[go: up one dir, main page]

CN102034865B - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
CN102034865B
CN102034865B CN2009102353399A CN200910235339A CN102034865B CN 102034865 B CN102034865 B CN 102034865B CN 2009102353399 A CN2009102353399 A CN 2009102353399A CN 200910235339 A CN200910235339 A CN 200910235339A CN 102034865 B CN102034865 B CN 102034865B
Authority
CN
China
Prior art keywords
layer
fin
region
semiconductor device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009102353399A
Other languages
Chinese (zh)
Other versions
CN102034865A (en
Inventor
朱慧珑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN2009102353399A priority Critical patent/CN102034865B/en
Priority to PCT/CN2010/074392 priority patent/WO2011038598A1/en
Priority to US12/865,220 priority patent/US8552477B2/en
Publication of CN102034865A publication Critical patent/CN102034865A/en
Application granted granted Critical
Publication of CN102034865B publication Critical patent/CN102034865B/en
Priority to US14/029,157 priority patent/US8741703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/031Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]

Landscapes

  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The present application discloses a semiconductor device and a method of manufacturing the same, the semiconductor device being formed on an SOI substrate including a buried insulating layer and a semiconductor layer formed on the buried insulating layer, a fin of a semiconductor material being formed in the semiconductor layer, the fin including two opposite side surfaces perpendicular to a surface of the SOI substrate, the semiconductor device including: the source region and the drain region are arranged at two ends of the fin; a channel region disposed in a middle portion of the fin; and a stack of a gate dielectric and a gate conductor disposed on one side of a fin, the gate conductor being isolated from the channel region by the gate dielectric, wherein the gate conductor extends away from the one side of the fin in a direction parallel to a surface of the SOI substrate. The semiconductor device reduces short channel effects and reduces parasitic capacitance and parasitic resistance, thereby facilitating transistor size reduction and transistor performance improvement.

Description

半导体器件及其制造方法Semiconductor device and manufacturing method thereof

技术领域 technical field

本发明涉及一种半导体器件及其制造方法,更具体地,涉及在绝缘体上半导体(SOI)衬底上形成的改进的FinFET。  The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to an improved FinFET formed on a semiconductor-on-insulator (SOI) substrate. the

背景技术 Background technique

集成电路技术的一个重要发展方向是金属氧化物半导体场效应晶体管(MOSFET)的尺寸按比例缩小,以提高集成度和降低制造成本。然而,众所周知的是随着MOSFET的尺寸减小会产生短沟道效应。在MOSFET的尺寸按比例缩小时,栅极的有效长度减小,使得实际上由栅极电压控制的耗尽层电荷的比例减少,从而阈值电压随沟道长度减小而下降。  An important development direction of integrated circuit technology is to scale down the size of metal-oxide-semiconductor field-effect transistors (MOSFETs) to improve integration and reduce manufacturing costs. However, it is well known that short-channel effects occur as the size of MOSFETs decreases. When the size of the MOSFET is scaled down, the effective length of the gate is reduced, so that the proportion of the depletion layer charge actually controlled by the gate voltage is reduced, so that the threshold voltage decreases with the decrease of the channel length. the

常规的平面MOSFET包括由栅电极、栅绝缘层和半导体层构成的三明治结构,在半导体层中包括位于栅电极下方的沟道区和位于沟道区两侧的源/漏区。在源/漏区上可以形成硅化物层,利用通孔将硅化物层与源/漏电极相连,从而减小了器件的寄生电阻和寄生电容。平面MOSFET受到短沟道效应的不利影响,导致器件的阈值电压随沟道长度的变化而波动。  A conventional planar MOSFET includes a sandwich structure consisting of a gate electrode, a gate insulating layer, and a semiconductor layer. The semiconductor layer includes a channel region below the gate electrode and source/drain regions on both sides of the channel region. A silicide layer can be formed on the source/drain region, and the silicide layer is connected to the source/drain electrodes through holes, thereby reducing the parasitic resistance and parasitic capacitance of the device. Planar MOSFETs suffer from short-channel effects that cause the device's threshold voltage to fluctuate with channel length. the

为了抑制短沟道效果,在美国专利US6,413,802中公开了在SOI上形成的FinFET,包括在半导体材料的鳍片(fin)的中间形成的沟道区,以及在鳍片两端形成的源/漏区。栅电极在沟道区的两个侧面包围沟道区(即双栅结构),从而反型层形成在沟道各侧上。鳍片中的沟道区厚度很薄,使得整个沟道区都能受到栅极的控制,因此能够起到抑制短沟道效应的作用。  In order to suppress the short channel effect, the FinFET formed on SOI is disclosed in US Pat. / drain area. The gate electrode surrounds the channel region on both sides of the channel region (ie, a double gate structure), so that an inversion layer is formed on each side of the channel. The thickness of the channel region in the fin is very thin, so that the entire channel region can be controlled by the gate, so it can play a role in suppressing the short channel effect. the

然而,在常规的FinFET中,由于在源/漏区之间存在着与源/漏区平行延伸的栅极,并且源/漏区与栅极之间的距离很近,因此在源/漏区和 栅极之间存在着电容耦合,导致了寄生电阻和寄生电容较大的问题。  However, in a conventional FinFET, since there is a gate extending parallel to the source/drain region between the source/drain regions, and the distance between the source/drain region and the gate is very close, in the source/drain region There is a capacitive coupling between the gate and the gate, which leads to the problem of large parasitic resistance and parasitic capacitance. the

源/漏区和栅极之间的电容耦合限制了器件设计的自由度。如果希望减小寄生电阻,则需要增加源/漏区的厚度。然而,源/漏区厚度的增加将导致源/漏区与栅极之间的耦合面积增加,从而导致寄生电容的增加,反之亦然。因此,本领域的技术人员还不能利用常规的FinFET结构实现寄生电阻和寄生电容的同时减小。  The capacitive coupling between the source/drain region and the gate limits the degree of freedom in device design. If it is desired to reduce the parasitic resistance, the thickness of the source/drain region needs to be increased. However, an increase in the thickness of the source/drain region will result in an increase in the coupling area between the source/drain region and the gate, resulting in an increase in parasitic capacitance, and vice versa. Therefore, those skilled in the art cannot utilize conventional FinFET structures to achieve simultaneous reduction of parasitic resistance and parasitic capacitance. the

结果,在常规的FinFET中,由于时间常数RC的值较大而导致延迟增加,进而降低了器件的开关速度。  As a result, in a conventional FinFET, the delay due to the large value of the time constant RC increases, which in turn reduces the switching speed of the device. the

发明内容 Contents of the invention

本发明的目的是提供一种能够抑制短沟道效应,并且减小寄生电阻和寄生电容的半导体器件。  An object of the present invention is to provide a semiconductor device capable of suppressing short channel effects and reducing parasitic resistance and parasitic capacitance. the

本发明的另一目的是进一步提供利用应力提高器件性能的半导体器件。  Another object of the present invention is to further provide a semiconductor device that utilizes stress to improve device performance. the

根据本发明的一方面,提供一种半导体器件,形成在SOI衬底上,所述SOI衬底包括掩埋绝缘层和在掩埋绝缘层上形成的半导体层,在所述半导体层中形成了半导体材料的鳍片,所述鳍片包括垂直于SOI衬底表面的两个相对侧面,所述半导体器件包括:设置在鳍片两端的源区和漏区;设置在鳍片的中间部分的沟道区;以及设置在鳍片的一个侧面上的栅极电介质和栅极导体的叠层,所述栅极导体与所述沟道区之间由所述栅极电介质隔离,其中所述栅极导体沿着平行于所述SOI衬底表面的方向背离所述鳍片的所述一个侧面延伸。  According to an aspect of the present invention, there is provided a semiconductor device formed on an SOI substrate, the SOI substrate includes a buried insulating layer and a semiconductor layer formed on the buried insulating layer, and a semiconductor material is formed in the semiconductor layer The fin includes two opposite sides perpendicular to the surface of the SOI substrate, and the semiconductor device includes: a source region and a drain region arranged at both ends of the fin; a channel region arranged at the middle part of the fin and a stack of a gate dielectric and a gate conductor disposed on one side of the fin, the gate conductor being isolated from the channel region by the gate dielectric, wherein the gate conductor is along extending away from the one side of the fin in a direction parallel to the surface of the SOI substrate. the

根据本发明的另一方面,提供一种制造半导体器件的方法,包括以下步骤:a)通过自对准方法在SOI衬底的半导体材料层中形成半导体材料的鳍片,所述鳍片包括垂直于SOI衬底表面的两个相对侧面;b)在鳍片的一个侧面上形成栅极电介质和栅极导体的叠层,所述栅极导体沿着平行于所述SOI衬底表面的方向背离所述鳍片的所述一个侧面延伸;c)向鳍片两端的半导体材料中注入掺杂剂以形成源区和漏区;以及d)在鳍片的中间部分形成沟道区。  According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising the following steps: a) forming fins of semiconductor material in a semiconductor material layer of an SOI substrate by a self-alignment method, the fins including vertical on two opposite sides of the SOI substrate surface; b) forming a stack of gate dielectric and gate conductor on one side of the fin, the gate conductor facing away from the SOI substrate along a direction parallel to the SOI substrate surface extending the one side of the fin; c) implanting dopants into the semiconductor material at both ends of the fin to form a source region and a drain region; and d) forming a channel region in a middle portion of the fin. the

应当注意,本发明的半导体器件包含半导体材料的鳍片,但其结构 不同于常规的FinFET,因为其栅极仅设置在鳍片的一个侧面上并背离鳍片延伸,而常规的FinFET设置成双栅结构并包围鳍片的中间部分的沟道区。而且,源/漏区设置在鳍片的两端,朝着与栅极的延伸方向相反的方向延伸。  It should be noted that the semiconductor device of the present invention includes fins of semiconductor material, but its structure is different from that of conventional FinFETs in that its gates are arranged on only one side of the fins and extend away from the fins, while conventional FinFETs are arranged in double fins. gate structure and surrounds the channel region in the middle portion of the fin. Also, the source/drain regions are arranged at both ends of the fins, extending in a direction opposite to that of the gate. the

在本发明的半导体器件中没有包括在源/漏区之间与源/漏区平行延伸的栅极,因此不存在源/漏区与栅极之间的电容耦合,从而减小了寄生电容。同时,本发明的半导体器件允许通过使用较厚的源/漏区而减小寄生电阻。  The semiconductor device of the present invention does not include a gate extending parallel to the source/drain regions between the source/drain regions, so there is no capacitive coupling between the source/drain regions and the gate, thereby reducing parasitic capacitance. At the same time, the semiconductor device of the present invention allows reduction of parasitic resistance by using thicker source/drain regions. the

还可以在鳍片邻接沟道区的部分形成延伸区,减小载流子的传导路径长度,从而进一步减小与寄生电容和寄生电阻有关的寄生作用。  An extension region can also be formed on the portion of the fin adjacent to the channel region to reduce the conduction path length of the carriers, thereby further reducing the parasitic effect related to the parasitic capacitance and the parasitic resistance. the

另外,还可以在源/漏区形成应力层,用来增加沟道区的应力,从而进一步提高器件的开关速度。  In addition, a stress layer can also be formed in the source/drain region to increase the stress of the channel region, thereby further increasing the switching speed of the device. the

为了有效地控制短沟道效应,自对准沟道区非常薄:约为5-40nm。并且,在优选的工艺中,利用超陡后退阱(SSRW)工艺进一步减小了沟道区的厚度。即使仅在沟道的一侧设置栅极,沟道区仍然可以受到栅极的完全控制,从而减小了短沟道效应的影响。  In order to effectively control the short channel effect, the self-aligned channel region is very thin: about 5-40nm. And, in a preferred process, the thickness of the channel region is further reduced by using a super steep retreat well (SSRW) process. Even if the gate is only set on one side of the channel, the channel region can still be fully controlled by the gate, thereby reducing the influence of the short channel effect. the

附图说明 Description of drawings

图1A和1B是示意性说明根据本发明的半导体器件的结构的三维透视图和俯视图,线A-A′、1-1’和2-2’表示以下截面图的截取位置。  1A and 1B are three-dimensional perspective views and plan views schematically illustrating the structure of a semiconductor device according to the present invention, and lines A-A', 1-1' and 2-2' indicate intercept positions of the following cross-sectional views. the

图2-9是根据本发明的制造半导体器件的方法的各个步骤所形成的半导体结构沿A-A′线的截面图,其中示出了形成鳍片区域和栅极区域的各个步骤。  2-9 are cross-sectional views along the line A-A' of the semiconductor structure formed in various steps of the method for manufacturing a semiconductor device according to the present invention, showing various steps of forming fin regions and gate regions. the

图10-16是根据本发明的制造半导体器件的方法的随后步骤所形成的半导体结构沿1-1′线的截面图,其中示出了形成源/漏区的各个步骤。  10-16 are cross-sectional views along line 1-1' of a semiconductor structure formed in subsequent steps of the method for manufacturing a semiconductor device according to the present invention, showing various steps of forming source/drain regions. the

图17-21是根据本发明的制造半导体器件的方法的随后步骤所形成的半导体结构沿A-A′线的截面图,其中示出了形成沟道区的各个步骤。  17-21 are cross-sectional views along line A-A' of a semiconductor structure formed in subsequent steps of the method for manufacturing a semiconductor device according to the present invention, showing various steps of forming a channel region. the

图22A、22B、23A、23B分别是根据本发明的制造半导体器件的方法的随后步骤所形成的半导体结构沿A-A′线和2-2′线的截面图,其中示出了在源/漏区和栅极上形成硅化物层的各个步骤。  22A, 22B, 23A, and 23B are cross-sectional views of the semiconductor structure formed in the subsequent steps of the method for manufacturing a semiconductor device according to the present invention along the A-A' line and the 2-2' line, wherein the source/drain region And the various steps of forming a silicide layer on the gate. the

具体实施方式 Detailed ways

以下将参照附图更详细地描述本发明。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。  Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. In the various figures, identical elements are indicated with similar reference numerals. For the sake of clarity, various parts in the drawings have not been drawn to scale. the

应当理解,在描述器件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将器件翻转,该一层、一个区域将位于另一层、另一个区域“下面”或“下方”。  It should be understood that when describing the structure of a device, when a layer or a region is referred to as being "on" or "over" another layer or another region, it may mean being directly on another layer or another region, or Other layers or regions are also included between it and another layer or another region. And, if the device is turned over, the layer, one region, will be "below" or "beneath" the other layer, another region. the

如果为了描述直接位于另一层、另一个区域上面的情形,本文将采用“直接在......上面”或“在......上面并与之邻接”的表述方式。  If it is to describe the situation of being directly on another layer or another area, the expression "directly on" or "on and adjacent to" will be used herein. the

在下文中描述了本发明的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本发明。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。  In the following, many specific details of the present invention are described, such as device structures, materials, dimensions, processing techniques and techniques, for a clearer understanding of the present invention. However, the invention may be practiced without these specific details, as will be understood by those skilled in the art. the

除非在下文中特别指出,半导体器件中的各个部分可以由本领域的技术人员公知的材料构成。作为初始结构的SOI衬底例如包括绝缘体上硅、绝缘体上硅锗、以及绝缘体上的半导体材料叠层。该半导体材料叠层例如包括III-V族半导体,如GaAs、InP、GaN、SiC。栅极导体可以是金属层、掺杂多晶硅层、或包括金属层和掺杂多晶硅层的叠层栅导体。金属层的材料为TaC、TiN、TaTbN、TaErN、TaYbN、TaSiN、HfSiN、MoSiN、RuTax、NiTax,MoNx、TiSiN、TiCN、TaAlC、TiAlN、TaN、PtSix、Ni3Si、Pt、Ru、Ir、Mo、HfRu、RuOx和所述各种金属材料的组合。栅极电介质可以由SiO2或介电常数大于SiO2的材料构成,例如包括氧化物、氮化物、氧氮化物、硅酸盐、铝酸盐、钛酸盐,其中,氧化物例如包括SiO2、HfO2、ZrO2、Al2O3、TiO2、La2O3,氮化物例如包括Si3N4,硅酸盐例如包括HfSiOx,铝酸盐例如包括LaAlO3,钛酸盐例如包括SrTiO3,氧氮化物例如包括SiON。并且,栅极电介质不仅可以由本领域的技术人员公知的材料形成,也可以采用将来开发的用于栅极电介质的材料。  Unless otherwise specified below, various parts in the semiconductor device may be composed of materials known to those skilled in the art. SOI substrates as initial structures include, for example, silicon-on-insulator, silicon-germanium-on-insulator, and semiconductor material stacks on insulator. The semiconductor material stack includes, for example, III-V semiconductors, such as GaAs, InP, GaN, SiC. The gate conductor may be a metal layer, a doped polysilicon layer, or a stacked gate conductor comprising a metal layer and a doped polysilicon layer. The material of the metal layer is TaC, TiN, TaTbN, TaErN, TaYbN, TaSiN, HfSiN, MoSiN, RuTax, NiTax, MoNx, TiSiN, TiCN, TaAlC, TiAlN, TaN, PtSix, Ni3Si, Pt, Ru, Ir, Mo, HfRu , RuOx and the combination of various metal materials. The gate dielectric can be made of SiO2 or a material with a dielectric constant greater than SiO2 , such as oxides, nitrides, oxynitrides, silicates, aluminates, titanates, where oxides include SiO2 , for example , HfO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , La 2 O 3 , nitrides such as Si 3 N 4 , silicates such as HfSiOx, aluminates such as LaAlO 3 , titanates such as SrTiO 3. Oxynitrides include SiON, for example. Also, the gate dielectric may not only be formed of materials known to those skilled in the art, but also materials for gate dielectrics developed in the future may be used.

图1A和1B是示意性说明根据本发明的半导体器件的结构的三维透视图和俯视图。图1B中的线A-A′、1-1’、2-2’表示截面图的截取位置,其中线A-A’垂直于沟道长度方向并经过栅极,线1-1’沿着沟道长度方向并经过沟道区,线2-2’沿着沟道长度方向并经过源/漏区之间的绝缘材料填充物。  1A and 1B are three-dimensional perspective and plan views schematically illustrating the structure of a semiconductor device according to the present invention. Lines A-A', 1-1', 2-2' in Figure 1B represent the interception positions of the cross-sectional view, where line A-A' is perpendicular to the channel length direction and passes through the gate, and line 1-1' is along the channel The line 2-2' goes along the length direction of the channel and passes through the channel region, and passes through the insulating material filling between the source/drain regions. the

如图1A和1B所示,在SOI衬底的半导体层中形成了半导体器件100,包括位于半导体材料的鳍片的中间部分的沟道区11、位于其两端的源区12和漏区13、设置成邻接鳍片的一个侧面的栅极电介质14和栅极15的叠层,以及用于填充鳍片的另一个侧面中的开口的绝缘材料填充物18。  As shown in Figures 1A and 1B, a semiconductor device 100 is formed in the semiconductor layer of the SOI substrate, including a channel region 11 located in the middle part of the fin of the semiconductor material, a source region 12 and a drain region 13 located at both ends thereof, A stack of gate dielectric 14 and gate 15 is provided adjacent to one side of the fin, and a fill of insulating material 18 for filling the opening in the other side of the fin. the

位于鳍片的中间部分的沟道区的厚度非常薄,例如在约5-40 nm的范围内。该厚度与常规的FinFET中的沟道区的厚度相近,并可以采用类似的自对准工艺形成。  The thickness of the channel region located in the middle part of the fin is very thin, for example in the range of about 5-40 nm. This thickness is similar to that of the channel region in a conventional FinFET and can be formed using a similar self-aligned process. the

本发明人发现,尽管未采用双栅结构,但如果沟道区的厚度在上述范围,位于鳍片一侧的栅极仍然可以作用在整个沟道区上,从而抑制短沟道效应。  The inventors found that although the double gate structure is not used, if the thickness of the channel region is within the above range, the gate located on one side of the fin can still act on the entire channel region, thereby suppressing the short channel effect. the

优选地,该半导体器件还包括用于向源区12和漏区13施加应力的应力层(stressor)16和17。应力层16和17分别与源区12和漏区13邻接,并且接触面积尽可能大,使得应力层16和17与源区12和漏区13的接触电阻最小。如图1A和1B所示,在源区12和漏区13中形成了台阶部分,应力层16和17位于台阶部分中,从而应力层16和17的一个侧面及底部与源区12和漏区13接触。  Preferably, the semiconductor device further includes stressors 16 and 17 for applying stress to the source region 12 and the drain region 13 . The stress layers 16 and 17 are adjacent to the source region 12 and the drain region 13 respectively, and the contact area is as large as possible, so that the contact resistance between the stress layers 16 and 17 and the source region 12 and the drain region 13 is minimum. As shown in Figures 1A and 1B, a step portion has been formed in the source region 12 and the drain region 13, and the stress layers 16 and 17 are located in the step portion, so that one side and the bottom of the stress layer 16 and 17 are in contact with the source region 12 and the drain region 13 contacts. the

应力层16和17的材料应当能够在沟道区中产生有利于提高晶体管性能的应力。当形成的器件是n型MOSFET时,应力层16和17应当向沟道区施加沿源/漏极方向的拉应力,以提高作为载流子的电子的迁移率。相反,当晶体管是p型MOSFET时,应力层16和17应当向沟道区施加沿源/漏极方向的压应力,以提高作为载流子的空穴的迁移率。  The material of the stress layers 16 and 17 should be able to generate stress in the channel region that is beneficial to improve the performance of the transistor. When the formed device is an n-type MOSFET, the stress layers 16 and 17 should apply tensile stress along the source/drain direction to the channel region, so as to increase the mobility of electrons as carriers. On the contrary, when the transistor is a p-type MOSFET, the stress layers 16 and 17 should apply compressive stress in the source/drain direction to the channel region to increase the mobility of holes as carriers. the

应当注意,在图1A和1B所示的半导体器件结构的实例中,应力层16、17分别位于源区12与源极接触(未示出)、漏区13与漏极接触(未示出)之间的导电路径上,因此应力层16、17还应当是导电性的。 对于p型MOSFET,可以采用掺B的SiGe材料,而对n型MOSFET,可以采用掺杂As或P的Si:C材料。  It should be noted that in the example of the semiconductor device structure shown in FIGS. 1A and 1B , the stress layers 16 and 17 are respectively located at the source region 12 and the source contact (not shown), and the drain region 13 and the drain contact (not shown). Therefore, the stress layers 16, 17 should also be conductive. For p-type MOSFETs, B-doped SiGe materials can be used, while for n-type MOSFETs, Si:C materials doped with As or P can be used. the

在图1A和1B中没有示出源区12、漏区13及栅极15上方的附加层和部分,例如栅极的侧壁间隔侧壁、硅化物层、源极接触、漏极接触和栅极接触、层间绝缘层、在层间绝缘层中形成的通孔以及钝化层等。  Additional layers and portions above the source region 12, the drain region 13 and the gate 15 are not shown in FIGS. Pole contacts, interlayer insulating layers, via holes formed in interlayer insulating layers, and passivation layers, etc. the

在下文描述制造该半导体器件的步骤中,将说明与该半导体器件密切相关的一些附加层和部分,但省去了对本领域公知的那些附加层和部分(如源极接触、漏极接触和栅极接触)的详细描述。为了简明起见,可以在一幅图中描述经过数个步骤后获得的半导体结构。  In describing the steps of manufacturing the semiconductor device below, some additional layers and parts closely related to the semiconductor device will be described, but those additional layers and parts known in the art (such as source contacts, drain contacts and gate contacts) will be omitted. pole contact) for a detailed description. For the sake of simplicity, the semiconductor structure obtained after several steps can be described in one figure. the

参见图2,本发明的制造半导体器件的方法开始于SOI晶片,SOI晶片是包括底部衬底21、掩埋绝缘层(BOX)22和顶部半导体层23的叠层。  Referring to FIG. 2 , the method of manufacturing a semiconductor device of the present invention starts with an SOI wafer, which is a stack including a bottom substrate 21 , a buried insulating layer (BOX) 22 and a top semiconductor layer 23 . the

通过已知的沉积工艺,如PVD、CVD、原子层沉积、溅射等,在SOI晶片上依次外延生长Ge含量约为5-15%、厚度约为3-20nm的SiGe层24和厚度约为30-100nm的Si层25。Si层25可以在单独的沉积步骤中形成,也可以在外延生长SiGe层24之后通过使用Si靶或前体原位形成。  By known deposition processes, such as PVD, CVD, atomic layer deposition, sputtering, etc., the SiGe layer 24 with a Ge content of about 5-15% and a thickness of about 3-20 nm and a thickness of about Si layer 25 of 30-100 nm. The Si layer 25 can be formed in a separate deposition step, or can be formed in situ after the epitaxial growth of the SiGe layer 24 by using a Si target or precursor. the

然后,通过原子层沉积或磁控溅射,在Si层25上形成厚度约为3-10nm的HfO2层26。  Then, an HfO 2 layer 26 with a thickness of about 3-10 nm is formed on the Si layer 25 by atomic layer deposition or magnetron sputtering.

参见图3,通过包括曝光和显影步骤的常规光刻工艺,在HfO2层26上形成了条形的光抗蚀剂图案27。  Referring to FIG. 3 , a stripe-shaped photoresist pattern 27 is formed on the HfO 2 layer 26 through a conventional photolithography process including exposure and development steps.

参见图4,利用光抗蚀图案27作为掩模,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,去除HfO2层26、Si层25、SiGe层24的一部分,形成HfO2层26、Si层25、SiGe层24的构图的叠层结构。  Referring to FIG. 4, using the photoresist pattern 27 as a mask, a part of the HfO2 layer 26, the Si layer 25, and the SiGe layer 24 are removed by dry etching, such as ion milling etching, plasma etching, reactive ion etching, and laser ablation. , forming a patterned stacked structure of the HfO 2 layer 26 , the Si layer 25 , and the SiGe layer 24 .

如果采用反应离子蚀刻,可以分为两个步骤进行。在第一步骤,选择蚀刻气氛的气体组分,使得去除HfO2层26和Si层25的一部分,并在SiGe层24顶部停止。在第二步骤,通过改变蚀刻气氛的气体组分,使得去除SiGe层24的一部分,并在SOI衬底的顶部半导体层23上停止。本领域的技术人员已知在反应离子蚀刻中,可以通过改变蚀刻气氛的气体组分控制材料的选择性去除SiGe层和Si层中的一种。  If reactive ion etching is used, it can be divided into two steps. In a first step, the gas composition of the etching atmosphere is chosen such that the HfO 2 layer 26 and part of the Si layer 25 are removed, stopping on top of the SiGe layer 24 . In the second step, by changing the gas composition of the etching atmosphere, a part of the SiGe layer 24 is removed and stops on the top semiconductor layer 23 of the SOI substrate. Those skilled in the art know that in reactive ion etching, the selective removal of one of the SiGe layer and the Si layer can be controlled by changing the gas composition of the etching atmosphere.

然后,通过在溶剂中溶解或灰化去除光抗蚀剂图案27。  Then, the photoresist pattern 27 is removed by dissolving in a solvent or ashing. the

在构图的叠层结构和SOI衬底的顶部半导体层23的暴露部分上形成厚度约为2-5nm的共形氧化物层28。  A conformal oxide layer 28 with a thickness of approximately 2-5 nm is formed on the patterned stack and exposed portions of the top semiconductor layer 23 of the SOI substrate. the

氧化物薄层可通过已知的沉积工艺形成,如PVD、CVD、原子层沉积、溅射等。  The thin oxide layer can be formed by known deposition processes such as PVD, CVD, atomic layer deposition, sputtering, and the like. the

然后,首先形成共形氮化物层,然后去除该层的一部分,从而在包括HfO2层26、Si层25、SiGe层24的叠层结构两侧形成厚度约为5-50nm的氮化物间隔侧壁29。  Then, a conformal nitride layer is first formed, and then a part of the layer is removed, thereby forming a nitride spacer with a thickness of about 5-50 nm on both sides of the stack structure including the HfO layer 26, the Si layer 25, and the SiGe layer 24. Wall 29.

参见图5,通过包括曝光和显影步骤的常规光刻工艺,在图4所示的结构上形成光抗蚀剂层图案30,以遮挡左侧的间隔侧壁以及构图的叠层结构的左侧部分。  Referring to FIG. 5, a photoresist layer pattern 30 is formed on the structure shown in FIG. 4 by a conventional photolithography process including exposure and development steps, so as to shield the spacer sidewall on the left side and the left side of the patterned stack structure. part. the

参见图6,利用抗蚀剂图案30作为掩模,通过各向同性蚀刻,例如使用蚀刻剂溶液的常规湿法蚀刻,去除右侧的间隔侧壁。  Referring to FIG. 6 , using the resist pattern 30 as a mask, the spacer sidewall on the right side is removed by isotropic etching, for example, conventional wet etching using an etchant solution. the

替代地,可以分为三个步骤去除右侧的间隔侧壁。在第一步骤,利用抗蚀剂图案30作为掩模,利用倾角离子注入在右侧的间隔侧壁中注入Ge以造成损伤。在第二步骤,通过在溶剂中溶解或灰化去除光抗蚀剂图案30。在第三步骤,通过湿法蚀刻或干法蚀刻,相对于左侧的间隔侧壁选择性地去除右侧的间隔侧壁。  Alternatively, the right septal sidewall can be removed in three steps. In the first step, using the resist pattern 30 as a mask, Ge is implanted in the spacer sidewall on the right side by oblique angle ion implantation to cause damage. In the second step, the photoresist pattern 30 is removed by dissolving in a solvent or ashing. In the third step, the spacer sidewall on the right side is selectively removed with respect to the spacer sidewall on the left side by wet etching or dry etching. the

在去除右侧的间隔侧壁之后,选择蚀刻气氛的气体组分,例如通过反应离子蚀刻选择性地去除氧化物层28在半导体结构的表面上暴露的部分。接着,利用氧化物层28的剩余部分、侧壁间隔侧壁29和包括HfO2层26、Si层25、SiGe层24的叠层结构作为硬掩模,改变蚀刻气氛的气体组分,例如通过反应离子蚀刻选择性去除SOI衬底的顶部半导体层的暴露部分,以自对准的方式形成半导体材料的鳍片23’。  After removal of the spacer sidewall on the right, the gas composition of the etching atmosphere is selected, for example by reactive ion etching to selectively remove the exposed portions of the oxide layer 28 on the surface of the semiconductor structure. Then, using the remaining part of the oxide layer 28, the sidewall spacer sidewall 29, and the stacked structure comprising the HfO2 layer 26, the Si layer 25, and the SiGe layer 24 as a hard mask, the gas composition of the etching atmosphere is changed, for example, by reacting Ion etching selectively removes exposed portions of the top semiconductor layer of the SOI substrate, forming fins 23' of semiconductor material in a self-aligned manner. the

参见图7,例如通过CVD或ALD,在图6所示的半导体结构表面上依次形成厚度约为2-4nm的共形氧化物(如HfO2)薄层26’作为栅极电介质、厚度约为3-10nm的共形金属(如TiN,金属陶瓷)层31作为叠层栅导体的金属层、以及覆盖的多晶硅层32作为叠层栅导体中的多晶硅层。  7, for example, by CVD or ALD, on the surface of the semiconductor structure shown in FIG . A 3-10 nm conformal metal (eg TiN, cermet) layer 31 acts as the metal layer of the stacked gate conductor and an overlying polysilicon layer 32 acts as the polysilicon layer in the stacked gate conductor.

优选地,可以对多晶硅层32进行原位掺杂以提高导电性。  Preferably, in-situ doping can be performed on the polysilicon layer 32 to improve conductivity. the

多晶硅层32覆盖半导体结构的整个顶部。然后,对多晶硅层32进行平面化处理(CMP)。该平面化处理停止在叠层栅导体的金属层的顶部,从而获得了半导体结构的平整表面。  A polysilicon layer 32 covers the entire top of the semiconductor structure. Then, planarization processing (CMP) is performed on the polysilicon layer 32 . The planarization process stops on top of the metal layer of the stacked gate conductor, resulting in a flat surface of the semiconductor structure. the

参见图8,通过湿法蚀刻或干法蚀刻,相对于金属层31选择性地去除多晶硅层32的一部分,对多晶硅层32进行回蚀刻。然后,例如通过CVD,在半导体结构的整个表面上形成覆盖的氧化物层33。  Referring to FIG. 8 , a part of the polysilicon layer 32 is selectively removed relative to the metal layer 31 by wet etching or dry etching, and the polysilicon layer 32 is etched back. A capping oxide layer 33 is then formed over the entire surface of the semiconductor structure, for example by CVD. the

对氧化物层33进行平面化处理,该平面化处理停止在叠层栅导体的金属层的顶部,从而获得了半导体结构的平整表面。结果,氧化物层33填充了多晶硅层32的通过回蚀刻去除的部分。  The oxide layer 33 is planarized, which stops on top of the metal layer of the stacked gate conductor, resulting in a flat surface of the semiconductor structure. As a result, the oxide layer 33 fills the portion of the polysilicon layer 32 that was removed by the etch back. the

然后,例如通过CVD,在半导体结构的表面上形成氮化物层34。  A nitride layer 34 is then formed on the surface of the semiconductor structure, for example by CVD. the

参见图9,通过包括曝光和显影步骤的常规光刻工艺,形成条形的光抗蚀剂图案35,用于限定器件的栅极区域,叠层的栅导体包括金属层31和多晶硅层32。  Referring to FIG. 9 , a stripe-shaped photoresist pattern 35 is formed to define the gate area of the device through a conventional photolithography process including exposure and development steps, and the stacked gate conductor includes a metal layer 31 and a polysilicon layer 32 . the

然后,利用光抗蚀剂图案35作为掩模,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,依次去除氮化物层34、氧化物层33、多晶硅层32、金属层31、氧化物薄层26’的位于鳍片23’两侧的一部分,该蚀刻在SOI晶片的掩埋绝缘层(BOX)22的顶部停止。  Then, using the photoresist pattern 35 as a mask, through dry etching, such as ion milling etching, plasma etching, reactive ion etching, laser ablation, sequentially remove the nitride layer 34, oxide layer 33, polysilicon layer 32, The metal layer 31 , a portion of the thin oxide layer 26' on either side of the fin 23', the etch stops on top of the buried insulating layer (BOX) 22 of the SOI wafer. the

与图9所示的半导体结构沿A-A’线的截面图相对应,在图10中示出了半导体结构沿1-1′线的截面图。利用光抗蚀图案35作为掩模的蚀刻步骤获得了位于Si层25上方的氮化物层34、氧化物层33、多晶硅层32、金属层31、氧化物薄层26’的叠层。  Corresponding to the cross-sectional view of the semiconductor structure along line A-A' shown in FIG. 9 , a cross-sectional view of the semiconductor structure along line 1-1' is shown in FIG. 10 . An etching step using the photoresist pattern 35 as a mask results in a stack of nitride layer 34, oxide layer 33, polysilicon layer 32, metal layer 31, oxide thin layer 26' over the Si layer 25. the

在上述蚀刻步骤之前或之后,通过附加的掩模形成步骤和蚀刻步骤,可以去除鳍片23’、SiGe层24和Si层25的一部分,以限定鳍片的长度。在图10中示出了由此限定的鳍片23′沿水平方向的尺寸。  By an additional mask forming step and etching step before or after the above etching step, part of the fin 23', SiGe layer 24 and Si layer 25 may be removed to define the length of the fin. The dimensions of the fins 23 ′ thus defined in the horizontal direction are shown in FIG. 10 . the

参见图11,仍然利用光抗蚀剂图案35作为掩模,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,依次去除Si层25和SiGe层24的一部分,该蚀刻在鳍片23’的顶部停止。结果,在鳍片23’上方形成了包括氮化物层34、氧化物层33、多晶硅层32、金属层31、氧化物薄层26’、Si层25、SiGe层24的多层叠层101。  11, still using the photoresist pattern 35 as a mask, by dry etching, such as ion milling etching, plasma etching, reactive ion etching, laser ablation, sequentially remove a part of Si layer 25 and SiGe layer 24, the Etching stops at the top of fin 23'. As a result, a multilayer stack 101 comprising nitride layer 34, oxide layer 33, polysilicon layer 32, metal layer 31, oxide thin layer 26', Si layer 25, SiGe layer 24 is formed over fin 23'. the

参见图12,通过在溶剂中溶解或灰化去除光抗蚀剂图案35。  Referring to FIG. 12, the photoresist pattern 35 is removed by dissolving in a solvent or ashing. the

然后,例如通过CVD,在半导体结构的整个表面上依次形成厚度约为2-5nm的共形氧化物层35和厚度约为10-20nm的共形氮化物层37。  Then, for example by CVD, a conformal oxide layer 35 with a thickness of approximately 2-5 nm and a conformal nitride layer 37 with a thickness of approximately 10-20 nm are sequentially formed on the entire surface of the semiconductor structure. the

通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,去除氮化物层37的一部分,该蚀刻在氧化物层36的表面停止,从而在鳍片23’和多层叠层101的两侧分别形成氮化物间隔侧壁37。  A portion of the nitride layer 37 is removed by dry etching, such as ion milling etch, plasma etch, reactive ion etching, laser ablation, which etch stops at the surface of the oxide layer 36, thereby creating a gap between the fins 23' and the multilayer stack. Nitride spacer sidewalls 37 are respectively formed on both sides of 101 . the

参见图13,利用多层叠层101及两侧的氮化物间隔侧壁37作为硬掩模,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,去除氧化物层36的暴露表面及鳍片23’的一部分半导体材料,从而在鳍片23沿长度方向(即图中的水平方向)的两端形成开口38。在开口38的底部保留了厚度约为10nm的半导体材料薄层。  Referring to FIG. 13, the oxide layer 36 is removed by dry etching, such as ion milling etching, plasma etching, reactive ion etching, or laser ablation, using the multilayer stack 101 and the nitride spacer sidewalls 37 on both sides as a hard mask. The exposed surface of the fin 23 ′ and a part of the semiconductor material, thereby forming openings 38 at both ends of the fin 23 along the length direction (ie, the horizontal direction in the figure). A thin layer of semiconductor material with a thickness of about 10 nm remains at the bottom of the opening 38 . the

该蚀刻步骤是自对准的,其中开口38的尺寸基本上由氧化物层36和氮化物间隔侧壁37确定。  This etching step is self-aligned, wherein the dimensions of the opening 38 are substantially determined by the oxide layer 36 and the nitride spacer sidewalls 37 . the

图14示出了某些实施例中的可选步骤,利用倾角离子注入从开口38向鳍片23′的中间部分进行晕圈注入(halo implantation)。对于n型MOSFET,采用B或BF2作为掺杂剂。对于p型MOSFET,采用As或P作为掺杂剂。  FIG. 14 illustrates an optional step in some embodiments of halo implantation from opening 38 to the middle portion of fin 23' using angled ion implantation. For n-type MOSFETs, B or BF2 is used as a dopant. For p-type MOSFETs, As or P is used as a dopant. the

图15示出了某些实施例中的可选步骤,利用倾角离子注入向鳍片23′的中间部分进行延伸注入(extension implantation)。对于n型MOSFET,采用As或P作为掺杂剂。对于p型MOSFET,采用B或BF2作为掺杂剂。  FIG. 15 illustrates an optional step in some embodiments of performing an extension implantation into the middle portion of the fin 23' using angled ion implantation. For n-type MOSFETs, As or P is used as a dopant. For p-type MOSFETs, B or BF2 is used as a dopant. the

与晕圈注入相比,延伸注入采用的倾角较小而能量较大,从而在延伸注入中,大多数注入的离子穿过开口38底部的半导体材料薄层,使得该半导体材料薄层没有非晶化。  Compared with the halo implant, the extension implant uses a smaller tilt angle and higher energy, so that in the extension implant, most of the implanted ions pass through the thin layer of semiconductor material at the bottom of the opening 38, so that the thin layer of semiconductor material is free of amorphous change. the

由于开口38提供了离子注入的窗口,并且位于半导体结构的表面上的氮化物层34、氧化物层36、氮化物间隔侧壁37提供了硬掩模,因此上述延伸注入、晕圈注入和源/漏区注入可以在原位进行,从而减少了掩模数量并简化了工艺。  Since the opening 38 provides a window for ion implantation, and the nitride layer 34, oxide layer 36, and nitride spacer sidewalls 37 on the surface of the semiconductor structure provide a hard mask, the above-mentioned extension implantation, halo implantation, and source /Drain implants can be performed in-situ, reducing the number of masks and simplifying the process. the

参见图16,对所形成的半导体结构进行退火处理,例如尖峰退火(spike anneal)。退火步骤用来激活通过先前的注入步骤而注入的掺杂剂并消除注入导致的损伤。  Referring to FIG. 16 , the formed semiconductor structure is annealed, such as spike anneal. The annealing step is used to activate the dopants implanted by the previous implantation step and to remove the damage caused by the implantation. the

经过退火处理之后,在半导体鳍片23’中的掺杂剂分布如图中所示,在开口38的底部分别形成了源区12和漏区13,在与源区12和漏区13相邻的位置分别形成了源延伸区12’和漏延伸区13’,在与源延伸区12’和漏延伸区13’相邻并朝着鳍片23’的中间部分延伸的位置分别形成了源晕圈区12”和漏晕圈区13”。  After the annealing treatment, the dopant distribution in the semiconductor fin 23' is shown in the figure, and the source region 12 and the drain region 13 are respectively formed at the bottom of the opening 38, adjacent to the source region 12 and the drain region 13 The source extension region 12' and the drain extension region 13' are respectively formed at the positions of the fins 23', and the source halos are respectively formed at the positions adjacent to the source extension region 12' and the drain extension region 13' and extending toward the middle part of the fin 23'. Circle area 12" and drain halo area 13". the

然后,通过已知的沉积工艺,如PVD、CVD、原子层沉积、溅射等,在开口38中依次外延生长应力层39及其上的外延硅层40。由于外延生长,应力层39仅形成在开口38底部的半导体材料薄层上。对于p型MOSFET,应力层39的材料是Ge含量约为20-50%的SiGe并原位掺B,外延生长后,在沟道区延源漏方向产生压应力,这可以增强p型MOSFET的性能。对于n型MOSFET,应力层39的材料是C含量约为0.5-2%的Si:C并原位掺As或P,外延生长后,在沟道区延源漏方向产生拉应力,这可以增强n型MOSFET的性能。  Then, the stress layer 39 and the epitaxial silicon layer 40 thereon are epitaxially grown sequentially in the opening 38 by known deposition processes, such as PVD, CVD, atomic layer deposition, sputtering, and the like. Due to the epitaxial growth, the stress layer 39 is only formed on the thin layer of semiconductor material at the bottom of the opening 38 . For the p-type MOSFET, the material of the stress layer 39 is SiGe with a Ge content of about 20-50% and doped with B in situ. After epitaxial growth, compressive stress is generated in the direction of source and drain in the channel region, which can enhance the performance of the p-type MOSFET. performance. For n-type MOSFETs, the material of the stress layer 39 is Si:C with a C content of about 0.5-2% and doped with As or P in situ. After epitaxial growth, tensile stress is generated in the direction of source and drain in the channel region, which can enhance Performance of n-type MOSFETs. the

然后,对所形成的半导体结构进行氧化处理,外延硅层40的顶部发生氧化从而形成厚度约为3-10nm的氧化薄层36′。在应力层39的顶部形成的外延硅层40用于获得良好质量的SiO2。  Then, the formed semiconductor structure is oxidized, and the top of the epitaxial silicon layer 40 is oxidized to form a thin oxide layer 36' with a thickness of about 3-10 nm. An epitaxial silicon layer 40 formed on top of the stressor layer 39 is used to obtain good quality SiO2 .

参见图17,利用在图8所示的步骤中形成的氧化物层33作为硬掩模,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,依次去除金属层31、氮化物薄层26’、Si层25、SiGe层24、鳍片23’的一部分,该蚀刻在SOI衬底的掩埋绝缘层22顶部停止,从而以自对准的方式形成开口41。结果,鳍片23’的厚度减小到大致等于氧化物层28和氮化物间隔侧壁29的厚度之和的数值。如下文所述,该鳍片用于形成沟道区,由于蚀刻所去除的材料,在沟道区中的应力进一步增加,此应力可对进一步增强器件性能。  Referring to FIG. 17, using the oxide layer 33 formed in the step shown in FIG. 8 as a hard mask, the metal layer 31 is sequentially removed by dry etching, such as ion milling etching, plasma etching, reactive ion etching, and laser ablation. , thin nitride layer 26', Si layer 25, SiGe layer 24, part of the fin 23', the etch stops at the top of the buried insulating layer 22 of the SOI substrate, thereby forming the opening 41 in a self-aligned manner. As a result, the thickness of the fin 23' is reduced to a value approximately equal to the sum of the thicknesses of the oxide layer 28 and the nitride spacer sidewall 29. As described below, the fins are used to form a channel region in which stress is further increased due to material removed by etching, which can further enhance device performance. the

在开口41的右侧保留着包括氮化物薄层26’、金属层31、多晶硅层32、氧化物层33的一部分的叠层材料。在制造含有相同结构的多个MOSFET的集成电路时,位于开口41右侧的叠层材料可以作为相邻的MOSFET(未示出)的栅极区域,而开口41中的填充材料可以起到浅沟隔离区的作用。  On the right side of the opening 41 remains a stack of materials comprising a thin nitride layer 26', a metal layer 31, a polysilicon layer 32, and a part of an oxide layer 33. When manufacturing an integrated circuit containing multiple MOSFETs of the same structure, the stacked material on the right side of the opening 41 can serve as the gate region of an adjacent MOSFET (not shown), and the filling material in the opening 41 can serve as a shallow gate region. The role of ditch isolation. the

此外,如图17所示,在图12所示步骤中形成的氮化物间隔侧壁37 还存在于栅极叠层的侧面上。  In addition, as shown in FIG. 17, the nitride spacer sidewalls 37 formed in the step shown in FIG. 12 also exist on the sides of the gate stack. the

参见图18,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,相对于氧化物层33,选择性地去除开口内部残留的氧化物薄层26’和金属层31(图18中的右侧侧壁部分)。  Referring to FIG. 18, by dry etching, such as ion milling etching, plasma etching, reactive ion etching, laser ablation, relative to the oxide layer 33, the thin oxide layer 26' and the metal layer 31 remaining inside the opening are selectively removed. (right side wall part in Fig. 18). the

然后,优选地,利用倾角离子注入向半导体材料的鳍片23’注入离子,然后进行退火(例如激光退火),以激活注入的掺杂剂,从而在鳍片23’靠近开口41的一侧形成SSRW 42。开口41提供了离子注入的窗口。有关SSRW的形成工艺可参见以下文件:  Then, preferably, ions are implanted into the fin 23 ′ of the semiconductor material by using inclined angle ion implantation, and then annealing (for example, laser annealing) is performed to activate the implanted dopant, thereby forming a SSRW42. Opening 41 provides a window for ion implantation. For the formation process of SSRW, please refer to the following documents:

1)G.G.Shahidi,D.A.Antoniadis and H.I.Smith,IEEE TED Vol.36,p.2605,1989  1) G.G.Shahidi, D.A.Antoniadis and H.I.Smith, IEEE TED Vol.36, p.2605, 1989

2)C.Fiegna,H.Iwai,T.Wada,M.Saito,E.Sangiorgi and B.Riccò,IEEE TED Vol.41,p.941,1994.  2) C.Fiegna, H.Iwai, T.Wada, M.Saito, E.Sangiorgi and B.Riccò, IEEE TED Vol.41, p.941, 1994.

3)J.B.Jacobs and D.A.Antoniadis,IEEE TED Vol.42,p.870,1995.  3) J.B.Jacobs and D.A.Antoniadis, IEEE TED Vol.42, p.870, 1995. 

4)S.E.Thompson,P.A.Packan and M.T.Bohr,VLSI Tech Symp.,p.154,1996.  4) S.E.Thompson, P.A.Packan and M.T.Bohr, VLSI Tech Symp., p.154, 1996.

参见图19和20,分为三个步骤去除左侧的间隔侧壁37。在第一步骤,利用氧化物层33作为掩模,利用倾角离子注入在左侧的间隔侧壁中注入Ge以造成损伤,如图19所示。在第二步骤,通过在溶剂中溶解或灰化去除光抗蚀剂图案30。在第三步骤,通过湿法蚀刻或干法蚀刻,相对于右侧的间隔侧壁选择性地去除左侧的间隔侧壁,如图20所示。  Referring to FIGS. 19 and 20 , the partition side wall 37 on the left side is removed in three steps. In the first step, using the oxide layer 33 as a mask, the angled ion implantation is used to implant Ge into the left spacer sidewall to cause damage, as shown in FIG. 19 . In the second step, the photoresist pattern 30 is removed by dissolving in a solvent or ashing. In the third step, the left partition sidewall is selectively removed with respect to the right partition sidewall by wet etching or dry etching, as shown in FIG. 20 . the

参见图21,例如通过CVD,在半导体结构的整个表面上形成厚度约为2-5nm的共形氧化物薄层33’。然后,例如通过CVD沉积氮化物,其厚度至少能够填充开口41。相对于氧化物层33’,选择性地回蚀刻氮化物,使得完全去除开口周围的氮化物层,仅在开口中留下氮化物填充材料43。  Referring to Figure 21, a thin conformal oxide layer 33' having a thickness of about 2-5 nm is formed over the entire surface of the semiconductor structure, for example by CVD. Nitride is then deposited, for example by CVD, to a thickness at least capable of filling opening 41 . The nitride is etched back selectively with respect to the oxide layer 33' such that the nitride layer around the opening is completely removed, leaving only the nitride fill material 43 in the opening. the

参见图22A和22B,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,相对于氮化物填充材料43选择性地去除氧化物,  Referring to Figures 22A and 22B, by dry etching, such as ion milling etching, plasma etching, reactive ion etching, laser ablation, the oxide is selectively removed relative to the nitride filling material 43,

该蚀刻完全去除了氧化物层33’在半导体结构表面上暴露的部分,只留下氧化物层33’在已填充的开口侧壁和底部的部分,从而暴露出栅 极叠层中的多晶硅层32的上表面和左侧表面,以及源极区域和漏极区域的外延硅层40的上表面。  The etch completely removes the exposed portion of the oxide layer 33' on the surface of the semiconductor structure, leaving only the portion of the oxide layer 33' at the sidewalls and bottom of the filled opening, thereby exposing the polysilicon layer in the gate stack 32, and the upper surface of the epitaxial silicon layer 40 in the source and drain regions. the

该蚀刻也去除了SOI衬底的掩埋氧化物层22的一部分。  This etch also removes a portion of the buried oxide layer 22 of the SOI substrate. the

参见图23A和23B,利用常规的硅化工艺,将栅极叠层中的多晶硅层32的上表面和左侧表面的一部分,以及源极区域和漏极区域的外延硅层40的至少一部分,转化为硅化物层,以减小栅极、源/漏极与相应的金属接触之间的接触电阻。  Referring to FIGS. 23A and 23B , using a conventional silicidation process, a part of the upper surface and the left side surface of the polysilicon layer 32 in the gate stack, and at least a part of the epitaxial silicon layer 40 in the source region and the drain region, are transformed into It is a silicide layer to reduce the contact resistance between the gate, source/drain and corresponding metal contacts. the

例如,首先沉积厚度约为5-12nm的Ni层,然后在300-500℃的温度下热处理1-10秒钟,使得多晶硅层32和外延硅层40的至少一部分形成NiSi,最后利用湿法蚀刻去除未反应的Ni。  For example, first deposit a Ni layer with a thickness of about 5-12nm, then heat-treat at a temperature of 300-500° C. for 1-10 seconds, so that at least a part of the polysilicon layer 32 and the epitaxial silicon layer 40 forms NiSi, and finally use wet etching Remove unreacted Ni. the

在完成图2-23所示的步骤之后,按照本领域公知的方法,在所得到的半导体结构上形成层间绝缘层、位于层间绝缘层中的通孔、位于层间绝缘层上表面的布线或电极,从而完成半导体器件的其它部分。  After the steps shown in FIGS. 2-23 are completed, an interlayer insulating layer, via holes located in the interlayer insulating layer, and holes located on the upper surface of the interlayer insulating layer are formed on the obtained semiconductor structure according to methods known in the art. Wiring or electrodes to complete the rest of the semiconductor device. the

以上描述只是为了示例说明和描述本发明,而非意图穷举和限制本发明。因此,本发明不局限于所描述的实施例。对于本领域的技术人员明显可知的变型或更改,均在本发明的保护范围之内。  The above description is only for illustration and description of the present invention, not intended to be exhaustive and limitative of the present invention. Accordingly, the invention is not limited to the described embodiments. Variations or changes that are obvious to those skilled in the art are within the protection scope of the present invention. the

Claims (21)

1.一种半导体器件,形成在SOI衬底上,所述SOI衬底包括掩埋绝缘层和在掩埋绝缘层上形成的半导体层,在所述半导体层中形成半导体材料的鳍片,所述鳍片包括垂直于SOI衬底表面的两个相对侧面,所述半导体器件包括:1. A semiconductor device formed on an SOI substrate, the SOI substrate comprising a buried insulating layer and a semiconductor layer formed on the buried insulating layer, fins of semiconductor material are formed in the semiconductor layer, the fins The sheet includes two opposite sides perpendicular to the surface of the SOI substrate, the semiconductor device includes: 设置在鳍片两端的源区(12)和漏区(13);A source region (12) and a drain region (13) arranged at both ends of the fin; 设置在鳍片的中间部分的沟道区(11);以及a channel region (11) disposed in the middle portion of the fin; and 设置在鳍片的一个侧面上的栅极电介质(14)和栅极导体的叠层,所述栅极导体与所述沟道区(11)之间由所述栅极电介质(14)隔离,a stack of a gate dielectric (14) and a gate conductor disposed on one side of the fin, said gate conductor being isolated from said channel region (11) by said gate dielectric (14), 其中所述栅极导体沿着平行于所述SOI衬底表面的方向背离所述鳍片的所述一个侧面延伸,并且所述源区(12)和漏区(13)包括沿着平行于所述SOI衬底表面的方向背离所述鳍片的另一个侧面延伸的部分。wherein the gate conductor extends away from the one side of the fin along a direction parallel to the surface of the SOI substrate, and the source region (12) and drain region (13) include The direction of the surface of the SOI substrate is away from the portion extending from the other side of the fin. 2.根据权利要求1所述的半导体器件,还包括超陡后退阱(42),所述超陡后退阱(42)设置在所述鳍片中邻接沟道区并靠近所述鳍片的另一个侧面的位置。2. The semiconductor device according to claim 1, further comprising an ultra-steep receding well (42), the ultra-steep receding well (42) being arranged in the other fin adjacent to the channel region and close to the fin A side position. 3.根据权利要求1或2所述的半导体器件,其中所述沟道区(11)的厚度在5-40nm的范围内。3. The semiconductor device according to claim 1 or 2, wherein the channel region (11) has a thickness in the range of 5-40 nm. 4.根据权利要求1或2所述的半导体器件,其中所述栅极导体为金属层、掺杂多晶硅层、或包括金属层和掺杂多晶硅层的叠层栅导体。4. The semiconductor device according to claim 1 or 2, wherein the gate conductor is a metal layer, a doped polysilicon layer, or a stacked gate conductor comprising a metal layer and a doped polysilicon layer. 5.根据权利要求4所述的半导体器件,其中所述金属层由选自由TaC、TiN、TaTbN、TaErN、TaYbN、TaSiN、HfSiN、MoSiN、RuTax、NiTax,MoNx、TiSiN、TiCN、TaAlC、TiAlN、TaN、PtSix、Ni3Si、Pt、Ru、Ir、Mo、HfRu、RuOx及其组合构成的组中的一种材料形成。5. The semiconductor device according to claim 4, wherein the metal layer is selected from TaC, TiN, TaTbN, TaErN, TaYbN, TaSiN, HfSiN, MoSiN, RuTax, NiTax, MoNx, TiSiN, TiCN, TaAlC, TiAlN, Formed from one material in the group consisting of TaN, PtSix, Ni3Si, Pt, Ru, Ir, Mo, HfRu, RuOx and combinations thereof. 6.根据权利要求1或2所述的半导体器件,其中所述栅极电介质(14)由选自由SiO2、Si3N4、HfSiOx、HfO2、ZrO2、Al2O3、TiO2、La2O3、SrTiO3、LaAlO3及其组合构成的组中的一种材料形成。6. The semiconductor device according to claim 1 or 2, wherein the gate dielectric (14) is selected from the group consisting of SiO 2 , Si 3 N 4 , HfSiOx, HfO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , Formed from one material in the group consisting of La 2 O 3 , SrTiO 3 , LaAlO 3 , and combinations thereof. 7.根据权利要求1或2所述的半导体器件,还包括应力层(16,17),所述应力层(16,17)设置在所述源区(12)和漏区(13)上,并用于向所述源区(12)和漏区(13)施加应力。7. The semiconductor device according to claim 1 or 2, further comprising a stress layer (16, 17), the stress layer (16, 17) being arranged on the source region (12) and the drain region (13), And it is used for applying stress to the source region (12) and the drain region (13). 8.根据权利要求7所述的半导体器件,其中所述源区(12)和漏区(13)包括凹进的台阶部分,所述应力层(16,17)设置在所述台阶部分中。8. The semiconductor device according to claim 7, wherein said source region (12) and drain region (13) comprise a recessed step portion, said stress layer (16, 17) being arranged in said step portion. 9.根据权利要求7所述的半导体器件,其中所述应力层(16,17)由SiGe或Si:C形成。9. The semiconductor device according to claim 7, wherein the stressor layer (16, 17) is formed of SiGe or Si:C. 10.根据权利要求1或2所述的半导体器件,其中还包括在所述鳍片中与所述源区(12)和漏区(13)邻接并朝着所述沟道区(11)延伸的源延伸区(12’)和漏延伸区(13’)。10. The semiconductor device according to claim 1 or 2, further comprising a fin adjacent to the source region (12) and drain region (13) and extending towards the channel region (11) source extension (12') and drain extension (13'). 11.根据权利要求10所述的半导体器件,其中还包括在所述鳍片中与所述源延伸区(12’)和漏延伸区(13’)邻接并朝着所述沟道区(11)延伸的源晕圈区(12”)和漏晕圈区(13”)。11. The semiconductor device according to claim 10, further comprising adjoining the source extension region (12') and the drain extension region (13') in the fin and facing the channel region (11 ) extended source halo region (12") and drain halo region (13"). 12.一种制造半导体器件的方法,包括以下步骤:12. A method of manufacturing a semiconductor device, comprising the steps of: a)通过自对准方法在SOI衬底的半导体材料层(23)中形成半导体材料的鳍片(23’),所述鳍片(23’)包括垂直于SOI衬底表面的两个相对侧面;a) Forming fins (23') of semiconductor material in the semiconductor material layer (23) of the SOI substrate by a self-alignment method, said fins (23') comprising two opposite sides perpendicular to the surface of the SOI substrate ; b)在鳍片(23’)的一个侧面上形成栅极电介质(14)和栅极导体的叠层,所述栅极导体沿着平行于所述SOI衬底表面的方向背离所述鳍片(23’)的所述一个侧面延伸;b) forming a stack of gate dielectric (14) and gate conductor on one side of the fin (23'), the gate conductor facing away from the fin in a direction parallel to the surface of the SOI substrate said one side extension of (23'); c)向鳍片(23’)两端的半导体材料中注入掺杂剂以形成源区(12)和漏区(13),其中所述源区(12)和漏区(13)包括沿着平行于所述SOI衬底表面的方向背离所述鳍片的另一个侧面延伸的部分;以及c) Implanting dopants into the semiconductor material at both ends of the fin (23') to form a source region (12) and a drain region (13), wherein the source region (12) and the drain region (13) include a portion extending away from the other side of the fin in the direction of the SOI substrate surface; and d)在鳍片(23’)的中间部分形成沟道区(11)。d) Forming the channel region (11) in the middle part of the fin (23'). 13.根据权利要求12所述的方法,其中形成半导体材料的鳍片(23’)的步骤a)包括以下步骤:13. A method according to claim 12, wherein step a) of forming fins (23') of semiconductor material comprises the steps of: 在所述半导体材料层(23)上形成构图的叠层结构(24,25,26);forming a patterned stack structure (24, 25, 26) on the semiconductor material layer (23); 在所述叠层结构(24,25,26)上和所述半导体材料层(23)的整个暴露表面上形成共形氧化物层(28)和共形氮化物层;forming a conformal oxide layer (28) and a conformal nitride layer on said stack (24, 25, 26) and on the entire exposed surface of said semiconductor material layer (23); 选择性去除所述共形氧化物层(28)和所述共形氮化层的一部分,以便在叠层结构(24,25,26)的一个侧壁上留下所述共形氧化物层(28)的一部分和氮化物间隔侧壁(29);以及selectively removing a portion of said conformal oxide layer (28) and said conformal nitride layer to leave said conformal oxide layer on one sidewall of the stack (24, 25, 26) A portion of (28) and the nitride spacer sidewall (29); and 利用所述共形氧化物层(28)的所述一部分、所述氮化物间隔侧壁(29)、以及所述叠层结构(24,25,26)作为硬掩模,选择性去除所述半导体材料层(23),在鳍片(23’)的中间部分留下第一厚度的半导体材料。Selectively removing the A layer of semiconductor material (23), leaving a first thickness of semiconductor material in the middle portion of the fin (23'). 14.根据权利要求13所述的方法,其中形成沟道区的步骤d)包括以下步骤:14. The method according to claim 13, wherein the step d) of forming the channel region comprises the steps of: 利用所述共形氧化物层(28)的所述一部分、以及所述氮化物间隔侧壁(29)作为硬掩模,选择性去除所述叠层结构(24,25,26)及半导体材料的鳍片(23’)的一部分,在鳍片(23’)的中间部分留下第二厚度的半导体材料作为沟道区(11)。Using the part of the conformal oxide layer (28) and the nitride spacer sidewall (29) as a hard mask, selectively remove the stacked structure (24, 25, 26) and semiconductor material A part of the fin (23'), leaving a second thickness of semiconductor material in the middle part of the fin (23') as the channel region (11). 15.根据权利要求12所述的方法,在形成沟道区的步骤d)之后,还包括以下步骤:15. The method according to claim 12, after the step d) of forming the channel region, further comprising the following steps: 在所述鳍片的中间部分,在靠近鳍片的另一个侧面的位置形成与沟道区(11)邻接的超陡后退阱(42)。In the middle part of the fin, an ultra-steep receding well (42) adjacent to the channel region (11) is formed at a position close to the other side of the fin. 16.根据权利要求12所述的方法,其中所述栅极导体为金属层、掺杂多晶硅层、或包括金属层和掺杂多晶硅层的叠层栅导体16. The method of claim 12, wherein the gate conductor is a metal layer, a doped polysilicon layer, or a stacked gate conductor comprising a metal layer and a doped polysilicon layer 17.根据权利要求12所述的方法,在形成源区和漏区的步骤c)和形成沟道区的步骤d)之间,还包括在所述源区(12)和漏区(13)上形成应力层(16,17),用于向所述源区(12)和漏区(13)施加应力。17. The method according to claim 12, between the step c) of forming the source region and the drain region and the step d) of forming the channel region, further comprising forming the source region (12) and the drain region (13) Stress layers (16, 17) are formed thereon for applying stress to the source region (12) and the drain region (13). 18.根据权利要求17所述的方法,其中形成应力层的步骤包括以下步骤:18. The method of claim 17, wherein the step of forming a stress layer comprises the steps of: 在所述源区(12)和漏区(13)中分别形成凹进的开口(38);以及Recessed openings (38) are formed in said source region (12) and drain region (13), respectively; and 在开口(38)中填充应力层(16、17)的材料。The material of the stress layer (16, 17) is filled in the opening (38). 19.根据权利要求18所述的方法,在形成开口的步骤和填充应力层的材料的步骤之间,还包括以下步骤:19. The method of claim 18, further comprising the steps of: 采用倾角离子注入,从开口(38)向鳍片(23′)的中间部分进行延伸注入以形成延伸区(12’,13’)。An extension implant is performed from the opening (38) to the middle portion of the fin (23') to form the extension region (12', 13') using dip angle ion implantation. 20.根据权利要求19所述的方法,在延伸注入步骤之前,还包括以下步骤:20. The method of claim 19, prior to the step of extending the implant, further comprising the step of: 采用倾角离子注入,从开口(38)向鳍片(23′)的中间部分进行晕圈注入以形成晕圈区(12”,13”)。Using oblique ion implantation, halo implantation is performed from the opening (38) to the middle portion of the fin (23') to form halo regions (12", 13"). 21.根据权利要求20所述的方法,其中延伸注入步骤中使用的注入倾角小于晕圈注入步骤,而延伸注入步骤中使用的注入能量大于晕圈注入步骤。21. The method of claim 20, wherein the implant tilt angle used in the extension implant step is smaller than the halo implant step, and the implant energy used in the extension implant step is greater than the halo implant step.
CN2009102353399A 2009-09-30 2009-09-30 Semiconductor device and method for manufacturing the same Active CN102034865B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009102353399A CN102034865B (en) 2009-09-30 2009-09-30 Semiconductor device and method for manufacturing the same
PCT/CN2010/074392 WO2011038598A1 (en) 2009-09-30 2010-06-24 Semiconductor device and method thereof
US12/865,220 US8552477B2 (en) 2009-09-30 2010-06-24 FinFET with improved short channel effect and reduced parasitic capacitance
US14/029,157 US8741703B2 (en) 2009-09-30 2013-09-17 Method for manufacturing FinFET with improved short channel effect and reduced parasitic capacitance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102353399A CN102034865B (en) 2009-09-30 2009-09-30 Semiconductor device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
CN102034865A CN102034865A (en) 2011-04-27
CN102034865B true CN102034865B (en) 2012-07-04

Family

ID=43825524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102353399A Active CN102034865B (en) 2009-09-30 2009-09-30 Semiconductor device and method for manufacturing the same

Country Status (3)

Country Link
US (2) US8552477B2 (en)
CN (1) CN102034865B (en)
WO (1) WO2011038598A1 (en)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
CN102034865B (en) 2009-09-30 2012-07-04 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
US8273617B2 (en) 2009-09-30 2012-09-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US8569128B2 (en) 2010-06-21 2013-10-29 Suvolta, Inc. Semiconductor structure and method of fabrication thereof with mixed metal types
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
CN102315265B (en) * 2010-06-30 2013-12-04 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
US8377783B2 (en) 2010-09-30 2013-02-19 Suvolta, Inc. Method for reducing punch-through in a transistor device
US8404551B2 (en) 2010-12-03 2013-03-26 Suvolta, Inc. Source/drain extension control for advanced transistors
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US8525271B2 (en) 2011-03-03 2013-09-03 Suvolta, Inc. Semiconductor structure with improved channel stack and method for fabrication thereof
US8400219B2 (en) 2011-03-24 2013-03-19 Suvolta, Inc. Analog circuits having improved transistors, and methods therefor
US8748270B1 (en) 2011-03-30 2014-06-10 Suvolta, Inc. Process for manufacturing an improved analog transistor
US8999861B1 (en) 2011-05-11 2015-04-07 Suvolta, Inc. Semiconductor structure with substitutional boron and method for fabrication thereof
US8796048B1 (en) 2011-05-11 2014-08-05 Suvolta, Inc. Monitoring and measurement of thin film layers
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US8735987B1 (en) 2011-06-06 2014-05-27 Suvolta, Inc. CMOS gate stack structures and processes
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
US8629016B1 (en) 2011-07-26 2014-01-14 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
KR101891373B1 (en) 2011-08-05 2018-08-24 엠아이이 후지쯔 세미컨덕터 리미티드 Semiconductor devices having fin structures and fabrication methods thereof
US8748986B1 (en) 2011-08-05 2014-06-10 Suvolta, Inc. Electronic device with controlled threshold voltage
US8645878B1 (en) 2011-08-23 2014-02-04 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8614128B1 (en) 2011-08-23 2013-12-24 Suvolta, Inc. CMOS structures and processes based on selective thinning
US8713511B1 (en) 2011-09-16 2014-04-29 Suvolta, Inc. Tools and methods for yield-aware semiconductor manufacturing process target generation
US9236466B1 (en) 2011-10-07 2016-01-12 Mie Fujitsu Semiconductor Limited Analog circuits having improved insulated gate transistors, and methods therefor
CN103165425B (en) * 2011-12-08 2015-07-15 中芯国际集成电路制造(上海)有限公司 Method for forming fin formula field-effect tube grid side wall layer
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8819603B1 (en) 2011-12-15 2014-08-26 Suvolta, Inc. Memory circuits and methods of making and designing the same
US8883600B1 (en) 2011-12-22 2014-11-11 Suvolta, Inc. Transistor having reduced junction leakage and methods of forming thereof
US8599623B1 (en) 2011-12-23 2013-12-03 Suvolta, Inc. Circuits and methods for measuring circuit elements in an integrated circuit device
US8970289B1 (en) 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US8877619B1 (en) 2012-01-23 2014-11-04 Suvolta, Inc. Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9406567B1 (en) 2012-02-28 2016-08-02 Mie Fujitsu Semiconductor Limited Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
US8863064B1 (en) 2012-03-23 2014-10-14 Suvolta, Inc. SRAM cell layout structure and devices therefrom
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US9368628B2 (en) * 2012-07-05 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET with high mobility and strain channel
US8637955B1 (en) 2012-08-31 2014-01-28 Suvolta, Inc. Semiconductor structure with reduced junction leakage and method of fabrication thereof
US9112057B1 (en) 2012-09-18 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor devices with dopant migration suppression and method of fabrication thereof
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
CN103779222A (en) * 2012-10-23 2014-05-07 中国科学院微电子研究所 MOSFET manufacturing method
JP2016500927A (en) 2012-10-31 2016-01-14 三重富士通セミコンダクター株式会社 DRAM type device with low variation transistor peripheral circuit and associated method
US8802513B2 (en) * 2012-11-01 2014-08-12 International Business Machines Corporation Fin field effect transistors having a nitride containing spacer to reduce lateral growth of epitaxially deposited semiconductor materials
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
US9112484B1 (en) 2012-12-20 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9268885B1 (en) 2013-02-28 2016-02-23 Mie Fujitsu Semiconductor Limited Integrated circuit device methods and models with predicted device metric variations
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
US9034715B2 (en) * 2013-03-12 2015-05-19 International Business Machines Corporation Method and structure for dielectric isolation in a fin field effect transistor
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9112495B1 (en) 2013-03-15 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor
KR102178831B1 (en) * 2014-03-13 2020-11-13 삼성전자 주식회사 Method of forming semiconductor device having stressor and related device
US9312364B2 (en) 2014-05-27 2016-04-12 International Business Machines Corporation finFET with dielectric isolation after gate module for improved source and drain region epitaxial growth
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods
US9319013B2 (en) 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment
KR102255174B1 (en) 2014-10-10 2021-05-24 삼성전자주식회사 Semiconductor device having active region and method of forming the same
US9397161B1 (en) 2015-02-26 2016-07-19 International Business Machines Corporation Reduced current leakage semiconductor device
US9425259B1 (en) 2015-07-17 2016-08-23 Samsung Electronics Co., Ltd. Semiconductor device having a fin
US9583624B1 (en) * 2015-09-25 2017-02-28 International Business Machines Corporation Asymmetric finFET memory access transistor
KR102323943B1 (en) 2015-10-21 2021-11-08 삼성전자주식회사 Method of manufacturing semiconductor device
US9997606B2 (en) 2016-09-30 2018-06-12 International Business Machines Corporation Fully depleted SOI device for reducing parasitic back gate capacitance
WO2018125035A1 (en) * 2016-12-27 2018-07-05 Intel Corporation Transistors including final source/drain material processed after replacement gate processing
US10199503B2 (en) 2017-04-24 2019-02-05 International Business Machines Corporation Under-channel gate transistors
KR102636464B1 (en) * 2018-06-12 2024-02-14 삼성전자주식회사 Semiconductor device having gate isolation layer and method of manufacturing the same
CN111737937B (en) * 2020-07-16 2023-06-23 杰华特微电子股份有限公司 Semiconductor device modeling method
CN115706140A (en) * 2021-08-10 2023-02-17 芯恩(青岛)集成电路有限公司 Fin manufacturing method, fin field effect transistor and manufacturing method thereof
CN116762178A (en) * 2022-01-12 2023-09-15 华为技术有限公司 Transistor and semiconductor integrated circuit
US12133374B2 (en) 2022-01-24 2024-10-29 Nanya Technology Corporation Memory device having memory cell with reduced protrusion
US12185520B2 (en) 2022-01-24 2024-12-31 Nanya Technology Corporation Method of manufacturing memory device having memory cell with reduced protrusion
TWI825669B (en) * 2022-01-24 2023-12-11 南亞科技股份有限公司 Method forprepaing memory device
CN119343600A (en) * 2022-06-15 2025-01-21 斯威森西公司 FET Gas Sensor Device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458662B1 (en) * 2001-04-04 2002-10-01 Advanced Micro Devices, Inc. Method of fabricating a semiconductor device having an asymmetrical dual-gate silicon-germanium (SiGe) channel MOSFET and a device thereby formed
US6787402B1 (en) * 2001-04-27 2004-09-07 Advanced Micro Devices, Inc. Double-gate vertical MOSFET transistor and fabrication method
CN1619835A (en) * 2003-11-20 2005-05-25 国际商业机器公司 Field effect transistor, integrated circuit and method of forming integrated circuit
CN1622336A (en) * 2003-11-24 2005-06-01 三星电子株式会社 Non-planar transistor having germanium channel region and method of manufacturing the same
CN101312197A (en) * 2007-05-25 2008-11-26 旺宏电子股份有限公司 Storage unit and manufacturing method and operating method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413802B1 (en) * 2000-10-23 2002-07-02 The Regents Of The University Of California Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture
US7705345B2 (en) * 2004-01-07 2010-04-27 International Business Machines Corporation High performance strained silicon FinFETs device and method for forming same
JP2006049627A (en) * 2004-08-05 2006-02-16 Toshiba Corp Semiconductor device and manufacturing method thereof
US8227316B2 (en) * 2006-06-29 2012-07-24 International Business Machines Corporation Method for manufacturing double gate finFET with asymmetric halo
JP2008066562A (en) * 2006-09-08 2008-03-21 Toshiba Corp Semiconductor device and manufacturing method thereof
US7452758B2 (en) * 2007-03-14 2008-11-18 International Business Machines Corporation Process for making FinFET device with body contact and buried oxide junction isolation
US7855411B2 (en) * 2007-05-25 2010-12-21 Macronix International Co., Ltd. Memory cell
CN102034865B (en) 2009-09-30 2012-07-04 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458662B1 (en) * 2001-04-04 2002-10-01 Advanced Micro Devices, Inc. Method of fabricating a semiconductor device having an asymmetrical dual-gate silicon-germanium (SiGe) channel MOSFET and a device thereby formed
US6787402B1 (en) * 2001-04-27 2004-09-07 Advanced Micro Devices, Inc. Double-gate vertical MOSFET transistor and fabrication method
CN1619835A (en) * 2003-11-20 2005-05-25 国际商业机器公司 Field effect transistor, integrated circuit and method of forming integrated circuit
CN1622336A (en) * 2003-11-24 2005-06-01 三星电子株式会社 Non-planar transistor having germanium channel region and method of manufacturing the same
CN101312197A (en) * 2007-05-25 2008-11-26 旺宏电子股份有限公司 Storage unit and manufacturing method and operating method thereof

Also Published As

Publication number Publication date
US20110193164A1 (en) 2011-08-11
CN102034865A (en) 2011-04-27
US8552477B2 (en) 2013-10-08
US8741703B2 (en) 2014-06-03
US20140011330A1 (en) 2014-01-09
WO2011038598A1 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
CN102034865B (en) Semiconductor device and method for manufacturing the same
US8710556B2 (en) Semiconductor device comprising a Fin and method for manufacturing the same
CN102315265B (en) Semiconductor device and method for manufacturing the same
CN102222692B (en) Semiconductor device and method for manufacturing the same
CN103579004B (en) Finfet and manufacturing method thereof
WO2012100463A1 (en) Method for forming semiconductor structure
US20120146142A1 (en) Mos transistor and method for manufacturing the same
CN103824775B (en) FinFET and manufacturing method thereof
CN103811343B (en) FinFET and manufacturing method thereof
CN103390637B (en) FinFET and manufacturing method thereof
CN103985754B (en) Semiconductor device and method for manufacturing the same
CN103811349A (en) Semiconductor structure and manufacturing method thereof
CN103779223B (en) MOSFET manufacturing method
US20150340464A1 (en) Semiconductor device and manufacturing method thereof
US9142677B2 (en) FinFET having gate in place of sacrificial spacer source/drain mask
CN103985712B (en) Semiconductor device and method for manufacturing the same
CN103985756B (en) Semiconductor device and method for manufacturing the same
WO2014131240A1 (en) Method for manufacturing semiconductor component

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant