CN102034865B - Semiconductor device and method for manufacturing the same - Google Patents
Semiconductor device and method for manufacturing the same Download PDFInfo
- Publication number
- CN102034865B CN102034865B CN2009102353399A CN200910235339A CN102034865B CN 102034865 B CN102034865 B CN 102034865B CN 2009102353399 A CN2009102353399 A CN 2009102353399A CN 200910235339 A CN200910235339 A CN 200910235339A CN 102034865 B CN102034865 B CN 102034865B
- Authority
- CN
- China
- Prior art keywords
- layer
- fin
- region
- semiconductor device
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 105
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims description 30
- 239000000463 material Substances 0.000 claims abstract description 47
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 239000004020 conductor Substances 0.000 claims abstract description 24
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 22
- 229920005591 polysilicon Polymers 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 150000004767 nitrides Chemical class 0.000 claims description 19
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 16
- 239000007943 implant Substances 0.000 claims description 13
- 125000001475 halogen functional group Chemical group 0.000 claims description 11
- 239000002019 doping agent Substances 0.000 claims description 9
- 238000005468 ion implantation Methods 0.000 claims description 9
- -1 HfRu Inorganic materials 0.000 claims description 7
- 238000002513 implantation Methods 0.000 claims description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 2
- 229910015617 MoNx Inorganic materials 0.000 claims description 2
- 229910003217 Ni3Si Inorganic materials 0.000 claims description 2
- 229910019897 RuOx Inorganic materials 0.000 claims description 2
- 229910002367 SrTiO Inorganic materials 0.000 claims description 2
- 229910004200 TaSiN Inorganic materials 0.000 claims description 2
- 229910010037 TiAlN Inorganic materials 0.000 claims description 2
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 2
- 229910008482 TiSiN Inorganic materials 0.000 claims description 2
- YQNQNVDNTFHQSW-UHFFFAOYSA-N acetic acid [2-[[(5-nitro-2-thiazolyl)amino]-oxomethyl]phenyl] ester Chemical compound CC(=O)OC1=CC=CC=C1C(=O)NC1=NC=C([N+]([O-])=O)S1 YQNQNVDNTFHQSW-UHFFFAOYSA-N 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims 1
- 230000003071 parasitic effect Effects 0.000 abstract description 17
- 230000000694 effects Effects 0.000 abstract description 9
- 238000005549 size reduction Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 175
- 238000005530 etching Methods 0.000 description 19
- 238000001020 plasma etching Methods 0.000 description 18
- 238000001312 dry etching Methods 0.000 description 11
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 238000000992 sputter etching Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000000608 laser ablation Methods 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000000231 atomic layer deposition Methods 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000001039 wet etching Methods 0.000 description 5
- 229910052785 arsenic Inorganic materials 0.000 description 4
- 238000004380 ashing Methods 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 229910021332 silicide Inorganic materials 0.000 description 4
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 150000004645 aluminates Chemical class 0.000 description 2
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910005883 NiSi Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
Landscapes
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种半导体器件及其制造方法,更具体地,涉及在绝缘体上半导体(SOI)衬底上形成的改进的FinFET。 The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to an improved FinFET formed on a semiconductor-on-insulator (SOI) substrate. the
背景技术 Background technique
集成电路技术的一个重要发展方向是金属氧化物半导体场效应晶体管(MOSFET)的尺寸按比例缩小,以提高集成度和降低制造成本。然而,众所周知的是随着MOSFET的尺寸减小会产生短沟道效应。在MOSFET的尺寸按比例缩小时,栅极的有效长度减小,使得实际上由栅极电压控制的耗尽层电荷的比例减少,从而阈值电压随沟道长度减小而下降。 An important development direction of integrated circuit technology is to scale down the size of metal-oxide-semiconductor field-effect transistors (MOSFETs) to improve integration and reduce manufacturing costs. However, it is well known that short-channel effects occur as the size of MOSFETs decreases. When the size of the MOSFET is scaled down, the effective length of the gate is reduced, so that the proportion of the depletion layer charge actually controlled by the gate voltage is reduced, so that the threshold voltage decreases with the decrease of the channel length. the
常规的平面MOSFET包括由栅电极、栅绝缘层和半导体层构成的三明治结构,在半导体层中包括位于栅电极下方的沟道区和位于沟道区两侧的源/漏区。在源/漏区上可以形成硅化物层,利用通孔将硅化物层与源/漏电极相连,从而减小了器件的寄生电阻和寄生电容。平面MOSFET受到短沟道效应的不利影响,导致器件的阈值电压随沟道长度的变化而波动。 A conventional planar MOSFET includes a sandwich structure consisting of a gate electrode, a gate insulating layer, and a semiconductor layer. The semiconductor layer includes a channel region below the gate electrode and source/drain regions on both sides of the channel region. A silicide layer can be formed on the source/drain region, and the silicide layer is connected to the source/drain electrodes through holes, thereby reducing the parasitic resistance and parasitic capacitance of the device. Planar MOSFETs suffer from short-channel effects that cause the device's threshold voltage to fluctuate with channel length. the
为了抑制短沟道效果,在美国专利US6,413,802中公开了在SOI上形成的FinFET,包括在半导体材料的鳍片(fin)的中间形成的沟道区,以及在鳍片两端形成的源/漏区。栅电极在沟道区的两个侧面包围沟道区(即双栅结构),从而反型层形成在沟道各侧上。鳍片中的沟道区厚度很薄,使得整个沟道区都能受到栅极的控制,因此能够起到抑制短沟道效应的作用。 In order to suppress the short channel effect, the FinFET formed on SOI is disclosed in US Pat. / drain area. The gate electrode surrounds the channel region on both sides of the channel region (ie, a double gate structure), so that an inversion layer is formed on each side of the channel. The thickness of the channel region in the fin is very thin, so that the entire channel region can be controlled by the gate, so it can play a role in suppressing the short channel effect. the
然而,在常规的FinFET中,由于在源/漏区之间存在着与源/漏区平行延伸的栅极,并且源/漏区与栅极之间的距离很近,因此在源/漏区和 栅极之间存在着电容耦合,导致了寄生电阻和寄生电容较大的问题。 However, in a conventional FinFET, since there is a gate extending parallel to the source/drain region between the source/drain regions, and the distance between the source/drain region and the gate is very close, in the source/drain region There is a capacitive coupling between the gate and the gate, which leads to the problem of large parasitic resistance and parasitic capacitance. the
源/漏区和栅极之间的电容耦合限制了器件设计的自由度。如果希望减小寄生电阻,则需要增加源/漏区的厚度。然而,源/漏区厚度的增加将导致源/漏区与栅极之间的耦合面积增加,从而导致寄生电容的增加,反之亦然。因此,本领域的技术人员还不能利用常规的FinFET结构实现寄生电阻和寄生电容的同时减小。 The capacitive coupling between the source/drain region and the gate limits the degree of freedom in device design. If it is desired to reduce the parasitic resistance, the thickness of the source/drain region needs to be increased. However, an increase in the thickness of the source/drain region will result in an increase in the coupling area between the source/drain region and the gate, resulting in an increase in parasitic capacitance, and vice versa. Therefore, those skilled in the art cannot utilize conventional FinFET structures to achieve simultaneous reduction of parasitic resistance and parasitic capacitance. the
结果,在常规的FinFET中,由于时间常数RC的值较大而导致延迟增加,进而降低了器件的开关速度。 As a result, in a conventional FinFET, the delay due to the large value of the time constant RC increases, which in turn reduces the switching speed of the device. the
发明内容 Contents of the invention
本发明的目的是提供一种能够抑制短沟道效应,并且减小寄生电阻和寄生电容的半导体器件。 An object of the present invention is to provide a semiconductor device capable of suppressing short channel effects and reducing parasitic resistance and parasitic capacitance. the
本发明的另一目的是进一步提供利用应力提高器件性能的半导体器件。 Another object of the present invention is to further provide a semiconductor device that utilizes stress to improve device performance. the
根据本发明的一方面,提供一种半导体器件,形成在SOI衬底上,所述SOI衬底包括掩埋绝缘层和在掩埋绝缘层上形成的半导体层,在所述半导体层中形成了半导体材料的鳍片,所述鳍片包括垂直于SOI衬底表面的两个相对侧面,所述半导体器件包括:设置在鳍片两端的源区和漏区;设置在鳍片的中间部分的沟道区;以及设置在鳍片的一个侧面上的栅极电介质和栅极导体的叠层,所述栅极导体与所述沟道区之间由所述栅极电介质隔离,其中所述栅极导体沿着平行于所述SOI衬底表面的方向背离所述鳍片的所述一个侧面延伸。 According to an aspect of the present invention, there is provided a semiconductor device formed on an SOI substrate, the SOI substrate includes a buried insulating layer and a semiconductor layer formed on the buried insulating layer, and a semiconductor material is formed in the semiconductor layer The fin includes two opposite sides perpendicular to the surface of the SOI substrate, and the semiconductor device includes: a source region and a drain region arranged at both ends of the fin; a channel region arranged at the middle part of the fin and a stack of a gate dielectric and a gate conductor disposed on one side of the fin, the gate conductor being isolated from the channel region by the gate dielectric, wherein the gate conductor is along extending away from the one side of the fin in a direction parallel to the surface of the SOI substrate. the
根据本发明的另一方面,提供一种制造半导体器件的方法,包括以下步骤:a)通过自对准方法在SOI衬底的半导体材料层中形成半导体材料的鳍片,所述鳍片包括垂直于SOI衬底表面的两个相对侧面;b)在鳍片的一个侧面上形成栅极电介质和栅极导体的叠层,所述栅极导体沿着平行于所述SOI衬底表面的方向背离所述鳍片的所述一个侧面延伸;c)向鳍片两端的半导体材料中注入掺杂剂以形成源区和漏区;以及d)在鳍片的中间部分形成沟道区。 According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising the following steps: a) forming fins of semiconductor material in a semiconductor material layer of an SOI substrate by a self-alignment method, the fins including vertical on two opposite sides of the SOI substrate surface; b) forming a stack of gate dielectric and gate conductor on one side of the fin, the gate conductor facing away from the SOI substrate along a direction parallel to the SOI substrate surface extending the one side of the fin; c) implanting dopants into the semiconductor material at both ends of the fin to form a source region and a drain region; and d) forming a channel region in a middle portion of the fin. the
应当注意,本发明的半导体器件包含半导体材料的鳍片,但其结构 不同于常规的FinFET,因为其栅极仅设置在鳍片的一个侧面上并背离鳍片延伸,而常规的FinFET设置成双栅结构并包围鳍片的中间部分的沟道区。而且,源/漏区设置在鳍片的两端,朝着与栅极的延伸方向相反的方向延伸。 It should be noted that the semiconductor device of the present invention includes fins of semiconductor material, but its structure is different from that of conventional FinFETs in that its gates are arranged on only one side of the fins and extend away from the fins, while conventional FinFETs are arranged in double fins. gate structure and surrounds the channel region in the middle portion of the fin. Also, the source/drain regions are arranged at both ends of the fins, extending in a direction opposite to that of the gate. the
在本发明的半导体器件中没有包括在源/漏区之间与源/漏区平行延伸的栅极,因此不存在源/漏区与栅极之间的电容耦合,从而减小了寄生电容。同时,本发明的半导体器件允许通过使用较厚的源/漏区而减小寄生电阻。 The semiconductor device of the present invention does not include a gate extending parallel to the source/drain regions between the source/drain regions, so there is no capacitive coupling between the source/drain regions and the gate, thereby reducing parasitic capacitance. At the same time, the semiconductor device of the present invention allows reduction of parasitic resistance by using thicker source/drain regions. the
还可以在鳍片邻接沟道区的部分形成延伸区,减小载流子的传导路径长度,从而进一步减小与寄生电容和寄生电阻有关的寄生作用。 An extension region can also be formed on the portion of the fin adjacent to the channel region to reduce the conduction path length of the carriers, thereby further reducing the parasitic effect related to the parasitic capacitance and the parasitic resistance. the
另外,还可以在源/漏区形成应力层,用来增加沟道区的应力,从而进一步提高器件的开关速度。 In addition, a stress layer can also be formed in the source/drain region to increase the stress of the channel region, thereby further increasing the switching speed of the device. the
为了有效地控制短沟道效应,自对准沟道区非常薄:约为5-40nm。并且,在优选的工艺中,利用超陡后退阱(SSRW)工艺进一步减小了沟道区的厚度。即使仅在沟道的一侧设置栅极,沟道区仍然可以受到栅极的完全控制,从而减小了短沟道效应的影响。 In order to effectively control the short channel effect, the self-aligned channel region is very thin: about 5-40nm. And, in a preferred process, the thickness of the channel region is further reduced by using a super steep retreat well (SSRW) process. Even if the gate is only set on one side of the channel, the channel region can still be fully controlled by the gate, thereby reducing the influence of the short channel effect. the
附图说明 Description of drawings
图1A和1B是示意性说明根据本发明的半导体器件的结构的三维透视图和俯视图,线A-A′、1-1’和2-2’表示以下截面图的截取位置。 1A and 1B are three-dimensional perspective views and plan views schematically illustrating the structure of a semiconductor device according to the present invention, and lines A-A', 1-1' and 2-2' indicate intercept positions of the following cross-sectional views. the
图2-9是根据本发明的制造半导体器件的方法的各个步骤所形成的半导体结构沿A-A′线的截面图,其中示出了形成鳍片区域和栅极区域的各个步骤。 2-9 are cross-sectional views along the line A-A' of the semiconductor structure formed in various steps of the method for manufacturing a semiconductor device according to the present invention, showing various steps of forming fin regions and gate regions. the
图10-16是根据本发明的制造半导体器件的方法的随后步骤所形成的半导体结构沿1-1′线的截面图,其中示出了形成源/漏区的各个步骤。 10-16 are cross-sectional views along line 1-1' of a semiconductor structure formed in subsequent steps of the method for manufacturing a semiconductor device according to the present invention, showing various steps of forming source/drain regions. the
图17-21是根据本发明的制造半导体器件的方法的随后步骤所形成的半导体结构沿A-A′线的截面图,其中示出了形成沟道区的各个步骤。 17-21 are cross-sectional views along line A-A' of a semiconductor structure formed in subsequent steps of the method for manufacturing a semiconductor device according to the present invention, showing various steps of forming a channel region. the
图22A、22B、23A、23B分别是根据本发明的制造半导体器件的方法的随后步骤所形成的半导体结构沿A-A′线和2-2′线的截面图,其中示出了在源/漏区和栅极上形成硅化物层的各个步骤。 22A, 22B, 23A, and 23B are cross-sectional views of the semiconductor structure formed in the subsequent steps of the method for manufacturing a semiconductor device according to the present invention along the A-A' line and the 2-2' line, wherein the source/drain region And the various steps of forming a silicide layer on the gate. the
具体实施方式 Detailed ways
以下将参照附图更详细地描述本发明。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。 Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. In the various figures, identical elements are indicated with similar reference numerals. For the sake of clarity, various parts in the drawings have not been drawn to scale. the
应当理解,在描述器件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将器件翻转,该一层、一个区域将位于另一层、另一个区域“下面”或“下方”。 It should be understood that when describing the structure of a device, when a layer or a region is referred to as being "on" or "over" another layer or another region, it may mean being directly on another layer or another region, or Other layers or regions are also included between it and another layer or another region. And, if the device is turned over, the layer, one region, will be "below" or "beneath" the other layer, another region. the
如果为了描述直接位于另一层、另一个区域上面的情形,本文将采用“直接在......上面”或“在......上面并与之邻接”的表述方式。 If it is to describe the situation of being directly on another layer or another area, the expression "directly on" or "on and adjacent to" will be used herein. the
在下文中描述了本发明的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本发明。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。 In the following, many specific details of the present invention are described, such as device structures, materials, dimensions, processing techniques and techniques, for a clearer understanding of the present invention. However, the invention may be practiced without these specific details, as will be understood by those skilled in the art. the
除非在下文中特别指出,半导体器件中的各个部分可以由本领域的技术人员公知的材料构成。作为初始结构的SOI衬底例如包括绝缘体上硅、绝缘体上硅锗、以及绝缘体上的半导体材料叠层。该半导体材料叠层例如包括III-V族半导体,如GaAs、InP、GaN、SiC。栅极导体可以是金属层、掺杂多晶硅层、或包括金属层和掺杂多晶硅层的叠层栅导体。金属层的材料为TaC、TiN、TaTbN、TaErN、TaYbN、TaSiN、HfSiN、MoSiN、RuTax、NiTax,MoNx、TiSiN、TiCN、TaAlC、TiAlN、TaN、PtSix、Ni3Si、Pt、Ru、Ir、Mo、HfRu、RuOx和所述各种金属材料的组合。栅极电介质可以由SiO2或介电常数大于SiO2的材料构成,例如包括氧化物、氮化物、氧氮化物、硅酸盐、铝酸盐、钛酸盐,其中,氧化物例如包括SiO2、HfO2、ZrO2、Al2O3、TiO2、La2O3,氮化物例如包括Si3N4,硅酸盐例如包括HfSiOx,铝酸盐例如包括LaAlO3,钛酸盐例如包括SrTiO3,氧氮化物例如包括SiON。并且,栅极电介质不仅可以由本领域的技术人员公知的材料形成,也可以采用将来开发的用于栅极电介质的材料。 Unless otherwise specified below, various parts in the semiconductor device may be composed of materials known to those skilled in the art. SOI substrates as initial structures include, for example, silicon-on-insulator, silicon-germanium-on-insulator, and semiconductor material stacks on insulator. The semiconductor material stack includes, for example, III-V semiconductors, such as GaAs, InP, GaN, SiC. The gate conductor may be a metal layer, a doped polysilicon layer, or a stacked gate conductor comprising a metal layer and a doped polysilicon layer. The material of the metal layer is TaC, TiN, TaTbN, TaErN, TaYbN, TaSiN, HfSiN, MoSiN, RuTax, NiTax, MoNx, TiSiN, TiCN, TaAlC, TiAlN, TaN, PtSix, Ni3Si, Pt, Ru, Ir, Mo, HfRu , RuOx and the combination of various metal materials. The gate dielectric can be made of SiO2 or a material with a dielectric constant greater than SiO2 , such as oxides, nitrides, oxynitrides, silicates, aluminates, titanates, where oxides include SiO2 , for example , HfO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , La 2 O 3 , nitrides such as Si 3 N 4 , silicates such as HfSiOx, aluminates such as LaAlO 3 , titanates such as SrTiO 3. Oxynitrides include SiON, for example. Also, the gate dielectric may not only be formed of materials known to those skilled in the art, but also materials for gate dielectrics developed in the future may be used.
图1A和1B是示意性说明根据本发明的半导体器件的结构的三维透视图和俯视图。图1B中的线A-A′、1-1’、2-2’表示截面图的截取位置,其中线A-A’垂直于沟道长度方向并经过栅极,线1-1’沿着沟道长度方向并经过沟道区,线2-2’沿着沟道长度方向并经过源/漏区之间的绝缘材料填充物。 1A and 1B are three-dimensional perspective and plan views schematically illustrating the structure of a semiconductor device according to the present invention. Lines A-A', 1-1', 2-2' in Figure 1B represent the interception positions of the cross-sectional view, where line A-A' is perpendicular to the channel length direction and passes through the gate, and line 1-1' is along the channel The line 2-2' goes along the length direction of the channel and passes through the channel region, and passes through the insulating material filling between the source/drain regions. the
如图1A和1B所示,在SOI衬底的半导体层中形成了半导体器件100,包括位于半导体材料的鳍片的中间部分的沟道区11、位于其两端的源区12和漏区13、设置成邻接鳍片的一个侧面的栅极电介质14和栅极15的叠层,以及用于填充鳍片的另一个侧面中的开口的绝缘材料填充物18。
As shown in Figures 1A and 1B, a
位于鳍片的中间部分的沟道区的厚度非常薄,例如在约5-40 nm的范围内。该厚度与常规的FinFET中的沟道区的厚度相近,并可以采用类似的自对准工艺形成。 The thickness of the channel region located in the middle part of the fin is very thin, for example in the range of about 5-40 nm. This thickness is similar to that of the channel region in a conventional FinFET and can be formed using a similar self-aligned process. the
本发明人发现,尽管未采用双栅结构,但如果沟道区的厚度在上述范围,位于鳍片一侧的栅极仍然可以作用在整个沟道区上,从而抑制短沟道效应。 The inventors found that although the double gate structure is not used, if the thickness of the channel region is within the above range, the gate located on one side of the fin can still act on the entire channel region, thereby suppressing the short channel effect. the
优选地,该半导体器件还包括用于向源区12和漏区13施加应力的应力层(stressor)16和17。应力层16和17分别与源区12和漏区13邻接,并且接触面积尽可能大,使得应力层16和17与源区12和漏区13的接触电阻最小。如图1A和1B所示,在源区12和漏区13中形成了台阶部分,应力层16和17位于台阶部分中,从而应力层16和17的一个侧面及底部与源区12和漏区13接触。
Preferably, the semiconductor device further includes
应力层16和17的材料应当能够在沟道区中产生有利于提高晶体管性能的应力。当形成的器件是n型MOSFET时,应力层16和17应当向沟道区施加沿源/漏极方向的拉应力,以提高作为载流子的电子的迁移率。相反,当晶体管是p型MOSFET时,应力层16和17应当向沟道区施加沿源/漏极方向的压应力,以提高作为载流子的空穴的迁移率。 The material of the stress layers 16 and 17 should be able to generate stress in the channel region that is beneficial to improve the performance of the transistor. When the formed device is an n-type MOSFET, the stress layers 16 and 17 should apply tensile stress along the source/drain direction to the channel region, so as to increase the mobility of electrons as carriers. On the contrary, when the transistor is a p-type MOSFET, the stress layers 16 and 17 should apply compressive stress in the source/drain direction to the channel region to increase the mobility of holes as carriers. the
应当注意,在图1A和1B所示的半导体器件结构的实例中,应力层16、17分别位于源区12与源极接触(未示出)、漏区13与漏极接触(未示出)之间的导电路径上,因此应力层16、17还应当是导电性的。 对于p型MOSFET,可以采用掺B的SiGe材料,而对n型MOSFET,可以采用掺杂As或P的Si:C材料。
It should be noted that in the example of the semiconductor device structure shown in FIGS. 1A and 1B , the stress layers 16 and 17 are respectively located at the
在图1A和1B中没有示出源区12、漏区13及栅极15上方的附加层和部分,例如栅极的侧壁间隔侧壁、硅化物层、源极接触、漏极接触和栅极接触、层间绝缘层、在层间绝缘层中形成的通孔以及钝化层等。
Additional layers and portions above the
在下文描述制造该半导体器件的步骤中,将说明与该半导体器件密切相关的一些附加层和部分,但省去了对本领域公知的那些附加层和部分(如源极接触、漏极接触和栅极接触)的详细描述。为了简明起见,可以在一幅图中描述经过数个步骤后获得的半导体结构。 In describing the steps of manufacturing the semiconductor device below, some additional layers and parts closely related to the semiconductor device will be described, but those additional layers and parts known in the art (such as source contacts, drain contacts and gate contacts) will be omitted. pole contact) for a detailed description. For the sake of simplicity, the semiconductor structure obtained after several steps can be described in one figure. the
参见图2,本发明的制造半导体器件的方法开始于SOI晶片,SOI晶片是包括底部衬底21、掩埋绝缘层(BOX)22和顶部半导体层23的叠层。
Referring to FIG. 2 , the method of manufacturing a semiconductor device of the present invention starts with an SOI wafer, which is a stack including a
通过已知的沉积工艺,如PVD、CVD、原子层沉积、溅射等,在SOI晶片上依次外延生长Ge含量约为5-15%、厚度约为3-20nm的SiGe层24和厚度约为30-100nm的Si层25。Si层25可以在单独的沉积步骤中形成,也可以在外延生长SiGe层24之后通过使用Si靶或前体原位形成。
By known deposition processes, such as PVD, CVD, atomic layer deposition, sputtering, etc., the
然后,通过原子层沉积或磁控溅射,在Si层25上形成厚度约为3-10nm的HfO2层26。
Then, an HfO 2 layer 26 with a thickness of about 3-10 nm is formed on the
参见图3,通过包括曝光和显影步骤的常规光刻工艺,在HfO2层26上形成了条形的光抗蚀剂图案27。
Referring to FIG. 3 , a stripe-shaped
参见图4,利用光抗蚀图案27作为掩模,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,去除HfO2层26、Si层25、SiGe层24的一部分,形成HfO2层26、Si层25、SiGe层24的构图的叠层结构。
Referring to FIG. 4, using the
如果采用反应离子蚀刻,可以分为两个步骤进行。在第一步骤,选择蚀刻气氛的气体组分,使得去除HfO2层26和Si层25的一部分,并在SiGe层24顶部停止。在第二步骤,通过改变蚀刻气氛的气体组分,使得去除SiGe层24的一部分,并在SOI衬底的顶部半导体层23上停止。本领域的技术人员已知在反应离子蚀刻中,可以通过改变蚀刻气氛的气体组分控制材料的选择性去除SiGe层和Si层中的一种。
If reactive ion etching is used, it can be divided into two steps. In a first step, the gas composition of the etching atmosphere is chosen such that the HfO 2 layer 26 and part of the
然后,通过在溶剂中溶解或灰化去除光抗蚀剂图案27。
Then, the
在构图的叠层结构和SOI衬底的顶部半导体层23的暴露部分上形成厚度约为2-5nm的共形氧化物层28。
A
氧化物薄层可通过已知的沉积工艺形成,如PVD、CVD、原子层沉积、溅射等。 The thin oxide layer can be formed by known deposition processes such as PVD, CVD, atomic layer deposition, sputtering, and the like. the
然后,首先形成共形氮化物层,然后去除该层的一部分,从而在包括HfO2层26、Si层25、SiGe层24的叠层结构两侧形成厚度约为5-50nm的氮化物间隔侧壁29。
Then, a conformal nitride layer is first formed, and then a part of the layer is removed, thereby forming a nitride spacer with a thickness of about 5-50 nm on both sides of the stack structure including the HfO
参见图5,通过包括曝光和显影步骤的常规光刻工艺,在图4所示的结构上形成光抗蚀剂层图案30,以遮挡左侧的间隔侧壁以及构图的叠层结构的左侧部分。
Referring to FIG. 5, a
参见图6,利用抗蚀剂图案30作为掩模,通过各向同性蚀刻,例如使用蚀刻剂溶液的常规湿法蚀刻,去除右侧的间隔侧壁。
Referring to FIG. 6 , using the resist
替代地,可以分为三个步骤去除右侧的间隔侧壁。在第一步骤,利用抗蚀剂图案30作为掩模,利用倾角离子注入在右侧的间隔侧壁中注入Ge以造成损伤。在第二步骤,通过在溶剂中溶解或灰化去除光抗蚀剂图案30。在第三步骤,通过湿法蚀刻或干法蚀刻,相对于左侧的间隔侧壁选择性地去除右侧的间隔侧壁。
Alternatively, the right septal sidewall can be removed in three steps. In the first step, using the resist
在去除右侧的间隔侧壁之后,选择蚀刻气氛的气体组分,例如通过反应离子蚀刻选择性地去除氧化物层28在半导体结构的表面上暴露的部分。接着,利用氧化物层28的剩余部分、侧壁间隔侧壁29和包括HfO2层26、Si层25、SiGe层24的叠层结构作为硬掩模,改变蚀刻气氛的气体组分,例如通过反应离子蚀刻选择性去除SOI衬底的顶部半导体层的暴露部分,以自对准的方式形成半导体材料的鳍片23’。
After removal of the spacer sidewall on the right, the gas composition of the etching atmosphere is selected, for example by reactive ion etching to selectively remove the exposed portions of the
参见图7,例如通过CVD或ALD,在图6所示的半导体结构表面上依次形成厚度约为2-4nm的共形氧化物(如HfO2)薄层26’作为栅极电介质、厚度约为3-10nm的共形金属(如TiN,金属陶瓷)层31作为叠层栅导体的金属层、以及覆盖的多晶硅层32作为叠层栅导体中的多晶硅层。
7, for example, by CVD or ALD, on the surface of the semiconductor structure shown in FIG . A 3-10 nm conformal metal (eg TiN, cermet)
优选地,可以对多晶硅层32进行原位掺杂以提高导电性。
Preferably, in-situ doping can be performed on the
多晶硅层32覆盖半导体结构的整个顶部。然后,对多晶硅层32进行平面化处理(CMP)。该平面化处理停止在叠层栅导体的金属层的顶部,从而获得了半导体结构的平整表面。
A
参见图8,通过湿法蚀刻或干法蚀刻,相对于金属层31选择性地去除多晶硅层32的一部分,对多晶硅层32进行回蚀刻。然后,例如通过CVD,在半导体结构的整个表面上形成覆盖的氧化物层33。
Referring to FIG. 8 , a part of the
对氧化物层33进行平面化处理,该平面化处理停止在叠层栅导体的金属层的顶部,从而获得了半导体结构的平整表面。结果,氧化物层33填充了多晶硅层32的通过回蚀刻去除的部分。
The
然后,例如通过CVD,在半导体结构的表面上形成氮化物层34。
A
参见图9,通过包括曝光和显影步骤的常规光刻工艺,形成条形的光抗蚀剂图案35,用于限定器件的栅极区域,叠层的栅导体包括金属层31和多晶硅层32。
Referring to FIG. 9 , a stripe-shaped
然后,利用光抗蚀剂图案35作为掩模,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,依次去除氮化物层34、氧化物层33、多晶硅层32、金属层31、氧化物薄层26’的位于鳍片23’两侧的一部分,该蚀刻在SOI晶片的掩埋绝缘层(BOX)22的顶部停止。
Then, using the
与图9所示的半导体结构沿A-A’线的截面图相对应,在图10中示出了半导体结构沿1-1′线的截面图。利用光抗蚀图案35作为掩模的蚀刻步骤获得了位于Si层25上方的氮化物层34、氧化物层33、多晶硅层32、金属层31、氧化物薄层26’的叠层。
Corresponding to the cross-sectional view of the semiconductor structure along line A-A' shown in FIG. 9 , a cross-sectional view of the semiconductor structure along line 1-1' is shown in FIG. 10 . An etching step using the
在上述蚀刻步骤之前或之后,通过附加的掩模形成步骤和蚀刻步骤,可以去除鳍片23’、SiGe层24和Si层25的一部分,以限定鳍片的长度。在图10中示出了由此限定的鳍片23′沿水平方向的尺寸。
By an additional mask forming step and etching step before or after the above etching step, part of the fin 23',
参见图11,仍然利用光抗蚀剂图案35作为掩模,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,依次去除Si层25和SiGe层24的一部分,该蚀刻在鳍片23’的顶部停止。结果,在鳍片23’上方形成了包括氮化物层34、氧化物层33、多晶硅层32、金属层31、氧化物薄层26’、Si层25、SiGe层24的多层叠层101。
11, still using the
参见图12,通过在溶剂中溶解或灰化去除光抗蚀剂图案35。
Referring to FIG. 12, the
然后,例如通过CVD,在半导体结构的整个表面上依次形成厚度约为2-5nm的共形氧化物层35和厚度约为10-20nm的共形氮化物层37。
Then, for example by CVD, a
通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,去除氮化物层37的一部分,该蚀刻在氧化物层36的表面停止,从而在鳍片23’和多层叠层101的两侧分别形成氮化物间隔侧壁37。
A portion of the
参见图13,利用多层叠层101及两侧的氮化物间隔侧壁37作为硬掩模,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,去除氧化物层36的暴露表面及鳍片23’的一部分半导体材料,从而在鳍片23沿长度方向(即图中的水平方向)的两端形成开口38。在开口38的底部保留了厚度约为10nm的半导体材料薄层。
Referring to FIG. 13, the
该蚀刻步骤是自对准的,其中开口38的尺寸基本上由氧化物层36和氮化物间隔侧壁37确定。
This etching step is self-aligned, wherein the dimensions of the
图14示出了某些实施例中的可选步骤,利用倾角离子注入从开口38向鳍片23′的中间部分进行晕圈注入(halo implantation)。对于n型MOSFET,采用B或BF2作为掺杂剂。对于p型MOSFET,采用As或P作为掺杂剂。 FIG. 14 illustrates an optional step in some embodiments of halo implantation from opening 38 to the middle portion of fin 23' using angled ion implantation. For n-type MOSFETs, B or BF2 is used as a dopant. For p-type MOSFETs, As or P is used as a dopant. the
图15示出了某些实施例中的可选步骤,利用倾角离子注入向鳍片23′的中间部分进行延伸注入(extension implantation)。对于n型MOSFET,采用As或P作为掺杂剂。对于p型MOSFET,采用B或BF2作为掺杂剂。 FIG. 15 illustrates an optional step in some embodiments of performing an extension implantation into the middle portion of the fin 23' using angled ion implantation. For n-type MOSFETs, As or P is used as a dopant. For p-type MOSFETs, B or BF2 is used as a dopant. the
与晕圈注入相比,延伸注入采用的倾角较小而能量较大,从而在延伸注入中,大多数注入的离子穿过开口38底部的半导体材料薄层,使得该半导体材料薄层没有非晶化。
Compared with the halo implant, the extension implant uses a smaller tilt angle and higher energy, so that in the extension implant, most of the implanted ions pass through the thin layer of semiconductor material at the bottom of the
由于开口38提供了离子注入的窗口,并且位于半导体结构的表面上的氮化物层34、氧化物层36、氮化物间隔侧壁37提供了硬掩模,因此上述延伸注入、晕圈注入和源/漏区注入可以在原位进行,从而减少了掩模数量并简化了工艺。
Since the
参见图16,对所形成的半导体结构进行退火处理,例如尖峰退火(spike anneal)。退火步骤用来激活通过先前的注入步骤而注入的掺杂剂并消除注入导致的损伤。 Referring to FIG. 16 , the formed semiconductor structure is annealed, such as spike anneal. The annealing step is used to activate the dopants implanted by the previous implantation step and to remove the damage caused by the implantation. the
经过退火处理之后,在半导体鳍片23’中的掺杂剂分布如图中所示,在开口38的底部分别形成了源区12和漏区13,在与源区12和漏区13相邻的位置分别形成了源延伸区12’和漏延伸区13’,在与源延伸区12’和漏延伸区13’相邻并朝着鳍片23’的中间部分延伸的位置分别形成了源晕圈区12”和漏晕圈区13”。
After the annealing treatment, the dopant distribution in the semiconductor fin 23' is shown in the figure, and the
然后,通过已知的沉积工艺,如PVD、CVD、原子层沉积、溅射等,在开口38中依次外延生长应力层39及其上的外延硅层40。由于外延生长,应力层39仅形成在开口38底部的半导体材料薄层上。对于p型MOSFET,应力层39的材料是Ge含量约为20-50%的SiGe并原位掺B,外延生长后,在沟道区延源漏方向产生压应力,这可以增强p型MOSFET的性能。对于n型MOSFET,应力层39的材料是C含量约为0.5-2%的Si:C并原位掺As或P,外延生长后,在沟道区延源漏方向产生拉应力,这可以增强n型MOSFET的性能。
Then, the
然后,对所形成的半导体结构进行氧化处理,外延硅层40的顶部发生氧化从而形成厚度约为3-10nm的氧化薄层36′。在应力层39的顶部形成的外延硅层40用于获得良好质量的SiO2。
Then, the formed semiconductor structure is oxidized, and the top of the
参见图17,利用在图8所示的步骤中形成的氧化物层33作为硬掩模,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,依次去除金属层31、氮化物薄层26’、Si层25、SiGe层24、鳍片23’的一部分,该蚀刻在SOI衬底的掩埋绝缘层22顶部停止,从而以自对准的方式形成开口41。结果,鳍片23’的厚度减小到大致等于氧化物层28和氮化物间隔侧壁29的厚度之和的数值。如下文所述,该鳍片用于形成沟道区,由于蚀刻所去除的材料,在沟道区中的应力进一步增加,此应力可对进一步增强器件性能。
Referring to FIG. 17, using the
在开口41的右侧保留着包括氮化物薄层26’、金属层31、多晶硅层32、氧化物层33的一部分的叠层材料。在制造含有相同结构的多个MOSFET的集成电路时,位于开口41右侧的叠层材料可以作为相邻的MOSFET(未示出)的栅极区域,而开口41中的填充材料可以起到浅沟隔离区的作用。
On the right side of the
此外,如图17所示,在图12所示步骤中形成的氮化物间隔侧壁37 还存在于栅极叠层的侧面上。 In addition, as shown in FIG. 17, the nitride spacer sidewalls 37 formed in the step shown in FIG. 12 also exist on the sides of the gate stack. the
参见图18,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,相对于氧化物层33,选择性地去除开口内部残留的氧化物薄层26’和金属层31(图18中的右侧侧壁部分)。
Referring to FIG. 18, by dry etching, such as ion milling etching, plasma etching, reactive ion etching, laser ablation, relative to the
然后,优选地,利用倾角离子注入向半导体材料的鳍片23’注入离子,然后进行退火(例如激光退火),以激活注入的掺杂剂,从而在鳍片23’靠近开口41的一侧形成SSRW 42。开口41提供了离子注入的窗口。有关SSRW的形成工艺可参见以下文件:
Then, preferably, ions are implanted into the
1)G.G.Shahidi,D.A.Antoniadis and H.I.Smith,IEEE TED Vol.36,p.2605,1989 1) G.G.Shahidi, D.A.Antoniadis and H.I.Smith, IEEE TED Vol.36, p.2605, 1989
2)C.Fiegna,H.Iwai,T.Wada,M.Saito,E.Sangiorgi and B.Riccò,IEEE TED Vol.41,p.941,1994. 2) C.Fiegna, H.Iwai, T.Wada, M.Saito, E.Sangiorgi and B.Riccò, IEEE TED Vol.41, p.941, 1994.
3)J.B.Jacobs and D.A.Antoniadis,IEEE TED Vol.42,p.870,1995. 3) J.B.Jacobs and D.A.Antoniadis, IEEE TED Vol.42, p.870, 1995.
4)S.E.Thompson,P.A.Packan and M.T.Bohr,VLSI Tech Symp.,p.154,1996. 4) S.E.Thompson, P.A.Packan and M.T.Bohr, VLSI Tech Symp., p.154, 1996.
参见图19和20,分为三个步骤去除左侧的间隔侧壁37。在第一步骤,利用氧化物层33作为掩模,利用倾角离子注入在左侧的间隔侧壁中注入Ge以造成损伤,如图19所示。在第二步骤,通过在溶剂中溶解或灰化去除光抗蚀剂图案30。在第三步骤,通过湿法蚀刻或干法蚀刻,相对于右侧的间隔侧壁选择性地去除左侧的间隔侧壁,如图20所示。
Referring to FIGS. 19 and 20 , the
参见图21,例如通过CVD,在半导体结构的整个表面上形成厚度约为2-5nm的共形氧化物薄层33’。然后,例如通过CVD沉积氮化物,其厚度至少能够填充开口41。相对于氧化物层33’,选择性地回蚀刻氮化物,使得完全去除开口周围的氮化物层,仅在开口中留下氮化物填充材料43。
Referring to Figure 21, a thin conformal oxide layer 33' having a thickness of about 2-5 nm is formed over the entire surface of the semiconductor structure, for example by CVD. Nitride is then deposited, for example by CVD, to a thickness at least capable of filling
参见图22A和22B,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,相对于氮化物填充材料43选择性地去除氧化物,
Referring to Figures 22A and 22B, by dry etching, such as ion milling etching, plasma etching, reactive ion etching, laser ablation, the oxide is selectively removed relative to the
该蚀刻完全去除了氧化物层33’在半导体结构表面上暴露的部分,只留下氧化物层33’在已填充的开口侧壁和底部的部分,从而暴露出栅 极叠层中的多晶硅层32的上表面和左侧表面,以及源极区域和漏极区域的外延硅层40的上表面。
The etch completely removes the exposed portion of the oxide layer 33' on the surface of the semiconductor structure, leaving only the portion of the oxide layer 33' at the sidewalls and bottom of the filled opening, thereby exposing the polysilicon layer in the
该蚀刻也去除了SOI衬底的掩埋氧化物层22的一部分。
This etch also removes a portion of the buried
参见图23A和23B,利用常规的硅化工艺,将栅极叠层中的多晶硅层32的上表面和左侧表面的一部分,以及源极区域和漏极区域的外延硅层40的至少一部分,转化为硅化物层,以减小栅极、源/漏极与相应的金属接触之间的接触电阻。
Referring to FIGS. 23A and 23B , using a conventional silicidation process, a part of the upper surface and the left side surface of the
例如,首先沉积厚度约为5-12nm的Ni层,然后在300-500℃的温度下热处理1-10秒钟,使得多晶硅层32和外延硅层40的至少一部分形成NiSi,最后利用湿法蚀刻去除未反应的Ni。
For example, first deposit a Ni layer with a thickness of about 5-12nm, then heat-treat at a temperature of 300-500° C. for 1-10 seconds, so that at least a part of the
在完成图2-23所示的步骤之后,按照本领域公知的方法,在所得到的半导体结构上形成层间绝缘层、位于层间绝缘层中的通孔、位于层间绝缘层上表面的布线或电极,从而完成半导体器件的其它部分。 After the steps shown in FIGS. 2-23 are completed, an interlayer insulating layer, via holes located in the interlayer insulating layer, and holes located on the upper surface of the interlayer insulating layer are formed on the obtained semiconductor structure according to methods known in the art. Wiring or electrodes to complete the rest of the semiconductor device. the
以上描述只是为了示例说明和描述本发明,而非意图穷举和限制本发明。因此,本发明不局限于所描述的实施例。对于本领域的技术人员明显可知的变型或更改,均在本发明的保护范围之内。 The above description is only for illustration and description of the present invention, not intended to be exhaustive and limitative of the present invention. Accordingly, the invention is not limited to the described embodiments. Variations or changes that are obvious to those skilled in the art are within the protection scope of the present invention. the
Claims (21)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009102353399A CN102034865B (en) | 2009-09-30 | 2009-09-30 | Semiconductor device and method for manufacturing the same |
| PCT/CN2010/074392 WO2011038598A1 (en) | 2009-09-30 | 2010-06-24 | Semiconductor device and method thereof |
| US12/865,220 US8552477B2 (en) | 2009-09-30 | 2010-06-24 | FinFET with improved short channel effect and reduced parasitic capacitance |
| US14/029,157 US8741703B2 (en) | 2009-09-30 | 2013-09-17 | Method for manufacturing FinFET with improved short channel effect and reduced parasitic capacitance |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009102353399A CN102034865B (en) | 2009-09-30 | 2009-09-30 | Semiconductor device and method for manufacturing the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102034865A CN102034865A (en) | 2011-04-27 |
| CN102034865B true CN102034865B (en) | 2012-07-04 |
Family
ID=43825524
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2009102353399A Active CN102034865B (en) | 2009-09-30 | 2009-09-30 | Semiconductor device and method for manufacturing the same |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US8552477B2 (en) |
| CN (1) | CN102034865B (en) |
| WO (1) | WO2011038598A1 (en) |
Families Citing this family (77)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8421162B2 (en) | 2009-09-30 | 2013-04-16 | Suvolta, Inc. | Advanced transistors with punch through suppression |
| CN102034865B (en) | 2009-09-30 | 2012-07-04 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
| US8273617B2 (en) | 2009-09-30 | 2012-09-25 | Suvolta, Inc. | Electronic devices and systems, and methods for making and using the same |
| US8530286B2 (en) | 2010-04-12 | 2013-09-10 | Suvolta, Inc. | Low power semiconductor transistor structure and method of fabrication thereof |
| US8569128B2 (en) | 2010-06-21 | 2013-10-29 | Suvolta, Inc. | Semiconductor structure and method of fabrication thereof with mixed metal types |
| US8759872B2 (en) | 2010-06-22 | 2014-06-24 | Suvolta, Inc. | Transistor with threshold voltage set notch and method of fabrication thereof |
| CN102315265B (en) * | 2010-06-30 | 2013-12-04 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
| US8377783B2 (en) | 2010-09-30 | 2013-02-19 | Suvolta, Inc. | Method for reducing punch-through in a transistor device |
| US8404551B2 (en) | 2010-12-03 | 2013-03-26 | Suvolta, Inc. | Source/drain extension control for advanced transistors |
| US8461875B1 (en) | 2011-02-18 | 2013-06-11 | Suvolta, Inc. | Digital circuits having improved transistors, and methods therefor |
| US8525271B2 (en) | 2011-03-03 | 2013-09-03 | Suvolta, Inc. | Semiconductor structure with improved channel stack and method for fabrication thereof |
| US8400219B2 (en) | 2011-03-24 | 2013-03-19 | Suvolta, Inc. | Analog circuits having improved transistors, and methods therefor |
| US8748270B1 (en) | 2011-03-30 | 2014-06-10 | Suvolta, Inc. | Process for manufacturing an improved analog transistor |
| US8999861B1 (en) | 2011-05-11 | 2015-04-07 | Suvolta, Inc. | Semiconductor structure with substitutional boron and method for fabrication thereof |
| US8796048B1 (en) | 2011-05-11 | 2014-08-05 | Suvolta, Inc. | Monitoring and measurement of thin film layers |
| US8811068B1 (en) | 2011-05-13 | 2014-08-19 | Suvolta, Inc. | Integrated circuit devices and methods |
| US8569156B1 (en) | 2011-05-16 | 2013-10-29 | Suvolta, Inc. | Reducing or eliminating pre-amorphization in transistor manufacture |
| US8735987B1 (en) | 2011-06-06 | 2014-05-27 | Suvolta, Inc. | CMOS gate stack structures and processes |
| US8995204B2 (en) | 2011-06-23 | 2015-03-31 | Suvolta, Inc. | Circuit devices and methods having adjustable transistor body bias |
| US8629016B1 (en) | 2011-07-26 | 2014-01-14 | Suvolta, Inc. | Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer |
| KR101891373B1 (en) | 2011-08-05 | 2018-08-24 | 엠아이이 후지쯔 세미컨덕터 리미티드 | Semiconductor devices having fin structures and fabrication methods thereof |
| US8748986B1 (en) | 2011-08-05 | 2014-06-10 | Suvolta, Inc. | Electronic device with controlled threshold voltage |
| US8645878B1 (en) | 2011-08-23 | 2014-02-04 | Suvolta, Inc. | Porting a circuit design from a first semiconductor process to a second semiconductor process |
| US8614128B1 (en) | 2011-08-23 | 2013-12-24 | Suvolta, Inc. | CMOS structures and processes based on selective thinning |
| US8713511B1 (en) | 2011-09-16 | 2014-04-29 | Suvolta, Inc. | Tools and methods for yield-aware semiconductor manufacturing process target generation |
| US9236466B1 (en) | 2011-10-07 | 2016-01-12 | Mie Fujitsu Semiconductor Limited | Analog circuits having improved insulated gate transistors, and methods therefor |
| CN103165425B (en) * | 2011-12-08 | 2015-07-15 | 中芯国际集成电路制造(上海)有限公司 | Method for forming fin formula field-effect tube grid side wall layer |
| US8895327B1 (en) | 2011-12-09 | 2014-11-25 | Suvolta, Inc. | Tipless transistors, short-tip transistors, and methods and circuits therefor |
| US8819603B1 (en) | 2011-12-15 | 2014-08-26 | Suvolta, Inc. | Memory circuits and methods of making and designing the same |
| US8883600B1 (en) | 2011-12-22 | 2014-11-11 | Suvolta, Inc. | Transistor having reduced junction leakage and methods of forming thereof |
| US8599623B1 (en) | 2011-12-23 | 2013-12-03 | Suvolta, Inc. | Circuits and methods for measuring circuit elements in an integrated circuit device |
| US8970289B1 (en) | 2012-01-23 | 2015-03-03 | Suvolta, Inc. | Circuits and devices for generating bi-directional body bias voltages, and methods therefor |
| US8877619B1 (en) | 2012-01-23 | 2014-11-04 | Suvolta, Inc. | Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom |
| US9093550B1 (en) | 2012-01-31 | 2015-07-28 | Mie Fujitsu Semiconductor Limited | Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same |
| US9406567B1 (en) | 2012-02-28 | 2016-08-02 | Mie Fujitsu Semiconductor Limited | Method for fabricating multiple transistor devices on a substrate with varying threshold voltages |
| US8863064B1 (en) | 2012-03-23 | 2014-10-14 | Suvolta, Inc. | SRAM cell layout structure and devices therefrom |
| US9299698B2 (en) | 2012-06-27 | 2016-03-29 | Mie Fujitsu Semiconductor Limited | Semiconductor structure with multiple transistors having various threshold voltages |
| US9368628B2 (en) * | 2012-07-05 | 2016-06-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET with high mobility and strain channel |
| US8637955B1 (en) | 2012-08-31 | 2014-01-28 | Suvolta, Inc. | Semiconductor structure with reduced junction leakage and method of fabrication thereof |
| US9112057B1 (en) | 2012-09-18 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Semiconductor devices with dopant migration suppression and method of fabrication thereof |
| US9041126B2 (en) | 2012-09-21 | 2015-05-26 | Mie Fujitsu Semiconductor Limited | Deeply depleted MOS transistors having a screening layer and methods thereof |
| CN103779222A (en) * | 2012-10-23 | 2014-05-07 | 中国科学院微电子研究所 | MOSFET manufacturing method |
| JP2016500927A (en) | 2012-10-31 | 2016-01-14 | 三重富士通セミコンダクター株式会社 | DRAM type device with low variation transistor peripheral circuit and associated method |
| US8802513B2 (en) * | 2012-11-01 | 2014-08-12 | International Business Machines Corporation | Fin field effect transistors having a nitride containing spacer to reduce lateral growth of epitaxially deposited semiconductor materials |
| US8816754B1 (en) | 2012-11-02 | 2014-08-26 | Suvolta, Inc. | Body bias circuits and methods |
| US9093997B1 (en) | 2012-11-15 | 2015-07-28 | Mie Fujitsu Semiconductor Limited | Slew based process and bias monitors and related methods |
| US9070477B1 (en) | 2012-12-12 | 2015-06-30 | Mie Fujitsu Semiconductor Limited | Bit interleaved low voltage static random access memory (SRAM) and related methods |
| US9112484B1 (en) | 2012-12-20 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Integrated circuit process and bias monitors and related methods |
| US9268885B1 (en) | 2013-02-28 | 2016-02-23 | Mie Fujitsu Semiconductor Limited | Integrated circuit device methods and models with predicted device metric variations |
| US8994415B1 (en) | 2013-03-01 | 2015-03-31 | Suvolta, Inc. | Multiple VDD clock buffer |
| US8988153B1 (en) | 2013-03-09 | 2015-03-24 | Suvolta, Inc. | Ring oscillator with NMOS or PMOS variation insensitivity |
| US9034715B2 (en) * | 2013-03-12 | 2015-05-19 | International Business Machines Corporation | Method and structure for dielectric isolation in a fin field effect transistor |
| US9299801B1 (en) | 2013-03-14 | 2016-03-29 | Mie Fujitsu Semiconductor Limited | Method for fabricating a transistor device with a tuned dopant profile |
| US9449967B1 (en) | 2013-03-15 | 2016-09-20 | Fujitsu Semiconductor Limited | Transistor array structure |
| US9112495B1 (en) | 2013-03-15 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Integrated circuit device body bias circuits and methods |
| US9478571B1 (en) | 2013-05-24 | 2016-10-25 | Mie Fujitsu Semiconductor Limited | Buried channel deeply depleted channel transistor |
| US8976575B1 (en) | 2013-08-29 | 2015-03-10 | Suvolta, Inc. | SRAM performance monitor |
| KR102178831B1 (en) * | 2014-03-13 | 2020-11-13 | 삼성전자 주식회사 | Method of forming semiconductor device having stressor and related device |
| US9312364B2 (en) | 2014-05-27 | 2016-04-12 | International Business Machines Corporation | finFET with dielectric isolation after gate module for improved source and drain region epitaxial growth |
| US9710006B2 (en) | 2014-07-25 | 2017-07-18 | Mie Fujitsu Semiconductor Limited | Power up body bias circuits and methods |
| US9319013B2 (en) | 2014-08-19 | 2016-04-19 | Mie Fujitsu Semiconductor Limited | Operational amplifier input offset correction with transistor threshold voltage adjustment |
| KR102255174B1 (en) | 2014-10-10 | 2021-05-24 | 삼성전자주식회사 | Semiconductor device having active region and method of forming the same |
| US9397161B1 (en) | 2015-02-26 | 2016-07-19 | International Business Machines Corporation | Reduced current leakage semiconductor device |
| US9425259B1 (en) | 2015-07-17 | 2016-08-23 | Samsung Electronics Co., Ltd. | Semiconductor device having a fin |
| US9583624B1 (en) * | 2015-09-25 | 2017-02-28 | International Business Machines Corporation | Asymmetric finFET memory access transistor |
| KR102323943B1 (en) | 2015-10-21 | 2021-11-08 | 삼성전자주식회사 | Method of manufacturing semiconductor device |
| US9997606B2 (en) | 2016-09-30 | 2018-06-12 | International Business Machines Corporation | Fully depleted SOI device for reducing parasitic back gate capacitance |
| WO2018125035A1 (en) * | 2016-12-27 | 2018-07-05 | Intel Corporation | Transistors including final source/drain material processed after replacement gate processing |
| US10199503B2 (en) | 2017-04-24 | 2019-02-05 | International Business Machines Corporation | Under-channel gate transistors |
| KR102636464B1 (en) * | 2018-06-12 | 2024-02-14 | 삼성전자주식회사 | Semiconductor device having gate isolation layer and method of manufacturing the same |
| CN111737937B (en) * | 2020-07-16 | 2023-06-23 | 杰华特微电子股份有限公司 | Semiconductor device modeling method |
| CN115706140A (en) * | 2021-08-10 | 2023-02-17 | 芯恩(青岛)集成电路有限公司 | Fin manufacturing method, fin field effect transistor and manufacturing method thereof |
| CN116762178A (en) * | 2022-01-12 | 2023-09-15 | 华为技术有限公司 | Transistor and semiconductor integrated circuit |
| US12133374B2 (en) | 2022-01-24 | 2024-10-29 | Nanya Technology Corporation | Memory device having memory cell with reduced protrusion |
| US12185520B2 (en) | 2022-01-24 | 2024-12-31 | Nanya Technology Corporation | Method of manufacturing memory device having memory cell with reduced protrusion |
| TWI825669B (en) * | 2022-01-24 | 2023-12-11 | 南亞科技股份有限公司 | Method forprepaing memory device |
| CN119343600A (en) * | 2022-06-15 | 2025-01-21 | 斯威森西公司 | FET Gas Sensor Device |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6458662B1 (en) * | 2001-04-04 | 2002-10-01 | Advanced Micro Devices, Inc. | Method of fabricating a semiconductor device having an asymmetrical dual-gate silicon-germanium (SiGe) channel MOSFET and a device thereby formed |
| US6787402B1 (en) * | 2001-04-27 | 2004-09-07 | Advanced Micro Devices, Inc. | Double-gate vertical MOSFET transistor and fabrication method |
| CN1619835A (en) * | 2003-11-20 | 2005-05-25 | 国际商业机器公司 | Field effect transistor, integrated circuit and method of forming integrated circuit |
| CN1622336A (en) * | 2003-11-24 | 2005-06-01 | 三星电子株式会社 | Non-planar transistor having germanium channel region and method of manufacturing the same |
| CN101312197A (en) * | 2007-05-25 | 2008-11-26 | 旺宏电子股份有限公司 | Storage unit and manufacturing method and operating method thereof |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6413802B1 (en) * | 2000-10-23 | 2002-07-02 | The Regents Of The University Of California | Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture |
| US7705345B2 (en) * | 2004-01-07 | 2010-04-27 | International Business Machines Corporation | High performance strained silicon FinFETs device and method for forming same |
| JP2006049627A (en) * | 2004-08-05 | 2006-02-16 | Toshiba Corp | Semiconductor device and manufacturing method thereof |
| US8227316B2 (en) * | 2006-06-29 | 2012-07-24 | International Business Machines Corporation | Method for manufacturing double gate finFET with asymmetric halo |
| JP2008066562A (en) * | 2006-09-08 | 2008-03-21 | Toshiba Corp | Semiconductor device and manufacturing method thereof |
| US7452758B2 (en) * | 2007-03-14 | 2008-11-18 | International Business Machines Corporation | Process for making FinFET device with body contact and buried oxide junction isolation |
| US7855411B2 (en) * | 2007-05-25 | 2010-12-21 | Macronix International Co., Ltd. | Memory cell |
| CN102034865B (en) | 2009-09-30 | 2012-07-04 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
-
2009
- 2009-09-30 CN CN2009102353399A patent/CN102034865B/en active Active
-
2010
- 2010-06-24 US US12/865,220 patent/US8552477B2/en active Active
- 2010-06-24 WO PCT/CN2010/074392 patent/WO2011038598A1/en active Application Filing
-
2013
- 2013-09-17 US US14/029,157 patent/US8741703B2/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6458662B1 (en) * | 2001-04-04 | 2002-10-01 | Advanced Micro Devices, Inc. | Method of fabricating a semiconductor device having an asymmetrical dual-gate silicon-germanium (SiGe) channel MOSFET and a device thereby formed |
| US6787402B1 (en) * | 2001-04-27 | 2004-09-07 | Advanced Micro Devices, Inc. | Double-gate vertical MOSFET transistor and fabrication method |
| CN1619835A (en) * | 2003-11-20 | 2005-05-25 | 国际商业机器公司 | Field effect transistor, integrated circuit and method of forming integrated circuit |
| CN1622336A (en) * | 2003-11-24 | 2005-06-01 | 三星电子株式会社 | Non-planar transistor having germanium channel region and method of manufacturing the same |
| CN101312197A (en) * | 2007-05-25 | 2008-11-26 | 旺宏电子股份有限公司 | Storage unit and manufacturing method and operating method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| US20110193164A1 (en) | 2011-08-11 |
| CN102034865A (en) | 2011-04-27 |
| US8552477B2 (en) | 2013-10-08 |
| US8741703B2 (en) | 2014-06-03 |
| US20140011330A1 (en) | 2014-01-09 |
| WO2011038598A1 (en) | 2011-04-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102034865B (en) | Semiconductor device and method for manufacturing the same | |
| US8710556B2 (en) | Semiconductor device comprising a Fin and method for manufacturing the same | |
| CN102315265B (en) | Semiconductor device and method for manufacturing the same | |
| CN102222692B (en) | Semiconductor device and method for manufacturing the same | |
| CN103579004B (en) | Finfet and manufacturing method thereof | |
| WO2012100463A1 (en) | Method for forming semiconductor structure | |
| US20120146142A1 (en) | Mos transistor and method for manufacturing the same | |
| CN103824775B (en) | FinFET and manufacturing method thereof | |
| CN103811343B (en) | FinFET and manufacturing method thereof | |
| CN103390637B (en) | FinFET and manufacturing method thereof | |
| CN103985754B (en) | Semiconductor device and method for manufacturing the same | |
| CN103811349A (en) | Semiconductor structure and manufacturing method thereof | |
| CN103779223B (en) | MOSFET manufacturing method | |
| US20150340464A1 (en) | Semiconductor device and manufacturing method thereof | |
| US9142677B2 (en) | FinFET having gate in place of sacrificial spacer source/drain mask | |
| CN103985712B (en) | Semiconductor device and method for manufacturing the same | |
| CN103985756B (en) | Semiconductor device and method for manufacturing the same | |
| WO2014131240A1 (en) | Method for manufacturing semiconductor component |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |