于1,则可返回节点当前所在的位置信息;如果查询者的置信度小于1,可以按照具体的查询者的置信度,返回查询者对应的模糊区域位置信息,如返回当前的ad-hoc网络区域,或是返回一个当前节点所在的圆。其中,精度可以是精确位置信息,也可以是一个动作,如调转到某一个精度编号的行。这可以作为是一个快捷方式,方便多个相似的操作,只需定义最后一个跳转的行即可。The user precision control table has three columns, the first column is the serial number, the second column is the identity of the queryer, and the third column is the precision. The accuracy item is the location information corresponding to each queryer, and the node specifies N queryers, and sets the confidence level of each queryer, where N is a natural number. Set the specified value of the inquirer's confidence level to 1. If the inquirer's confidence level is greater than or equal to 1, the current location information of the node can be returned; if the inquirer's confidence level is less than 1, the specific inquirer's confidence level can , returns the location information of the fuzzy area corresponding to the queryer, such as returning the current ad-hoc network area, or returning a circle where the current node is located. Among them, the accuracy can be precise position information, or an action, such as switching to a line with a certain accuracy number. This can be used as a shortcut to facilitate multiple similar operations, just define the last line to jump to.

表1Table 1

Figure BSA00000194938100111
Figure BSA00000194938100111

*表示匹配所有,表1为一个具体的用户精度控制表,向查询者Bob返回当前节点的精确位置信息,向Mike只返回当前ad-hoc网络位置,将节点位置限制在该ad-hoc网络的区域内,而向Boss则返回一个随机偏移位置和半径的区域,对位置进行模糊化,最后对其他所有查询者返回未知区域,拒绝响应其位置信息。* means match all, Table 1 is a specific user precision control table, return the precise location information of the current node to the queryer Bob, only return the current ad-hoc network location to Mike, and limit the node location to the ad-hoc network In the area, and to the Boss, it returns an area with a random offset position and radius to blur the position, and finally returns an unknown area to all other inquirers, and refuses to respond to its position information.

进一步地,本步骤中节点还可以按照预设的周期定期或当预设的条件成立时获取自身当前所在位置信息,以及确定模糊区域并计算模糊区域的位置信息。其中,预设的周期可以根据需要更改,如预设周期为2分钟,则节点每隔2分钟获取自身信息,确定此时模糊区域,并计算模糊区域的位置信息。预设的条件有多种,如当节点进入阅读器监听区域时等等。Further, in this step, the node may also obtain its current location information periodically according to a preset period or when a preset condition is met, and determine the blurred area and calculate the location information of the blurred area. Wherein, the preset period can be changed as required. For example, if the preset period is 2 minutes, the node obtains its own information every 2 minutes, determines the blurred area at this time, and calculates the location information of the blurred area. There are many preset conditions, such as when the node enters the reader monitoring area and so on.

步骤103:节点自身获取位置信息,当节点进入地标阅读器节点的通信范围内,地标阅读器节点向节点发送该地标节点的位置和通信范围、ad-hoc网络的标识、中心位置和半径、ad-hoc网络网关等信息,节点将信息记录在本地缓存中。Step 103: The node itself obtains the location information. When the node enters the communication range of the landmark reader node, the landmark reader node sends the node the location and communication range of the landmark node, the identification of the ad-hoc network, the central location and radius, and the ad-hoc network. -hoc network gateway and other information, the node records the information in the local cache.

例如,地标阅读器C在部署完之后,开始监听;当检测到有节点D进入C的通信范围内时,C判断其自身的安全策略,如果安全,则向D提供地标数据;当D接收到C的信息后,根据自己的策略决定是否保存C发送的数据,如果安全,将地标数据保存到本地缓存。For example, after the deployment of the landmark reader C, it starts to monitor; when it detects that a node D enters the communication range of C, C judges its own security policy, and if it is safe, it provides landmark data to D; when D receives After receiving the information of C, it decides whether to save the data sent by C according to its own strategy. If it is safe, save the landmark data to the local cache.

步骤104:节点自主位置响应,当节点接收到用户位置查询请求时,从用户精度控制表中根据查询者的身份获得对应的位置信息并返回。参见图4,本步骤104具体包括:Step 104: The node autonomously responds to the location. When the node receives the user location query request, it obtains the corresponding location information from the user precision control table according to the identity of the queryer and returns it. Referring to Fig. 4, this step 104 specifically includes:

用户U登录客户端;User U logs in to the client;

客户端验证用户U的身份;The client verifies the identity of user U;

用户U的身份未通过验证,查询结束;The identity of user U has not been verified, and the query ends;

通过验证,获得U对应的私钥d,用户U向客户端提交查询节点请求;After verification, the private key d corresponding to U is obtained, and user U submits a query node request to the client;

客户端从数据库查询该节点所在的ad-hoc网络信息和所属数据阅读器,返回给用户U;The client queries the ad-hoc network information of the node and the data reader it belongs to from the database, and returns it to the user U;

用户U在节点所属ad-hoc网络中转发查询请求;User U forwards the query request in the ad-hoc network to which the node belongs;

节点所属数据阅读器接收到节点查询请求信息;The data reader to which the node belongs receives the node query request information;

数据阅读器通过ad-hoc网络向相应节点发送定位请求;The data reader sends a positioning request to the corresponding node through the ad-hoc network;

节点通过ad-hoc网络获得查询者身份;The node obtains the identity of the queryer through the ad-hoc network;

节点在其预先存储的用户精度控制表中查找该查询者的记录;The node looks up the record of the queryer in its pre-stored user precision control table;

如果该查询者的记录不存在,则拒绝;Reject if a record for that querier does not exist;

如果该查询者的记录存在,找到相关记录的精度项;If the record of the queryer exists, find the accuracy item of the relevant record;

如果该项是跳转项,则跳转到相应精度项找到相应位置信息;If the item is a jump item, jump to the corresponding precision item to find the corresponding position information;

如果该项不是跳转项,节点找到查询者对应的位置L,使用基于身份的方式对信息加密,获得位置密文C(para,ID,L),返回给数据传输阅读器;If the item is not a jump item, the node finds the location L corresponding to the queryer, encrypts the information using an identity-based method, obtains the location ciphertext C (para, ID, L), and returns it to the data transmission reader;

数据传输阅读器将位置密文返回给查询用户U;The data transmission reader returns the location ciphertext to the querying user U;

用户U使用私钥d进行解密,获得位置信息Loc。User U uses the private key d to decrypt and obtain the location information Loc.

para为基于身份加密算法的参数,ID为查询者的身份。为了保护位置隐私,用户精度控制表中的默认精度一般为未知位置。para is the parameter based on the identity encryption algorithm, and ID is the identity of the queryer. In order to protect location privacy, the default precision in the user precision control table is generally an unknown location.

本例采用加密算法来保护节点的位置信息,防止其在传输过程中或在位置管理服务器数据库中被未授权第三方获得。具体的加密算法是是基于身份的加密方式,该算法加密时所用的公钥就是接收者的身份ID。接收者从CA获得其Id对应的私钥,然后对密文进行解密。使用基于身份的加密方式,可以节省在节点中保存查询用户和分组的公钥和证书,大大节省了设备的缓存。In this example, an encryption algorithm is used to protect the location information of the node, preventing it from being obtained by an unauthorized third party during transmission or in the database of the location management server. The specific encryption algorithm is an identity-based encryption method, and the public key used for encryption of this algorithm is the identity ID of the receiver. The recipient obtains the private key corresponding to its Id from the CA, and then decrypts the ciphertext. Using the identity-based encryption method can save the public key and certificate for querying users and groups in the node, which greatly saves the cache of the device.

本实施例提供的方法通过在节点上预先定义用户精度控制表,实现了在节点级别针对不同查询者返回不同精度的位置信息,可提供多个精度的位置服务,从而增强了节点的位置隐私性。The method provided in this embodiment realizes the return of location information with different accuracy for different inquirers at the node level by pre-defining the user accuracy control table on the node, and can provide location services with multiple accuracy, thereby enhancing the location privacy of the node .

实施例3Example 3

参见图5,本实施例提供了一种物联网中的节点定位方法,节点的属主事先在身份管理服务器上定义能够获得节点位置信息的用户的规则,节点定时向位置信息服务器发送不同精度的位置信息密文,查询用户首先到身份管理服务器获得自己的身份属性和密钥,然后到查询位置服务器获得加密的节点位置信息,最后使用密钥解密获得节点的位置。该方法具体包括步骤301-305:Referring to Fig. 5, this embodiment provides a node positioning method in the Internet of Things. The owner of the node defines the rules of users who can obtain the node location information on the identity management server in advance, and the node regularly sends different accuracy information to the location information server. For the ciphertext of location information, the inquiring user first obtains his identity attribute and key from the identity management server, then obtains the encrypted node location information from the query location server, and finally uses the key to decrypt to obtain the location of the node. The method specifically includes steps 301-305:

步骤301:建立ad-hoc网络,具体步骤同实施例2中ad-hoc网络建立方法。Step 301: Establish an ad-hoc network, the specific steps are the same as the method for establishing the ad-hoc network in Embodiment 2.

步骤302:预先设置用户分组表和用户精度控制表。节点属主事先登陆身份管理服务器,在服务器上设置用户分组,将N个置信度相同的查询者归为一个查询组,表示向同一个查询组的查询者返回同一个位置结果;同时将服务器上定义的查询组设置一个位置精度,存放在节点本地缓存。Step 302: Preset a user group table and a user accuracy control table. The node owner logs in to the identity management server in advance, sets user groups on the server, and classifies N inquirers with the same confidence into one query group, which means returning the same location result to the inquirers of the same query group; The defined query group sets a location precision, which is stored in the local cache of the node.

表2Table 2

  编号 serial number   节点node   查询者Queryer   查询组query group   1 1   O1O1   Bobbob   T1T1   2 2   O1O1   MikeMike   T1T1   33   O1O1   BossBoss   T2T2   ……...   ……...   ……...   nn   O1O1   **   T100T100

*表示匹配所有,表2为一个服务器上具体的用户分组表,对于节点O1而言,用户Bob和Mike关系一样,同属T1组,Boss属于T2组。* means match all. Table 2 is a specific user grouping table on a server. For node O1, user Bob and Mike have the same relationship, both belong to group T1, and Boss belongs to group T2.

精度项中为每组查询者对应的位置信息,节点指定M个查询组,并设置每个查询者的置信度,其中M为自然数。设定查询组的置信度指定值为1,如果查询组的置信度大于等于1,则可返回节点当前所在的位置信息;如果查询组的置信度小于1,可以按照具体的查询组的置信度,返回查询组对应的模糊区域位置信息,如返回当前的ad-hoc网络区域,或是返回一个当前节点所在的圆。The accuracy item is the location information corresponding to each group of inquirers. The node specifies M query groups and sets the confidence level of each inquirer, where M is a natural number. Set the specified value of the confidence level of the query group to 1. If the confidence level of the query group is greater than or equal to 1, the current location information of the node can be returned; if the confidence level of the query group is less than 1, the specific query group’s confidence level can be , returns the location information of the fuzzy area corresponding to the query group, such as returning the current ad-hoc network area, or returning a circle where the current node is located.

表3table 3

Figure BSA00000194938100131
Figure BSA00000194938100131

Figure BSA00000194938100141
Figure BSA00000194938100141

表3为一个节点缓存中具体的用户分组权限表,表3有三列,第一列为编号,第二列为查询者身份组,第三列为精度。向用户分组T1提供精确位置,向用户分组T2提供当前ad-hoc的区域位置信息,向用户T3返回一个函数表达式F为结果的区域信息。Table 3 is a specific user group permission table in a node cache. Table 3 has three columns, the first column is the number, the second column is the identity group of the queryer, and the third column is the precision. Provide accurate location to user group T1, provide current ad-hoc area location information to user group T2, and return area information with the result of a function expression F to user T3.

进一步地,本步骤中节点还可以按照预设的周期定期或当预设的条件成立时获取自身当前所在位置信息,以及确定模糊区域并计算模糊区域的位置信息。其中,预设的周期可以根据需要更改,如预设周期为2分钟,则节点每隔2分钟获取自身信息,确定此时模糊区域,并计算模糊区域的位置信息。预设的条件有多种,如当节点进入阅读器监听区域时等等。Further, in this step, the node may also obtain its current location information periodically according to a preset period or when a preset condition is met, and determine the blurred area and calculate the location information of the blurred area. Wherein, the preset period can be changed as required. For example, if the preset period is 2 minutes, the node obtains its own information every 2 minutes, determines the blurred area at this time, and calculates the location information of the blurred area. There are many preset conditions, such as when the node enters the reader monitoring area and so on.

步骤303:节点自身获取位置信息,具体步骤同实施例1中节点自身获取位置信息方法。Step 303: The node itself obtains the location information, and the specific steps are the same as the method for the node itself to obtain the location information in Embodiment 1.

步骤304:位置信息上传。节点检测到有数据传输阅读器后,根据自己缓存中的n用户分组,产生n个位置信息(记为L1,L2,...,Ln),分别用n个分组的公钥PubKeyGi加密,形成n个位置密文消息C(LO,PubKeyGi),通过数据传输ad-hoc网络传输到位置信息服务器上;位置信息服务器保存前述n条消息。Step 304: Upload location information. After the node detects that there is a data transmission reader, it generates n pieces of location information (recorded as L1, L2, ..., Ln) according to the n user groups in its own cache, and encrypts them with the public key PubKey Gi of n groups respectively, Form n location ciphertext messages C(L O , PubKey Gi ), and transmit them to the location information server through the data transmission ad-hoc network; the location information server saves the aforementioned n messages.

步骤305:服务器位置响应。具体有两种应用场景,下面分别说明。Step 305: Server location response. There are two specific application scenarios, which are described below.

第一种应用场景为,位置信息服务器和身份管理服务器为独立设备的场景,位置信息服务器作为客户端,本步骤205具体包括:The first application scenario is the scenario where the location information server and the identity management server are independent devices, and the location information server is used as a client. This step 205 specifically includes:

用户U登陆应用客户端;User U logs in to the application client;

客户端验证用户U的身份;The client verifies the identity of user U;

用户U的身份未通过验证,查询结束;The identity of user U has not been verified, and the query ends;

通过验证,用户U向客户端提交查询节点O的定位请求;After verification, user U submits a location request to query node O to the client;

客户端向身份管理服务器查询该用户对应的分组T,获得分组编号IDT及其私钥dTThe client queries the identity management server for the group T corresponding to the user, and obtains the group number ID T and its private key d T ;

客户端从其数据库中查询节点O的信息,找到节点O的用户精度控制表;The client queries the information of node O from its database, and finds the user precision control table of node O;

客户端根据IDT和O信息,获得O的位置密文C(LO,IDi),提供给用户;The client obtains O's location ciphertext C(L O , ID i ) according to ID T and O information, and provides it to the user;

用户U使用自己的私钥dT解密,从而获得位置信息LOUser U decrypts with his own private key d T to obtain location information L O .

第二种应用场景,位置信息服务器和身份管理服务器是一台设备的场景,此设备作为客户端,本步骤205具体包括:In the second application scenario, the location information server and the identity management server are a scenario of a device, and this device is used as a client. This step 205 specifically includes:

用户U登陆应用客户端;User U logs in to the application client;

客户端验证用户U的身份;The client verifies the identity of user U;

用户U的身份未通过验证,查询结束;The identity of user U has not been verified, and the query ends;

通过验证,用户U获得自己的私钥dU,用户U向客户端提交查询节点O的定位请求;Through verification, user U obtains his own private key d U , and user U submits a location request to query node O to the client;

客户端从数据库中查询该用户对应的分组T,获得分组编号IDT及其私钥dTThe client queries the group T corresponding to the user from the database, and obtains the group ID T and its private key d T ;

客户端从数据库中查询节点O的信息,找到节点O的用户精度控制表;The client queries the information of node O from the database and finds the user precision control table of node O;

客户端根据IDT和O的用户精度控制表,获得O的位置密文C(LO,IDi);The client obtains O's location ciphertext C(L O , ID i ) according to ID T and O's user precision control table;

客户端使用IDU对密文C(LO,IDi)和dT再次加密,获得C(C(LO,IDi),dT),提供给用户U;The client uses ID U to encrypt the ciphertext C(L O , ID i ) and d T again, obtains C(C(L O , ID i ), d T ), and provides it to the user U;

用户U使用自己的私钥dU解密,获得C(LO,IDi)和dT,再使用dT解密,从而获得位置信息LOUser U decrypts with his own private key d U to obtain C(L O , ID i ) and d T , and then decrypts with d T to obtain location information L O .

本实施例采用加密算法来保护节点的位置信息,防止其在传输过程中或在位置管理服务器数据库中被未授权第三方获得。具体的加密算法是是基于身份的加密方式,该算法加密时所用的公钥就是接收者的身份ID。接收者从CA获得其Id对应的私钥,然后对密文进行解密。使用基于身份的加密方式,可以节省在节点中保存查询用户和分组的公钥和证书,大大节省了设备的缓存。In this embodiment, an encryption algorithm is used to protect the location information of the node, preventing it from being obtained by an unauthorized third party during transmission or in the database of the location management server. The specific encryption algorithm is an identity-based encryption method, and the public key used for encryption of this algorithm is the identity ID of the receiver. The recipient obtains the private key corresponding to its Id from the CA, and then decrypts the ciphertext. Using the identity-based encryption method can save the public key and certificate for querying users and groups in the node, which greatly saves the cache of the device.

本实施例提供的方法通过在节点上预先定义用户精度控制表,实现了在节点级别针对不同查询者返回不同精度的位置信息,可提供多个精度的位置服务,从而增强了节点的位置隐私性;在身份管理服务器上预先定义用户分组用户表,将置信度相同的查询者归为一个查询组,节省了存储空间,缩短定位时间。The method provided in this embodiment realizes the return of location information with different accuracy for different inquirers at the node level by pre-defining the user accuracy control table on the node, and can provide location services with multiple accuracy, thereby enhancing the location privacy of the node ; Predefine the user group user table on the identity management server, and classify the inquirers with the same confidence into a query group, which saves storage space and shortens the positioning time.

上述实施例1,2,3中涉及的模糊区域的确定过程具体如下:The determination process of the fuzzy area involved in the above-mentioned embodiments 1, 2, and 3 is specifically as follows:

本发明实施例中的位置信息可以为一个四元组(位置L,半径R,时间戳T,置信度B),表示在T时刻节点所在的可能区域中心是L,半径为R,该位置区域的可信度为B。L和R决定了节点位置的空间不确定性,T决定了节点的时间不确定,B决定了上述三个元素组成的节点位置信息的不确定性。The location information in the embodiment of the present invention can be a quaternion (location L, radius R, time stamp T, confidence B), indicating that the center of the possible area where the node is located at T time is L, the radius is R, and the location area The reliability is B. L and R determine the spatial uncertainty of the node position, T determines the time uncertainty of the node, and B determines the uncertainty of the node position information composed of the above three elements.

当节点的位置精确时,L即为节点的当前位置,R为0,时间戳为当前时间,置信度为1。When the position of the node is accurate, L is the current position of the node, R is 0, the timestamp is the current time, and the confidence level is 1.

具体来说,节点的位置模糊性包括节点的位置轨迹不确定性和节点当前位置区域的不确定性。节点的位置轨迹不确定性是指节点的位置存在时间连续性,只向查询者提供节点的历史位置,而非当前位置,对于查询者而言,节点位置是精确的,但是不是实时的,只是过去某一个时刻的,位置信息四元组可为(L,0,T’,1);节点当前位置区域的不确定性是指向查询者提供当前时刻节点的位置,但该位置并非精确的,而是一个区域的,位置信息四元组可为(L,r,T,b)。在后者的情况中,如果节点的位置一定确实落在以L为圆心,r为半径的圆区域,则置信度b=1,否则节点需要确定自己可能所处的区域集合{Mi},然后赋予这些区域一定概率bi。Specifically, the node's location ambiguity includes the uncertainty of the node's location trajectory and the uncertainty of the node's current location area. The uncertainty of the node's position trajectory means that the position of the node has time continuity. Only the historical position of the node is provided to the queryer, not the current position. For the queryer, the node position is accurate, but not real-time, just At a certain moment in the past, the location information quadruple can be (L, 0, T', 1); the uncertainty of the current location area of the node refers to the location of the node at the current moment provided by the queryer, but the location is not accurate, But for one area, the location information quadruple can be (L, r, T, b). In the latter case, if the position of the node must indeed fall in the circle area with L as the center and r as the radius, then the confidence b=1, otherwise the node needs to determine the set of areas {Mi} it may be in, and then These regions are assigned a certain probability bi.

节点定义多个模糊区域,以一定的概率表示自己处于这些区域,从而隐藏自己的位置。故首先需要定义前述n个区域,区域的中心为某些阅读器节点。参见图6,具体步骤如下:A node defines multiple fuzzy areas, and indicates that it is in these areas with a certain probability, thereby hiding its position. Therefore, it is first necessary to define the aforementioned n regions, and the centers of the regions are some reader nodes. See Figure 6, the specific steps are as follows:

节点预先在0和1之间(包括0和1)设定查询者Bob的时间不确定度参数a和位置不确定度参数c,由于置信度b可以由时间不确定度参数a和位置不确定度参数c按照预设的算法计算得出,例如算法为b=a×c,根据计算就可以预先设置查询者Bob的置信度b,本发明对具体算法不做限定。The node pre-sets the time uncertainty parameter a and the position uncertainty parameter c of the queryer Bob between 0 and 1 (including 0 and 1), because the confidence b can be determined by the time uncertainty parameter a and position uncertainty The degree parameter c is calculated according to a preset algorithm. For example, the algorithm is b=a×c. According to the calculation, the confidence degree b of the queryer Bob can be preset. The present invention does not limit the specific algorithm.

步骤401:根据地标阅读器确定节点静态位置区域。节点将与自身交互的地标阅读器所在的区域做为静态位置区域,其中,能与其交互的地标阅读器可以是一个地标阅读器也可以是多个地标阅读器;进一步地,节点将未与自身交互的地标阅读器所在的区域也作为静态位置区域,其中,不与其直接交互的地标阅读器可以是一个地标阅读器也可以是多个地标阅读器。交互是指双方互相通信,包括接收信号和发送信号。但由于节点只能获知其附近直接交互的地标阅读器,故地标阅读器需要实现维持邻居地标阅读器的信息,在与节点交互时将其邻居地标阅读器也发送给节点。从而,节点可获知其附近的地标节点列表{Mi}={(Di,ri)},ri为处于Di的节点的通信半径。Step 401: Determine the static location area of the node according to the landmark reader. The node takes the area where the landmark reader that interacts with itself is located as a static location area, where the landmark reader that can interact with it can be one landmark reader or multiple landmark readers; further, the node will not interact with itself The area where the interactive landmark reader is located is also used as a static location area, wherein the landmark reader that does not directly interact with it may be one landmark reader or multiple landmark readers. Interaction means that two parties communicate with each other, including receiving signals and sending signals. However, since a node can only know the nearby landmark readers that directly interact with it, the landmark reader needs to maintain the information of neighbor landmark readers, and send its neighbor landmark readers to the node when interacting with the node. Therefore, a node can know a list of landmark nodes in its vicinity {Mi}={(Di, ri)}, where ri is the communication radius of the node at Di.

步骤402:计算静态位置区域的位置模糊度。节点可以通过结合周围其他节点的状况来隐藏自身。附近区域的节点密度大,则可认为节点在该区域出现的机会大,故节点需要获得附近区域的节点密度,这个信息同样在节点与地标阅读器交互时从地标阅读器中获得{Gi},那么n个区域中的节点数量则为Ni=Gi*ri2Step 402: Calculate the location ambiguity of the static location area. A node can hide itself by combining the conditions of other nodes around it. If the node density in the nearby area is high, it can be considered that the node has a high chance of appearing in this area, so the node needs to obtain the node density in the nearby area. This information is also obtained from the landmark reader when the node interacts with the landmark reader {Gi}, Then the number of nodes in n regions is Ni=Gi*ri 2 .

根据现有知识,可以计算节点O所在区域Do的位置模糊度Po

Figure BSA00000194938100171
其中No为节点O所在区域Do的节点数量,Nj为节点O附近区域的节点数量,其他区域的位置模糊度Pi
Figure BSA00000194938100172
b是位置置信度,δ是位置置信度对节点真实位置所在区域模糊度的影响因子,当b为0时,δ也为0,该区域的模糊度为0;反之,当b=1时,δ为无穷大,该区域的模糊度为1。具体的实现可以根据需要构造算法,例如δ=-logw(1-b)就是满足上述要求的一个函数,w为微调系数,不同的节点有不同的w,防止被攻击者猜出。According to the existing knowledge, the position ambiguity P o of the area Do where the node O is located can be calculated as
Figure BSA00000194938100171
Among them, N o is the number of nodes in the area Do where node O is located, N j is the number of nodes in the area near node O, and the position ambiguity P i of other areas is
Figure BSA00000194938100172
b is the position confidence, and δ is the influence factor of the position confidence on the ambiguity of the area where the node's true position is located. When b is 0, δ is also 0, and the ambiguity of this area is 0; otherwise, when b=1, δ is infinite, and the ambiguity of this region is 1. The specific implementation can construct an algorithm according to the needs, for example, δ=-log w (1-b) is a function that meets the above requirements, w is the fine-tuning coefficient, and different nodes have different w to prevent the attacker from guessing.

步骤403:节点在已存储的自身所在的历史位置信息中,查找与选定时刻最接近的历史时刻的历史位置信息。获得一段时间之前节点的精确位置D。D=U(a)获得t时刻节点的位置,U为时间不确定函数。Step 403: The node searches for the historical location information of the historical moment closest to the selected moment in the stored historical location information of itself. Obtain the precise position D of the node some time ago. D=U(a) obtains the position of the node at time t, and U is an uncertain function of time.

其中,时间不确定度的参数a与选定时刻t的关系满足时间衰减函数:Among them, the relationship between the parameter a of the time uncertainty and the selected time t satisfies the time decay function:

a=α-βΔt=αβ(t-tn),那么

Figure BSA00000194938100173
其中tn为定位时刻,α和β为预先设定的值,α为大于1的数,β为大于0的数。由于节点要提供历史位置记录,所以节点在每次获得地标信息时,会存入一个历史位置列表{Li},在历史位置信息列表{Li}中找到时刻t1,使得t1与t最接近,从而得到t1对应的位置信息L。例如,定位时刻为下午三点,则通过时间不确定度的参数得到选定时刻为下午两点二十,在历史时刻表中最接近下午两点二十的时间为两点半,则获得两点半对应的历史位置信息。a=α -βΔt = α β(t-tn) , then
Figure BSA00000194938100173
Where tn is the positioning time, α and β are preset values, α is a number greater than 1, and β is a number greater than 0. Since the node needs to provide historical location records, each time the node obtains landmark information, it will store a historical location list {Li}, and find time t1 in the historical location information list {Li}, so that t1 is the closest to t, thus Get the location information L corresponding to t1. For example, if the positioning time is 3:00 p.m., the selected time is 2:20 p.m. according to the parameter of time uncertainty, and the time closest to 2:20 p.m. in the historical timetable is 2:30 p.m., then two The historical location information corresponding to half a point.

步骤404:根据上述最接近的历史时刻的历史位置信息,确定动态位置区域,并计算动态位置区域位置模糊度。F=V(U(a),c)获得t时刻节点可能的位置区域,V为位置不确定函数。Step 404: Determine the dynamic location area and calculate the location ambiguity of the dynamic location area according to the historical location information at the closest historical moment. F=V(U(a), c) obtains the possible location area of the node at time t, and V is a location uncertainty function.

步骤405:构造节点模糊区域。将静态位置区域和动态位置区域组成模糊区域{Mi},并用{pi}表示模糊区域的位置模糊度,从而可以将模糊区域及对应的位置模糊度表示为{(Mi,pi)},在其中选择最接近置信度b的pi,其对应的Mi即为节点选择的区域,最终返回该区域。例如置信度为0.4,最接近0.4的位置模糊度为0.42,则返回位置模糊度为0.42时对应的位置区域给Bob。Step 405: Construct node fuzzy regions. The static location area and the dynamic location area are composed of the fuzzy area {Mi}, and {pi} is used to represent the position ambiguity of the fuzzy area, so that the fuzzy area and the corresponding position ambiguity can be expressed as {(Mi, pi)}, where Select the pi closest to the confidence b, and its corresponding Mi is the area selected by the node, and finally return to this area. For example, the confidence level is 0.4, and the position ambiguity closest to 0.4 is 0.42, then return the corresponding position area when the position ambiguity is 0.42 to Bob.

实施例4Example 4

参见图7,本实施例提供了一种物联网中的节点,包括:Referring to Figure 7, this embodiment provides a node in the Internet of Things, including:

步骤11:接收模块,用于接收来自查询者的定位节点的请求;Step 11: a receiving module, configured to receive a request from a queryer's positioning node;

步骤12:获取模块,用于获取查询者的信息;Step 12: Obtaining a module for obtaining the information of the inquirer;

步骤13:查找模块,用于在节点预先根据查询者置信度存储的用户精度控制表中,查找与查询者的信息对应的位置信息;Step 13: a search module, used to search for the position information corresponding to the information of the inquirer in the user precision control table stored in advance by the node according to the inquirer's confidence;

步骤14:发送模块,用于将位置信息提供给所述查询者。Step 14: a sending module, configured to provide the location information to the inquirer.

本实施例中,接收模块具体用于接收数据阅读器发送的来自查询者的定位节点的请求;相应地,发送模块具体用于将位置信息通过数据阅读器返回给查询者。In this embodiment, the receiving module is specifically configured to receive the request from the queryer's positioning node sent by the data reader; correspondingly, the sending module is specifically configured to return the location information to the queryer through the data reader.

本实施例中,节点还包括:In this embodiment, the nodes also include:

设置模块,用于指定N个查询者,并设置每个查询者的置信度;其中,N为自然数;A setting module is used to specify N inquirers and set the confidence level of each inquirer; wherein, N is a natural number;

计算模块,用于计算节点自身当前所在的位置信息,确定模糊区域并计算模糊区域的位置信息;A calculation module, configured to calculate the current position information of the node itself, determine the fuzzy area and calculate the position information of the fuzzy area;

建立及存储模块,用于在已计算出的位置信息中,根据置信度为每个查询者确定一个对应的位置信息,并存储每个查询者和位置信息的对应关系,得到用户精度控制表。The establishment and storage module is used to determine a corresponding position information for each inquirer according to the confidence degree in the calculated position information, and store the corresponding relationship between each inquirer and the position information to obtain the user precision control table.

其中,计算模块包括:Among them, the calculation module includes:

模糊区域确定单元,用于根据地标阅读器确定静态位置区域,并计算静态位置区域的位置模糊度,根据历史位置信息确定动态位置区域,并计算动态位置区域的位置模糊度,将静态位置区域和动态位置区域组成模糊区域。The fuzzy area determination unit is used to determine the static location area according to the landmark reader, and calculate the location ambiguity of the static location area, determine the dynamic location area according to the historical location information, and calculate the location ambiguity of the dynamic location area, and combine the static location area and Regions of dynamic locations make up the ambiguity region.

其中,模糊区域确定单元包括:Wherein, the fuzzy area determination unit includes:

静态位置区域确定子单元,用于将与节点交互的地标阅读器所在的区域确定为静态位置区域;或者,将与节点通信的地标阅读器所在的区域,以及未与节点交互的地标阅读器所在的区域确定为静态位置区域。The static location area determination subunit is used to determine the area where the landmark reader interacting with the node is located as the static location area; or, the area where the landmark reader communicating with the node is located, and the area where the landmark reader that does not interact with the node is located The area identified as the static location area.

其中,模糊区域确定单元包括:Wherein, the fuzzy area determination unit includes:

动态位置区域确定子单元,用于在节点已存储的自身所在的历史位置信息中,查找与选定时刻最接近的历史时刻的历史位置信息,根据最接近的历史时刻的历史位置信息,确定动态位置区域。The dynamic location area determination subunit is used to find the historical location information of the closest historical moment to the selected time in the historical location information stored by the node itself, and determine the dynamic location according to the historical location information of the closest historical moment. location area.

本实施例中,建立及存储模块包括:In this embodiment, the establishment and storage module includes:

对应关系建立单元,用于判断每个查询者的置信度是否高于指定值,如果是,则建立该查询者与当前所在的位置信息的对应关系;否则,建立该查询者与模糊区域的位置信息的对应关系。Correspondence establishment unit, used to judge whether the confidence of each inquirer is higher than a specified value, if so, establish the corresponding relationship between the inquirer and the current location information; otherwise, establish the position of the inquirer and the fuzzy area information correspondence.

其中,对应关系建立单元用于如果所述模糊区域有多个,则将每个模糊区域的位置模糊度与该查询者的置信度作比较,确定差值最小的模糊区域,建立该查询者与差值最小的模糊区域的位置信息的对应关系。Wherein, the corresponding relationship establishing unit is used to compare the position ambiguity of each fuzzy area with the confidence of the inquirer if there are multiple fuzzy areas, determine the fuzzy area with the smallest difference, and establish the relationship between the inquirer and the inquirer. The corresponding relationship of the position information of the fuzzy area with the smallest difference.

本实施例中,计算模块用于按照预设的周期定期或当预设条件成立时获取自身当前所在的位置信息,以及确定模糊区域并计算模糊区域的位置信息。In this embodiment, the calculation module is used to obtain the current location information of itself periodically according to a preset period or when a preset condition is satisfied, determine the blurred area and calculate the location information of the blurred area.

本实施例提供的节点通过预先定义用户精度控制表,实现了在节点级别针对不同查询者返回不同精度的位置信息,可提供多个精度的位置服务,从而增强了节点的位置隐私性。The node provided in this embodiment realizes returning location information with different precisions for different inquirers at the node level by predefining the user precision control table, and can provide location services with multiple precisions, thereby enhancing the location privacy of the node.

最后需要说明的是,本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(ROM)或随机存储记忆体(RAM)等。Finally, it should be noted that those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by instructing related hardware through computer programs, and the programs can be stored in a computer-readable In the storage medium, when the program is executed, it may include the processes of the embodiments of the above-mentioned methods. Wherein, the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM) or a random access memory (RAM) and the like.

本发明实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。上述提到的存储介质可以是只读存储器,磁盘或光盘等。上述的各装置或系统,可以执行相应方法实施例中的方法。Each functional unit in the embodiment of the present invention may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium. The storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like. Each of the above devices or systems may execute the methods in the corresponding method embodiments.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.

Claims (19)

1.一种物联网中的节点定位方法,其特征在于,所述方法包括:1. a node location method in the Internet of Things, is characterized in that, described method comprises: 接收来自查询者的定位节点的请求;receiving a request from a queryer's location node; 获取所述查询者的信息;Obtain information about the inquirer; 在所述节点预先根据查询者置信度存储的用户精度控制表中,查找与所述查询者的信息对应的位置信息;Searching for location information corresponding to the information of the inquirer in the user precision control table stored by the node in advance according to the inquirer's confidence; 将所述位置信息提供给所述查询者。The location information is provided to the inquirer. 2.根据权利要求1所述的方法,其特征在于,接收来自查询者的定位节点的请求,包括:2. The method according to claim 1, wherein receiving the request from the location node of the inquirer comprises: 节点接收数据阅读器发送的来自查询者的定位所述节点的请求;The node receives the request from the queryer to locate the node sent by the data reader; 相应地,将所述位置信息提供给所述查询者,包括:Correspondingly, providing the location information to the queryer includes: 所述节点将所述位置信息通过所述数据阅读器返回给所述查询者。The node returns the location information to the queryer through the data reader. 3.根据权利要求1所述的方法,其特征在于,接收来自查询者的定位节点的请求,获取所述查询者的信息,包括:3. The method according to claim 1, characterized in that receiving the request from the location node of the inquirer to obtain the information of the inquirer comprises: 客户端接收来自查询者的定位节点的请求,在用户分组表中查找所述查询者所属的用户分组信息;The client receives the request from the location node of the inquirer, and looks up the user group information to which the inquirer belongs in the user group table; 相应地,在所述节点预先根据查询者置信度存储的用户精度控制表中,查找与所述查询者的信息对应的位置信息,包括:Correspondingly, searching the location information corresponding to the information of the queryer in the user precision control table stored by the node in advance according to the confidence of the queryer, including: 所述客户端根据所述用户分组信息,在所述节点预先根据查询者置信度存储的用户精度控制表中,查找与所述查询者的信息对应的位置信息。According to the user grouping information, the client searches for the location information corresponding to the information of the inquirer in the user precision control table stored by the node in advance according to the inquirer's confidence. 4.根据权利要求1所述的方法,其特征在于,在所述节点预先根据查询者置信度存储的用户精度控制表中,查找与所述查询者的信息对应的位置信息之前,还包括:4. The method according to claim 1, wherein, before searching the location information corresponding to the information of the inquirer in the user precision control table stored by the node in advance according to the inquirer's confidence, further comprising: 所述节点指定N个查询者,并设置每个查询者的置信度;其中,N为自然数;The node specifies N inquirers, and sets the confidence level of each inquirer; wherein, N is a natural number; 所述节点获取自身当前所在的位置信息,确定模糊区域并计算所述模糊区域的位置信息;The node acquires its current location information, determines the blurred area and calculates the location information of the blurred area; 所述节点在已计算出的位置信息中,根据置信度为每个查询者确定一个对应的位置信息,并存储每个查询者和位置信息的对应关系,得到所述用户精度控制表。The node determines a corresponding location information for each inquirer according to the confidence degree in the calculated location information, and stores the corresponding relationship between each inquirer and the location information, and obtains the user precision control table. 5.根据权利要求4所述的方法,其特征在于,确定模糊区域,包括:5. The method according to claim 4, wherein determining the blurred area comprises: 所述节点根据地标阅读器确定静态位置区域,并计算所述静态位置区域的位置模糊度;The node determines a static location area based on a landmark reader, and calculates a location ambiguity for the static location area; 所述节点根据历史位置信息确定动态位置区域,并计算所述动态位置区域的位置模糊度;The node determines a dynamic location area according to historical location information, and calculates a location ambiguity of the dynamic location area; 所述节点将所述静态位置区域和动态位置区域组成模糊区域。The node composes the static location area and the dynamic location area into a fuzzy area. 6.根据权利要求5所述的方法,其特征在于,所述节点根据地标阅读器确定静态位置区域,包括:6. The method according to claim 5, wherein said node determines a static location area according to a landmark reader, comprising: 所述节点将与自身交互的地标阅读器所在的区域确定为静态位置区域;或者,The node determines the area where the landmark reader interacting with itself is located as a static location area; or, 所述节点将与自身交互的地标阅读器所在的区域,以及未与自身交互的地标阅读器所在的区域确定为静态位置区域。The node determines the area where the landmark reader that interacts with itself is located and the area where the landmark reader that is not interacting with itself is located as a static location area. 7.根据权利要求5所述的方法,其特征在于,所述节点根据历史位置信息确定动态位置区域,包括:7. The method according to claim 5, wherein the node determines a dynamic location area according to historical location information, comprising: 所述节点在已存储的自身所在的历史位置信息中,查找与选定时刻最接近的历史时刻的历史位置信息;The node searches for the historical location information of the historical moment closest to the selected moment in the stored historical location information of itself; 根据所述最接近的历史时刻的历史位置信息,确定动态位置区域。A dynamic location area is determined according to the historical location information at the closest historical moment. 8.根据权利要求5所述的方法,其特征在于,所述节点在已计算出的位置信息中,根据置信度为每个查询者确定一个对应的位置信息,包括:8. The method according to claim 5, wherein, in the calculated position information, the node determines a corresponding position information for each queryer according to the degree of confidence, including: 所述节点判断每个查询者的置信度是否高于指定值,如果是,则建立该查询者与所述当前所在的位置信息的对应关系;否则,建立该查询者与所述模糊区域的位置信息的对应关系。The node judges whether the confidence of each inquirer is higher than a specified value, and if so, establishes the corresponding relationship between the inquirer and the current location information; otherwise, establishes the position of the inquirer and the fuzzy area information correspondence. 9.根据权利要求8所述的方法,其特征在于,建立该查询者与所述模糊区域的位置信息的对应关系,包括:9. The method according to claim 8, wherein establishing the corresponding relationship between the inquirer and the location information of the blurred area comprises: 如果所述模糊区域有多个,则将每个模糊区域的位置模糊度与该查询者的置信度作比较,确定差值最小的模糊区域,建立该查询者与所述差值最小的模糊区域的位置信息的对应关系。If there are multiple fuzzy areas, compare the position ambiguity of each fuzzy area with the confidence of the inquirer, determine the fuzzy area with the smallest difference, and establish the fuzzy area with the smallest difference between the inquirer and the inquirer The corresponding relationship of the location information. 10.根据权利要求4至9中任一权利要求所述的方法,其特征在于,所述节点获取自身当前所在的位置信息,确定模糊区域并计算所述模糊区域的位置信息,包括:10. The method according to any one of claims 4 to 9, wherein the node obtains its current location information, determines the blurred area and calculates the location information of the blurred area, comprising: 所述节点按照预设的周期定期或当预设的条件成立时获取自身当前所在的位置信息,以及确定模糊区域并计算所述模糊区域的位置信息。The node acquires its current location information periodically according to a preset period or when a preset condition is met, and determines a blurred area and calculates the location information of the blurred area. 11.一种物联网中的节点,其特征在于,所述节点包括:11. A node in the Internet of Things, characterized in that the node comprises: 接收模块,用于接收来自查询者的定位节点的请求;A receiving module, configured to receive a request from a location node of an inquirer; 获取模块,用于获取所述查询者的信息;An acquisition module, configured to acquire the information of the inquirer; 查找模块,用于在所述节点预先根据查询者置信度存储的用户精度控制表中,查找与所述查询者的信息对应的位置信息;A search module, configured to search for the location information corresponding to the information of the inquirer in the user precision control table stored by the node in advance according to the inquirer's confidence; 发送模块,用于将所述位置信息提供给所述查询者。A sending module, configured to provide the location information to the inquirer. 12.根据权利要求11所述的节点,其特征在于,所述接收模块具体用于接收数据阅读器发送的来自查询者的定位所述节点的请求;相应地,所述发送模块具体用于将所述位置信息通过所述数据阅读器返回给所述查询者。12. The node according to claim 11, wherein the receiving module is specifically configured to receive a request from the queryer for locating the node sent by the data reader; correspondingly, the sending module is specifically configured to The location information is returned to the inquirer by the data reader. 13.根据权利要求11所述的节点,其特征在于,所述节点还包括:13. The node according to claim 11, wherein the node further comprises: 设置模块,用于指定N个查询者,并设置每个查询者的置信度;其中,N为自然数;A setting module is used to specify N inquirers and set the confidence level of each inquirer; wherein, N is a natural number; 计算模块,用于获取所述节点自身当前所在的位置信息,确定模糊区域并计算所述模糊区域的位置信息;A calculation module, configured to obtain the current location information of the node itself, determine the blurred area and calculate the location information of the blurred area; 建立及存储模块,用于在已计算出的位置信息中,根据置信度为每个查询者确定一个对应的位置信息,并存储每个查询者和位置信息的对应关系,得到所述用户精度控制表。The establishment and storage module is used to determine a corresponding position information for each inquirer according to the confidence level in the calculated position information, and store the corresponding relationship between each inquirer and the position information, and obtain the user precision control surface. 14.根据权利要求13所述的节点,其特征在于,所述计算模块包括:14. The node according to claim 13, wherein the computing module comprises: 模糊区域确定单元,用于根据地标阅读器确定静态位置区域,并计算所述静态位置区域的位置模糊度,根据历史位置信息确定动态位置区域,并计算所述动态位置区域的位置模糊度,将所述静态位置区域和动态位置区域组成模糊区域。An ambiguous area determining unit, configured to determine a static location area according to a landmark reader, and calculate a position ambiguity of the static location area, determine a dynamic location area according to historical location information, and calculate a position ambiguity of the dynamic location area, The static location area and the dynamic location area form a fuzzy area. 15.根据权利要求14所述的节点,其特征在于,所述模糊区域确定单元包括:15. The node according to claim 14, wherein the unit for determining the blurred area comprises: 静态位置区域确定子单元,用于将与所述节点交互的地标阅读器所在的区域确定为静态位置区域;或者,将与所述节点交互的地标阅读器,以及未与所述节点交互的地标阅读器所在的区域确定为静态位置区域。A static location area determining subunit, configured to determine the area where the landmark reader interacting with the node is located as a static location area; or, the landmark reader interacting with the node and the landmark not interacting with the node The area where the reader is located is determined as the static location area. 16.根据权利要求14所述的节点,其特征在于,所述模糊区域确定单元包括:16. The node according to claim 14, wherein the unit for determining the blurred region comprises: 动态位置区域确定子单元,用于在所述节点已存储的自身所在的历史位置信息中,查找与选定时刻最接近的历史时刻的历史位置信息,根据所述最接近的历史时刻的历史位置信息,确定动态位置区域。The dynamic location area determination subunit is used to search the historical location information of the closest historical moment to the selected moment in the historical location information stored by the node itself, and according to the historical location information of the closest historical moment information to determine the dynamic location area. 17.根据权利要求14所述的节点,其特征在于,所述建立及存储模块包括:17. The node according to claim 14, wherein the establishment and storage module comprises: 对应关系建立单元,用于判断每个查询者的置信度是否高于指定值,如果是,则建立该查询者与所述当前所在的位置信息的对应关系;否则,建立该查询者与所述模糊区域的位置信息的对应关系。A correspondence relationship establishing unit, configured to determine whether the confidence of each inquirer is higher than a specified value, and if so, establish a correspondence between the inquirer and the current location information; otherwise, establish a correspondence between the inquirer and the The corresponding relationship of the position information of the fuzzy area. 18.根据权利要求17所述的节点,其特征在于,所述对应关系建立单元用于如果所述模糊区域有多个,则将每个模糊区域的位置模糊度与该查询者的置信度作比较,确定差值最小的模糊区域,建立该查询者与所述差值最小的模糊区域的位置信息的对应关系。18. The node according to claim 17, wherein the correspondence relationship establishing unit is configured to use the position ambiguity of each fuzzy region and the confidence degree of the queryer as a function of if there are multiple fuzzy regions. By comparison, the fuzzy area with the smallest difference is determined, and the corresponding relationship between the queryer and the position information of the fuzzy area with the smallest difference is established. 19.根据权利要求13至18中任一权利要求所述的节点,其特征在于,所述计算模块用于按照预设的周期定期或当预设的条件成立时获取自身当前所在的位置信息,以及确定模糊区域并计算所述模糊区域的位置信息。19. The node according to any one of claims 13 to 18, wherein the calculation module is used to obtain the current location information of itself periodically according to a preset cycle or when a preset condition is established, and determining the blurred area and calculating the location information of the blurred area.
CN201010228686.1A 2010-07-09 2010-07-09 Node positioning method in IOT (Internet of things) and node Active CN102026090B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010228686.1A CN102026090B (en) 2010-07-09 2010-07-09 Node positioning method in IOT (Internet of things) and node

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010228686.1A CN102026090B (en) 2010-07-09 2010-07-09 Node positioning method in IOT (Internet of things) and node

Publications (2)

Publication Number Publication Date
CN102026090A true CN102026090A (en) 2011-04-20
CN102026090B CN102026090B (en) 2014-07-16

Family

ID=43866838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010228686.1A Active CN102026090B (en) 2010-07-09 2010-07-09 Node positioning method in IOT (Internet of things) and node

Country Status (1)

Country Link
CN (1) CN102026090B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111106A (en) * 2014-07-01 2014-10-22 武汉领傲科技有限公司 Internet of Things perception method and system based on article consumption and compositional variation
CN104620560A (en) * 2012-09-11 2015-05-13 耐克斯特纳威公司 System and method for providing conditional access to transmitted information
CN104684073A (en) * 2013-11-29 2015-06-03 腾讯科技(深圳)有限公司 User position positioning method and user position positioning device
CN104780501A (en) * 2014-01-13 2015-07-15 腾讯科技(深圳)有限公司 Location privacy protection method and device
WO2016078275A1 (en) * 2014-11-20 2016-05-26 中兴通讯股份有限公司 Positioning processing method and device
CN105900459A (en) * 2014-01-10 2016-08-24 高通股份有限公司 Determining indoor location using pattern matching of proximal peer-to-peer devices
CN106296063A (en) * 2015-06-05 2017-01-04 冠研(上海)企业管理咨询有限公司 IoT-based Product Logistics Management System
CN107341207A (en) * 2017-06-23 2017-11-10 深圳市盛路物联通讯技术有限公司 A kind of node information management method and device
CN108235234A (en) * 2016-12-12 2018-06-29 三星电子株式会社 Electronic device and method for providing location data
CN108566423A (en) * 2012-09-11 2018-09-21 耐克斯特纳威公司 System and method for providing the conditional access to the information of transmission
CN109714766A (en) * 2019-01-31 2019-05-03 顺丰科技有限公司 Position sharing method and device
WO2019169878A1 (en) * 2018-03-06 2019-09-12 清华大学 User privacy-protective position information publishing system
CN111914035A (en) * 2020-09-21 2020-11-10 安徽长泰信息安全服务有限公司 Data interaction encryption system of distributed database
CN112840179A (en) * 2018-07-16 2021-05-25 北京航迹科技有限公司 Intelligent landmark

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1434661A (en) * 2003-01-30 2003-08-06 武汉奥发科技工程有限公司 Method for multi-stage monitor and mobile monitor of GPS/mobile telephone location
WO2008014432A2 (en) * 2006-07-28 2008-01-31 Koninklijke Philips Electronics, N.V. Automatic transfer and identification of monitored data with hierarchical key management infrastructure
CN101621742A (en) * 2009-08-13 2010-01-06 中国电信股份有限公司 Method for inquiring mobile terminal position and platform thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1434661A (en) * 2003-01-30 2003-08-06 武汉奥发科技工程有限公司 Method for multi-stage monitor and mobile monitor of GPS/mobile telephone location
WO2008014432A2 (en) * 2006-07-28 2008-01-31 Koninklijke Philips Electronics, N.V. Automatic transfer and identification of monitored data with hierarchical key management infrastructure
CN101621742A (en) * 2009-08-13 2010-01-06 中国电信股份有限公司 Method for inquiring mobile terminal position and platform thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104620560B (en) * 2012-09-11 2018-04-27 耐克斯特纳威公司 Systems and methods for providing conditional access to transmitted information
CN104620560A (en) * 2012-09-11 2015-05-13 耐克斯特纳威公司 System and method for providing conditional access to transmitted information
CN108566423A (en) * 2012-09-11 2018-09-21 耐克斯特纳威公司 System and method for providing the conditional access to the information of transmission
CN104684073A (en) * 2013-11-29 2015-06-03 腾讯科技(深圳)有限公司 User position positioning method and user position positioning device
CN105900459A (en) * 2014-01-10 2016-08-24 高通股份有限公司 Determining indoor location using pattern matching of proximal peer-to-peer devices
CN104780501A (en) * 2014-01-13 2015-07-15 腾讯科技(深圳)有限公司 Location privacy protection method and device
CN104111106B (en) * 2014-07-01 2016-03-16 武汉领傲科技有限公司 A kind of Internet of Things cognitive method based on article consumption and composition transfer and system
CN104111106A (en) * 2014-07-01 2014-10-22 武汉领傲科技有限公司 Internet of Things perception method and system based on article consumption and compositional variation
WO2016078275A1 (en) * 2014-11-20 2016-05-26 中兴通讯股份有限公司 Positioning processing method and device
CN105682018A (en) * 2014-11-20 2016-06-15 中兴通讯股份有限公司 Positioning processing method and device
CN106296063A (en) * 2015-06-05 2017-01-04 冠研(上海)企业管理咨询有限公司 IoT-based Product Logistics Management System
CN108235234B (en) * 2016-12-12 2021-12-03 三星电子株式会社 Electronic device and method for providing location data
CN108235234A (en) * 2016-12-12 2018-06-29 三星电子株式会社 Electronic device and method for providing location data
US11223629B2 (en) 2016-12-12 2022-01-11 Samsung Electronics Co., Ltd. Electronic device and method for providing location data
US11411961B2 (en) 2016-12-12 2022-08-09 Samsung Electronics Co., Ltd. Electronic device and method for providing location data
CN107341207B (en) * 2017-06-23 2020-03-17 深圳市盛路物联通讯技术有限公司 Node information management method and device
CN107341207A (en) * 2017-06-23 2017-11-10 深圳市盛路物联通讯技术有限公司 A kind of node information management method and device
WO2019169878A1 (en) * 2018-03-06 2019-09-12 清华大学 User privacy-protective position information publishing system
CN112840179A (en) * 2018-07-16 2021-05-25 北京航迹科技有限公司 Intelligent landmark
CN112840179B (en) * 2018-07-16 2024-05-14 北京航迹科技有限公司 Intelligent landmark
CN109714766A (en) * 2019-01-31 2019-05-03 顺丰科技有限公司 Position sharing method and device
CN111914035A (en) * 2020-09-21 2020-11-10 安徽长泰信息安全服务有限公司 Data interaction encryption system of distributed database

Also Published As

Publication number Publication date
CN102026090B (en) 2014-07-16

Similar Documents

Publication Publication Date Title
CN102026090B (en) Node positioning method in IOT (Internet of things) and node
Sobin A survey on architecture, protocols and challenges in IoT
KR102046268B1 (en) Service layer device location management and privacy control
Gupta et al. MobiSoC: a middleware for mobile social computing applications
JP2022084814A (en) Distributed data collection method in wireless sensor network in which first node can publish itself or sensor data as collector to another node
Indulska et al. Location management in pervasive systems
Kayastha et al. Applications, architectures, and protocol design issues for mobile social networks: A survey
Shin et al. Privacy protection for users of location-based services
Guo et al. Opportunistic IoT: Exploring the social side of the internet of things
CN107251624B (en) Location determination of mobile devices
US20110078775A1 (en) Method and apparatus for providing credibility information over an ad-hoc network
US9900742B1 (en) Wireless device detection, tracking, and authentication platform and techniques
US12395837B2 (en) Secure beacon identity
Gao et al. Delay tolerant networks
CN105393568A (en) Network discovery and connection using device addresses not correlated to a device
Milton Joe et al. WVANET: Modelling a novel web based communication architecture for vehicular network
Shen et al. SCPS: A social-aware distributed cyber-physical human-centric search engine
Jain et al. Data communication and information exchange in distributed IoT environment: Issues and their solutions
Srinath et al. Ac: Cluster based secure routing protocol for wsn
CN118804297A (en) Passive Internet of Things device positioning method, device, storage medium and program product
CN106534382B (en) Method, system and home gateway for determining location information of a home group
Li et al. A mobile social network for efficient contents sharing and searches
Chen et al. LPPS: A Distributed Cache Pushing Based K‐Anonymity Location Privacy Preserving Scheme
Dunkel et al. Towards MANET-based recommender systems for open facilities
Schooler et al. A Marauder's Map for the IoT Edge

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant